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Historically, swallowing motor control was thought to involve a central mechanism 

that generated patterned responses with little use of sensory input. Although increasing 

evidence of peripheral modulation has altered this concept, our knowledge about the 

flexibility in deglutitive motor control and performance is incomplete. This study sought 

to gain a better understanding by examining lingual motor strategies in light of changing 

bolus properties (volume, consistency) and task demands (discrete vs. sequential 

swallowing). Specifically, the timing and patterns of tongue-palate contact and the 

associated changes in tongue shape and action were examined in five normal adults using 

simultaneous electropalatography (EPG) and ultrasound. Tasks for discrete swallowing 

included 5 and 30 cc of water, 5 and 30 cc of gelatin, and saliva. Tasks for sequential 

swallowing involved drinking 200 cc of water at normal and fast rates. Two analysis 

schemes were used to make timing and percent-contact measurements: segmentation of 



the EPG time series into four stages (prepropulsion, propulsion, full contact, withdrawal), 

and compartmentalization of the pseudopalate into six bins (front, central, back, lateral, 

medial, midline). Results showed little variation in contact pattern as a function of bolus 

property or subject, suggesting considerable stereotypy in lingual motor strategies for 

movement sequencing. However, unlike the conventional description, tongue-palate 

contact during propulsion was multidimensional with two distinct degrees of freedom in 

the front-to-back and the lateral-to-midline continua. Significant (Q<. 0 I) timing 

differences were found in that larger and thinner boluses were propelled faster than smaller 

and thicker ones, and dry swallows had longer full contact than water. For sequential 

swallowing during continuous drinking, the tongue used faster movement speed and 

overlapping gestures to meet the task demands, while propulsive contact pattern remained 

invariant. Thus, the change was not in motor strategies per se but in the timing 

coordination of the "drink" and "swallow" sequences. A 3-D model of oral lingual action 

for swallowing was proposed. Clinical implications were discussed. In sum, results of this 

study support the theory that swallowing motor control includes a peripheral mechanism 

capable of modulating centrally generated responses, and that the deglutitive motor 

program has both invariant and variant parameters. 
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CHAPTER I. INTRODUCTION 

Research Rationale: An Overview 

The tongue has long been recognized as the "principal mobile agent" (Bosma, 

1957, p. 281) or the "primary manipulator" (Kennedy & Kent, 1988, p. 26) for oral and 

oropharyngeal transport of the bolus during swallowing. In recent years, there has been 

empirical evidence that oropharyngeal bolus propulsion is the direct result of tongue 

pumping action supplemented by pharyngoesophageal pressure change (Cerenko, 

McConnel, & Jackson, 1989; McConnel, 1988). The tongue's vital role in enacting 

swallow-related physiological events is further revealed in clinical reports that poor lingual 

control in neurologic and/or postsurgical oral cancer patients is a major cause of 

swallowing dysfunction (Hirano et al., 1992; Logemann, 1983). 

Structurally as well as functionally, the tongue possesses diverse and unique 

properties. It is capable of performing a wide range of movements with multiple degrees 

of freedom. Such capability is based on the remarkable muscular-hydrostatic 

characteristic of its anatomic composition (Kier & Smith, 1985) and gained from 

interacting with other structures of the oral cavity, especially the hard palate (Stone, 1991, 

1995). Tongue-palate interaction during swallowing conceivably serves critical roles in 

bolus formation, containment, and transport, and in the generation of pressure gradients 

I 



and force necessary for proper propulsion. However, our understanding of such 

interaction is by far incomplete. 

2 

The potential degrees of freedom in tongue movement suggests enormous 

potential flexibility in lingual motor control. It is commonly known that flexibility in 

control and performance is characteristic of motor systems for skilled actions. Indeed, the 

tongue's flexibility, as reflected in complex movement variations, is well documented for 

speech production (Stone, 1991 , 1995). In contrast, little information is available about 

the extent of flexibility in deglutitive lingual motor control. Although there are many 

descriptive accounts of how the tongue moves during swallowing (Hamlet, Stone, & 

Shawker, 1988; Shawker, Sonies, Hall, & Baum, 1984; Shawker, Sonies, Stone, & Baum, 

1983; Stone & Shawker, 1986), minimal data exist on deglutitive lingual motor strategies, 

or on how tongue movements adapt to changes in bolus properties and swallowing task 

demands. Only a few investigations, to date, have specifically examined the relation 

between bolus volume and lingual action during oral and pharyngeal transport of food 

(Hamlet, 1989; Kahrilas, Lin, Logemann, Ergun, & Facchini, 1993; Martin, 1991 ). 

One can only speculate that the paucity of data on deglutitive lingual motor 

flexibility is perhaps because swallowing is not a highly skilled motor behavior. Another 

reason could be that historically the theory of swallowing motor program was based on a 

central mechanism thought to make little use of peripheral information (see Miller, 1982). 

The modern concept of swallowing motor programming, however, does acknowledge the 

role of sensory modulation. Above all, a voluntary initial oral phase is as much a part of 

the complex swallowing process as the reflexive pharyngeal and esophageal phases. The 
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new evidence that, for example, larger boluses do induce more vigorous propulsive action 

from the tongue (Kahrilas et al., 1993) supports the notion that deglutitive lingual motor 

control has more flexibility/adaptability than previously believed. On the other hand, 

because of the biomechanical constraints of the oral cavity, the unidirectionality of the 

bolus translocation in oral transport, and the stringent requirement for airway protection 

during swallowing, it is theoretically implausible that for deglutition purposes, the tongue 

needs the same high degree of flexibility as the motor systems for expert skills such as 

playing a musical instrument with the hands. An investigation aiming at better 

understanding the extent of deglutitive lingual motor flexibility and at identifying variable 

versus invariant motor program parameters has, therefore, theoretical justification. 

From the clinical perspective, improved knowledge on deglutitive lingual motor 

flexibility would have a positive impact on patient management. For decades, swallowing 

clinicians and researchers have continued the quest for a sound theoretical foundation on 

which to build effective clinical evaluation and treatment protocols. Information on the 

flexibility and/ or invariance of lingual motor performance would contribute to this 

theoretical base, provide a physiological or kinematic framework for deriving explanations 

for dysphagia symptoms related to lingual motility deficits, and offer insights into 

appropriate management strategies. 

The present study examined an important area--linguopalatal interaction during 

swallowing--where little research existed. Specifically, efforts were made to delineate the 

temporal and spatial details of deglutitive tongue-palate contact and to address lingual 

kinematic issues concerning response modulations due to changing bolus properties 



(volume and consistency) and task demands (discrete swallowing vs. sequential 

swallowing at normal and fast rates). The underlying motive was that by exploring the 

effects of boluses and tasks on specific parameters of tongue action during swallowing, a 

better understanding would be gained of the flexibility in deglutitive lingual motor 

performance and of the swallowing motor program in general. 

Review of Literature 

The Tongue: Composition, Motor Diversity, and Innervation 

The tongue is one of the most complex structures in the oral sensorimotor system. 

It is remarkably diverse in function and unique in biomechanical properties. In humans, 

the tongue participates in a great variety of oromotor behaviors, ranging from primitive 

(e.g., suckling), to stereotyped (e.g., swallowing), to highly skilled (e.g., speech). Its 

intrinsic anatomy is characterized by a mesh of vertical, transverse, and longitudinal 

muscle fibers, fat, and connective tissue with no bones or joints. Its extrinsic muscles-

genioglossus, hyoglossus, styloglossus, and palatoglossus--all have bony origins but 

soft-tissue insertions (see Abd-el-Malek, 1939, Hiatt & Gartner, 1987, and Miyawaki, 

1974). An organ composed primarily of muscles is constant in its volume due to the fact 

that a muscle is an incompressible liquid. Thus, a physical change of the tongue in one 

dimension is naturally compensated for by a change in at least one other dimension (Kier 

& Smith, 1985; Smith & Kier, 1989). These physical and biomechanical characteristics 

suggest enormous potential flexibility in movement. 

4 



The intrinsic muscles produce diverse shape changes in the tongue. Through 

contractions of its vertical and transverse muscles, the tongue lengthens, flattens, and 

widens. Through contractions of its superior and inferior longitudinal muscles either 

singularly or together, the tongue shortens and compresses, and its tip elevates or 

depresses. Differentially combined activations of these muscles accomplish still other 

kinematic goals or shape alterations such as bending, curling, stiffening, and leverage 

(Stone, 1990, 1991 ). 

Actions of the extrinsic muscles add further complexity to the tongue's movement 

repertoire. The genioglossus protrudes the tongue, the hyoglossus retracts and depresses 

it, the styloglossus retracts and elevates it, and the palatoglossus elevates the base of the 

tongue (Hiatt & Gartner, 1987). Moreover, because of their insertions into the lateral 

aspects of the tongue and the intermingling of fibers, the styloglossus and hyoglossus can 

cause medial concavity or convexity in tongue shape, respectively. Because of its 

midsagittal insertion into the tongue, when coactivated with the styloglossus, the 

genioglossus can further deepen the central groove (Stone, 1991). 

5 

It must be emphasized that the lingual muscle groups do not function 

independently. The decussations of the intrinsic and extrinsic fibers mandate concerted 

movement efforts. It is only by intricately coordinated activities of several muscles as well 

as interactions with the other structures of the vocal tract that the tongue accomplished 

complex movements with multiple degrees of freedom (Hiatt & Gartner, 1987; Lowe, 

1981; Stone, 1991). 
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Like any organ associated with diverse activity patterns, the tongue has an 

intricate neural control system with elements extending from the periphery through the 

brainstem to the cortex. At the periphery, motor innervation to the lingual musculature is 

supplied by fibers of the hypoglossal nerve (cranial nerve XII: for all except palatoglossus) 

and the pharyngeal plexus (derived from cranial nerves IX, X, and XI: for palatoglossus). 

In addition, the tongue is richly endowed with somatosensory and proprioceptive 

innervations (Bowman, 1968; Cooper, 1953; Fitzgerald & Sachithanandan, 1979; 

Landgren & Olsson, 1982; Lowe, 1981 , 1984; Porter, 1966). At the brainstem level, the 

hypoglossal nucleus contains topographical representations for different lingual muscles, 

and receives afferent projections directly from the nucleus tractus solitarius, the trigeminal 

spinal and mesencephalic nuclei, and indirectly from the glossopharyngeal and vagus 

nerves (see Lowe 1981, 1984 for reviews). A recent electrophysiological study has 

confirmed that tactile and gustatory input to the posterior tongue is received in specific 

regions in the nucleus tractus solitarius (Halsell, Travers, & Travers, 1993). In humans 

and nonhuman primates, muscle-spindle afferents from the tongue are also sent to the 

hypoglossal nucleus through the hypoglossal nerve (Bowman & Combs, 1968, 1969; 

Fitzgerald & Sachithanandan, 1979). At the cortical level, as recent neurophysiological 

evidence shows, the tongue region of the primary motor cortex (tongue-MI) contains 

discrete efferent zones, and different changes in tongue shape and position are due to 

recruitment of different tongue-MI sites (Murray & Sessle, 1992a, 1992b, 1992c ). The 

data cited here suggest several potential neural mechanisms through which peripheral 



sensory input of various types may exert influences on the tongue and elicit adaptive 

lingual motor responses at the brainstem and the cortical levels during a variety of 

oromotor behaviors including swallowing. 

Swallowing: Conceptual Framework for Tongue Kinematics 

Neural Organization of Swallowing 

Swallowing, "the transport of a bolus, liquid or solid, from the mouth to the 

stomach" (Hendrix, 1980, p. 1322), is one of the most basic and stereotyped behaviors of 

the animal world . All living organisms must ingest food and absorb nutrients for life 

sustainment purposes. Even in humans, swallowing is performed without effort or 

attention and with a considerable degree of semiautomaticity. On the other hand, it is 

unquestionably a motor sequence of extraordinary complexity, requiring the coordination 

of a great number of muscles, several cranial nerves, and the interaction of the respiratory 

and alimentary tracts. This complexity can be overlooked because of its seeming 

effortlessness and semiautomated processes. To represent swallowing accurately, the 

simplicity and complexity of the behavior must be reconciled. 

Neural control theories. Two theories have been proposed to account for the 

regulation of the neuromuscular sequence of swallowing, namely, the reflex chain theory 

(Dodds, 1988; Dodds, Stewart, & Logemann, 1990; Miller, 1982) and the central pattern 

generator theory (Dodds, 1988; Dodds et al., 1990; Doty, 1968; Dubner et al., 1978; 

Miller, 1982). The reflex chain hypothesis proposes that swallowing is the motor 

7 



manifestation of a chain oflinked reflexes. As the bolus is passed through the oral cavity, 

it stimulates intraoral sensory receptors, evoking the initial oromotor responses. 

Subsequently, as the bolus continues its path through the pharynx and esophagus, 

receptors are stimulated along the way, thereby eliciting series of muscle contractions 

from one phase to the next. Inherent to this theory is the notion that peripheral sensory 

input is crucial in the initiation and modification of the swallowing motor output. 
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The central pattern generator (CPG) theory for swallowing is a "branch" of that 

hypothesized in general motor physiology. A CPG is a network of neurons responsible for 

generating the particular pattern of a motor sequence under experimentally induced 

conditions of complete deafferentation (Grillner & Wallen, 1985). Thus, conceptually, a 

hallmark feature of central pattern generators is their independence from peripheral 

sensory influences. In other words, once initiated, the entire sequence of muscle 

contractions associated with swallowing will course through a series of patterned 

neuromuscular responses with little peripheral modulation (Doty, 1968; Dubner et al., 

1978; Sessle & Henry, 1989). Supporting evidence for this theory was derived from 

animal studies in which experimentally induced sensory deprivation did not alter the 

swallowing motor output or the activity patterns of swallow-related neurons (Car & Arnri, 

1987; Doty & Bosma, 1956; Doty, Richmond, & Storey, 1967; Kessler & Jean, 1985; 

Miller, 1972b; Sumi, 1964, 1970b). 



The CPG hypothesis has gained emphasis over the years. However, as that 

occurred in general motor physiology1
, the theory also has undergone scrutiny. 

Increasing empirical evidence indicates that many of the swallowing motor components 

can indeed be modified by sensory input (Dubner et al., 1978; Jean, 1984b, 1990; Miller, 

1982, 1986; Sessle & Henry, 1989). As a result, a revised theory proposes that 

swallowing is likely the efferent output of centrally orchestrated motor programs, but the 

generation of such programs is greatly influenced, if not routinely regulated, by peripheral 

feedback . 

The precise mechanisms of interactions between peripheral sensory input and the 

swallowing motor programs remain unknown. It appears that one means of elucidating 

this issue in normal humans where central electrophysiological experimentation is 

impossible is to critically examine specific deglutitive motor elements while varying the 

properties of the material swallowed or the demands of the swallowing tasks performed. 

Neural control elements. Despite the different theories, a number of basic 

elements are known to participate in the swallowing neural circuitry in mammalians. 

These include the peripheral receptors, primary afferents with their sensory ganglia, 

medullary control neurons, motoneurons and their efferent fibers, and specific muscles 

9 

1A large body of empirical evidence exists today, indicating a high degree of 
sensory regulation in the motor systems of locomotion, flight, respiration, and mastication 
in animals (for review, see Pearson, 1987 and Rossignol, Lund, & Drew, 1988). In speech 
research, there is also evidence for sensory influences on the timing and coordination of 
labial, mandibular, lingual, and laryngeal movements (see Abbs & Connor, 1991). As a 
result, the concept of central pattern generator has undergone revision. Today, the 
prevalent view in general motor physiology is that peripheral afferent signals are basic 
elements in the pattern-generating networks under normal operating conditions in intact 
nervous systems. 
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(Doty, 1968; Jean, 1984a; Miller, 1982). In addition, there are subcortical and cortical 

regions capable of modulating swallowing (Hockman, Bieger, & Weerasuriya, 1979; 

Martin & Sessle, 1993; Miller, 1982). 

Physiological studies (Miller & Sherrington, 1916; Pommerenke, 1928; Sinclair, 

1970; see Miller, 1982 for review) have identified a variety of oral, oropharyngeal, and 

hypo pharyngeal sites sensitive to peripheral swallowing elicitation. Dorsal surface of the 

tongue is among these sites, the others being the soft palate, uvula, faucial pillars, 

valleculae, epiglottis, posterior pharyngeal wall, and the cricopharyngeal vicinity. The 

responsible receptors in these areas include mechanoreceptors ( especially the slowly 

adapting type, cf. Dubner, Dubner, Sessle, & Storey, 1978), those sensitive to liquid 

stimulation (Shingai & Shimada, 1976; Storey, 1968), taste buds and chemosensory 

endings (see Dubner et al., 1978 and Miller, 1982), and thermosensitive terminals (see 

Chi-Fishman, Capra, & McCall, 1994). Many of the above-cited studies emphasize that 

successful swallow initiation depended on the properties of the stimuli applied and the size 

of the area stimulated. That is, peripheral sensory input must be of a specific pattern or 

strength, and a broad span of mucosa! surfaces encompassing a sufficiently large 

population of sensory receptors must be activated. (For a review of oral receptor 

morphology and physiology, see Capra, 1995.) 

Miller and Sherrington ( 1916), in particular, reported that in order for a bolus of 

meat or moist cotton ( 1 cc in volume), being dragged through the oral cavity with a string 

attached, to even inconsistently trigger a swallow in decerebrated cats, it had to make 

contact with "most of the whole circumference of the faucial opening" (p. 157). If a food 
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bolus alone does not necessarily provide all the impetus needed to trigger a response from 

the brainstem neurons controlling deglutition, what other factors must be in operation 

during normal swallowing? The answer may lie in the action of the tongue. Particles of 

the bolus, with their potentially diverse physical and sensory properties (e.g., volume, 

texture, taste, temperature), come in random contact with mucosal surfaces during oral 

preparation as a result of direct tongue action, gravity, or the biomechanical force 

generated by linguodental, linguopalatal, and linguobuccal interactions ( cf. Kennedy & 

Kent, 1988). The tongue itself, in the process of manipulating, forming, and transporting 

the bolus, also makes repeated contact with a wide section of intraoral and oropharyngeal 

mucosa. Therefore, active movements of the tongue and the coupled motion of the bolus 

certainly have the potential of stimulating multiple intraoral and oropharyngeal receptors 

including those located on and in the tongue, thereby contributing to the generation of a 

swallowing response. 

The role of the peripheral lingual elements extends beyond swallow elicitation. 

Through the detection of bolus properties as well as changes in tongue position and 

contact pressure, lingual mechanoreceptors and proprioceptors conceivably also 

participate in fostering modification of the preprogrammed swallowing motor responses 

(Dodds, 1988; Kahrilas, Logemann, Lin, & Ergun, 1992; Porter, 1966). 

Most of the mucosal receptors participating in swallowing are supplied by the 

glossopharyngeal nerve, the trigeminal nerve (e.g. , lingual branch for tactile information 

from the anterior tongue), the superior laryngeal nerve, and branches of the pharyngeal 

plexus. Several studies (Chi-Fishman et al., 1994; Doty, 1951 ; Sinclair, 1971 ; 



Weerasuriya, Bieger, & Hockman, 1979) have shown that electrical stimulation of these 

primary afferents, especially the internal laryngeal branch of the superior laryngeal nerve, 

can elicit swallowing when the requirements for stimulus-pulse parameters are met. 
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It is commonly postulated that a "swallowing center" exists bilaterally in the 

medulla, which consists of two parts: dorsal and ventral. The dorsal part is comprised of 

neurons of the nucleus tractus solitarius and the adjacent reticular formation (see Miller, 

1986 for review). Neuroanatomical tracings have confirmed that these medullary regions, 

through the glossopharyngeal and superior laryngeal nerves, have close connections with 

the oral, pharyngeal and laryngeal receptive fields capable of activating swallowing 

(Altschuler, Bao, Bieger, Hopkins, & Miselis, 1989; Astrom, 1953; Beckstead & Norgren, 

1979; Contreras, Beckstead, & Norgren, 1982; Cottle, 1964; Hanamori & Smith, 1986; 

Kerr, 1962; Sweazey & Bradley, 1986). This dorsal network is believed to serve the 

function of sensory integration and transmission of the integrated signals to the ventral 

part (Miller, 1972a). 

The ventral part of the swallowing center is comprised of neurons located in the 

ventrolateral reticular formation adjacent to the nucleus ambiguus (Doty, Richmond, & 

Storey, 1967; Jean, 1984a; Kessler & Jean, 1985; Miller, 1972a, 1982, 1993; Nakayama, 

Neya, Watanabe, & Tsuchiya, 1974; Neya, Watanabe, & Yamasato, 1974; Roman, 1986). 

Nerve cells of the ventral network are thought to act as command or switching 

interneurons and send patterns of outgoing signals to the motoneurons involved. 

Motoneurons participating in swallowing are located in the nucleus ambiguus, the 

trigeminal, facial, vagal and hypoglossal motor nuclei, and the spinal cord segments C 1, 
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C2, and C3 (Amri & Car, 1988; Amri, Car, & Roman, 1990; Dodds et al., 1990; Doty, 

1968; Jean, Amri, & Calas, 1983; Kennedy & Kent, 1988; Miller, 1993). Efferent fibers 

from these nuclei activate the peripheral motor elements to produce swallowing. 

The relationship between deglutition and the hypoglossal nucleus is well 

documented. Past studies have shown that during swallowing the entire pool of 

hypoglossal motoneurons is activated (Miller, 1982) with generally strong and prolonged 

discharge spikes (Car & Amri, I 987; Sumi, 1964, I 969b). Electrical stimulation of the 

glossopharyngeal and the superior laryngeal nerves, while eliciting swallowing, can at the 

same time trigger excitatory responses from the hypoglossal motoneurons (Lowe, 1978). 

Although the hypoglossal nucleus is better known for its motor function, its connections 

with brainstem sensory nuclei (described earlier) cannot be overlooked. Direct afferent 

projections from the nucleus tractus solitarius--the dorsal swallowing center--to the 

hypoglossal nucleus represent one of the avenues through which different types of 

peripheral input (proprioceptive, tactile, pressure, and other types) may affect lingual 

motoneuron activities during swallowing and induce adaptive motor responses from the 

tongue. 

Numerous oral, pharyngeal, and laryngeal muscles participate in the swallow 

synergy (see Donner, Bosma, & Robertson, 1985 for review). Electromyography (EMG) 

data from non-human mammals show intrinsic muscles in the posterior tongue and 

extrinsic muscles such as the styloglossus and palatoglossus to be among those that start 

the synergistic swallowing process (Amri, Lamkadem, & Car, 1989; Doty & Bosma, 

1956; Kawasaki, Ogura, & Takenouchi, 1964; Lowe & Sessle, I 973 , 1974; McNamara & 



Moyers, 1973; Miller, 1972b; Miller & Bowman, 197 4 ). Genioglossus, the tongue 

"protruder" , also exhibits distinct discharge patterns during swallowing (Lowe & Sessle, 

1973, 1974; Miller & Bowman, 1974). There is further evidence that styloglossus and 

hyoglossus, the tongue "retractors", coactivate with geniohyoid during swallowing to 

elevate the hyoid bone while the jaw muscles are simultaneously stabilizing the mandible 

(Amri et al. , 1989). EMG data from humans are essentially similar, but with perhaps a 

stronger indication for intersubject variations (Bole, 1965; Cunningham & Basmajian, 

1969; Hrychshyn & Basmajian, 1972; Lowe, Sessle, & Gurza, 1977; Milidonis, Kraus, 

Segal, & Widmer, 1993; Vitti, Basmajian, Ouellette, Mitchell, Eastman, & Seaborn, 

1975). 
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Increasing empirical and clinical evidence suggests that suprabulbar mechanisms 

participate in the modulation of swallowing. (For detailed reviews, see Hockman et al., 

1979, Martin and Sessle, 1993, and Miller, 1982). A number of cortical and subcortical 

sites have direct connections with zones of the brainstem swallowing center, as well as 

swallow-related motor nuclei including the hypoglossal (Bowman & Combs, 1969; Jenny 

and Saper, 1987; Jurgens, 1976; Kuypers, 1958a, 1958b; Niimi, Kishi, Miki, & Fujita, 

1963; Porter, 1967; Rossi & Broda!, 1956; Sirisko, & Sessle, 1983; Walberg, 1957), and 

thus have the potential to exert descending excitatory or inhibitory influences. Among the 

documented regions are those in the anterolateral or dorsolateral frontal cortex (Sumi, 

1969a, 1972a, Miller & Bowman, 1977; Penfield & Rasmussen, 1950; see Martin & 

Sessle, 1993 for review of supporting experimental lesion studies and clinical 

investigations). It has been shown that electrical stimulation to these and other 
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suprabulbar regions can directly elicit swallowing (Miller, 1920; Miller & Bowman, 1977; 

Sumi, 1969a, 1972b; Walker & Green, 1938), modify elicited deglutitive responses . 
(Bieger & Hockman, 1976; Kessler & Jean, 1986; Sumi, 1971 ; Weerasuriya, Bieger, & 

Hockman, 1979), or evoke corresponding activity in brainstem swallow-related neurons 

(Amri, Lamkadem, & Car, 1991; Jean & Car, 1979; Sumi, 1970a). 

Recent recordings of single neuron activity in the tongue region of the primary 

motor cortex (MI) showed swallow-related discharges, suggesting that tongue-MI 

neurons may participate in the initiation and regulation of swallowing (Martin, Murray, & 

Sessle, 1991 ; Murray & Sessle, 1990). Interestingly, a considerable number of tongue-MI 

neurons have been found to have mechanoreceptive fields on the superior surface of the 

tongue (Martin et al., 1991 ; Murray & Sessle, 1992a). Since the cortex has a well

established, crucial role in the integration of sensorimotor processes involved in complex 

voluntary behaviors, cortical regions including the tongue-MI zone conceivably are also 

important in the mediation of oropharyngeal sensory input for regulating the volitional 

aspects of deglutition, or in the final adjustment of certain kinematic parameters of 

swallowing. 

Physiological Mechanism of Swallowing 

Swallowing is commonly divided into sequential stages or phases based on 

anatomic landmarks and radiographic characteristics of structural or bolus movement 

(Dodds et al., 1990; Hendrix, 1980; Logemann, 1983, 1988; Miller, 1982, 1986). The 

purpose is often for simplicity of description. (See Kennedy and Kent, 1985, 1988 for 
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reviews of different proposals of swallowing stages.) It is generally agreed that at least 

three physiological processes exist in a deglutitive sequence, namely, oral, pharyngeal, and 

esophageal (Miller, 1986). 

The oral stage is marked by voluntary division of the ingested material into smaller 

portions, followed by propulsion of the bolus from the oral cavity into the pharynx. 

During the pharyngeal stage, the bolus is propelled from the oropharynx through the 

hypopharynx and upper esophageal sphincter (UES) into the cervical esophagus. The 

ensuing esophageal stage, completely involuntary, involves the transport of bolus through 

the body of the esophagus and the lower esophageal sphincter into the stomach. For 

conciseness, the literature review that follows will focus on the kinematic events occurring 

after mastication and before esophageal transport. (For reviews of mastication and 

mascatory lingual kinematics, see Anderson and Matthews, 1976, Hiiemae and Crompton, 

1985, Thexton, 1992, and Tamura, Ide, and Kamijo, 1981 . For reviews of esophageal 

physiology, see Kennedy & Kent, 1988 and Nelson and Castell, 1988.) 

Oral and oropharyngeal transport of bolus. Most accounts of deglutition describe 

a momentary, preswallow entrapment of the bolus in a central lingual groove (Bosma, 

1957; Dodds et al., 1990; Kennedy & Kent, 1988; Roberts, 1957). This "spoon-like" 

depression is formed by approximation of the tip, blade, and lateral aspects of the tongue 

with the perimeter of the hard palate, and by elevation of the posterior tongue against a 

lowered soft palate. The approximation of the posterior tongue with the velum is said to 

create a high-pressure zone at the glossopalatal sphincter, serving to prevent premature 

bolus spillage (Dantas, Dodds, Massey, Shaker, & Cook, 1990). It should be pointed out 



that the formation of a spoon-like depression on the tongue surface depends on how the 

bolus is held in the mouth. There is radiographic evidence that in some individuals the 

bolus is positioned under rather than on top of the tongue just before a swallow (Dodds, 

Taylor, Stewart, Kem, Logemann, & Cook, 1989). Obviously, the hold position will 

affect how the tongue initiates its transport movement. 
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Typically, oral transport of the bolus begins with elevation of the tongue tip 

(Abd-el-Malek, 1955; Cleall, 1965; Dodds et al., 1989, 1990; Roberts, 1957) and 

associated forward movement of the tongue blade (Stone & Shawker, 1986). The 

anterior, middle, and dorsal portions of the tongue then initiate firm, progressively 

expanding linguopalatal contact from front to back, and in doing so propel the bolus in the 

direction of the oropharynx (Dodds et al., 1990; Kennedy & Kent, 1988). As these 

activities occur, the posterior tongue and tongue base move downward and forward, 

opening the valleculae and enlarging the oropharynx (Dodds et al. , 1990; Mcconnel, 

1988). These movements cause the back of the tongue to assume the configuration of "a 

vertically steepening ramp" (Shedd, Scatlitf, & Kirchner, 1960, p. 847). The original 

mid-tongue grooving has also progressed posteriorly to continue the channeling of bolus 

passage (Hamlet, Stone, et al., 1988). From a biomechanical perspective, these lingual 

motions create changes in oral and oropharyngeal volume, and the resulting pressure 

gradients likely also contribute to intraoral and oropharyngeal bolus displacement 

(Kennedy & Kent, 1988; McConnel, 1988). 

Several other kinematic events occur sooner or later during oral transport. These 

include the onset of glottic closure (Shaker, Dodds, Dantas, Hogan, & Arndorfer, 1990), 
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velar elongation and elevation, and anterior and superior movement of the hyoid bone and 

larynx (Dodds et al., 1990; Logemann, 1983). 

Pharyngeal transport of bolus. As the bolus reaches the oropharynx, the posterior 

tongue (including the tongue base) rapidly moves backward toward the soft palate and the 

posterior pharyngeal wall in a piston-like motion, exerting force on the bolus, driving it 

through the pharynx with the aid of gravity (Dodds et al. 1990; Ku, Ma, Mcconnel, & 

Cerenko, 1990; McConnel, 1988; Shedd et al., 1960). This rapid and forceful tongue 

motion has also been referred to as a "pumping action"2 that works in concert with 

pharyngoesophageal pressure change to accomplish the bolus transport task (Cerenko et 

al., 1989; McConnel, 1988), or as a "stripping action" that has a close temporal linkage 

with maximal anterior displacement of the hyoid bone (Hamlet, Jones, Mathog, Bolton, & 

Patterson, 1988). 

Successful pharyngeal bolus transport involves a number of other crucial kinematic 

events, some of which serve protective in addition to alimentary functions. Forceful 

contact between the elevated velum and the pharyngeal walls (posterior and lateral) in a 

sphincteric manner is achieved to prevent nasal regurgitation (Dodds et al., 1990; 

Shprintzen, Lencione, McCall, & Skolnick, 1974). Complete vocal-cord adduction, hyoid 

and laryngeal elevation, inversion of the epiglottis, and closure of the vestibule serve the 

purpose of maximal airway protection (Cook, 1991; Ekberg, 1986; Logemann et al., 

1992; Shaker et al., 1990). Relaxation of the upper esophageal sphincter, coupled with 

2This "pumping action" is not to be confused with the abnormal, repeated pumping 
tongue action seen in some patients with dysphagia as an ineffective attempt to transport 
the bolus through the oral cavity (Logemann, 1983). 



shortening of the pharynx as a result of maximal anterosuperior movement of the hyoid 

bone and the larynx, enables entry of the bolus into the esophagus (Cerenko et al., 1989; 

Cook, Dodds, Dantas, Massey, et al., 1989; Jacob, Kahrilas, Logemann, Shah, & Ha, 

1989; McConnel, 1988; McConnel, Guffin, Cerenk:o, & Ko, 1992). 
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There is some controversy over the nature and extent of pharyngeal constrictor 

contributions to bolus transport. Traditionally, it was held that the constrictors 

represented an "engulfment" mechanism for the bolus, and that their sequential activation 

in a caudally-directed progression generated the peristaltic wave responsible for bolus 

transport through the pharynx (Bosma, 1957; Cook, 1991 ; Dodds et al., 1990; Ekberg & 

Borgstrom, 1989; Kennedy & Kent, 1988; Negus, 1948; Palmer, Tanaka, & Siebens, 

1988). However, recent manofluorographic evidence has shown that (a) bolus entry into 

the oropharynx corresponded to anterior movement of the tongue base, (b) subsequent 

bolus transit through the oropharynx corresponded to posterior movement of the tongue 

base, ( c) continuing transit of the bolus through the hypopharynx and the cervical 

esophagus corresponded to progressive oropharyngeal pressure increases occurring while 

the tongue base makes firm contact with the pharyngeal walls, ( d) this tongue-base

generated pressure is preceded as well as accompanied by continuous negative pressure in 

the pharyngoesophageal (PE) segment, and (e) pharyngeal wall contraction and the 

resultant constriction pressure wave begin as the bolus tail is passing through the cervical 

esophagus (Cerenko et al. , 1989; McConnel, 1988). Given such evidence, the current 

view is that the tongue-generated pressure and the negative pressure in the PE segment 

are the principal contributors to pharyngeal bolus transit, and the constrictors contribute 
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more to post-transport clearance of residue than to the actual food transport (Kahrilas & 

Logemann, 1993). 

Issues in Swallowing Kinematics 

While decades of research have improved our understanding of deglutitive 

neurophysiology and kinesiology, the information is far from complete. One important 

question that has been only partially addressed is: What peripheral variables affect 

swallowing kinematics (movement duration, amplitude, velocity, etc.) in normal humans? 

Two categories of peripheral variables are of interest to the present investigation, namely, 

bolus properties and task demands. Literature pertaining to these aspects is reviewed 

below. 

Effects of Bolus Properties 

Primary properties of the bolus include volume, consistency, taste, and 

temperature. This study focused on volume and consistency due to the results of pilot 

work and the pseudopalate constraints discussed in Chapter II. The review below, 

therefore, includes only studies that addressed the effects of volume and consistency on 

swallow-related oral, pharyngeal, and laryngeal kinematics. 

Volume. A number of studies, using different experimental methods, have shown 

that bolus volume can influence swallowing kinematics in the pharynx and larynx. For 

example, graded volume increases (2, 5, 10, and 20 cc in most studies) were found to 

induce progressively earlier onset of velar elevation (Dantas, Kern, et al., 1990), later 

onset of pharyngeal contraction (Jacob et al., 1989; Kahrilas et al. , 1992), earlier and 
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longer anterosuperior hyoid movement (Cook, Dodds, Dantas, Kem, et al., 1989; Cook, 

Dodds, Dantas, Massey, et al., 1989; Dantas, Kem, et al., 1990; Jacob et al., 1989), longer 

laryngeal elevation and closure (Kahrilas et al., 1988; Logemann et al. , 1992), and longer 

and greater extent of upper esophageal sphincter opening (Castell, Dalton, & Castell, 

1990b; Cook, Dodds, Dantas, Massey, et al., 1989; Cook, Dodds, Dantas, Kern, et al., 

1989; Dantas, Kem, et al., 1990; Jacob et al., 1989; Kahrilas, Dodds, Dent, Logemann, & 

Shaker, 1988). In addition, bolus movement velocity or acceleration, measured in the 

pharynx, was greater for larger- than for smaller-volume swallows ( e.g., from 15 to 50 

cm/sec in velocity for 1-20 cc boluses, or from 460 to 680 cm/s2 in acceleration for 10-20 

cc boluses) (Kahrilas & Logemann, 1993; Ku et al., 1990). Volume variations, however, 

did not affect the velocity and magnitude of propagated pharyngeal contraction, or the 

extent of constrictor contraction pressure (Ekberg, Olsson, & Sundgren-Borgstrom, 1988; 

Kahrilas et al., 1992, 1993; Kahrilas & Logemann, 1993). Furthermore, findings were 

inconsistent on the relationship between bolus volume and the magnitude of hyoid 

excursions (Jacob et al., 1989 vs. Dodds, Man, Cook, Kahrilas, Steward, & Kem, 1988) 

with a suggestion oflarge intersubject variability (Ekberg et al., 1988). 

Past data concerning the effects of bolus volume on lingual kinematics are not 

completely unequivocal. Using X-ray microbeam, Hamlet (1989) found no significant 

differences in the starting tongue posture, lingual movement direction, extent of grooving, 

peak velocity, and movement sequence as a function of varying volumes (5 , 10, and 15 cc 

of water) . Martin' s X-ray microbeam study (1991), on the other hand, reported 

differences in lingual fleshpoint trajectories between 2-cc and 10-cc water swallows. 
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Specifically, the smaller volume had a more anterior and superior starting tongue position 

and a smaller range of tongue dorsum displacement, although the overall pattern of tongue 

action during swallowing was essentially the same regardless of the volume ingested. A 

recent study by Kahrilas et al. ( 1993 ), using simultaneous biplane videofluoroscopy and 

pharyngeal manometry, examined tongue contour changes as well as the pattern and 

timing of lingual movement during barium liquid swallows (1 , 5, 10, and 20 cc). They 

found that larger volume swallows induced earlier onset of lingual propulsion, deeper 

central tongue grooving, and greater extent and duration of centripetal movement of the 

posterior tongue and tongue base. In addition, the depth, width, and duration of 

glossopalatal sphincter opening were greater with larger boluses, and bolus expulsion from 

the oropharynx more vigorous. Similarly, Dantas, Kem, et al. ( 1990) demonstrated that 

graded volume increases in both barium liquid and paste induced a progressively earlier 

onset of anterior movement of the tongue base. 

Consistency. The effects of bolus consistency3 have been extensively documented, 

but mostly for esophageal function . With respect to the oral and pharyngeal stages of 

swallowing, some studies showed that viscous or thick barium, in contrast to thin liquid 

barium, increased the duration and magnitude of submental and infrahyoid muscle activity, 

and prolonged hyoid movement, oral and pharyngeal transit, pharyngeal peristalsis, and 

3"Consistency" in layman's terms refers to texture, thickness, and firmness. 
Technically, the definitions include density and viscosity. Density, the thickness of 
consistency, may be measured in weight per unit volume (i .e. , g/cm3) . Viscosity, 
expressed in centipoise (cp), refers to the degree ofresistance to flow when pressure is 
applied. Water, for example, typically is 0. 89 cp in viscosity, while the viscosity of syrup 
used in different clinical swallowing investigations may range from 48 to 1100 cp, 
depending on the thickness of the preparation. 
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upper esophageal sphincter opening (Dantas & Dodds, 1990; Dantas, Dodds, Massey, & 

Kem, 1989; Dantas, Kem, et al., 1990; Gramiak, Kelley, & Gravinia, 1967; Ingervall, 

Bratt, Carlsson, Helkimo, & Lantz, 1972; Ingervall & Lantz, 1973; Robbins, Hamilton, 

Lof, & Kempster, 1992). However, a recent scintigraphic study (Hamlet et al., 1996) 

found shorter "oral discharge time" with a viscous material ( 10 cc of apple juice thickened 

to 1100 cp) than with water ( 10 cc), and no significant difference between the two in 

pharyngeal transit times. Methodological variations may account for the inconsistencies in 

these results (see Hamlet et al., 1996 for explanations). Findings from comparisons of 

solids/semisolids with water also appeared equivocal. While there was evidence that 

solids/semisolids induced longer pharyngoesophageal contractions (Wilson, Pryde, 

Macintyre, & Heading, 1989) and slower opening but faster closing of the upper 

esophageal sphincter (Castell et al. , 1990b) than did water, there was also a report of no 

significant differences in the degree of pharyngeal and laryngeal elevation, pharyngeal 

transit time, and the width and cross-sectional area of the upper esophageal sphincter 

(Ekberg, Liedberg, & bwall, 1986). 

In reference to the effect of bolus viscosity on lingual action, a recent investigation 

reported that barium paste induced a longer period of tongue-base contact to the posterior 

pharyngeal wall in normal subjects than did barium liquid (Lazarus et al. , 1993). In 

addition, a study of tongue force indicated that viscous materials (pudding and mashed 

potato), in contrast to water, increased both the force amplitude during bolus propulsion 

and the pressure amplitude during pharyngeal residue clearance (Pouderoux & Kahrilas, 

1995). 
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As part of the consistency issue4, saliva (dry) and liquid (wet) swallows have been 

compared from multiple aspects of deglutition. During the oral and pharyngeal stages of 

swallowing, dry swallows tended to induce: (a) a higher position of velopharyngeal 

contact and a more pronounced levator eminence (Shprintzen, Lencione, McCall, & 

Skolnick, 1974); (b) a longer duration ofhyoid movement (Sonies, Parent, Morrish, & 

Baum, 1988); (c) faster and shorter pharyngeal contractions (Castell, Dalton, & Castell, 

1990b ); and ( d) shorter upper esophageal sphincter relaxation (Castell, Dalton, & Castell, 

1990a). In reference to the tongue, dry swallows were associated with: (a) longer 

genioglossus muscle activities (Cunningham and Basmajian, 1969; Hrychshyn and 

Basmajian, 1972); (b) a higher and more anterior starting tongue position and a shorter 

period of initial tongue tip elevation (Cleall, 1965); and (c) more angular lingual 

movement trajectories, lower peak velocities for tongue blade and dorsum, slower 

sequence of blade-to-dorsum movement, and smaller overall range of motion (Hamlet, 

1989). In most of the above-cited studies, water was the type of wet material used, and 

the amount consumed per swallow ranged from small (unspecified) to 15 cc. Despite 

these reports of dry-wet contrast, a recent study by Shaker et al. ( 1990) found through 

simultaneous videoendoscopy, videofluoroscopy, pharyngeal manometry, and submental 

surface EMG that saliva and 5-cc liquid barium did not differ significantly in a number of 

4The classification of dry swallow is difficult, because saliva is a complex solution 
apparently different in constituents from water or liquid barium (Baum, 1987; Kaplan & 
Baum, 1993). In some studies a dry swallow is considered volume-related, and assigned a 
110 11 or a small, unspecific quantity on a continuum of graded volumes (cf Dodds, Man, 
Cook, Kahrilas, Stewart, & Kern, 1988, and Kahrilas, Dodds, Dent, Logemann, & Shaker, 
1988). The present study includes the dry swallow under consistency with recognition of 
the possibility for consistency-volume interaction in comparisons of dry and wet swallows. 



lingual, submental, pharyngeal, and laryngeal timing measurements (e.g., the interval 

between the onset of vocal cord adduction and that of tongue base movement). 

Effects of Task Demands 
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It is generally known that flexible motor systems are capable of adjusting the 

parameters of their activities in accordance with changing task demands. The human 

speech and limb motor systems are among those possessing such flexibility. The act of 

movement parameter adjustment is sometimes referred to as "response scaling" which may 

be accomplished using different kinematic strategies (Bermejo & Zeigler, 1989; Milner, 

1986). When a complex, discrete motor task is repeated sequentially, parameter 

adjustment conceivably occurs due to the additional requirements for sequentialization and 

possible changes in movement coordination. In continuous speech, for example, there are 

ubiquitous instances of coarticulation where the articulatory movements for discrete 

sounds co-occur in space or overlap in time under the principal of motor economy (see 

Borden and Harris, 1984, Browman and Goldstein, 1990, and Lindblom, 1983). 

To characterize gestural interactions during speech, Browman and Goldstein 

( 1990) have proposed a linguistic gestural model in which task-specific vocal tract 

variables are grouped into gestures, and gestures are represented on different articulatory 

tiers . To produce an utterance, articulators on three different tiers of the oral tract--lips, 

tongue tip, tongue body--as well as those on the glottal and the velic tiers execute 

functionally specific labial, lingual, laryngeal, and palatopharyngeal gestures that reflect 

independent vocal tract variables (e.g., lip aperture, tongue tip constriction location and 
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degree, glottal aperture). Gestures within the same articulatory tier may blend, and those 

on different tiers may overlap in time, resulting in different types of changes in the 

movement output and the acoustic consequences. An example of within-tiers gestural 

interaction is the changing of Isl to /JI in "this ship" (uttered as /61J'J1p/; cited from 

Catford, 1977 in Browman & Goldstein, 1990), reflecting the smooth blending of an 

alveolar fricative with a palatoalveolar fricative. An example of across-tiers gestural 

interaction is the lowering of the anterior tongue for /a/ during tongue dorsum elevation 

for /k/ in the syllable-utterance /ska/, as observed on cinefluorography (Borden & Gay, 

1979). This particular example, illustrating the temporal overlap oflingual gestures for a 

vowel with those for a consonant in a speech motor sequence, supports Ohman' s 

hypothesis ( 1966) that functional tongue segments exist and can act relatively independent 

of each other during articulation. 

There is yet another set of examples in the speech literature that illustrates the 

differences between discrete and sequential articulatory movements. These examples are 

found in the vocalization of infants. As Kent and Murray ( 1991) pointed out, the 

monosyllabic utterances (e.g., Iba/) of infants represent unidirectional articulatory 

movements in which one or more articulators move from a constricted to an unconstricted 

vocal-tract position. In babbling, the monosyllabic utterances are reduplicated, resulting in 

multiple, sequential, reciprocal articulatory movements that "are motorically similar to 

rhythmical stereotypies" (p. 41 l ). Examples of rhythmical motor stereotypies can be 

found in the repetitive movements of the limbs, fingers, torso, and head in normal infants 

(Thelen, 1981). 
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Closely related to the issue of discrete versus sequential motor tasks in both speech 

and limb motor systems is the issue of increased movement speed. Multiple empirical 

examples exist, indicating that when tasks are performed at a faster rate and consequently 

shortened duration, there are corresponding modifications in movement amplitude and 

velocity (Abbs, 1973; Cooke, 1980; Freund & Bildingen, 1978; Gay, 1981 ; Hughes & 

Abbs, 1976; Milner, 1986; Munhall, Ostry, & Parush, 1985; Ostry, Cooke, & Munhall, 

1987; Ostry, Keller, & Parush, 1983; Stone, 1981; Tuller, Harris, & Kelso, 1982; 

Wieneke, Janssen, & Belderbos, 1987). While the common strategy is to modify peak 

velocity and amplitude in a tightly coupled linear manner, findings on the d~tails of the 

kinematic adjustments are not all consistent, especially in speech (see concise review in 

Ostry & Munhall, 1985). Descriptively, a simple yet explicit account of the effect of speed 

on articulation is that from Stetson (1951, p. 71): "At a rapid rate the movements tend 

either to get into step or to drop in order to simplify the coordination" . 

Within the deglutition motor system, the issue of discrete (single) versus sequential 

swallows and the issue of normal versus fast drinking have not been well addressed. A 

few studies examined the effect of rate on jaw movements during mastication and found 

equal acceleration and deceleration durations for fast jaw opening but longer deceleration 

than acceleration for movements at normal speed (Morimoto, Inoue, Nakamura, & 

Kawamura, 1984; Plesh, Bishop, & McCall, 1987; Ostry & Flanagan, 1989). A few other 

studies examined the effect of multiple swallows, but only with respect to esophageal 

responses. They reported that repeated swallows of liquid, separated by short intervals, 

could dramatically change esophageal motility patterns; for example, the second swallow 
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could reduce or interrupt the peristaltic wave of the first swallow, and the residual wave of 

the first swallow could also depress or inhibit the subsequent swallow wave (Ham, 

Georges, Froideville, & Piepsz, 1985; Meyer, Gerhardt, & Castell, 1981 ; Vanek & 

Diamant, 1987). 

Swallowing in normal infants during feeding is typically described as a part of the 

suck-swallow cycle which is repeated successively with a brief between-cycle pause for 

breathing (Bosma, Hepburn, Josell, Baker, 1990; Newman, Cleveland, Blickman, Hillman, 

& Jaramillo, 1991 ; Selley, Ellis, Flack, & Brooks, 1990; Selley, Ellis, Flack, Curtis, 

Callon, 1986; Weber, Woolridge, & Baum, 1986). Given the added breathing pauses and 

the variable suck-swallow ratios (from 1: 1 to 3: 1 ), infant swallows do not occur in the 

same "sequential" manner as those performed on one breath during adult continuous 

drinking. In addition, since the tongue must conform to and interact with the nipple for 

sucking, lingual behaviors during infant swallowing are not comparable to those during 

mature, nonstop cup-drinking. Interestingly, the radiographic investigation by Newman et 

al. (1991) showed that the activity of suck-oral transit overlapped with pharyngeal transit 

in all of the infants studied. Oral and pharyngeal transit overlap conceivably can also 

occur during adult continuous drinking, although the extent of the overlap remains 

unknown. 

Little is known about the effects of task demands on the oral and pharyngeal 

kinematics of swallowing. As described earlier, past studies (Kahrilas et al, 1993; Martin, 

1991) have emphasized that the overall pattern of deglutitive tongue action contains 

invariant features . This impression is based solely on the experimental model of single 
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swallows. Are these invariant features carried over to the sequential swallows in 

continuous drinking which is a common event in everyday eating? That is, is sequential 

swallowing during continuous drinking performed by merely concatenating single 

swallows? Does fusing or dropping of movement components occur as a function of the 

inherent rate increase? Most models of voluntary human limb movements describe a 

trade-off between movement speed and accuracy, that affects movement control (Hancock 

& Newell, 1985; Meyer, Smith, & Wright, 1982; Schmidt, Sherwood, Zelaznik, & 

Leikind, 1985). Swallowing, on the other hand, is a motor behavior that presumably 

cannot afford much latitude, if any, for movement inaccuracy due to the need for maximal 

airway protection. How, then, does the lingual motor system accommodate the added 

task demands and achieve a balance between continuous motion at an increased rate and 

swallowing safety? All of these questions required answers. Conceivably, when 

additional demands are superimposed onto a basic task, the reaction of a motor system 

would reflect the nature, strategies, and fundamental flexibility of the underlying 

movement control processes. 

Tongue-Palate Interaction and Electropalatography 

However mobile and biomechanically unique, the tongue cannot accomplish most 

of its functions by itself. To perform its rudimentary tasks during swallowing, it must 

interact with other oral structures, most importantly the hard palate. Tongue-palate 

interaction provides not only the primary means for bolus formation but also the anterior 

and lateral seals necessary for bolus containment. Furthermore, it is a dynamic source 
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from which the tongue gains stability, expands its freedom of movement, alters its surface 

contours, and derives the force needed for bolus propulsion. Linguopalatal relationship is 

not exclusively biomechanical, as there is also empirical evidence for sensorimotor · 

connections between the two structures (see Hellstrand, 1982b for review). For example, 

mechanical stimulation of the hard palate in cats, such as the application of long-lasting 

pressure, produced intermittent activities in the genioglossus muscle and the motor 

consequence of rhythmic tongue flapping (Hellstrand, 1982a). 

A safe and noninvasive technique, electropalatography (EPG), is available for 

studying the details--location, pattern, and timing--oflinguopalatal contact. The 

usefulness of EPG has been well established in linguistic research and speech therapy. 

Linguistic research has studied phoneme-specific contact characteristics in different 

languages (Fujimura, Tatsumi, & Kagaya, 1972; Hoole, Ziegler, Hartmann, & Hardcastle, 

1989; Mizutani & Hashimoto, 1988; Nihalani, 1974; Palmer, 1973 ), the effect of palatal 

shape on lingual articulation (Hiki & Itoh, 1986), speech motor adaptation and 

compensatory articulatory movements (Hamlet & Stone, 1978), the relationship between 

cross-sectional tongue shape and linguopalatal contact patterns (Stone, 1991; Stone et al., 

1992), and lingual coarticulatory effects in connected speech (Butcher, 1989; Farnetani, 

Vagges, & Magno-Caldognetto, 1985; Marchal, 1988; Miyawaki, Kiritani, Tatsumi, & 

Fujimura, 1974; Recasens, 1991 ; Wright & Kerswill, 1989). In speech therapy, EPG has 

been used as a biofeedback tool to facilitate the remediation of articulatory defects 

(Fletcher, 1985; Fletcher, Dagenais, & Critz-Crosby, 1991 ; Suzuki, 1989). (For detailed 

reviews of EPG applications, see Hardcastle, Jones, Knight, Trudgeon, & Calder, 1989 
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and Hardcastle, Gibbon, & Nicolaidis, 1991 ). In recent years, increasingly more methods 

have been proposed for the reduction and quantification of speech-related EPG data, 

among which are the percent contact analysis, the contact index method, the center of 

gravity index, and the coarticulatory index (Byrd, Flemming, Mueller, & Tan, 1995; 

F ontdevila, Pallares, & Recasens, 1994; Gibbon, Hardcastle, & Nicolaidis, 1993; 

Hardcastle, Gibbon, & Nicolaidis, 1991 ). 

In contrast, there has been minimal utilization of EPG in swallowing research. The 

preliminary observations of a recent single-subject study (Jack & Gibbon, 1995) showed 

that EPG had potential usefulness and limitations in the investigation of swallowing and 

eating. As reported, liquid (milk) and semi-liquid (yogurt) were more appropriate than 

bulky or sticky materials Gelly) to use with EPG, since the latter prevented tongue-palate 

contact. While there was some indication that consumption duration varied with bolus 

consistency (longest for jelly), no specific kinematic issue was addressed in that study. 

There remained a need for a detailed investigation on the spatial and temporal 

characteristics of tongue-palate coordination during swallowing. 

A major weakness of EPG is that it provides data on only tongue-hard palate 

contact. Information on the actual movement of the tongue or the bolus is missing. As a 

compensatory measure, the present study combined EPG with ultrasonography for cross

referencing of contact patterns to lingual actions. Real-time ultrasound imaging is a 

noninvasive technique widely applied in medical diagnostics, speech studies, as well as 

swallowing evaluation and research. For swallowing research, in particular, ultrasound 

has proven to be useful in examining lingual motility, tongue surface contour changes, 



tongue-hyoid interactions, and the effects of different clinical conditions on oral bolus 

management and transport (Hamlet, Stone, et al ., 1988; Shawker et al., 1983, 1984; 

Sonies, 1991 ; Stone & Shawker, 1986; Weber, Woolridge, & Baum, 1986; Wein, 

Beckler, & Klajmans, 1991 ). 

A Theory of Swallowing Motor Control 

32 

Based on the literature reviewed, a plausible theory of swallowing motor control 

would include both central and peripheral mechanisms, and a general deglutitive motor 

program that provided some but not extensive flexibility in performance. Because 

swallowing is a complex motor act with involuntary as well as voluntary components, its 

successful execution is likely to rely on not only a pattern generator in the brainstem but 

also modulation processes at the suprabulbar/cortical levels and sensory input from the 

periphery. That is, the brainstem control mechanism dictates the basic response patterns, 

while the suprabulbar and peripheral mechanisms exert modulatory influences based on 

changes in task nature and demands. However, swallowing, like walking, is not a highly 

skilled motor behavior that requires extensive learning to perfect . Moreover, the 

persistent, stringent requirement for airway safety mandates certain fixed relationships and 

coordinations among many, if not all, of the deglutitive motor participants. These factors 

indicate that the degree of flexibility in swallowing motor control and performance does 

not need to be as extensive as that for expert skills such as playing tennis or piano. 

This research proposes that the master motor program for swallowing must consist 

of both invariant and variant parameters. An example of invariance is the unidirectionality 
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of bolus translocation through the mouth and of the deglutitive action sequence of the 

tongue. In contrast, an example of variability is the duration of swallowing events. 

Duration adjustments may be made as a function of the motor goals, tasks, and physical 

conditions at hand so that optimal lingual movement execution may be maintained. In 

general motor physiology, timing and force have been shown to be variable parameters in 

the general motor programs for behaviors such as wrist movements and writing (see 

Gentner, 1987 for concise review). It is reasonable that these parameters would vary with 

task demands in swallowing as well . 

The precise neurophysiological interaction between the central and peripheral 

mechanisms during deglutition remains obscure; however, the invariance and variability in 

swallowing motor control can be explored by investigating movement characteristics. 

Because motor performances are dependent on tasks, by examining the effects of bolus 

properties and task demands on specific peripheral parameters of deglutitive tongue 

action, the fixed and variable aspects of the lingual motor system are likely to be revealed. 

In tum, a better understanding of the degree of flexibility in the general motor program for 

swallowing would be gained. 

Why is this type of research important clinically? First, there is a need for better 

knowledge about the variable aspects of swallowing, especially those under voluntary 

control, to improve the theoretical basis for treatment decisions. Second, information is 

also needed on the actual tongue modifications used by the swallowing motor program in 

adapting to bolus/task changes for more insight into patient management strategies (e.g., 

when to apply thicker consistency, what type of tongue exercises to use) . 
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Summa!:)'. 

It has been well established that the tongue plays a vital role in the biomechanical 

events of swallowing, including bolus formation, containment and propulsion, and must 

coordinate perfectly with other structures of the aerodigestive tract to execute a complete 

and safe swallow. Multiple descriptive accounts exist on the radiographic and 

ultrasonographic characteristics of lingual movements during swallowing. In addition, 

there is an abundance of evidence for peripheral modulation of different elements of 

swallowing. Yet, minimal data are available on deglutitive lingual motor strategies or how. 

tongue movements adapt to different swallowing tasks. 

The tongue relies extensively on interacting with the hard palate to fulfill its 

deglutitive functions. The details of swallow-related linguopalatal coordination, however, 

remained obscure. Whether linguopalatal contact activities would reflect the effects of 

peripheral modulation, especially those resulting from changing bolus properties and task 

demands, also remained undetermined. The technique ofEPG offers an avenue to 

examine these issues and this theory. Information on the spatial and temporal 

characteristics of tongue-palate interaction may further our understanding of deglutitive 

lingual motor strategies and provide insights into the underlying control mechanisms for 

swallowing. 

Research Purpose and Questions 

The overall objective of the present study was to document any flexibility that 

might exist in deglutitive lingual motor performance. The direct goal was to examine in 
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detail the timing and patterns of tongue-palate contact with associated changes in tongue 

shape as a function of different bolus properties and swallowing task demands. 

Specifically, the following questions were addressed: 

I . Does linguopalatal contact vary in pattern and/or timing as a function of bolus 

properties (volume and consistency)? 

a. Is there evidence for regional specificity in tongue-palate contact during a 

discrete swallow? If yes, does such specificity change when the bolus 

changes in volume and/or consistency? 

b. Are there functionally distinct stages in the EPG series of a discrete 

swallow? If yes, how are the stages affected by changing bolus properties, 

and how do they compare to those well established for radiographic 

swallowing analysis? 

2. Is there evidence for spatial and/or temporal adjustment of movements as a result 

of changing task demands ( discrete swallowing vs. sequential swallowing at 

normal and fast rates), or is continuous drinking performed by simply 

concatenating single swallows? 

3. Are time-varying changes in tongue shape and tongue-palate contact related 

systematically? 

4. Are there bolus- and/or task-induced differences in the patterns of instantaneous 

lingual velocities across time? 



CHAPTER II. METHOD 

The present investigation consisted of two experiments. Experiment 1 focused on 

discrete swallowing (single swallows), and Experiment 2 on sequential swallowing during 

continuous drinking. Simultaneous electropalatography and ultrasound imaging were 

conducted in both. 

Subjects 

Six healthy adults, three males and three females between the ages of 23 and 47 

years, served as subjects. They had no history of swallowing disorders. All passed a 

swallowing screening and an oral motor examination. All were informed of the purpose, 

procedures, risks, and benefits of the study, and signed the required consent forms. 

Instrumentation 

A diagram of the instrumental setup for this study is presented in Figure 2.1 . 

Electropalatography 

EPG data were collected using a Kay Elemetrics Palatometer (Lincoln Park, NJ, 

Model 6300). The Palatometer is a computer-assisted system that senses and displays 

tongue-palate contact in real time during oral motor activities such as speech and 

swallowing. The system consisted of an external input/output (1/0) module, a PC-based 

36 



Figure 2.1. Schematic diagram of instrumental setup. HATS = head and transducer support; PAL = Palatometer; CSL = 
Computerized Speech Lab. 
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printed circuit card, connecting cables, and software. A pseudopalate and a ground 

electrode that introduced a high frequency, low amplitude, harmless current to the wrist 

were worn by the subject. Each pseudopalate (Figure 2.2, upper panel) was a 0.5-mm

thick, acrylic plate, molded according to a custom stone cast to ensure a snug fit. 

Embedded in the pseudopalate were 96 gold-plated contact sensors, each about 1 mm in 

diameter, which were symmetrically placed along the medial surface of the teeth and 

across the plane of the hard palate. Pseudopalate length was maximal for each subject, 

extending 5-10 mm beyond the third molars, but short of the gag reflex mechanism. The 

distance between the electrodes was normalized across palates relative to the subject's 

dentition and palate size. Extending from each electrode was a fine wire (42 gauge), and 

the wires were gathered at the back of the pseudopalate in left and right bundles. The 

bundles were routed around the third molars and anteriorly along the lateral teeth to exit 

the mouth at the front. They were then housed in polyethylene tubing and affixed to the 

Palatometer 1/0 box via connectors. 

With the Palatometer activated, a nondetectible DC current was sent through the 

fine wires to the electrodes which registered tongue-palate contact at a sweep rate of 100 

samples per second. The contact information was relayed to the computer and displayed 

on the monitor in a pattern closely resembling the actual electrode layout on the 

pseudopalate. The uncontacted, individual electrodes appeared on the screen as pale-gray 

dots, while the contacted electrodes appeared as small, red squares. The overall electrode 

threshold was adjusted for the individual subjects to a range determined in multiple pilot 
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Figure 2.2. A subject's acrylic pseudopalate (upper panel), and the Palatometer electrode 
sensitivity adjustment screen (lower panel) with the suitable range for swallowing super
imposed (striped area) . 
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studies to be sensitive to tongue contact but insensitive to the bolus itself (see Figure 2.2, 

lower panel). For each swallowing event, the contact information was stored at 10-msec 

intervals in a 4-sec record on a hard disk. The stored EPG records were then reviewed 

using specially developed software. 

Ultrasound Imaging 

Real-time, sagittal and coronal ( cross-sectional) images of the tongue during 

swallowing were collected via an Acoustic Imaging Open Technology Ultrasound System 

(Phoenix, AZ, Model AI5200S) at the Ultrasound Division, Department of Radiology, 

Johns Hopkins University Hospital. A 3.5-MHZ convex curved linear array transducer 

was used. Focal depth was set at 8.6, 10.3 or 12 cm, depending on the subject's tongue 

size, thus producing 26-30 scans per second. Scan angle was 70° . 

A specially designed head and transducer support (HA TS) system was used to 

stabilize the subject's head during data collection (see Figure 2.3, upper panel). The 

HATS unit was built at the Department of Electrical and Computer Engineering, Johns 

Hopkins University. (For a technical description of the system and its validation, see 

Stone & Davis, 1995.) As part ofthis system, four well-padded clamps secured the head 

at the front, back, and sides. The transducer was housed in a transducer holder and 

positioned under the subject's chin in fixed relation to the head. An acoustic standoff pad 

(Kitecko, 3M), coated with transmission gel on its superior and inferior surfaces to 

prevent air bubbles, separated the mandible and the transducer. This permitted jaw 

movement without translation of motion to the scanner. 
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Figure 2.3. The head and transducer support (HATS) system (upper panel) and transducer 
placement calibrations (lower panel). The subject's head is stabilized by four well-padded 
clamps from the circular ring of the head holder. The head holder is suspended by vertical 
bars from an H-frame at top. The transducer is positioned under the subject's chin in fixed 
relation to the head. The eye-glass frame, the tongue depressor marking the occlusal plane, 
and the long bone of the mandible were used to measure the transducer angle. (From Stone 
and Davis, 1995.) 
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Transducer placement calibrations ( details in Stone & Davis, 1995) were 

performed on each subject prior to data recording, after each break, and whenever 

changing imaging plane. The subject's jaw length was measured with calipers from the 

posterior angle to a tongue depressor held flat against the mental symphysis. For sagittal 

scanning, since the emphasis was on acquiring optimal images of the full length of the 

tongue, the transducer was placed 2. 5-3 .3 cm (31-40% of the individual jaw lengths) 

behind the mental symphysis at a 6-8 ° angle posterior to vertical. For the coronal scans, 

the transducer was positioned 2. 7-3 .2 cm (33% of the individual jaw lengths) back from 

the mental symphysis at an 11-14 ° angle. (Information on jaw length and transducer 

placement for the individual subjects is presented in Appendix A.) "Midline" was 

determined by the space between the maxillary central incisors and aligned with the pre

marked midline of the transducer. The ultrasound beam angle was measured relative to 

the body (long bone) of the mandible, the occlusal plane, and an eyeglass frame with two 

pre-marked crosses on its side bar (see Figure 2.3, lower panel). The occlusal plane was 

determined by having the subject bite down on a tongue depressor with the molars. Worn 

by the subject, the crosses on the eyeglass frame defined an additional plane, consistent 

across subjects, relative to which the transducer angle could be measured. All transducer 

calibrations were done from the subject's right side. 

With the ultrasound imaging system activated, a beam of ultra high-frequency 

sound wave, emitted from the piezoelectric crystals of the transducer, was directed 

through a 1. 9-mm thick section of the lingual soft tissue. The beam was reflected at 
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various places within the tongue and especially at its superior surface where the mucosa 

interfaced with air. The reflections were received by the transducer crystals and 

electronically processed. Within the ultrasound instrument a computer converted the 

returning echoes into a video image in which stronger echoes were displayed as brighter 

regions. The sector scanner contained a curvilinear array of 96 crystals that fired 

sequentially, forming a 90° wedge-shaped image. (For technical descriptions of 

ultrasound imaging, see Hedrick, Hykes, & Starchman, 1995; for information on lingual 

ultrasonography, see Stone, 1996). On the video screen, the tongue surface appeared as a 

white curve, while two black cone-shaped shadows--one anterior and one posterior--were 

cast by the jaw and the hyoid bone. Bone refracts the ultrasonic beam. The sharpness of 

the tongue-surface outline varied across subjects and appeared to depend somewhat on 

the subject's lingual tissue (e.g., amount and distribution of fat, oral moisture, tongue 

size). 

The ultrasound data, collected simultaneously with the EPG data, were recorded 

on videotape with voice commentaries. A digital audio-visual mixer (Panasonic, Model 

WJ-MX30) was used to control the input signals. The subject's head was also videotaped 

throughout data collection, and the image was inserted at the lower left corner of the 

screen via a screen splitter (American Dynamics, Orangeburg, NY, DigiSplit Model 

AD 14 79) to enable monitoring of head position and movements. Each frame of the 

videotape was encoded with a digital timing signal in hundredths of a second using a video 

timer (FOR-A, Natick, MA, Model VTG-33). 



EPG-Ultrasound Recording Synchronization 

Synchronization of EPG and ultrasound recordings was accomplished by 
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introduci . 
ng two tngger signals: a click from a noise maker and a glottalized /a/ uttered by 

the exper· 
imenter. The choice of two signals was for double-checking. These audio 

signals w . . . 
ere transI11J.tted through a microphone to the Kay Elemetncs Computenzed 

Speech L b (C . 
a SL; Lmcoln Park, NJ, Model 4300) and recorded on a second channel 

sirnuit 
aneously with the EPG data. The Palatometer is designed to use the CSL hardware, 

input device, and powered speaker for the acquisition and playback of acoustic signals. 

The comp . . 
uter-stored EPG record for each swallowmg event, therefore, contamed both 

the conta d 
ct ata and the trigger signals. Through the Palatometer software the acoustic 

Wavefonn of the trigger signals was displayed in a time-linked fashion with the contact 

information. 

The audio trigger signals were also sent to and displayed on an oscilloscope. The 

0 ·1 sci Iosco · d h · pe screen was continuously videotaped with a separate camera, an t e image 

in~~ . 
at the lower right corner of the video screen for ultrasound data via a screen 

Splitter Th . 
· us, the acoustic waveform was displayed on the ultrasound video frames to an 

accuracy of ± 15 
msec. 



Procedure 

Preparatory Activities 

Subject Preparation 
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Each subject underwent a pilot session two days to three weeks prior to the 

experiment. Only the Palatometer was used in this session. The primary purpose was to 

have the subject test-wear the pseudopalate for at least an hour while performing selected 

swallowing tasks. A second reason was to determine if the 30-cc bolus size would present 

any problem. All subjects completed the session without difficulty. They were also 

required to wear their pseudopalates for one to two hours the evening before the 

experiment. 

On the day of the experiment, subjects wore their pseudopalates for at least 30 

minutes during setup and calibrations prior to performing experimental swallowing tasks. 

This allowed adaptation to the palate's presence and to the loss of palatal sensory 

feedback. Previous research indicated that thin (I-mm thick) artificial plates did not affect 

normal articulation after only a few minutes of acclimatization (Allen, 1958). No research 

has investigated the effects of sensory-feedback loss due to an acrylic pseudopalate. In the 

present study subjects were queried before and throughout data collection about palatal 

comfort and swallowing ease. No discomfort or difficulties were reported, although it is 

possible that the pseudopalate had a minimal effect on swallowing. 
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Pseudopalate Landmark-Marking on Ultrasound 

Subjects performed non-swallow lingual tasks prior to the swallowing experiments 

for the purpose of identifying the general physical landmarks of the pseudopalate in mid

sagittal view on ultrasound. Specifically, guided by the experimenter who had visual 

feedback from the Palatometer display, the subject positioned the tongue tip at three 

locations on the pseudopalate, namely, the front, mid, and posterior rim at midline. These 

tongue-tip maneuvers, recorded on videotape, allowed the extraction of three midsagittal 

ultrasound images, each with a matching EPG frame, for use as references during data 

analysis. A representative set of the ultrasound images and corresponding EPG frames is 

illustrated in Figure 2.4. The image in the left upper panel shows the tongue surface as a 

bright white line beginning at the arrow (which marks the approximate point of contact 

between the tongue tip and the pseudopalate) and continuing back and down into the 

pharynx. This particular midsagittal tongue shape corresponds to two rows of front 

contact on the EPG (right upper panel). In the left middle and lower images, a 

discontinuity appears in the tongue surface where the tongue tip (again identified by 

arrows) is angled upward and backward to contact the mid portion and the posterior rim 

of the pseudopalate. 

In addition, several speech tasks were performed for general linking of ultrasound 

tongue shapes with EPG activities. For sagittal imaging, the utterances included /atata/, 

/asasa/, and /akaka/; for coronal imaging, /ajaja/ and /asasa/. Each utterance-string 

was repeated three times. 
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Figure 2.4. Physical landmarks of a subject's pseudopalate on mid-sagittal ultrasound (left) 
and corresponding EPG displays (right). Arrows in left upper, middle, and lower panels 
mark, in order, the approximate locations of front, mid, and posterior rim of the 
pseudopalate. All landmarks were identified with tongue-tip movements. In left middle 
panel, tongue tip is retroflexed and positioned high in palatal vault; in left lower panel, more 
pronounced retroflexion is used to reach the posterior target sensors. Discontinuity in 
tongue surface contour occurs becasue the tongue blade is parallel to the ultrasound beam. 
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Experiment 1. Discrete Swallowing 

Tasks and Design 
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Tasks for the discrete swallowing experiment incorporated two bolus volumes and 

three bolus consistencies. Specifically, they were: (a) 5-cc water, (b) 30-cc water, 

(c) 5-cc gelatin, (d) 30-cc gelatin, and (e) dry (saliva) swallow. Although it has been 

shown that the average size of a thin liquid bolus is 21 cc (Adnerhill, Ekberg, & Grober, 

I 989), the quantity of 30 cc was chosen in this study to maximally contrast volume 

difference. This decision was further supported by Hamlet's X-ray microbeam study of 

swallowing (1989) in which inconsistent effect of water-bolus size (5, 10, 15 cc) on 

tongue position, grooving and velocity was attributed to the small volume differences. In 

the present study 30-cc water was handled successfully by all subjects, but two subjects 

reported during the post-experiment interviews that the 30-cc gelatin, though manageable, 

"felt large" or "kind of clumsy" when swallowed at once. 

Each swallowing task was repeated six times--three each during sagittal and 

coronal ultrasound scanning. Thus, the experiment was of a subject-by-task, repeated 

measures design (see Figure 2.5). Presentation sequences for tasks and repetitions were 

completely randomized, as was the order of sagittal versus coronal imaging. 

Dry swallows were accomplished by swallowing the saliva present in the mouth at 

the time. In the event of two successive dry swallows, a between-task delay of at least 15 

seconds was introduced. Water and gelatin were presented in syringes. Jello-like boluses 

were prepared with unflavored gelatin (Knox), sugar, water, and red food coloring. The 



Figure 2.5. Subject-by-task repeated measures design for the discrete swallowing experiment. SW= 5-cc water; 30W = 30-cc 
water; SG = 5-cc gelatin; 30G = 30-cc gelatin; sag reps= repetitions during sagittal ultrasound imaging; cor reps= repetitions 
during coronal ultrasound imaging. 
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use of plain gelatin was necessary to avoid acid-induced activation of electrodes
5

. For the 

gelatin swallows, the syringes were pre-treated by removing the protruded tips and 

creating a hole (6 mm in diameter) at the center of the flat, sanded head. This allowed the 

gelatin to be coarsely mashed while being squirted into the mouth, thus eliminating 

mastication. All gelatin-filled syringes were stored in a cooler with a cooling pack and 

estimated to be 6-10 ° C in temperature. All water boluses were at room temperature 

(23-26°C). Pilot studies indicated no temperature effect
6

. 

For each swallow, the subject was instructed to keep the tongue in the lowest 

possible position, hold the bolus anteriorly in the mouth without movement, clear the 

entire bolus in one swallow upon hearing the trigger click, and open the mouth slightly 

after swallowing. These prerequisites ensured stable, minimal tongue-palate contacts at 

the start and the finish so that activity onset and termination could be identified without 

ambiguity. Thus, by the requirements of the experimental protocol, the discrete 

swallowing task of the present study consisted of two components: the swallow and the 

post-swallow gesture of mouth opening with tongue lowering. 

5Pilot studies were conducted on three subjects to determine if"taste" could be 
included as one of the variables. The material used included sour (lemonade), sweet 
(sugar water), and plain (tap water) liquid in 5-cc volume and at room temperature. 
Results showed spontaneous, random activation ofEPG sensors by the sour bolus. Due 
to this pseudopalate constraint the "taste" variable was excluded from the present study, 
and plain gelatin was used to prepare the jello-like boluses. 

6Pilot studies were conducted on two subjects to determine the effect of 
temperature on tongue-palate contact. The material used included 5 cc and 30 cc of water 
at room temperature and at 4 °C. Results showed no apparent differences in contact 
timing or pattern for each volume tested. 
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Data Analysis 

A total of 30 single swallows were collected from each subject. However, the data 

from one male subject had to be discarded due to an experimental mishap (undetected, 

accidental change in electrode sensitivity setting on the Palatometer). Therefore, only the 

data from the remaining five subjects (S 1 to S5) were analyzed. One 30-cc gelatin 

swallow from S5 was also excluded, because the subject cleared the bolus in two 

swallows. 

All statistical analyses were performed using the SAS System for Windows, 

Version 3.95, Release 6.08 (SAS Institute, Inc., 1992). Unless specified otherwise, the a. 

level was set at .05. 

EPG Data 

Overall analysis framework. A system of analysis was devised, which consisted of 

two aspects: palatal bins and swallowing stages. They were the results of multiple pilot 

studies and provided the spatio temporal bases for detailed examination of EPG data. 

Preliminary examination showed systematic, time-varying regional differences in 

tongue-palate contact activity during swallowing. Based on those differences, six primary 

regions or bins were defined across the electrode array of the pseudopalate, so as to 

capture the salient contact features. They were named: front, central, back, lateral, 

medial, and midline (Figure 2.6). These bins formed two continua: front-to-back and 

lateral-to-midline in a horseshoe configuration. For descriptive purposes, the medial and 

the lateral bins were each subdivided into inner and outer columns. In addition, two 
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Figure 2.6. Compartmentalization of the pseudopalate into six primary bins: front, central, 
back, midline (shaded squares), medial (black squares), and lateral (white squares). The 
lateral and medial bins are each further divided into outer and inner columns. 
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secondary bins were extracted by dividing the pseudopalate into left and right halves, 

excluding the midline. These bins enabled the observation of symmetry. 
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Preliminary examination also showed that the EPG time-series for the discrete 

swallowing task, though representing a continuous physiological event, contained four 

distinct stages that could be distinguished by their time-varying contact patterns. 

Boundary frames for each stage were extracted through visual inspection (intrajudge test

retest reliability= 95.1 %). These boundary frames showed specific, repeatable features, 

and represented a change from the preceding pattern. 

The four successive stages were named, in order, prepropulsion, propulsion, full 

contact, and withdrawal. The first three stages reflected the swallow component of the 

task performed, while the fourth stage presumably reflected the post-swallow mouth

opening component. Figure 2. 7, a time-series display of the raw EPG data for a 

representative task at 10-20 msec increments, illustrates the delineation of the four stages. 

The criteria used for their identification were: 

1. Stage I - prepropulsion. The boundary frame marking the onset of 

prepropulsion had to show a change in tongue-palate contact and be preceded by a 

steady-state period of stable or no contact. Subsequent frames in this stage must show 

continuous changes in tongue-palate contact location and number. The changes did not 

have to be systematic. 

2. Stage II - propulsion. The boundary frame marking the onset of propulsion 

began a sequence of progressive, front-to-back activation of a steadily increasing number 

of electrodes until maximum contact was reached. The onset frame had to have a 



Figure 2.7. Raw EPG time-series in 10-20 msec increments for a representative discrete swallowin$ task (including the swallow 
and post-swallow mouth opening gesture). Temporal boundaries for the four stages are: prepropuls10n (I) 2. 71-2.90, propulsion 
(II) 2.91-3.02, full contact (III) 3.03-3 .21, and withdrawal (IV) 3.22-3.41 . Black squares are activated electrodes. The contact 
seen in Frame 2.70 had been unchanged for the preceding270 msec. 
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minimum of three adjacent contacts within two successive rows in the front or central 

bins, since the activation of one or two electrodes might not begin the continuous 

propulsive motion. This stage ended with activation of the posterior-most electrodes in 

the midline bin or the medial bin (inner column), whichever occurred later (see Figure 2.6 

for bins). 

3. Stage III - full contact. This stage consisted of a period of maximal, essentially 

stable palatal contact. The full contact stage did not require activation of all electrodes or 

extreme stability7
. 

4. Stage IV - withdrawal. The boundary frame marking the onset of withdrawal 

began a sequence of progressive, front-to-back deactivation of a steadily increasing 

number of electrodes. The end of withdrawal was defined as the first frame with a stable, 

minimal number of contacts that lasted at least 60 msec, irrespective of subsequent, 

additional deactivation. These criteria were set to establish a common reference across 

bolus conditions and subjects. 

Measurements and statistics. Two sets of timing measurements were made: 

1. Total duration. Operationally, the total duration of the discrete swallowing 

task was the interval from the onset ofprepropulsion to the end of withdrawal on EPG. 

Analysis of variance (ANOVA) was performed on the total durations of 149 task 

responses, using a random effect approach (where "subject" and "subject-by-task 

interaction" were specified as naturally random effects). Post hoc contrasts were done 

7_Flickering ( transient on and off) of some electrodes, mostly in the front and the 
lateral bms, was noted occasionally during this stage, probably as an instrumental artifact. 
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with the least-squares means, using the Scheffe method. The specific contrasts included: 

pairwise comparisons of all five swallowing tasks, comparisons between the two sizes 

(5 cc vs. 30 cc), and comparisons among the different consistencies (water, gelatin, and 

dry) . 

2. Stage duration. Based on the boundary frames described earlier, the duration 

of each stage was calculated for all task responses, and the raw data were collapsed by 

stage into mean durations for different boluses. The collapsed data were then subjected to 

a multivariate analysis of variance (MANOVA), using a== .05. The multivariate approach 

was applied to be consistent with the repeated measures design of the experiment. 

However, MANOVA of bolus-by-stage interaction could not be performed due to 

insufficient error degrees of freedom; therefore, univariate tests of interaction were 

conducted. Planned comparisons of the task means were carried out for Stages II and III, 

using a == . 0 I . The a level was more stringent because of conducting multiple contrasts 

for each of these stages. Stages I and IV were examined visually but not analyzed 

statistically. This was due to concerns over the potential artificiality added to these stages 

by the required starting and ending tongue postures. That is, normally the tongue may not 

assume a low position at the start of a swallow and may remain elevated at the end of a 

swallow. 

To extract contact patterns, two data reduction processes were used: 

1. Percent-contact computation. The percentage of tongue-palate contact(% of 

electrodes on) in each palatal bin was tallied at I 0-msec intervals over time for each task 

response, using software developed for the Department of Linguistics, University of 
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California, Los Angeles (Mueller, 1992). The data for each stage were then transformed 

into a waveform displaying percent-contact per bin as a function of time. 

2. Time-warping and averaging. Because each subject repeated each discrete 

swallowing task six times, the repetitions must be averaged to extract the underlying 

patterns. Since no two swallowing responses ever can be of exactly the same duration 

( same number of frames), one cannot simply average the frames in one sequence with 

those in another. To create repetitions with the same number of frames, time-warping was 

performed. Time-warping, also referred to as time-aligning or time-normalizing, has been 

employed in speech research for similar purposes, and may be accomplished via different 

mathematical approaches. (For examples of some of the approaches and applications, see 

Cordaro, 1991, Fallside and Woods, 1985, Sakoe and Chiba, 1978; and Smith, Goffinan, 

Zelaznik, Ying, and McGillem, 1995.) In the present study, the time-warping procedure 

was as follows: For each stage, mean durations were calculated for the six repetitions of 

each swallowing task. Next, the stage duration for each repetition was time-aligned 

against the subject's mean. That is, each repetition was either stretched or shortened in 

duration to match the mean duration. Piecewise linear interpolation was used to add or 

delete frames from the warped data, and to recompute the percent-contact for each new 

frame. This method was appropriate, because the raw data showed essentially linear 

frame-to-frame changes in contact. 

Comparisons of pre- and post-warp waveforms showed satisfactory retention of 

percent-contact characteristics in virtually all cases. Two examples, presented in Figure 

2.8, illustrate cases where the pre-warp data series were "stretched" (left panels) or 



Figure 2.8. Examples of pre-warp (upper panels) and post-warp (lower panels) data confonnity in two representative 
discrete swallows. All waveforms show percent-contact changes in the front, central, and back bins druing Stage I. 
Left panels illustrate a case of "data stretching" (from 80 to 260 msec) in one swallow; right panels a case of "data 
shrinking" (from 350 to 170 msec) in a different swallow. 
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"shrunk" (right panels) considerably (by>½ of original durations) to achieve time-

alignment . They represented about 15% of all cases, occurring mostly in Stage I. In 78% 

of the cases, the amount of time-warping was small (<1/3 of pre-warp durations). Time

warping amount for the remaining 7% of cases fell in between. 

Subsequently, the time-warped percent data were averaged by frame for each bin 

and each stage to extract an underlying pattern for the six repetitions of a single 

swallowing task. Frame-by-frame standard deviations were also calculated. Waveforms 

of the averaged percent-contact data were examined in detail and compared across 

subjects and swallowing tasks. No statistical test was performed on the waveforms. 

Two additional measurements were made, including: 

1. Lateral percent-contact at Stage-II onset. Preliminary examination showed that 

some swallows differed in the extent of lateral contact at the end of prepropulsion or the 

start of propulsion. The underlying issue was whether a prominent lateral seal was present 

just before propulsive activity. Thus, measurements were made of the lateral percent

contact at Stage-II onset. Based on the computed percentages, the individual swallows 

were categorized into Patterns 1 and 2 (1 = <65%, i.e., without prominent lateral seal; 

2 = >65%, with prominent lateral seal) and verified against the raw EPG time-series data. 

It should be noted that while the cutoff percentage was set at 65, the majority (95%) of 

the raw data displaying Pattern 2 had more than 70% of contact at Stage-II onset. 

Subsequently, the distribution of Patterns 1 and 2 was examined as a function of 

swallowing tasks. Chi-square analysis was planned but could not be successfully carried 

out due to exclusive distribution of one pattern or another to particular tasks. 
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2. Order of percent-contact peaks during Stage II. An additional measurement 

was made to assess task effects. This involved identifying the order in which the front (F), 

lateral (L), and back (B) bins reached their respective percent-contact peaks during 

propulsion. A percent-contact peak was defined as the first occurrence of the highest 

percentage in contact for a respective bin within the demarcated stage limits. The front, 

lateral, and back bins were selected for this analysis, as jointly they were most revealing of 

the general contact pattern observed during Stage II. All patterns of sequencing were 

tallied. Because the predominant pattern followed an F-L-B order, the individual 

swallows were classified into an "F-L-B" group and an "others" group. Chi-square 

analyses were performed to examine the distribution of these groups as functions of 

subjects and swallowing tasks. 

Ultrasound Data 

The videotaped ultrasound data were digitized in real time via a Macintosh-based 

image acquisition system (Scion Corp. , Frederick, MD, Model 1200). Frame-by-frame 

examination of the digitized images was accomplished using the NIH Image software, 

Version 1. 5 5 (Rasband, 1994 ). The midsagittal ultrasound scans were used for all of the 

observations and analyses described below. Unlike the midsagittal images that showed 

various movements of the tongue across its length, the coronal images showed repetitive 

and strictly upward-downward movements of a small crosswise tongue section. The latter 

offered no global illustration of swallow-related lingual actions and could not be used to 

cross-refer to the EPG data. 
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Overall analysis framework. A system of analysis was devised, which consisted of 

two schemes: fu1:1ctional segments and radial grid. These schemes provided the bases for 

describing ultrasound tongue movements and for cross-referring to the EPG data. 

For convenience of descriptive analysis, the tongue was divided into five functional 

segrnents--anterior, mid, dorsal, posterior, and root ( cf Stone, 1990; see Figure 2. 9, upper 

panel). The root of the tongue, not visible on ultrasound, was not included in the present 

study. 

A transparent, radial grid was superimposed on the monitor screen over the 

ultrasound image (see Figure 2.9, lower panel; modeled after Stone, Sonies, Shawker, 

Weiss, & Nadel, 1983 and Morrish, Stone, Shawker, & Sonies, 1985). Once in place, the 

grid was not removed until all analyses were completed to ensure constant positioning 

over all frames . The grid consisted of a baseline plus six radii angled at 55, 70, 85, 100, 

11 5, 125 degrees from left to right. For placement, the baseline where all radii converged 

was aligned with the scan vertex, and the two outside radii aligned with the scan borders. 

The angles of the four inside radii were set so that their intersections with the surface of a 

"neutral" tongue (resting without bolus in mouth) approximated the centers of the 

respective tongue segments. This grid setup permitted systematic observations and 

measurements of instantaneous radial displacement for the tongue segments. More 

specifically, for each tongue segment on each frame, the measured displacement was the 

x,y coordinates of a point where the tongue surface and a particular grid radius 

intersected. 
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Figure 2.9. Schematic of functional lingual segmentation (upper panel, modeled after 
Stone, 1990), and grid system for tracking radial displacement of the anterior, mid, dorsal, 
and posterior tongue segments (lower panel). The tongue root, not visible on ultrasound, 
was not measured. In the lower panel each inside radius of the superimposed grid intersects 
the approximate center of a tongue segment. 
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Observations and measurements. 

l . Ultrasound lingual behaviors versus EPG contact activities. With the grid in 

place, swallow-related movements of the anterior, mid, dorsal, and posterior segments 

were visually tracked by advancing the ultrasound frames one at a time, and their 

characteristic patterns noted. Comparisons were then made between EPG contact 

activities and ultrasound lingual behaviors, and the similarities and differences described. 

2 . Task effect on tongue shape. To enable the examination of changes in sagittal 

ultrasound tongue shape as a function of swallowing tasks, criteria were set up to extract 

specific frames from each swallow for within- and between-subject comparisons. The 

frames selected included: the frame just before the onset of any lingual movement, which 

displayed the tongue in its resting posture with the bolus collected in front; the first frame 

showing the entire bolus on (i.e., no longer in front ot) the tongue surface; and four 

successive frames (identified using the radial grid) showing the point of maximal 

displacement of the anterior, mid, dorsal, and posterior tongue segments. No subsequent 

frames were selected, because "task effect on tongue shape" became irrelevant when the 

bolus left the oral cavity. 

3. Lingual velocity profiles. Using the same radial grid, frame-by-frame 

measurements of displacement were made for the four tongue segments from the swallow 

onset through the end of propulsion (i.e., the point of maximal displacement of the 

posterior segment). The displacement data derived from the grid were used to compute 

instantaneous velocities. Subsequently, a velocity profile--a waveform displaying changes 

in velocity over time--was plotted for each tongue segment in each swallow. However, it 
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should be pointed out that the accuracy of frame-by-frame displacement measurements 

depended greatly on the sharpness of the tongue surfaces imaged. Because of 

considerable variability in image quality across subjects accurate measurements could only 

be maintained with the images from Subject 5 (S5). Therefore, only the velocity data of 

this subject were included. 

The velocity profiles of S5 were examined as a function of swallowing tasks. 

Means and standard deviations were calculated by tongue segments and swallowing tasks 

for the "positive peak velocity" and for the "interval from onset to positive peak velocity 

(OTP)". Also computed were the differences in mean OTP values between tongue 

segments. No statistical test, however, was performed. 

4. Correlation ofEPG timing measurements with ultrasound activity. To ensure 

data accuracy, steps were taken to determine the general consistency between EPG timing 

measurements and corresponding sagittal ultrasound tongue shapes. They included 

mathematically aligning the measured EPG events to corresponding ultrasound frames, 

and comparing the tongue shapes depicted on those frames against the particular contact 

activities displayed on EPG. The extent of the "match" was noted. 

5. Identification of unusual lingual behaviors. The ultrasound swallowing data of 

all subjects were screened independently of the EPG data for any unusual lingual behaviors 

such as "double swallows" or excess movements. In cases where the EPG data were 

questionable, the ultrasound images were examined in detail for elucidation. Questionable 

EPG data included task responses where the measured durations seemed unusually long or 
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short for one or more stages, and occasional cases where contact activities were not 

consistent with the typical observations. 

Experiment 2. Sequential Swallowing in Continuous Drinking 

Tasks and Design 
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Tasks for the sequential swallowing experiment included drinking 200 cc of water 

at normal and fast rates. No precise control was exercised over the speed of drinking. 

For the normal rate, subjects were instructed to drink normally upon hearing the trigger 

and swallow consecutively with no between-swallow pauses. For the fast rate, subjects 

were simply asked to "drink as fast as you can." Water was measured and presented in a 

400 cc plastic beaker with part of its wall cut off and sanded to enable tilting of the 

container without tilting of the head. 

One trial at each rate was implemented in randomized order for both ultrasound 

imaging planes. In addition to drinking rate, a naturally present variable was swallow 

order. The starting tongue position for the first swallow was likely to be different from 

that for the subsequent swallows. Thus, Experiment 2 was of a two-level, randomized 

block design with respect to sagittal/coronal ultrasound data. With respect to the EPG 

data, the experiment was of a repeated measures design, as there were two repetitions for 

each rate. 
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Data Analysis 
~ 

EPG Data 

Data from Experiment 2 were examined across subjects and as functions of 

drinking rate (normal vs. fast) and swallow order (first vs. subsequent). In addition, they 

were compared with the discrete/single water swallows from Experiment I . The analysis 

schemes and steps used here were essentially the same as those for the discrete swallowing 

experiment. However, time-warping and frame-by-frame data averaging were not 

performed due to limited sample size. For contact patterns, therefore, the raw EPG 

percent-contact waveforms were examined. 

Measurements. For contact timing, the total duration of each component swallow 

or task response (up to three swallows due to instrumental limit) within a continuous 

drinking series was measured, using the same operational definition specified for discrete 

swallowing. That is, for Experiment 2, this measurement also included contact activities 

from prepropulsion through the end of contact retraction. Mean total durations were 

calculated for the first and the subsequent swallows at each rate, and ANOV A was 

subsequently performed on these means for the effects of "order" and "rate". In addition 

to total duration, a measurement was made of the average total-duration ratios of 

sequential versus discrete water swallowing tasks for comparative analysis. 

For contact pattern, in addition to the analyses on "lateral percent-contact at 

Stage-II onset" and "order of percent-contact peaks during Stage II" (see descriptions 

under Experiment 1), a third measurement was made of the "percent-contact ratios at 

maximal midline" to contrast sequential and single water swallows. The idea was derived 



from preliminary examination of the data. The procedure involved: (a) extracting the 

percentages of electrodes-on in the front, back, and lateral bins at the time of maximal 

midline contact (i.e. , end of propulsion); and (b) calculating the front:back and the 

lateral:back ratios in percent-contact. ANOVA was subsequently performed on each set 

of ratio data. 

Ultrasound Data 

Observations and measurements. 
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1. Swallow volume estimation. The sagittal ultrasound data of each subject were 

used to estimate the average bolus size for sequential swallows. The basic assumption 

was that the intake amount varied minimally from swallow to swallow within a continuous 

drinking series. The total amount consumed (200 cc) was divided by the number of 

swallows in a series to obtain an estimated swallow volume. 

2. Lingual movement characteristics. Tongue movements during sequential 

swallowing were examined as functions of drinking rate and swallow order, and compared 

with the characteristics observed for the discrete water swallowing task. Similarities and 

differences were described. In addition, specific ultrasound frames were extracted for 

each component swallow (see criteria specified under Experiment 1) for the examination 

of task-induced tongue shape differences during continuous drinking. 

3. Lingual velocity profiles. Procedures for velocity analyses on the sequential 

swallowing data were the same as those described for Experiment 1. However, the data 

set for each drinking series included values extracted from the first four sequential 



swallowing responses. Descriptive comparisons were made between normal and fast 

drinking rate, between first and subsequent swallows, and between sequential and single 

water swallows. No statistical test was performed on the single-subject data. 

68 



CHAPTER III. RESULTS 

Experiment 1. Discrete Swallowing 

EPG Findings 

I._ongue-Palate Contact Timing 

Total duration: task effect and subject variability. Average total durations of the 

5-cc water, 30-cc water, 5-cc gelatin, 30-cc gelatin, and dry swallowing tasks for Subjects 

1 to 5 (S 1 to S5) are presented in Table 3.1 . One of the six repetitions for the 30-cc 

gelatin swallow of S5 had to be discarded due to "double swallowing," otherwise all 

averages were based on six replications. As shown in Table 3.1, intrasubject replication 

variability was small . In 84% of the cases, the coefficients of variation (CV=SD/M) were 

less than 0.20 (standard acceptable limit of CV in ratio= 2.00). In the remaining 16% of 

cases, the CV values ranged from 0.21 to 0.28. 

Analysis of variance (ANOVA) on the total duration data showed a significant 

subject effect (p, = .0007), a significant interaction (p, = .0001), and a significant but 

weaker task effect (p, = .0488). (The ANOVA table is presented in Appendix B, section 

B-1.) Post hoc tests did not isolate. the effect of swallowing task to any pairwise 

comparisons or complex contrasts related to bolus size or consistency. The exact nature 
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Table 3. I . Mean total durations (in milliseconds) of tongue-palate contact during discrete swallowing for Subjects 1 to 
5 (S I to SS). Coefficients of variation (CV) were computed using the formula [SD/M]. Except for 1130cc Gelatin" of 

S5, all values are based on six replications. Data for 1130cc Gelatin" of S5 had one missing replication. 

Single Swallow 

5cc Water 30cc Water 5cc Gelatin 30cc Gelatin Dry 

SI M 922.30 816.44 1066.44 1055.18 1161.04 
SD 135.79 138. 77 103.83 129.57 175.07 
CV 0.15 0.17 0.10 0.12 0.15 

S2 M 1647.52 1233.11 2225.23 1388.52 1662.17 
SD 292.01 178.86 233.62 144.84 260.39 
CV 0.18 0.15 0.10 0.10 0.16 

S3 M 1409.91 1208.17 1486.49 1377.25 1679.05 
SD 133.62 110.41 255.26 121.88 149.31 
CV 0.09 0.09 0.17 0.09 0.09 

S4 M 1467.79 1449.50 1803. 72 1848.65 1664.62 
SD 309.11 297.58 174.61 166.65 241.97 
~ 0.21 0.21 0.10 0.09 0.15 

S5 M 1365.09 1378.55 1414. 75 1944.32 1538.63 
SD 266.05 386.48 120.82 115.97 414.34 

~ 0.19 0.28 0.09 0.06 0.27 

-..J 
0 
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of the task effect was apparently masked by large intersubject differences. These 

differences as well as the strong subject-task interactions can be seen in Figure 3.1 (upper 

panel; crossed lines indicate interactions). As illustrated, total durations for S 1 were 

considerably shorter than those of all other subjects. The lack of a consistent pattern 

across subjects was apparent. Nevertheless, a closer examination of the swallowing tasks 

as a function of subjects (Figure 3.1, lower panel) did reveal some task-based tendencies 

with respect to bolus consistency. That is, dry swallows were longer than water swallows 

of either size, and gelatin swallows were longer than water swallows of comparable size. 

Stage duration: effects of task and stage, and subject variability. Average 

durations for the different swallowing tasks by stage are illustrated in Figure 3.2. Task

based differences were apparent for all stages, though less so for Stage IV. Statistics were 

performed for only Stages II and III, since they did not have an arbitrary beginning or end 

point. 

Results of the multivariate analysis of variance (MANOVA) on stage durations 

showed a significant main effect of swallowing task, and a significant task-by-stage 

interaction. Post hoc comparisons of the task means for Stages II (propulsion) and III 

(full contact) revealed the following : For Stage II, with respect to bolus consistency, 

water had a significantly shorter duration than gelatin, and dry swallows were significantly 

shorter than 5-cc gelatin swallows. With respect to bolus size, 30-cc swallows were 

consistently shorter than 5-cc swallows. Thus, thinner consistency and larger volume 

were propelled faster through Stage II. For Stage III, the only significant duration effect 
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Figure 3 .1. Least-squares mean total durations for Subjects 1 to 5 (S 1 to S5) as a 
function of discrete swallowing task (upper panel) and for different discrete 
swallowing tasks as a function of subject (lower panel). SW= 5-cc water, 30W 
= 30-cc water, 5G = 5-cc gelatin, 30G = 30-cc gelatin. 
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Figure 3.2. Mean durations (with error bars) of individual discrete swallowing tasks for the four stages. SW= 
5-cc water; 30W = 30-cc water; SG = 30-cc gelatin; JOG= 30-cc gelatin. 
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at the a.= .01 level was that the dry swallow was longer than either 5-cc or 30-cc water 

swallows. (Tables for the MANO VA tests of main effects and contrasts are presented in 

A ppendix B, sections B-2 to B-4.) 

The average duration (standard deviation) for each of the four stages, collapsed 

across swallowing tasks, was 251.33 (±208.62), 320.03 (±158.60), 585 .13 (±257 .67), and 

2 88 .77 (±150.90) msec, respectively. These means were not significantly different due to a 

large degree of variability in the measurement units, as reflected in their respective 

standard deviation values. 

Averaged timing data from the different swallowing tasks for the individual 

subjects in Stages I to IV are illustrated in Figures 3.3 to 3.6, respectively. Intrasubject 

timing variability was greater on the whole for Stage I ( overall coefficient of variation = 

.56) than for Stages II to IV (overall coefficients of variation =.20, .23, .31 , in order). 

Intersubject timing variability for the individual swallowing tasks was expected in all 

stages. Specifically, in Stage I (prepropulsion, Figure 3.3), both S2 and S5 were 

noticeably different from the other subjects for the 5-cc gelatin swallow in that the former 

had the longest and the latter had the shortest duration. In addition, S2 was the only 

subject whose 5-cc gelatin swallows averaged considerably longer than the larger-volume 

swallows of the same consistency, whereas for all other subjects the opposite was true. In 

Stage II (propulsion, Figure 3.4), the subjects without exception took longer time to 

propel the 5-cc gelatin bolus than they did the other swallowing tasks. In Stage III (full 

contact, Figure 3.5), the dry swallow was the longest in three subjects (Sl , S2, S3) and 

the second longest in the other subjects. Interestingly, S 1 had considerably shorter 



Figure 3.3. Average durations of Stage I (prepropulsion) as a function of discrete swallowing tasks for Subjects 1 to 5 
(SI to SS). SW= 5-cc water; 30W = 30-cc waster; 5G = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3.4. Average durations of Stage II (propulsion) as a function of discrete swallowing tasks for Subjects l to 5 
(Sl to SS). SW= 5-cc water; 30W = 30-cc waster; SG = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3.5. Average durations of Stage III (full contact) as a function of discrete swallowing tasks for Subjects 1 to 5 
(S 1 to SS). SW = 5-cc water; 30W = 30-cc waster; SG = 5-cc gelatin; 30G = 30-cc gelatin. 

1200 

-u 900 
Cl) 
en 
E -C: 
0 
~ 600 
::::, 
C 
Cl) 
a, 
!!! 300 u, 

Full Contact Stage 

30W SG 

Swallow 

30G 

T 

Dry 

c:::J S1 
fZ2:J S2 
EE]S3 
E=3S4 

-ss 



Figure 3.6. Average durations of Stage IV (withdrawal) as a function of discrete swallowing tasks for Subjects 1 to 5 
(S 1 to SS). SW= 5-cc water; 30W = 30-cc waster; SG = 5-cc gelatin; 30G = 30-cc gelatin. 
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Stage-III durations for all swallows than the other subjects, making this stage the primary 

source of the intersubject variability for the total swallow duration described in th.e 

prev ious section. In Stage IV (withdrawal, Figure 3.6), S3 had the longest mean 

durations for all swallowing tasks except 30-cc gelatin, and S2 had the shortest mean 

durations for all tasks except the dry swallow. 

Tongue-Palate Contact Patterns 

Contact patterns for individual stages. Average percent-contact profiles (time

series waveforms) from the different swallowing tasks for Subjects 1 to 5 are presented in 

F igures 3. 7 to 3. 1 18, respectively. Each figure consists of two parts with Part (a) 

illustrating data for the front, central, and back bins and Part (b) illustrating data for the 

lateral, medial, and midline bins. Contact characteristics specific to each stage are as 

follows: 

1. Prepropulsion stage. The prominent percent-contact pattern, Pattern 1, for this 

stage was characterized by small, scattered changes in contact over time, mostly in the 

lateral/back bins, resulting in lateral contacts of <30% by the end of the stage. This 

pattern occurred in 80% of the data. A variant of this pattern, Pattern 2, was observed in 

20% of the data. It was characterized by activation of a greater number of lateral 

electrodes (>65%) as well as some outer-medial electrodes, resulting in an apparent lateral 

seal (see Figures 3.7b--5W and Dry, 3.9b--5W, and 3.10b--30W and Dry). 

8In order to achieve optimal illustration of contact patterns, the X-axes in these 
figu_res are sc~led uniformly within subjects (i.e., to the longest averaged swallow for each 
subJect) but differently across subjects. 
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Figure 3.7a. C~an~es in average percent-~ontac~ over tim~ in front_ (thick solid li~e), 
ntral (thin sohd hne), and back (dashed hne) bms from different discrete swallowing 

ce ks for S 1 (female, age 47). Vertical lines demarcate the four stages. SW = 5-cc 
taster 30W = 30-cc water; SG = 5-cc gelatin; 30G = 30-cc gelatin. wa , 
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Figure 3.7b . Changes in average percent-contact over time in lateral (black solid line), 
medial (dashed line), and midline (gray solid line) bins from different discrete 
swallowing tasks for Sl (female, age 47). Vertical lines demarcate the four stages. SW 
= 5-cc water; 30W = 30-cc water; 5G = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3 .8a. Changes in average percent-contact over time in front (thick solid line), 
central (thin solid line), and back (dashed line) bins from different discrete swallowing 
tasks for S2 (female, age 46) . Vertical lines demarcate the four stages. SW = 5-cc 
water; 30W = 30-cc water; SG = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3.8b. Changes in average percent-contact over time in lateral (black solid line), 
medial (dashed line), and midline (gray solid line) bins from different discrete 
swallowing tasks for S2 (female, age 46). Vertical lines demarcate the four stages. SW 
= 5-cc water; 30W = 30-cc water; 5G = 5-cc gelatin; 30G = 30-cc gelatin. 

100 

- 75 
~ 
0 50 
0 
"ii! 25 

SW 

0 '!=-''-'..&.:..--+--+------i---+------+-----;---...... -----+------j 
msec o 400 800 1200 1600 2000 2400 

100 30W 

u 75 

~ 
0 50 
0 
'if!. 25 ...... ~--...., 

Q~'!!t:ilo,~~-4-----+---~-'-----1----t-------l 
msec 

100 

u 75 
!S 
5 50 
0 
"ii! 25 

100 

u 75 
<G 

°g 50 
0 
'.f!. 25 

msec 

0 <ioo 

400 

800 ~200 1600 2000 2400 

5G 

30G 

Dry 

800 1200 1600 2000 2400 



84 

Figure 3.9a. Changes in average percent-contact over time in front (thick solid line), 
central (thin solid line), and back (dashed line) bins from different discrete swallowing 
tasks for S3 (male, age 23). Vertical lines demarcate the four stages. SW= 5-cc water; 
30W = 30-cc water; SG = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3.9b. Changes in average percent-contact over time in lateral (black solid line), 
medial (dashed line), and midline (gray solid line) bins from different discrete 
swallowing tasks for S3 (male, age 23). Vertical lines demarcate the four stages. SW= 
5-cc water; 30W = 30-cc water; SG = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3. 1 Oa. Changes in average percent-contact over time in front ( thick solid line), 
central (thin solid line), and back (dashed line) bins from different discrete swallowing 
tasks for S4 (male, age 37). Vertical lines demarcate the four stages. SW= 5-cc water; 
30W = 30-cc water; 5G = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3.10b. Changes in average percent-contact over time in lateral (black solid line), 
medial (dashed line), and midline (gray solid line) bins from different discrete 
swallowing tasks for S4 (male, age 37). Vertical lines demarcate the four stages. 5W = 
5-cc water; 30W = 30-cc water; 5G = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3.1 la. Changes in average percent-contact over time in front (thick solid line), 
central (thin solid line), and back (dashed line) bins from different discrete swallowing 
tasks for S5 (female, age 23). Vertical lines demarcate the four stages. 5W = 5-cc 
water; 30W = 30-cc water; 5G = 5-cc gelatin; 30G = 30-cc gelatin. 
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Figure 3.1 lb. Changes in average percent-contact over time in lateral (black solid line) 
medial (dashed line), and midline (gray solid line) bins from different discret; 
swallowing tasks for S5 (female, age 23). Vertical lines demarcate the four stages. SW 
= 5-cc water; 30W = 30-cc water; SG = 5-cc gelatin; 30G = 30-cc gelatin. 
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2 . Propulsion stage. The predominant propulsion pattern, which followed the 

prepropulsion Pattern 1, began with an abrupt onset of front contact, followed by a steady 

increase in contact in both a front-to-back and a lateral-to-midline progression, ending 

with maximal contact for all bins ( see Figure 3 .12, top). This pattern, occurring in 80% of 

the data, created a lateral seal simultaneous with the backward propulsion of the bolus. 

Pattern 2, which followed Pattern 2 ofprepropulsion, was seen in the remaining 20% of 

the data. This pattern was characterized by increasing contacts in a primarily 

fro nt-to-back progression, occurring in the medial and midline bins (see Figure 3.12, 

bottom.) 

3. Full contact stage. This stage was characterized by stable, maximal contact. 

Such characteristic can be seen in all panels of Figures 3. 7 through 3 .11 . 

4 . Withdrawal stage. The characteristic pattern for this stage was a progressive 

front-to-back and simultaneous midline-to-lateral withdrawal of contact (Figures 3.7-

3 .11 ). The pattern of percent-contact retraction was remarkably consistent within subjects 

and across swallowing tasks . 

Task effect . No striking effects of swallowing tasks on overall contact patterns 

were observed. Occasionally, however, there appeared to be slight patterning differences 

among the tasks. In particular, for Stages II and Ill, the 30-cc gelatin had an average of 

18% less contact (range across subjects = 2-40%) than the other swallowing tasks. In 

addition, for Stage I, dry swallows had a slightly greater contact (2-17%, M = 9%), 

usually in the back bin, than the other bolus conditions. 



Figure 3 .12. Raw EPG data from two representative discrete swallows, illustrating Stage-II (propulsion) contact patterns. Pattern I 
(upper two rows) shows simultaneous front-to-back and lateral-to-midline increase in contact. Pattern 2 (lower two rows) shows 
prominent lateral seal at Stage-II onset and primarily front-to-back progression in contact increase. Each series begins with the last 
frame of Stage I (prepropulsion ). The vertical line demarcates the onset of Stage II. 
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Examination of contact patterns 1 and 2 ( described above for the prepropulsion 

and the propulsion stages) as a function of swallowing task revealed that Pattern 1 

occurred across all swallowing tasks, and Pattern 2 occurred in all except the 30-cc gelatin 

boluses. The dry swallow had a relatively greater frequency of Pattern 2 (15/32 cases) in 

contrast to the other tasks (6/32 for 5-cc water, 7/32 for 30-cc water, 4/32 for 5-cc 

gelatin), particularly for S 1 and S4 (see Figure 3.13). 

Analysis on the order in which maximal contact was achieved in the front (F), 

lateral (L), and back (B) bins during Stage II showed a variety of sequences. However, 

the predominant pattern, observed across all tasks in 102 of 149 individual swallows, 

followed a front-lateral-back progression of"peaking". In 17 of 149 swallows, the front 

and the lateral bins reached maximal contact at the same time, followed by the back bin. 

This was considered a variant of and therefore grouped with the front-lateral-back pattern. 

Since the remaining patterns (e.g., L-F-B, F-B-L, B-F-L, L-B-F, B-L-F) were few in 

frequency (most with only 2 or 3 cases), they were grouped as "others." Subsequent Chi

Square test of the two groups showed a significant subject effect (discussed below) but no 

significant effect of swallowing tasks. 

Subject variability. The post-warp, frame-by-frame descriptive statistics (i.e., M, 

SD, and CV) were examined by bin, stage, and task for intrasubject variability in overall 

percent-contact patterns. Data from S 1 and S4 were on the whole somewhat less variable 

than those from the other subjects, although all subjects showed greater replication 

variability in Stage I than they did in the other stages. The CV data revealed that 

I : . 



Figure 3 .13 . Frequency distribution of contact patterns I and 2 for different discrete 
swallowing tasks and subjects based on raw percent-contact data in lateral bin at 
Stage-II onset. Pattern I = <65%, Pattern 2 = >65%; SW= 5-cc water, 30W = 30-
cc water, 5G = 5-cc gelatin, 30G = 30-cc gelatin. Inserted percentages are the 
means for the respective patterns, swallowing tasks, and subjects. 
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replication variability was high (CV > 2) in 19% of all cases, moderate ( 1 < CV < 2) in 

another 19% of cases, and low (mean CV = .20) in the remaining 62% of cases. In all 

subjects, trial-to-trial variations for Stages II and III were mostly small. 

Intersubject variations in overall percent-contact patterns appeared trivial. 

Occasionally, some subjects showed less front and/or lateral contact in selected stages, or 

used extra preparatory tongue movement during Stage I. Substantial subject differences 

were seen in the use of Patterns 1 versus 2. S 1 and S4 used Pattern 2 more often than the 

other subjects (see Figure 3.13). Subject variations were also apparent in the ordering of 

percent-contact maxima during Stage II. S3 and S4 (both male) were the primary sources 

of the "other" sequence patterns (13/30 swallows in S3, 10/30 in S4), while the remaining 

subjects showed predominantly the front-lateral-back sequence. Of all the single-swallow 

analyses and observations, this was the only occasion where some differences attributable 

to subject gender appeared to exist. However, due to the small sample size, gender effect 

was not specifically evaluated, and no conclusions could or should be drawn. 

Left-right symmetry. Remarkable left-right symmetry (see Figure 3.14, upper 

panel) was observed in the majority of the data. On the occasions where asymmetry was 

seen, the left and the right sides differed minimally in the amount of percent-contact and 

not at all in overall contact pattern (see Figure 3. 14, middle panel). Most of the 

asymmetry tended to occur near the beginning of Stage I (prepropulsion) and/or near the 

end of Stage IV (withdrawal) (see Figure 3.14, lower panel). 

' I 

., 
'I 
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Figure 3.14. Changes in average percent-contact over time in left (gray solid line) and 
right ( dashed line) bins from representative discrete swallows of selected subjects. Upper 
panel shows the remarkable symmetry seen in most cases. Middle panel demonstrates 
left-right differences in amount but not pattern of percent-contact. Lower panel shows 
typical locations of assymetry: near Stage-I start and near Stage-IV end. Vertical lines 
demarcate the four stages. 
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Ultrasound Findings 

The sagittal ultrasound data on discrete swallowing for all subjects were examined. 

However, due to considerable variations in image quality, only the data from SS were used 

in illustrations and for displacement measurements. 

Swallow-Related Lingual Behaviors on Ultrasound 

The ultrasound visualization of the swallowing task for this study contained four 

stages, i.e. , prepropulsion, propulsion, full contact, and withdrawal, just as distinctly 

identifiable as those seen on EPG. However, the ultrasound and the EPG stages differed 

in scope and behavioral details because of the innate capabilities as well as drawbacks of 

each instrumentation. 

Movement-tracking for the four functional tongue segments (anterior, mid, dorsal, 

and posterior) on ultrasound revealed that a swallow or task response typically began with 

anterior and superior movement of all tongue segments from the resting position, loading 

the bolus onto the tongue surface (prepropulsion). Next, the tip of the anterior segment 

was anchored against the tip of the hard palate, followed by serial elevation of the mid, 

dorsal and posterior segments to maximal displacement. With these movements, the bolus 

was progressively propelled backward into the pharynx (propulsion). The entire tongue 

remained maximally elevated against the palate for a period of time (full contact). Finally, 

the tongue began to pull away from the palate and return to the resting position 

(withdrawal). The withdrawing action, as part of the post-swallow mouth-opening 

gesture, often began with the anterior segment and progressed through the mid or dorsal 



segment in a "peel-away" fashion, followed by further lowering of the entire tongue as a 

whole. However, it was also not uncommon to see a slight descent of the posterior 

tongue just before the anterior segment lowered. The basic pattern oflingual actions 

described above was observed across subjects and swallowing tasks. 

Ultrasound versus EPG: Descriptive Comparison 
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Because the sagittal ultrasound images depicted movements of only a 2-mm thick, 

midline section of the tongue, precise correlations ofEPG contact details and ultrasound 

lingual behaviors were not possible. For example, any EPG activities in the lateral and the 

medial bins were not visualized on ultrasound. However, with the inclusion of 

synchronized trigger signals ( click and glottalized /a/) on both EPG and ultrasound data, 

gross comparisons could be made of EPG contact activities and ultrasound tongue 

movements. 

Movements of the anterior, mid, and dorsal (partial) tongue segments during 

propulsion and withdrawal parallelled the contact activities observed on EPG during 

Stages II and IV. However, since EPG registers only tongue-hard palate contact, lingual 

actions before and after contact as well as during steady-state maximal contact, though 

very much a part of the swallowing maneuver, are not shown. Specifically, four sets of 

ultrasound lingual behaviors were not reflected on EPG in the present study. These 

included: (a) some of the initial prepropulsive movements (occurring before any tongue

palate contact), (b) the propulsive motion of the posterior segment as well as part of the 

dorsal segment, (c) the occasional early withdrawal of the posterior segment, and (d) the 
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final descent of the entire tongue to the resting position (occurring after EPG withdrawal) . 

As a result, the EPG prepropulsion and withdrawal stages were usually shorter than the 

equivalent ultrasound periods, and the ultrasound full contact period was usually shorter 

than the EPG full contact stage. In other words, while full contact was maintained on 

EPG, propulsive lingual movements were continued in the posterior tongue segment on 

ultrasound. 

The EPG data provided considerably more detailed information than ultrasound on 

the interaction of the tongue and the palate, adding a new and unique dimension to the 

understanding of lingual motor function during swallowing. Details such as the front-to

back and simultaneous lateral-to-midline contact increase during propulsion, and the front

to-back and simultaneous midline-to-lateral withdrawal were not visible on ultrasound. 

Task Effect on Ultrasound 

The finding of some significant bolus effects on EPG provided an incentive to 

examine tongue shapes as a function of swallowing tasks on ultrasound . Figures 3 .15 

(Parts a and b) illustrate, in series, temporally comparable, "significant" frames from five 

representative swallows--one for each bolus type--ofthe same subject. As discussed 

below, several bolus-induced differences in tongue shape can be seen in the images, 

though by the time the dorsal segment reached maximal displacement, tongue shapes 

became essentially the same. 

Pre-swallow (Figure 3.15a, Row 1). While in a rest state, the tongue was 

compressed to varying extent, depending on the bolus volume. For the small water and 
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Figure 3. I Sa. Changes in tongue shape over time as a function of discrete swallowing task. All frames were selected based on specific 
criteria from representative swallows of the same subject. Frames in Rows 1, 2, and 3, in order, illustrate tongue shapes at rest (tip to 
back from left to right), when entire bolus was first loaded on tongue surface, and at maximal displacement of anterior tongue segment. 
Arrows in each image mark points on tongue surface. SW= 5-cc water, 5G = 5-cc gelatin, 30W = 30-cc water, 30G = 30-cc gelatin. 

5W 5G 30W 30G Dry 



Figure 3 .15b. Changes in tongue shape over time as a function of discrete swallowing task. All frames were selected based on specific 
criteria from representative swallows of the same subject. Frames in Rows 4, 5, and 6 illustrate tongue shapes (tip to back from left to 
right) at maximal displacement of mid, dorsal, and posterior tongue segments, respectively. Arrows in each image mark points on 
tongue surface. 5W = 5-cc water, 5G = 5-cc gelatin, 30W = 30-cc water, 30G = 30-cc gelatin. 

4 

5 

6 

5W 5G 30W 30G Dry -0 
0 
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gelatin boluses, the tongue was arched and slightly retracted. Large-volume boluses were 

associated with a lower and more compressed tongue. In dry swallows where bolus size 

was minimal, the tongue showed no compression. Differences due to bolus consistency 

were more apparent in the case of large boluses. Gelatin tended to remain as a cohesive 

mass on the tongue with more collected anteriorly than dorsally; water, naturally less 

cohesive, tended to be contained in front of as well as on the anterior tongue. As a result 

and for apparent safety reasons, the anterior tongue was somewhat more retracted and the 

dorsal and posterior segments slightly more hunched for water than for gelatin (see Figure 

3.15a, Row 1, 30W vs. 30G). 

First appearance of entire bolus on tongue surface (Figure 3. l 5a, Row 2). At the 

moment when the entire bolus was loaded onto the lingual surface, the tongue assumed a 

more level, horizontal posture for dry and 5-cc boluses than for large boluses. The large 

volumes continued to induce a depression in the anterior and mid tongue segments. 

Maximal displacement of anterior segment (Figure 3. l 5a, Row 3 ). With the 

anterior segment anchored to the front of the hard palate and with propulsion 

commencing, the tongue was seen to assume a slight backward slope regardless of bolus 

type. Again, the large boluses tended to depress the tongue slightly more. No striking 

consistency-based differences were observed at this point. 

Maximal displacement of mid segment (Figure 3. l 5b, Row 4 ). Backward tongue 

slope was greatest at this moment. The dorsal and the posterior segments were slightly 

higher for 5-cc water and dry swallows than for the other bolus types. 



102 

Maximal displacement of dorsal and posterior segments (Figure 3 .15b, Rows 5 and 

6). The bolus had essentially left the oral cavity at this point. Therefore, little variation in 

tongue shape was observed as a function of swallowing task. 

In short, volume-based differences in tongue shape were observed during the pre

swallow state, prepropulsion, and most of propulsion, while consistency-based differences 

were more apparent during pre-swallow. It should be emphasized that regardless of the 

task at hand, progressive anchoring of functional segments from front to back appeared to 

be an important and consistent strategy utilized by the tongue to achieve successful 

transport of the bolus through the oral cavity. 

Lingual Velocity Profiles: Single-Subject Data 

Recall that the EPG data showed significant differences in contact timing for Stage 

II (propulsion) as a function of bolus consistency (water faster than gelatin) and size 

(30 cc faster than 5 cc). Comparable differences in lingual movement velocity were 

expected. Frame-by-frame, radial displacement data were extracted for the four tongue 

segments during prepropulsion and propulsion. Velocities were then calculated, and a 

velocity profile--a waveform of changes in instantaneous velocity over time--was plotted 

for each swallow. It should be pointed out that the accuracy of frame-by-frame 

displacement tracking depended greatly on the sharpness of the tongue surfaces imaged. 

In the present study, due to lingual tissue variations in the individual subjects and resultant 

variations in image quality, adequate measurement accuracy could only be maintained with 
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reported. 

Figure 3 16 ·11 
· 1 ustrates the velocity profiles of the four tongue segments from 

representa . . 
hve discrete swallows of SS . Intervals equivalent to EPG Stages I - III are 

lllarked. 
The veloc't fi . . 1 Y pro les captured the time progress10n of bolus transport from front 

to back d 
' emonstrating the stereotypical, spatiotemporal concatenation of the four 

functio 1 na segments. Also visible in the profiles were the upward and downward velocity 
Shifts Whj h 

c corresponded to the ascent and descent of each tongue segment during bolus 
transport 

The succession in which each segment achieved its positive peak velocity, 
unvaryin . . 

g witbin and between tasks, resembled that of a "whip" effect, as if the segments 
Were link . 

s 10 a ch · · 1 am. The dorsal and the posterior segments had relative y greater 
neg · attve ve1 . 

ocity peaks than the other segments (EPG Stage II), indicating tongue 
lowering. 

The magnitude of the negative peaks, however, showed no consistent task

specific trend 
s. During EPG Stage III, positive peak velocity for the posterior segment 

Was achj 
eved. This was true for the dorsal segment as well, in all except the 30-cc gelatin 

swallows ( 
see Figure 3.16, 30G). 

Average positive peak velocities from the different swallowing tasks for S5 are 
Presented. 

10 Table 3.2. Also included are the average intervals from onset to positive 
Peak Velo . 

city (OTP). Within-task comparisons showed the dorsal tongue segment to have 

greater Pea 
k velocity than all other segments for all swallow types. Between-task 

c
0111

Parison 1 · · h JI s revealed that 30-cc water swallows had greater mean peak ve ocities t an a 

Other SWall 
ows for all tongue segments. The most striking contrasts observed were 



Figure 3.16. Velocity profiles for four tongue segments from representative discrete swallows of S5. Values (in mm/sec) are 
instantaneous velocities from first move of tongue to point of maximal posterior displacement. Missing initial data points for 
anterior segment were due to lack of tongue-grid intersections. Vertical lines demarcate corresponding EPG Stages 1-111. 
Ant = Anterior; Dors = Dorsal; Post = Posterior; SW = 5-cc water; 30W = 30-cc water; 5G = 5-cc gelatin; 30G = 30-cc 
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Table 3.2. Mean positive peak velocities (in mm/sec) and onset-to-peak (OTP) intervals (in sec) for the four tongue segments 

from different discrete swallows of Subject 5. SW= 5-cc water, 30W = 30-cc water, SG = 5-cc gelatin, 30G = 30-cc gelatin. 
Diff = difference in mean OTP values between tongue segments. 

Positive Peak Velocity OTP Interval 
Anterior Mid Dorsal Posterior Anterior Mid Dorsal Posterior 

SW M 21.49 48.72 53.49 30.86 0.42 0.54 0.63 0.73 
SD 8.00 14.76 4.14 8.39 0.05 0.02 0.03 0.03 
Diff 0.12 0.09 0.10 

30W M 53.57 55.44 73.04 67.97 0.32 0.55 0.63 0.73 
SD 5.17 2.32 22.25 7.00 0.02 0.02 0.00 0.00 
Diff 0.23 0.08 0.10 

5G M 33.78 30.30 70.74 61.47 0.27 0.52 0.76 0.86 
SD 2.04 11.49 5.54 19.36 0.09 0.13 0.13 0.14 
Diff 0.26 0.23 0.10 

30G M 27.77 53.30 65.61 53.23 0.35 0.80 0.87 0.98 
SD 5.77 1.56 0.97 2.53 0.12 0.14 0.14 0.12 
Diff 0.45 0.07 0.12 

Dry M 29.13 31.85 70.15 62.71 0.27 0.49 0.61 0.68 
SD 9.93 1.07 9.14 14.61 0.05 0.05 0.04 0.05 
Diff 0.22 0.12 0.07 

-0 
Vl 
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between 3 0-cc and 5-cc water tasks for the anterior and the posterior segments, where the 

larger volume consistently induced 38-78% (based on raw data) greater peak velocities. 

The 30-cc gelatin swallows also had 23-67% higher peak velocities than their 5-cc 

parallels, though only for the mid tongue segment. Dry swallows, on the other hand, had 

consistently greater posterior peak velocity than small-sized water swallows. Other 

differences due to bolus consistency were generally inconsequential. The gelatin and dry 

swallows hardly differed in peak velocity for any tongue segment, though most of the 

water swallows had greater peak velocities than dry swallows for the mid tongue. 

Data on the OTP intervals showed no particular size- or consistency-based trends. 

However, the duration between moments of anterior- and mid-tongue peak velocities was 

the shortest for 5-cc water and the longest for 30-cc gelatin. In addition, 5-cc gelatin took 

a longer time than the other tasks to attain dorsal-tongue peak velocity after reaching mid

tongue peak. 

Correlation of EPG Timing Measurements with Ultrasound Activity 

Guided by the reference images (see Figure 2.4) which depicted the general 

landmarks of the individual pseudo palates, attempts were made to correlate the EPG 

timing measurements and associated contact activities with time-aligned ultrasound tongue 

shapes for general consistency. In 70% of the cases, reasonable parallels between the 

ultrasound and the EPG activities were observed. That is, activation of electrodes in the 

front bin on EPG (propulsion onset) matched maximal displacement of the anterior 

segment on ultrasound; end of propulsion on EPG followed maximal displacement of the 

mid segment but preceded that of the dorsal segment on ultrasound. In 30% of the cases, 
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a mismatch by one to two ultrasound frames did occur. Considering the difference in 

sampling rate between the two instruments (1/30 vs. 1/100 sec per frame for ultrasound 

and EPG, respectively), the mismatches appeared relatively trivial. 

Identification of Unusual Lingual Behaviors 

The screening of all swallows on ultrasound revealed only one case of "double 

swallowing" . This occurred on one 30-cc gelatin trial in SS, where the bolus clearly was 

emptied in two successive swallows--80% on the first and 20% on the second ( estimation 

based on the imaged bolus "area" at the onset of each swallow). Because there was 

material remaining in the mouth, the tongue did not lower completely at the end of the 

first swallow before the next wave of propulsive action began. The EPG correlate for this 

particular bolus showed the typical prepropulsion and propulsion activities but 

deactivation of electrodes sporadically on the entire palate near the end of propulsion, 

followed by complete reenactment of the propulsive process, then full contact, and 

withdrawal. That is, on EPG, the first swallow did not have a "full contact" stage or a 

typical "withdrawal" stage, and the second swallow did not have a prepropulsion stage. 

Although most swallows exhibited regular and systematic lingual behaviors on 

ultrasound, extra tongue movements were observed during prepropulsion in 9% of all 

data. These usually occurred as a rise-fall-rerise (in contrast to a simple elevation) of the 

tongue. The corresponding EPG data typically had a longer prepropulsion stage during 

which scattered clusters of electrodes were sequentially activated, deactivated, and 

reactivated. These cases were distributed across all swallowing tasks, but more in S2 than 

in the other subjects. 
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Summary 

The EPG data for single swallows showed stage-specific effects of bolus volume 

and consistency in contact timing. Mainly, larger volume and thinner consistency had a 

significantly shorter duration of propulsion (Stage 11), and dry swallows were significantly 

longer than water swallows in full contact (Stage 111). Contact patterns for the individual 

stages were distinctive but varied minimally as a function of swallowing task and subject. 

In the majority of the single swallows examined, tongue-palate contact followed a front

to-back and simultaneous lateral-to-midline progression during bolus propulsion, and a 

front-to-back and simultaneous midline-to-lateral pattern of withdrawal. These details 

have not been included in conventional descriptions of deglutitive tongue action. 

While the ultrasound and the EPG swallow activities could not be precisely 

matched due to limitations unique to each instrument, the two techniques provided 

supplementary information that made the observation of swallowing more complete. 

Ultrasound imaging supplemented the EPG findings with activities before and after 

tongue-palate contact, while EPG filled in the missing information on lateral and medial 

linguopalatal interactions. The single-subject velocity data provided apparent indications 

of task-induced differences, especially with respect to bolus size. Larger-volume swallows 

did have greater peak velocities than small-volume swallows, at least for some tongue 

segments . This primary finding agreed with the EPG results and supported the usefulness 

of EPG analysis of swallowing. 
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Experiment 2. Sequential Swallowing in Continuous Drinking 

EPG Findings 

Tongue-Palate Contact Timing 

Total duration. Average total durations of the component (i.e., first and 

subsequent) swallows during normal- and fast-rate continuous drinking for Subjects I to 5 

are presented in Table 3.3 . It should be pointed out that while the number of"first 

swallows" averaged was consistently 2 (two replications) for each rate, that of the 

"subsequent swallows" ranged from 1 to 4. There were two cases where only one 

subsequent swallow was captured on EPG out of the two trials; as a result, standard 

deviations and coefficients of variation were missing (marked as "NIA" in Table 3.3). In 

general, the data in Table 3 .3 showed small intrasubject replication variability. In 80% of 

the cases, the coefficients of variation were less than 0.20. Although the fast-rate 

sequential swallows averaged 14% shorter than those in normal-rate drinking, the 

differences were not significant, nor was there an order effect. Subjects, however, differed 

significantly (Q = .0001 ), despite an insignificant subject-by-task interaction. The least

squares means for subjects (see Table 3.3) revealed that SI (female) and S3 (male) on the 

whole drank considerably faster than the other subjects. 

Average total-duration ratios of sequential versus discrete water swallowing tasks 

for S 1 to S5 are presented in Table 3.4. Sequential swallows, in general, averaged 43-

56% faster than single water swallows among the subjects. Subject differences were 



Table 3.3 . Mean total durations (in milliseconds) of tongue-palate contact for sequential swallows during normal- and fast-

rate continuous drinking for Subjects 1 to 5 (S 1 to SS). Coefficients of variation (CV) were computed using the formula 
[SD/M]. LSM = least-squares mean. NI A= not applicable due to single measurement. 

Continuous Drinking 

Normal Rate Fast Rate LSM 
First Swallow Subsequent Swallows First Swallow Subsequent Swallows 

SI M 432.44 569.82 476.35 466.22 483 .11 
SD 19.11 74.42 23.89 66.43 
CV 0.04 0.13 0.05 0.14 

S2 M 739.87 902.03 608.11 655.40 733 .53 
SD 14.33 138.55 9.56 111.64 
CV 0.02 0.15 0.02 0.17 

S3 M 550.68 439.19 324.33 351.35 416.39 
SD 81.22 200.66 105.11 N/A 
CV 0.15 0.46 0.32 N/A 

S4 M 975.68 725.33 950.00 725.34 844.09 

SD 217.87 N/A 199.70 9.08 
CV 0.22 N/A 0.21 0.01 

S5 M 838.18 798.09 721.28 730.97 775.11 
SD 114.18 67.51 21.50 17.48 
CV 0.14 0.08 0.03 0.02 

LSM 707.37 687.20 616.01 591.20 --0 



Table 3.4. Average total-duration ratios of Sequential:Discrete water swallows for Subjects 1 to 5 (S 1 to SS). CN = 
continuous normal-rate drinking; CF = continuous fast-rate drinking; subscript F = first swallow; subscript s = subsequent 

swallows; SW = 5-cc water; 30W = 30-cc water; x = mean of means. 

Ratio 

x 

SI 0.47 0.62 0.53 0.70 0.52 0.51 0.58 0.57 0.56 

S2 0.45 0.55 0.60 0.73 0.37 0.40 0.49 0.53 0.51 

S3 0.39 0.31 0.46 0.36 0.23 0.25 0.27 0.29 0.32 

S4 0.66 0.49 0.67 0.50 0.65 0.49 0.66 0.50 0.58 

S5 0.61 0.58 0.61 0.58 0.53 0.54 0.52 0.53 0.56 

x 0.52 0.51 0.57 0.57 0.46 0.44 0.50 0.48 

...... ...... ...... 
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apparent in that S3 ' . 

s ratios (x = .32) were considerably smaller than those of all other 

subjects (x -
- ·51 -.58; see Table 3.4). 

Because no significant differences could be attributed to drinking rate or swallow 

Order Withi h . 
n t e sequential swallowing tasks, the data on their total durations were pooled 

to com 
pare with the total durations of 5-cc and 30-cc single water swallowing tasks. The 

ANovA. sh . . 
owed significant effects of task (12 < 0.0001), subject (Q < 0.0105), and task-

bY-subject i . 
nteract1on (Q <0.0021). Post hoc comparisons indicated that sequential 

swallows w . . . . . 
ere significantly shorter than single water swallows of either size m total 

tongue 
·Palate contact duration. (The statistical tables for these tests are presented in 

Append· . 
ix B, section B-5.) 

~ . The same staging criteria set for single swailows were 

Usect to ex . . 
anune sequential swallowing. It was discovered that they could not be stnctly 

appJiect to th 
e majority of the data due to an overlap of propulsion and withdrawal 

activitie . 
s in both contact timing and pattern ( discussed below). As a result, the durations 

of PropuJsio d nJ f 
n and withdrawal were not measured; timing measurements were ma e o y o 

the Preprop 1 . fr h . 
u s1on stage in all cases (i. e., 44 component swallows om t e contmuous-

drinJc.i 
ng series of all subjects) and of the full contact stage in IO swallows where it was 

Present. 

The duration of prepropulsion activity was Jess than 60 msec in 71 % of the 

sequent· 
ta1 swallows pooled from all subjects (M = 61.10, range= 26.18-144.43). No 

St . 
flking d. 4-l:' 

1uerences were observed due to drinking rate or swallow order. On the average, 



prepropulsion was 72% (range= 49-90%) shorter in sequential swallows than it was in 

single water swalJows. 

When present, fuJl-contact activity averaged 112.13 msec in duration (range= 

33. 78-301.69). This was on the average 84% (range= 81-87) shorter than that in the 

single water swalJows. Nearly alJ 1 O cases in which full contact was present came from 

the data of S2 (female) and S4 (male), representing about 55% of their individual total 

number of sequential swaJlows. No apparent relationship was detected between the 

incidence of fuJJ contact and drinking rate or swallow order. 

Tongue-Palate Contact Pattern 

General characteristics. The percent-contact profiles from representative 

continuous drinking series of Subjects I to 5 are illustrated in Figures 3 .17 to 3 .21, 

respectively. Figure 3.22 presents a representative raw EPG time series. In general, 

sequential swalJowing shared some of the basic contact characteristics of discrete 

swalJowing. That is, in each component swallow during continuous drinking, there were 

distinctive, progressive activation of electrodes for propulsive purposes, as well as 

progressive deactivation of electrodes during withdrawal. However, sequential swallows 

differed strikingly from single swallows due to an overlap of propulsion and withdrawal 

activities. Specifically, as seen in 77% of the data, progressive deactivation of electrodes 

(i .e ., onset of withdrawal) began to occur in the front or central bin while back electrodes 

were still being activated as part of propulsion (see Figure 3.22). As a result, the majority 

of the sequential task responses did not have a period of stable, maximal contact. 
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Figure 3 .18. Changes in percent-contact over time in front-central-back and lateral
medial-midline bins from representative continuous drinking series of S2 (female, age 
46). CN = continuous, normal-rate; CF = continuous, fast-rate. 
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Figure 3 .19. Changes in percent-contact over time in front-central-back and lateral
medial-midline bins from representative continuous drinking series of S3 (male, age 23). 

CN = continuous, normal-rate; CF = continuous, fast-rate . 

---Front - Central - - - Back 

u 
ra 
c 
0 u 

100 

75 

50 .., ..... ,, '"""" 
., ' 

'a' 25 - I ,, 
I \ ----- ' - - - -- -- --0 ..... 

msec 0 250 500 750 1000 

---Lateral····· ·Medial ---Midline 

100 

u 75 
ra 

§ 50 
u 
'a' 

msec 0 250 

c 50 .,. -\ 
~ 1~: ,- ,.,, 
o I \ u ~ 

'a' 25 //. \ 
____.// . ..... 

0 .... - , ... , 

msec 0 

100 

ti 75 
~ 

250 

8 50 -

.11-25 - ~ · 

0 , I 

msec 0 250 

500 750 1000 

Front - -- Central - - - Back 

500 

- ---~ 

,.. .. ,. \. 

I ' -

750 1000 

Lateral · · • · · · Medial ---Midline 

500 750 1000 

,. .. ,, -... 
I .,,.,,. 

" -..... , 

1250 

1250 

1250 

1250 

CN 

1500 

CN 

1500 

CF 

-, 
1500 

CF 

1500 



117 

Figure 3.20. Changes in percent-contact over time in front-central-back and lateral
medial-midline bins from representative continuous drinking series of S4 (male, age 37). 
CN = continuous, normal-rate; CF = continuous, fast-rate. 
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Figure 3 .21 . 
llledial-midl: C~anges In percent-contact over time in front-central-back and lateral-
23). CN == ;:e ~ms from representative continuous drinking series of S5 (female, age 
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Figure 3 .22. Raw EPG data for two sequential swallows in a representative continuous drinking series. An overlap of propulsion 
and withdrawal activities is evident. Vertical line demarcates onset of each swallow. 
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A second characteristic of sequential swallowing was that the withdrawal pattern 

followed a front-to-back progression without a distinct, simultaneous midline-to-lateral 

component (see Figure 3.22). This was observed in 70% of the cases. 

A third characteristic, though somewhat less compelling, was that 89% of all 

sequential swallows showed contact Pattern 1 during prepropulsion (i.e., small, scattered 

changes in contact over a brief period, mostly in the lateral bin, resulting in lateral contacts 

of < 25%). The incidence surpassed that of the same pattern for single swallows by 

almost 10%. 

No striking differences in contact pattern were observed due to drinking rate or 

swallow order. Intrasubject variability in overall contact pattern was small in nearly all 

cases. Intersubject variations, however, were apparent and primarily due to S3 who used 

predominantly back-bin contacts to accomplish propulsion during continuous drinking (see 

Figures 3.19 and 3.23). A post-experiment interview revealed that this subject described 

his manner of drinking as "chugging". Interestingly, even in the self-proclaimed chugging, 

the propulsion-withdrawal overlap was present at times. Additional subject differences 

were seen in prepropulsion and withdrawal patterns. Four of the five cases demonstrating 

prepropulsion Pattern 2 occurred in the data ofS4. Interestingly, SI, S2, and S3 who 

used Pattern 2 in some of their single swallows used strictly Pattern 1 during continuous 

drinking. Cases where the withdrawal pattern was similar to that for the single swallows 

(i .e., in a simultaneous front-to-back and midline-to-lateral progression) occurred mainly 

in the data of S2 and S4. 



Figure 3.23 . Raw EPG data for two sequential swallows in the continuous drinking (self-proclaimed "chugging") series of S3. 
Contact activities occur predominently in the back bin. Vertical line demarcates onset of each swallow. 
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Sequential versus discrete: statistical analyses. Sequential swallows were 

compared with single water swallows for the order in which maximal contact was 
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achieved in the front (F), lateral (L), and back (B) bins during propulsion. Results showed 

that single water swallows had a variety of sequences, whereas sequential swallows had 

only a few. The predominant pattern, observed in 46/60 single waier swallows and 35/44 

sequential swallows, followed a front-lateral-back (F-L-B) progression of"peaking". The 

other patterns were few in frequency and thus grouped as "others." Subsequent Chi

Square analysis of the "F-L-B" and "others" groups showed a significant subject effect but 

no significant effect due to task nature (sequential vs. discrete), drinking rate (normal vs. 

fast), or swallow order (first vs. subsequent). As in the discrete swallowing experiment, 

the sources of the subject effect for this analysis were S3 and S4 (both male). For 

sequential swallowing, while all female subjects showed only the F-L-B sequence, the 

male subjects showed predominantly the "other" sequence patterns (6/7 swallows in S3, 

4/7 in S4). 

Front:back and lateral:back ratios in percent-contact at the time of maximal 

midline contact were calculated for all sequential and discrete water swallows. Results of 

the ANOVA for each comparison showed a significant task effect and a significant task

by-subject interaction. Subject differences were not significant in either case. (See 

Appendix B, sections B-6 and B-7 for ANOVA tables.) These results are illustrated in 

Figure 3.24, a plot of the least-squares means for the subjects as a function of swallowing 

task. Post hoc contrasts revealed that single water swallows of either size had 
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l1J lCantly hi h . 

g er ratios than the component swallows of continuous drinking. However, 
there 

Were no signifi . 
. icant differences among the sequential swallows due to drinking rate 

or swallow ord er. 

Ultrasound Findings 

The ultrasound data on sequential swallowing during continuous drinking were 
examined £ 

or all subjects. However, due to considerable variations in image quality, only 
the d 

ata from S5 
were used in illustrations and for displacement measurements. 

Bolus size for the component swallows of continuous drinking was estimated for 
each b' su ~ect · 

'using the sagittal ultrasound data. As shown in Table 3.5, S1 used an equal 
number ofs 

Wallows for both normal- and fast-rate drinking, while all other subjects 

showed sli h . 
g tly fewer swallows (hence slightly greater volume per swallow) while 

drjnl.! 
'U\..lng fast. 

On the average, the two male subjects--S3 and S4--consumed more water 
Per swa11 

ow th d'd . an 1 the female subjects, especially for the fast-rate senes. 

Tongue · · · d 'nki movements for sequential swallowmg dunng contmuous n ng were 
ibnda111 

entally the same as those seen during single swallows (see Figure 3.25; cf single 

swallows in p· . . . 
igure 3.15). That is, the sequence in which the antenor, mid, dorsal, and 

Posterior segm . . . al d' l t 
ents elevated to and withdrew from thelf respective maXIm 1sp acemen 

reI11ained 
unchanged. However, in agreement with the EPG findings, shorter overall 
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Table 3.5. Estimated bolus size (in cc) of sequential swallows during continuous drinking 
for Subjects 1 to 5 (SI to S5). The total amount of water consumed for each trial was 
200 cc. 

Subject Rate No . ofSwallows Average Amount per Swallow 

SI Normal 7 29 
Fast 7 29 

S2 Normal 12 17 
Fast 8 25 

S3 Normal 5 40 
Fast 4 50 

S4 Normal 7 29 
Fast 5 40 

S5 Normal 16 13 
Fast 13 15 
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Figure 3 .25 . panels on left Changes m tongue shape in first and second swallows during normal- (CN, 
illustrate , ) and fast-rate ( CF, panels on right) continuous drinking. Frames in Rows I to 6 
loaded ;n'~ 0rder, lingual surface contours at swallow onset, when entire bolus was frrst 
Posterior t ongue surface, and at maximal displacement of anterior, mid, dorsal, and 

ongue segments. Arrows in each image delineate tongue surface. 
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swallow durations and an overlap of propulsion and withdrawal activities characterized the 

ultrasound images of most sequential swallows. The overlap usually became visible near 

the time of maximal displacement of the posterior segment, at which point a slight descent 

of the anterior segment could be seen (see Figure 3.25, Row 6). This was followed by 

further descent of the anterior and mid segments, which coincided with signs of water re

entry, while the dorsal and posterior segments remained "anchored" (see Figure 3.25, 

Row 1, CN-2nd and CF-2nd swallows). When apparent descent was seen in the dorsal 

and posterior segments, the anterior segment usually had just begun re-elevating (see 

Figure 3.25, Row 2, CN-2nd and CF-2nd swallows) to initiate the propulsive action for 

the subsequent swallow. Thus, it appeared that the dorsal-posterior lowering gesture 

overlapped the anterior re-elevation gesture. As a result of the movement overlaps, most 

sequential swallows during continuous drinking, especially those that were not the first in 

a series, did not display the same extent of prepropulsion and full contact tongue behaviors 

as did the single swallows. 

Because of large intersubject differences in per-swallow volume, the starting 

tongue height for sequential swallows varied considerably from subject to subject. While 

no marked within-subject differences in tongue shape due to drinking rate appeared to 

exist, some variations were observed due to swallow order. Specifically, the anterior 

segment was usually less depressed and the dorsal and posterior segments less humped for 

the first swallow than for the subsequent swallows (see Figure 3.25, Row 1). 
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Lingual Velocity Profiles: Single-Subject Data 

Frame-by-frame displacement data were extracted from the four tongue segments 

for the continuous drinking series of SS, using the radial grid system. Instantaneous 

velocities were then calculated for four sequential swallows in each series. The plotted 

velocity profiles (time-series waveforms) are illustrated in Figures 3.26 and 3.27. As in 

the case of single swallows, these velocity profiles clearly captured the anterior-to

posterior progression of bolus transport and the spatiotemporal concatenation of the four 

functional tongue segments. A comparison of normal- versus fast-rate series and of first 

versus subsequent swallows showed no marked differences in overall waveform 

characteristics. 

Average positive peak velocities for the sequential swallows of SS are presented in 

Table 3 .6. Also included are the average OTP intervals. As in the single-swallow study, 

within-task comparisons showed the dorsal tongue segment to have greater peak velocity 

than all other segments for most sequential swallows. Between-task comparisons revealed 

that "subsequent swallows" in either normal-rate or fast-rate drinking had lower mean 

peak velocities than the "first swallow" for the mid tongue segment but greater mean peak 

velocities for the dorsal and posterior tongue segments. Differences due to drinking rate, 

however, appeared minimal. In contrast to 30-cc single water swallows, sequential 

swallows regardless of rate and order had considerably lower peak velocities for the 

anterior segment, and "first swallows" regardless of rate had considerably lower peak 

velocities for the posterior segment. In contrast to 5-cc single water swallows, 

"subsequent swallows" regardless of rate had greater peak velocities for the dorsal and 
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Figure 3.26. Velocity profiles for four tongue segments from the continuous, normal
rate drinking series of S5 . Values (in mm/sec) are instantaneous velocities from first 
move to end of fourth swallow. Missing data points for anterior tongue were due to 
either lack of or difficulty in discerning tongue-grid intersections. Vertical lines 
separate the four swallows in the series. 
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Figure 3.27. Velocity profiles for four tongue segments from the continuous, fast-rate 
drinking series of S5 . Values (in mm/sec) are instantaneous velocities from first move 
to end of fourth swallow. Missing data points for anterior tongue were due to either 
lack of or difficulty in discerning tongue-grid intersections. Vetical lines separate the 

four swallows in the series. 
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Table 3.6. Mean positive peak velocities (in mm/sec) and onset-to-peak (OTP) intervals (in sec) for the four tongue segments 

from the continuous drinking series of Subject 5. CN = continuous normal-rate; CF= continuous fast-rate; subscript F = first 

swallow; subscript s = 3 subsequent swallows. CONT ALL = all swallows of continuous drinking. Diff = difference in mean 

OTP values between tongue segments. CNF and CFF lack standard deviation data due to single n. 

Positive Peak Velocitl'. OTP Interval 

Anterior Mid Dorsal Posterior Anterior Mid Dorsal Posterior 

CNF M 20.12 57.91 63.47 37.95 0.17 0.47 0.57 0.97 

Diff 0.30 0.10 0.40 

CNs M 27.20 47.82 97.19 54.14 0.00 0.22 0.32 0.42 

SD 0.00 4.01 11.11 26.32 0.09 0.06 0.09 
Diff 0.23 0.10 0.07 

CFF M 25.98 51.44 56.77 29.03 0.13 0.40 0.47 0.63 

Diff 0.27 0.07 0.17 

CFs M 16.76 24.59 72.77 74.12 0.00 0.24 0.34 0.40 

SD 0.00 1.41 10.28 19.91 0.02 0.02 0.06 

Diff 0.24 0.10 0.06 

CONTALL M 22.52 41.00 77.54 53 .94 0.08 0.29 0.38 0.50 

SD 4.93 14. 13 16.74 25.08 0.09 0.10 0.09 0.21 

Diff 0.25 0.10 0.12 

...... 
w ...... 
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posterior segments (see Tables 3.2 and 3.6). It should be reiterated that this subject's 

average bolus size was estimated to be 13 cc during normal-rate drinking and 15 cc during 

fast-rate drinking (see Table 3.5). 

Data on the OTP intervals revealed no outstanding dissimilarities among the 

"difference scores" (differences in mean OTP values between tongue segments) as a 

function of drinking rate or swallow order. Sequential swallows on the whole were also 

similar in difference scores to the single water swallows (see Tables 3.2 and 3.6). 

Summary 

The EPG data showed that in contrast to discrete water swallows, the sequential 

swallows during continuous drinking had a significantly shorter total task duration, a 

shorter prepropulsion interval, an overlap of propulsion and withdrawal activities, a higher 

incidence of prepropulsion Pattern 1, a predominantly front-to-back withdrawal pattern, 

and significantly lower Front:Back as well as lateral:back percent-contact ratios at the time 

of maximal midline contact. 

The ultrasound data on sequential swallowing during continuous drinking were 

useful in confirming two prominent contact features observed on EPG, namely, the 

shortened overall swallow duration and the propulsion-withdrawal overlap. The single

subject velocity data showed some differences in peak velocity for selected tongue 

segments due to swallow order but not drinking rate. There was also evidence, based on 

the comparison between sequential and discrete water swallows, that larger boluses had 

greater peak velocities than smaller boluses, at least for some tongue segments. 



CHAPTER IV. DISCUSSION 

The present study represents a first attempt to examine in detail linguopalatal 

contact characteristics with support from associated tongue shape changes during discrete 

and sequential swallowing via simultaneous eletropalatography and ultrasound. This 

chapter discusses findings in relation to the experimental questions raised. In addition, a 

model is proposed for a 3-D representation oflingual action for swallowing. 

Discrete Swallowing 

Tongue-Palate Contact Patterns 

The first question asked by the present study was whether bolus properties--size 

and consistency--would affect EPG contact patterns and timing during single swallows. 

With respect to tongue-palate contact pattern, no striking, bolus-induced differences were 

identified. Instead, systematic, stereotypical contact behaviors persisted across . 

swallowing tasks and subjects. These contact behaviors showed distinct, time-varying 

regional specificity. That is, EPG activities occurred systematically in different palatal 

areas at specific times during a swallow. To delineate the contact characteristics in detail, 

the present study devised three new data analysis schemes: compartmentalization of the 

palate into six bins that encompassed the lengthwise as well as the crosswise spatial 

domains, segmentation of the time course of the swallowing task into four functional 

133 
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stages, and the use of time-warping to average by bin and stage across repetitions. The 

division of the palate into bins and the swallowing task into stages does not imply 

interruptions in contact continuity. Rather, these were useful strategies that optimized 

examination of the spatial and temporal details oflinguopalatal interactions unique to 

swallowing. The use of averaged data also added robustness to the interpretation of 

findings . 

The observations of systematic, prescribed tongue-palate contact patterns 

suggested stereotypical lingual movement strategies for discrete swallowing. In her X-ray 

microbeam study (1991) that examined midsagittal movements of the tongue, Martin 

concluded that "during swallowing, the tongue functions as many small units that are 

selectively activated in a highly organized, invariant manner" (p. 283). The finding of this 

investigation supported such a conclusion, providing indirect evidence for concatenated, 

functionally dependent lingual units. However, in contrast to the conventional 

observations of swallowing based on 2-D imaging data, the present EPG findings revealed 

that the linked lingual units possess multidimensionality. Specifically, the swallowing 

movement patterns observed on EPG exhibited two degrees of freedom for tongue-palate 

contact : a front/back continuum and a lateral/midline continuum. In other words, two 

sets of concatenated tongue units were revealed, one in the lengthwise domain and one in 

the crosswise domain. Moreover, during propulsion, the activation of each set oflingual 

units followed two distinct patterns of temporal coordination. In one pattern (80% of 

data), the lengthwise and crosswise units were activated simultaneously in a front-to-back 

and lateral-to-midline progression. In another pattern (20% of data), the lateral and outer-
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medial units of the crosswise domain were activated prior to the front-to-back activation 

of the lengthwise units, suggesting the formation of a prominent lateral seal prior to 

propulsion which was subsequently completed by primarily the medial portion of the 

tongue. It was clear that the EPG contact patterns provided important information on 

deglutitive lingual strategies, and indirectly on tongue constraints in stereotypical 

behaviors. Swallowing investigations using midsagittal radiographic or ultrasonographic 

imaging techniques cannot capture the multidimensional components of deglutitive tongue 

behaviors. Even in biplane videofluorography or combined sagittal and coronal 

ultrasound, only a thin slice of the tongue may be visualized at a time, limiting the 

perspective of observable lingual action. EPG, therefore, represents a very useful tool that 

reveals conventionally unavailable information. 

The four EPG stages reflected four specific oral lingual motor goals carried out 

within the experimental design for the discrete swallowing task of this study. It should be 

reiterated that while the motor events for Stages II and III were integral parts of discrete 

swallowing, activities during Stages I and IV were influenced by requirements of the 

experimental protocol and consequently had artificial components. Furthermore, while 

Stage I was not totally unrelated to swallowing, Stage IV might well be, considering the 

specific instructions given to the subjects ( open mouth immediately after the swallow). 

Nevertheless, two interesting observations were borne of Stages I and IV. First, with 

respect to Stage I, it was apparent that normal individuals had the option of 

loading/positioning the bolus in preparation for oral transport with or without a prominent 

lateral seal. Second, with respect to Stage IV, while the retraction of contact followed the 
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same front-to-back progression as in Stage II, the medial-to-lateral offset progression was 

the reverse of the lateral-to-medial onset sequence seen in Stage II. This withdrawal 

pattern appeared to reflect the action of the genioglossus muscle. Since this extensive 

muscle inserts midsagittally across the length of the tongue, sequential contraction of its 

anterior, middle, and posterior fibers would produce the front-to-back withdrawal 

progression and at the same time cause an earlier release of contact from the midline than 

from the lateral bins. 

The EPG stages cannot be directly compared to the conventional swallowing 

phases extracted from videofluoroscopy (Dodds et al., 1990) or ultrasonography (Wein et 

al. , 1991). However, some links between the stages and phases can be made. The EPG 

Stages I and II, when combined, reflected the major portion of the videofluoroscopic or 

ultrasonographic oral phase where the main activity was the loading and transport of the 

bolus through the oral cavity. Because EPG registered only tongue-hard palate contact, 

the propulsive elevation of the posterior tongue segment (still part of the radiographic and 

ultrasonographic oral phase) was not shown. It is reasonable to conclude that such action 

occurred during the initial portion ofEPG Stage III. It is likely that the EPG Stage III 

also included the radiographic pharyngeal phase where orally the tongue remained in a 

fully elevated, anchored position while its posterior segment and root (again, not visible on 

EPG) expanded into the oropharynx for pharyngeal bolus transport. Furthermore, it is 

reasonable to infer that the "pharyngeal swallowing response" occurred during EPG Stage 

III . Finally, it is likely that the release of posterior linguopharyngeal contact to reopen the 

respiratory passage, again not visible on EPG, occurred near the end of Stage III while 
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oral full contact was still intact. Typically, radiographic staging of deglutitive activities in 

the upper alimentary tract does not consider the activity of the tongue immediately after a 

swallow, as the emphasis is often on the ensuing esophageal responses. However, Wein et 

al. (I 991) described a recovery phase based on ultrasound imaging, in which the tongue 

returned to the resting position. The EPG Stage IV seems comparable to at least part of 

this ultrasonographic recovery phase (up to the point where the tongue has completely 

retracted from the hard palate). As stated previously, the EPG stages are not identical to 

the conventional swallowing phases, because EPG provides information only on the 

interactions between the tongue and the hard palate. Any lingual movement that might 

occur before or after tongue-palate contact, while visible on radiography and 

ultrasonography, is not seen on EPG. 

Effect of Bolus Size and Consistency on Contact Timing 

With respect to tongue-palate contact timing, the EPG evidence showed that 

thinner and larger boluses were propelled significantly faster through Stage II. The slower 

propulsion rate for gelatin than for water supported previous findings that viscosity 

affected deglutitive oral motor behaviors by lengthening the transit time (see Dantas et al. , 

1990, Lazarus et al. , 1993, and Robbins et al., 1992). The faster propulsion rate for 30-cc 

boluses supported the findings ofKahrilas et al. (1993), suggesting that more forceful 

tongue movements were used to complete the all-at-once oral transport of a large 

quantity. Since the 5-cc gelatin bolus used in the present study was both smaller and 

thicker, one could understand why it had the longest propulsion duration in all subjects 
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tested. In general, the finding of significant effects of bolus properties on contact timing 

indicated that EPG was a technique sensitive enough to unveil evidence for peripheral 

sensory and biomechanical modulation of the temporal aspect of swallowing movements. 

Another timing effect occurred for dry swallows. In Stage III, dry swallows were 

significantly longer than water swallows. A possible explanation is that the saliva bolus, 

being small, caused small oral pressure gradients and perhaps a small pharyngeal 

gravitational effect. Consequently, a longer time would be needed to generate sufficient 

impetus for pharyngeal transport of the bolus, lengthening Stage III. 

Continuous Drinking 

Sequential versus Single Swallows 

The second question asked by the present study was whether continuous drinking 

would be performed by simply concatenating single swallows. The evidence revealed a 

shared characteristic as well as differences between the discrete and sequential swallowing 

gestures. The basic movement characteristic shared by both swallowing tasks was the 

sequential upward displacement of the four tongue segments from front to back and lateral 

to midline, as the means of backward bolus propulsion. Reflecting a fundamental 

relationship between the tongue and the hard palate, these movement components served 

as the basis for all swallowing tasks, regardless of their properties and demands. 

In two areas, however, the demands of the sequential swallowing task induced 

lingual reactions quite different from those seen for the discrete swallows: increased speed 

of tongue movement, and overlap of gestural components. Specifically, in contact timing, 

,, 
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sequential swallows were significantly shorter in total duration than single water swallows, 

indicating a much faster pace oflingual motions. In contact pattern, the majority of the 

sequential swallows were characterized by an overlap of activity between front contact 

retraction and back contact activation with the omission of full contact. On ultrasound, 

there was evidence for the co-occurrence of both tongue tip lowering and tongue body 

elevation, and the reverse, tongue tip elevation and tongue body lowering at different 

times during continuous drinking. This pattern oflingual action and linguopalatal 

interaction was clearly different from that observed for single swallows where a period of 

tongue inactivity consistently followed propulsion and preceded withdrawal. Thus, the 

answer to the second question was that continuous drinking was not carried out by simply 

repeating full and absolute cycles of single swallows (i.e., by successively completing each 

component swallow with preservation of all four stages, as that seen during the discrete 

swallowing task). 

Motor Control Strategies 

The present study proposes that the fundamental motor strategies used for discrete 

swallowing remained unchanged for sequential swallowing. To elaborate on this point, it 

is necessary to first recount the motor elements involved in each behavior. 

Sequential swallowing occurred as part of continuous drinking which contained 

reciprocal water-intake ("drink") and water-clearing ("swallow") cycles. As part of the 

drink-swallow cycles, there were reduplicated opening and closing of the oral tract by 

action of the tongue. The opening event, seen on EPG as contact withdrawal and on 
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ultrasound as lingual retraction, reflected the "drink" portion of the cycle, while the 

closing event, seen on both EPG and ultrasound as propulsion, reflected the "swallow" 

portion. Each of these events consisted of a sequence of gestures that involved 

progressive, front-to-back activation of the four tongue segments: front-to-back lowering 

in one case, and front-to-back elevation in the other. 

It has been well established that swallowing is a complex motor process involving 

both voluntary and reflexive physiological components. In this process, responses from 

the oral cavity, pharynx, larynx, and esophagus are integrated to achieve successful 

preparation and transport of food and protection of the airway. It has also been well 

established that the pharyngeal response is governed by the brainstem central pattern 

generator, while the interaction of tongue, jaw and facial movements for food preparation 

and oral transport is under cortical control (Miller, 1982, 1993). The lowering of the 

tongue to receive the bolus is an obvious food-intake behavior. It is uncertain if this 

behavior should be considered as part of food preparation or as a pre-preparation event. 

It is certain, however, that the behavior is voluntary, and that cortical intervention is in 

effect. The elevation of the tongue to propel the bolus is a food transport behavior. This 

behavior, having oral and oropharyngeal components, is both voluntary and reflexive-

voluntary up to the point when the bolus head passes the anterior faucial pillar, and 

reflexive thereafter ( cf. Logemann, 1983). Because swallowing is a continuum of 

integrated motor events, it is difficult to separate one event from the other or to set 

specific event boundaries, especially those occurring in the oral cavity. However, the 



complexity of interaction between different oral motor sequences during continuous 

drinking does suggest that more than one motor strategy is at work. 
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The protocol for the discrete swallowing experiment of this study required each 

subject to hold the bolus in the mouth for a short period before being prompted by trigger 

signals to commence task-related oral maneuvers. This requirement, a means of 

experimental control, is certainly not unique to the present investigation. An activity that 

was not considered as part of the task but took place with each discrete swallow in every 

subject was the presentation of the bolus in a syringe by the experimenter. As seen 

consistently on ultrasound, occurring with each bolus presentation was a natural lowering 

of the tongue to receive the material (see Appendix C for illustration of this behavior). 

This lowering gesture without exception followed a front-to-back progression but stopped 

short of the posterior tongue segment, reflecting the mechanism at work for prevention of 

premature spillage and aspiration. The suggestion, thus, is that had the artificial "hold" 

period been removed, or had the subject been asked to self-present the bolus and to 

swallow immediately afterwards (as in the sequential swallowing experiment), the motor 

events seen would probably have consisted of an opening gesture for bolus intake 

followed by a closing gesture for bolus propulsion. 

Conceptually, therefore, the opening and closing motor sequences are inherent 

parts of both continuous drinking and discrete swallowing, but reciprocation of the 

behaviors is characteristic of one and not the other. To efficiently and safely carry out the 

task requirement for reciprocation of motor events, the timing coordination of these 

events was modified. Since the task demanded "sequential swallowing without any 
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sequences during continuous drinking also resulted in task-varying lingual movement 

trajectories. 
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Lingual gestural rate increases and overlaps brought about the omission or drastic 

shortening of the full contact stage during continuous drinking, indicating that the motor 

correlate of a rapid rate was the "dropping or fusing of movement elements" (cf Stetson, 

1951 ). In single swallows, the consistency of full contact across all subjects suggested 

that a period of stable anchoring of the oral tongue against the palate served a distinct 

function . That function may well have been to maintain oral stabilization so as to attain 

maximal posterior lingual expansion and lingual driving force for pharyngeal bolus 

transport. If this interpretation is accurate, the absence or meager presence of full contact 

in sequential swallowing raises several difficult questions. Is full contact not an innate, 

necessary stage of swallowing, and is oral tongue anchoring replaced by other temporal 

modifications, movement components, and/or biomechanical factors in the aerodigestive 

tract as a function of increased rate? To what extent does "momentum" contribute to 

bolus movement during sequential swallowing, and how is that related to the concurrent 

motor events in the pharynx, larynx, and cervical esophagus? Does linguopharyngeal 

contact pressure differ, for example, in onset/offset timing and magnitude between discrete 

and sequential swallowing? All of these questions remain unanswered. Future 

investigations using combined videofluorography and manometry are likely to offer 

insights. The present study does, however, support the hypothesis that full contact is not 

a dispensable stage in normal discrete swallowing, although it is drastically reduced in 

continuous drinking due to rapid movement rate. An analogy may be found in the 
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compression of vowels with rate increase during speech. It is well known that when 

speaking rate is increased, vowels become shortened to a larger extent than consonants. 

Similarly, in sequential swallowing and perhaps even in a fast discrete swallow, Stage III 

has considerably greater latitude for compression than, for example, Stage II. 

Interestingly, despite the considerable increase in lingual movement pace, there 

were no overt indications of the speed-accuracy trade-off that is common for aimed 

movements ( cf. Meyer et al. , 1982 and Newell, 1980). More specifically, no reduction in 

swallowing safety or efficiency (i.e., no choking or spillage ofliquid) was observed as a 

function of rate increase. There are at least three explanations that are not mutually 

exclusive: 

The first explanation lies in the velocity range of deglutitive tongue motion. As 

Meyer et al. ( 1982) put it, "Faster movements can usually occur only at the expense of 

being spatially less accurate on the average, and movements having greater spatial 

accuracy can usually occur only at the expense of being slower on the average" (p. 449). 

The tongue' s action during sequential swallowing never achieved very high velocities even 

on the fast continuous drinking task. Presumably this was necessary in order to maintain a 

high level of movement accuracy, and the reason for high accuracy is the need to protect 

the airway. Although the overlap of gestures allowed greater velocity for sequential than 

for single swallows, there was an apparent limit to the extent of allowable maximal 

velocity for deglutitive tongue movement due to the range of motion involved and the 

issue of airway safety. This does not imply, however, that a threshold for the speed-
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accuracy trade-off does not exist in this case, nor does it imply that lingual action during 

swallowing has no finer rate-adjustment potential. 

A second explanation lies in the mechanical properties of the tongue muscles. 

Although the present research did not directly examine lingual muscle mechanics, elements 

such as force, elasticity, and viscosity, as well as other biomechanical factors ( e.g., inertia, 

force inherent in the bolus) undoubtedly were at play and contributed to the task responses 

observed. The factor of muscle contraction force is especially relevant here. It has been 

shown via electrical stimulation to motor nerves that all muscles have an upper limit of 

force increase in response to increasing rate of stimulation, that muscle twitch force curves 

fuse at high stimulation rates, and that marked reduction in the frequency-response curve 

occurs as a result (above 3-4 Hz in speech muscles) (McClean, 1988). Functionally, in 

fact, at very high movement rates (e.g., at maximal diadochokinetic rates) "there is 

invariably a reduction in the structural displacement" as a "result of the mechanical 

properties of muscle" (McClean, 1988, p. 32). Thus, from the perspective of lingual 

muscle mechanics, to preserve adequate displacement of the tongue for effective 

sequential swallowing, lingual movement rate cannot exceed a certain level. Exactly what 

that "certain level" is remains unknown. Also undetermined are: the appropriate amount 

of force needed, the activation levels and relative timing of different tongue muscles, and 

how their intercoordination affects each other's force output as well as the overall patterns 

of lingual displacement. Future studies are needed to directly address these important 

biomechanical issues. It is understood, however, that this type of investigative task is 

challenging because of the complex decussations of lingual muscles and the constant 

-



interaction of all lingual muscles in any movement involving the tongue (Smith & Kier, 

1989). Isolating specific muscles within the tongue for electromyographic or 

biomechanical recording is conceivably difficult. 
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A third explanation lies in the probable changes that are occurring elsewhere in the 

aerodigestive tract during conti~uous drinking. With rapid movements of the tongue and 

the successive arrival of water boluses in the pharynx, there are likely to be associated 

adjustments in the movement timing and patterning of laryngeal/pharyngeal structures and 

in their temporal and spatial coordinations with the tongue. The velopharyngeal sphincter, 

the hyoid bone, the epiglottis, the larynx as a whole, and the upper esophageal sphincter 

(USE) are examples of these structures. To execute a complete single swallow, each of 

them engages in "on-and-off' movements. The larynx, for example, elevates as a whole 

against the base of the tongue during the swallow ("on") and lowers to its normal position 

afteiwards ("off'). The upper esophageal sphincter, as another example, relaxes to allow 

bolus passage during the "on" period and recontracts during the "off' period. To preserve 

aiiway safety when liquid arrives rapidly and continuously, these laryngeal/pharyngeal 

structures must simplify their internal as well as external coordinations. Because the "on" 

activities are crucial, one way of accomplishing such simplification is perhaps to adjust the 

range of movement for the "off' period. For example, the larynx may lower but not to the 

extent it does in a single swallow before it re-elevates for the subsequent swallow, and the 

upper esophageal sphincter may not recontract fully or by much until the end of the last 

swallow. On ultrasound, the hyoid shadow exhibited reduced range ofreciprocal forward

backward displacement from swallow to swallow and did not completely return to its 
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resting position until the end of drinking. Since movement efficiency is an important 

consideration of dynamic motor systems, the "partial off' seems a reasonable strategy for 

attaining safe and cost-effective (as in energy and time) movement execution. This theory 

undoubtedly requires verification. Future continuous-swallowing investigations that 

combine EPG with videofluoroscopy or with nasendoscopy should unveil supporting or 

negating evidence. 

Methodological Consideration 

As a first attempt in examining tongue-palate contact for sequential swallowing 

during continuous drinking, this study did not apply stringent controls over the rate 

variable and focused more on the spontaneous management strategies used by the 

individual subjects. The finding of no significant rate difference between "normal" and 

"fast" drinking appeared to reflect this lack of tight control, at least to some extent. When 

left to their discretion, some subjects ( e.g., S 1) used practically the same rate for normal 

and fast drinking while perceiving themselves as using differential speed (based on the 

subjects' statements during post-experiment interviews). A second explanation for the 

similarities across the two rates is that because choking is unpleasant, subjects might have 

a strong disinclination to very fast drinking. Chugging which some but not all individuals 

can perform might be one of the few successful ways to overcome this. Nevertheless, for 

optimal experimental control, future investigations in this area may consider a protocol 

that induces sequential swallowing via mechanical oral infusion of liquid at graded rates 

(e.g., 40, 60, 80, and 100 cc/min; cf Issa & Porostocky, 1994). The use ofan infusion 
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pump to systematically control the rate and amount of liquid presentation will increase 

experimental objectivity and permit more accurate calculation of per-swallow consumption 

and more precise data analysis. 

Ultrasound as a Supplementary Technique for EPG 

As stated earlier, the major weakness ofEPG is that it provides information on 

only tongue-hard palate contact. As a compensation for such weakness, the present study 

used ultrasound imaging to gain an avenue for data verification and supplementation. 

Although direct, feature-by-feature matching of the EPG and ultrasound findings was 

impossible due to instrumental differences, gross comparisons could be made in timing as 

well as between tongue shape changes and contact activities. The most important benefit 

from combining EPG and ultrasound was that the two techniques provided entirely 

different perspectives, and together they made the observations of deglutitive tongue 

behaviors more complete. Specifically, EPG supplied lateral and medial contact 

information that was absent on ultrasound, and ultrasound showed posterior tongue action 

as well as pre-contact and post-contact lingual movements that were not seen on EPG. In 

addition, the two sets of data when combined offered insights that would not have been 

found in one alone : 

First, viewing the contact patterns in light of the visualized tongue actions and vice 

versa, one gained a deeper appreciation for how the tongue took advantage of the 

immobile palate during swallowing. Systematic, front-to-back anchoring against the hard 

palate was the apparent and only way through which propulsion could be accomplished. 
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As Stone (1995) put it, "The immobility of the hard palate can be a real advantage to the 

tongue because the tongue does not have to deal with palatal variability in the motor 

planning for their contact" (p. 143 ). The rather straight-forward linguopalatal interaction 

could also be an advantage to the overall motor planning for swallowing, considering the 

multiplicity of other neuromuscular coordinations (e.g., linguopharyngeal, linguolaryngeal, 

laryngopharyngeal, etc.) that must occur with precision to maximally ensure the safety of 

the airway. 

Second, tongue shape changes during swallowing, which presumably were the 

results of linguopalatal contact, were noticeably limited in variety. Although some signs of 

bolus-induced tongue shape differences were observed, they tended to be more prominent 

during pre-swallow bolus holding or loading. Thus, unlike speech where fine differences 

in tongue shape are relied on for differential phoneme production, the principal task of oral 

manipulation during swallowing is effective propulsion of the bolus. Shape alterations 

during swallowing, in other words, are secondary results and not part of the primary goal. 

Third, although the tongue possesses multiple potential degrees of freedom in 

movement as well as many spatial options of contact with the palate, only a few are 

required to fulfill the requirements for swallowing. Sequential elevation and bunching in 

conformity with the shape of the palate, lateral arching, lowering, and horizontal/vertical 

expansion and compression appear to be the basic lingual gestures needed. Twisting, 

curling, and other complex local deformations which conceivably are needed in speech and 

in mastication are not necessary for swallowing. This suggests that the recruitment of 



lingual 
rnuscJes . . 1 so 

. , mtnnsic as well . . . . 
In the Oth as extnnsic, is relatively less complex in swallowing than 

ertw . 
o activities. 

Ultrasound . . 
unagmg . 

lllove,,.., provided an additional opportunity to examine recnonal Jino11al .. ient ki o· o-
nernatics throu h . 

Profile g the tracking of instantaneous velocities. The velocity 
Pef111itted 

not only th . 
colllpa . e observation of local velocity changes over time but also the 

flson of 
Peak-veloc 't d' 

the Ve] . I Y ifferences as a function of swallowing task. The shape of 
OCJty r 

p oflles, es e . . . . . 
Provided p cialJy the locations of peak velocit1es along the time continuum, 

at least thr . 
seque ee pieces of information. First, it revealed the invariance of the 

nee of . 
rnaxunaJ d' 

This Isplacement of the four tongue segments across swallowing tasks. 
sup 

Ported th h 
front t e t eory that serial anchoring of each segment against the palate from 

o back is th b . 
Peak e asic motor scheme for bolus propulsion. Second, prominent negative 

S Of the 
dorsal and . . 

Corres postenor segments were consistently shown. Thelf occurrences 
Pondedin . 

lowe . tirne to the EPG Stage II (see Figure 3. 16), reflecting "segmental" 
1lno 

o Of the t 
Peak ongue to allow bolus passage. How the magnitude of these negative 

S Va· 
fles as a lime . . . . 

add· . tion of bolus properties warrants further mvestigat10n and may offer 
it1ona1 in . 

sight into J' . . . 
Third mgual strategies for bolus accommodation dunng swallowing. 

, for ea h 
Which c tongue segment, detailed information is available on the velocity patterns 

lllay be quant. . . 
kin Itatively analyzed for more extensive examination of task-related, 

elllatic 
Propertie f ·1 bl 

llol'll]aJ s O deglutitive lingual action. When more data become avai a e on 

Patterns th . d 
describ. ' e velocity profile potentially can provide a basis for companng an 

Ing abnorm 1 J' 
a mgual movements during swallowing. 



151 

Toward a Model ofDeglutitive Tongue Action 

Discrete Swallowing 

In Stone's proposal (1990, 1991) for a three-dimensional model oflingual 

movement during speech, the tongue was divided into functional segments--five sagittal 

(anterior, middle, dorsal, posterior, root) and five coronal (medial, lateral 1, lateral 2). In 

this "functional segment" model, the lengthwise segments operated semi-independently to 

produce local displacement as well as front-to-back rotational effects for articulatory 

purposes. The crosswise segments carried out concerted or opposing movements to effect 

central grooving and left-right asymmetries. Palatal contact or bracing was optional, 

because certain speech sounds are produced without it. However, the tongue does rely 

heavily on contact with the palate to effect shape and positional changes for the majority 

of speech gestures. 

The EPG and sagittal ultrasound data of the present investigation suggest 

considerable applicability of this model for describing tongue movements during discrete 

swallowing. Three conceptual modifications, however, are necessary: 

First, tongue-palate contact is fundamental to swallow-related lingual action under 

normal conditions. Therefore, there are no "unbraced" gestures. The principal goal of 

such contact, as stated earlier, is to achieve positional changes for bolus propulsion and 

not necessarily to effect alterations in tongue shape. 

Second, the lengthwise lingual segments operate as concatenated, functionally 

dependent units during discrete swallowing. In the front-to-back propulsive sweep the 

maximal displacement of each successive unit, though appearing to occur locally, is 



152 

chained to that of the previous unit (cf. Martin, 1991). In addition, the positional stability 

of one unit is a prerequisite for the attainment of maximal displacement of the ensuing 

unit, regardless of the swallowing task at hand. This prerequisite anchoring is due to the 

fact that the tongue has no skeletal support within itself. It uses sequential, sectional 

bracing against the hard palate from front to back to generate and transmit bolus 

propulsive force, and redistribute its own volume from front to back, thereby 

accomplishing the task of food transport . Serial anchoring of the sagittal units, therefore, 

is not only the source of the bolus-transport force needed but also the origin of the 

stereotypic wave-like contours. 

Third, each lengthwise tongue segment is composed of five cross-sectional 

segments which also operate as concatenated, functionally dependent units to contribute 

to the task of swallowing. During propulsion, the crosswise units are responsible for 

symmetrical elevation of the tongue from the sides toward the midline (as if narrowing a 

central channel) to assist in transporting the bolus backward. 

In sum, the functional segment model, in order to be applied to swallowing, must 

be modified to include anchored rather than unanchored gestures. In addition, the model 

must define the tongue units as functionally dependent and concatenated in both the 

lengthwise and the crosswise domains. 

An interesting question that has not been resolved by any current swallowing data 

is how the volume-preserving constraint interacts with the anchoring constraint. The 

anchoring constraint is a given in swallowing, because the tongue must take advantage of 

the palate to propel the bolus. The volume-preserving constraint, originally pointed out by 
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geniohyoid, digastric) but also the posterior tongue, allowing it to push outward into the 

pharynx. 

Continuous Drinking 

The model presented above for discrete swallowing is also applicable to 

continuous drinking. For both water intake and clearing during each drink-swallow cycle, 

the tongue uses invariant, progressive front-to-back activation of its oral segments to open 

and close the oral tract and accomplish the motor goals specified. In the sequence of 

closing gestures, these segments continue to function as concatenated, dependent units in 

both the lengthwise and the crosswise domains. In addition, anchored rather than 

unanchored gestures remain rudimentary to the process. In the sequence of opening 

gestures, the linkage and dependency among the tongue segments are again apparent, as at 

no time can the tongue lower itself to replenish water in an order other than front-to-back. 

One may add that this stereotypic front-to-back opening is tightly coupled with and a 

reflection of jaw action, granted that the jaw is constrained in its degree of motion during 

cup-drinking. 

When gestures of the same structure overlap in time, the indication is usually that 

parts of that structure are functionally independent. The temporal overlaps between the 

tongue tip and the tongue body during continuous drinking could, therefore, be interpreted 

that segments of the tongue performed independent gestures across motor sequences 

while simultaneously maintaining within-sequence gestural dependency. While this 

interpretation is supported by multiple analogies in speech (see Browman & Goldstein, 



1990) 
,the highd 155 

egree of inter-s . . 
cannot be equence behavioral correlation during continuous drinking 

overlooked . 
down'' · Specifically, the invariant "tip down, body up" and "tip up, body 

Patterns of r 
p mgual overlaps fl d d' . fu . . . rernatu re ecte 1stmct nct1onal s1gmficance: one to prevent 

re bolu . 
s spillage the 

Or opp . . ' other to make room for propulsion. Because these overlaps 
os1tiona1 

movem 
lllotor s ents Were readily predictable, the indication would be that the two 

equences 
' Perfectly · 

Other ,1 , integrated, were still not totally free from the influence of each 
. vvhat is 

apparent th . 
Organ. s· ' ough, 1s the remarkable flexibility of the tongue as a soft-tissue 
. Ince multiple m 
111 rnult· uscles are in or connected to the tongue, it can theoretically move 

Iple d' 
' 1fferent 

anoth ways. Slightly more contraction of a set of lingual muscles versus 
er ca n result. 

m subtle variations of behaviors. 
Evid ence ofth 

differ e Present study supports the notion that swallowing and speech are 
ent beh . 

aVJors ofth 
Colllplex e vocal tract ( cf Martin, 1991 ). Although both are motorically 

' swa11oWin . . 
and s g is highly stereotypic with reflexive as well as voluntary components, 

Peech is i. ~ 

iughJy va . bl . h 
lllodel na e and completely voluntary. Thus, when applying speec 

s~~ph 
Ysio/0 · 

to Pr gic or linguistic--to deglutitive behaviors, revisions are necessary in order 
Operly r 

epresent th . 
e characteristics of the motor components being addressed. 

J) Clinical Implications 
Ysphagia m . . . al 

lbn0 ay be associated with a variety ofneurolog1c disorders and structur. 
l'llla1· · 1hes ( seet 

1-Wer ogemann, 1983). In adults and children with upper motoneuron, 
llloton 

euron b l · ho have 'dero ' asa ganglia, and cerebellar dysfunctions, as well as patients w 
oOne 

surgical· t 
intervention for head and neck cancer, deficits in tongue movemen 



156 

and coordination are common and may even be one of the primary causes for dysphagia 

symptoms (Hirano, et al. , 1992; LaBlance, Kraus, & Steckol, 1991 ; Lazarus & Logemann, 

1987; Logemann, 1983; Veis & Logemann, 1985). A general reduction in the range of 

lingual motion and control or a specific impairment such as repetitive tongue 

rolling/pumping (as seen in Parkinson's disease) can lead to delayed oral transit, 

ineffective bolus propulsion, oral and pharyngeal residue, and even premature spillage of 

the bolus which threatens airway safety (Cook, 1991; Dodds, Logemann, & Stewart, 

1990; Logemann, 1983). 

As shown in the present study, stable anchoring of the tongue against the palate is 

crucial for overall swallowing efficiency, because it provides the necessary leverage for 

generating the appropriate oral propulsive force and for achieving maximal base of tongue 

expansion and adequate pharyngeal propulsive force. Thus, results of this investigation 

support not only the conventional linguomotor exercises (e.g., protrusion, retraction, 

lateralization, twist, curl, etc.) but also the practice of deliberately prolonged (for 4-5 

seconds at a time), hard, squeezing lingual action from front to back in association with 

dry swallows to facilitate forceful tongue-palate contact and tongue base retraction. The 

recommendation for using this maneuver with dry swallows is a safety precaution. 

Patients who have adequate laryngeal control or cough reflex may not need to be as 

conservative and may advance from dry to wet swallows using the "lingual hard-squeeze" 

maneuver after a period of systematic training. Moreover, in head and neck cancer 

patients who present abnormal oral and laryngeal signs but benefit from the use of 

supraglottic or Mendelsohn maneuvers (i.e., breath-holding following by swallowing and 



then a deliberate cough, or maximal laryngeal elevation using the suprahyoid muscles in 

the midst of a wallow; see Lazarus, Logemann, & Gibbons, 1993), lingual hard-squeeze 

can be easily incorporated into these exercises for maximal results. 
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The modified barium swallow (Logemann, 1983) is probably one of the most 

widely applied protocols for swallowing evaluation. This approach emphasizes the use of 

small bolus size (2 cc of barium liquid and paste, and l/4 of a cookie) as a conservative 

precaution against damaging consequences in case of aspiration. While such rationale is 

appreciated and holds true in many patients, clinicians should not ignore the possibility 

that some patients swallow larger boluses more efficiently than they do smaller ones. The 

radiographic study of Robbins, Sufit, Rosenbek, Levine; and Hyland (1987) showed that 

three of the 64 patients they examined aspirated on only 2-cc but not 30-cc barium 

swallows. These authors speculated that this finding could reflect different muscle 

recruitment patterns for the oral phase of swallowing and the possibly altered threshold for 

the pharyngeal swallowing response. Based on the results of the present study and of 

Kahrilas et al. (I 993), one may add that biomechanically, the benefit of the larger bolus 

could have also been drawn from faster propulsion rate and greater movement vigor. The 

important message is that not all patients will find smaller boluses easier to manage than 

the larger ones. In patients without evidence of aspiration from the modified barium 

swallow, additional radiographic testing using larger boluses may reveal more clues on the 

nature of the breakdown in swallowing efficiency and on clinical management strategies. 

Conceivably, some neurologic patients (e.g., some of those with cerebrovascu1ar accident 

or closed head injury) presenting mild, generalized difficulty in motor coordination may 
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show better swallowing performance with larger-and-thicker materials, taking advantage 

of the timing and force factors from bolus size and the increased cohesiveness from bolus 

consistency. 

Continuous drinking, compared with discrete swallowing, is a task that imposes 

even greater demands for motor coordination, because it involves alternating action 

sequencing, gestural overlaps, increased overall movement rate, and a prolonged, 

heightened state of activity in all deglutitive motor participants. These increased demands 

may be further exemplified by the fact that many motor behaviors developmentally follow 

a progression from a discrete to a sequential version with learning and maturity. Indeed, 

children learn to utter single words before coarticulated speech, and to print single 

characters before cursive writing. Developmentally, swallowing is known to first emerge 

in the embryo, and its neural organization is well established by the time of birth (Bosma, 

1973; Humphrey, 1970). However, the motor coordination for cup-drinking and 

sequential swallowing on one breath requires time to develop and mature. 

Severe, generalized motor dysfunction (such as that occurring in the later stage of 

Parkinson' s disease) can cause a patient to lose the coordination necessary for performing 

sequential swallowing. Nonetheless, just as there are patients who manage larger-volume 

swallows better than smaller ones, some dysphagic patients in whom adequate laryngeal 

function is preserved are likely to find continuous drinking easier to achieve than discrete 

swallowing because of movement momentum or other undetermined factors. Clinical 

investigations are needed to evaluate such likelihood in patients presenting different 

diseases and dysphagia symptoms. 



159 

EPG appears to have potential applications in clinical research and management. 

One of the distinct advantages for clinical usage of EPG is that the technique is 

nonhazardous and relatively noninvasive. As such, it may be used repeatedly and for 

prolonged periods, thus permitting extensive observations oflinguopalatal interaction and 

training. As indicated above, abnormal tongue activities of different sorts occur during 

swallowing in several clinical populations. Deviations in tongue-palate contact timing and 

patterns from the normal data are expected in, for example, postsurgical oral cancer 

patients, patients with hypokinesia or hyperkinesia, and some patients after stroke or 

closed head trauma. However, the details of the abnormal contact behaviors have not 

been characterized for different disorders. EPG presents a readily available means for in

depth quantitative and qualitative characterizations of abnormal linguopalatal interactions, 

and for identification of the specific components of deviant deglutitive tongue action. 

Such detail, typically not accessible via conventional radiography and ultrasonography, 

may provide clues for therapy planning. 

The clinical management procedures for postoperative oral cancer patients with 

dysphagia sometimes include the fitting of a maxillary prosthesis. The purpose is to 

reshape or augment the palate so that the patient achieves better swallowing efficiency 

through more appropriate tongue-palate contact. The effectiveness of such a device has 

been documented (Davis, Lazarus, Logemann, & Hurst, 1987; Logemann, Kahrilas, 

Hurst, Davis, & Krugler, 1989; Robbins, Bowman, & Jacob, 1987; Wheeler, Logemann, 

& Rosen, 1980). In some of the patients the benefits of the prosthesis are immediate. In 

others, however, a period of training is required for adaptation and improvement to take 
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place. For these patients, EPG can be conveniently incorporated as a biofeedback tool to 

facilitate the adaptation-improvement process. EPG's applicability in swallowing therapy 

is not limited to the oral cancer patient population. Any patients who present reduced 

lingual control for deglutition may benefit from the visualization of their tongue-palate 

contact and work on increasing lingual control or finding appropriate compensatory 

maneuvers with direct feedback. 

Conclusions 

EPG provided detailed information on linguopalatal contact during swallowing and 

revealed how the tongue used the hard palate to impel the bolus. It also provided inferred 

information on deglutitive tongue movements which were then confirmed using 

ultrasound. Compartmentalization of the palate into six primary bins (front, central, back, 

lateral, medial, midline) extracted deglutitive linguopalatal contact characteristics that 

were regionally specific, three-dimensional, and typically not revealed through 

conventional radiography and ultrasonography. Specifically, tongue-palate contact for 

swallowing, though invariant across bolus types and subjects, was seen to have two 

degrees of freedom: front/back movement and lateral/midline movement. These EPG 

continua reflected a lingual motor system composed of concatenated, functionally 

dependent units in the lengthwise as well as crosswise domains, that produced 

stereotypical tongue movements. 

The discrete swallowing task of the present study was defined as having four 

tongue-palate contact stages-- prepropulsion, propulsion, full contact, and withdrawal--
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based on specific, time-varying contact characteristics. The division of the EPG time 

series into these stages was functionally meaningful, as it captured the distinct and unique 

features of each stage, the variations in patterns within a stage, and the relationship 

between patterns across stages. The timing aspect of discrete swallowing can be 

modulated by the sensory features inherent in a bolus, despite the stereotypy in its overall 

motor pattern. In particular, propulsion rate was significantly faster for thinner and larger 

boluses, and full contact was significantly longest for dry swallows. These temporal 

effects indicated that the swallowing central pattern generator was at least partially 

regulated by peripheral input . 

The present study represents an initial attempt to better understand lingual 

behaviors for sequential swallowing. In continuous drinking where there were 

reduplicated drink-swallow sequences, the tongue was seen to use faster movement rate 

and overlapping gestures to maintain safe and efficient swallowing. Gestural overlaps 

were most apparent in the anterior and the posterior tongue, and reflected a change in the 

timing coordination of the motor sequences for "drink" and "swallow" implemented to 

meet changed task requirements . Further research on the responses of other motor 

elements and on oral, laryngeal, and pharyngeal coordinations during continuous drinking 

is warranted and likely to improve our knowledge of swallowing motor control in general. 

Ultrasound provided supplementary data on lingual contour and velocity changes 

over time. The single-subject velocity profiles supported the EPG findings and presented 

additional evidence for bolus- and task-induced differences in peak velocities. The 



velocity profile is a useful tool for the analysis oflingual kinematic properties during 

swallowing. 
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There is potential value in using EPG to investigate disordered swallowing, 

particularly the timing and patterning of abnormal tongue movements. In addition to 

possible future applications in swallowing research, EPG might be used for diagnostic 

purposes as a supplement to the more traditional imaging and pressure measurements, and 

for treatment purposes as a biofeedback tool. 

In sum, evidence of the present study supported a theory that swallowing motor 

control included a peripheral mechanism capable of modulating centrally generated 

responses, and that the general deglutitive motor program consisted of both invariant and 

variant parameters. Specifically, movement pattern or action sequence reflected a fixed 

element within the structure of the motor program. Movement timing, on the other hand, 

was variant and could be modified according to the properties of the material ingested and 

the demands of the task at hand. 



APPENDIX A. ULTRASOUND TRANSDUCER PLACEMENT DAT A 

Specific placement of the ultrasound transducer for individual subjects during sagittal and coronal imaging is presented below. 
Angle refers to degree posterior to the vertical. Position refers to distance posterior to the mental symphysis. The transducer 
used was a 3 .5-MHz convex-curved-linear-array type with 96 active elements. 

Sagittal Placement Coronal Placement 

Subject Jaw Length (mm) Angle (0
) Position (mm) % of Jaw Length Angle (0

) Position (mm) % of Jaw Length 

Sl 83 .74 8 33.50 40.00% 14 27.63 32.99% 

S2 93 .74 8 31.40 33.50% 11 31.03 33.10% 

S3 82.11 8 25.20 30.69% 11 27.37 33.33% 

S4 87.54 6 29.50 33.70% 14 29.18 33.33% 

S5 87.42 8 33.18 37.95% 14 29.14 33.33% 



164 

APPENDIX B. STATISTICAL TABLES 

B-1 . Random effects analysis of variance on EPG total durations for the discrete 
swallowing tasks, using the general linear models procedure. 

General Linear Models Procedure 
Tests of Hypotheses for Mixed Model Analysis of Variance 

Source: TASK 
Error: 0.9993*MS(TASK*SUBJECT) + 0.0007*MS(Error) 

DF 
4 

Type III MS 
731560.43883 

Source: SUBJECT 

Denominator 
DF 

16.00 

Denominator 
MS 

234021. 98581 

Error: 0.9993*MS(TASK*SUBJECT) + 0.0007*MS(Error) 

Denominator Denominator 
DF Type III MS DF MS 

4 2073593 .8019 16.00 234021.98581 

Source: TASK*SUBJECT 
Error: MS(Error) 

Denominator Denominator 
DF Type III MS DF MS 
16 234145.22582 124 48669.021832 

F Value 
3.1260 

F Value 
8.8607 

F Value 
4.8110 

Pr > F 
0.0444 

Pr > F 
0.0006 

Pr > F 
0.0001 



B-2. Repeated measures analysis of variance on mean durations ofEPG stages for 
different discrete swallowing tasks, using the general linear models procedure. 
Multivariate tests were performed on the variables TASK and ST AGE, but not on 
T ASK*STAGE interaction due to insufficient error degrees of freedom. Instead, the 
interaction was assessed using univariate tests. 

Manova Test Criteria and Exact F Statistics for 
the Hypothesis of no TASK Effect 

H = Type III SS&CP Matrix for TASK E = Error SS&CP Matrix 
S=l M=l N=-0.5 

Statistic Value F NumDF DenDF 
Wilks' Lambda 0.00079757 313.202 4 1 
Pillai's Trace 0.99920243 313.202 4 1 
Hotelling-Lawley Trace 1252.80832 313.202 4 1 
Roy's Greatest Root 1252.80832 313.202 4 

Manova Test Criteria and Exact F Statistics for 
the Hypothesis ofno STAGE Effect 

1 

Pr>F 
0.0424 
0.0424 
0.0424 
0.0424 

H = Type III SS&CP Matrix for PHASE E = Error SS&CP Matrix 
S=l M=0.5 N=O 

Statistic Value F NumDF DenDF Pr > F 
Wilks' Lambda 0.14327308 3.98645 3 2 0.2070 
Pillai's Trace 0.85672692 3.98645 3 2 0.2070 

Hotelling-Lawley Trace 5.97967801 3.98645 3 2 0.2070 
Roy's Greatest Root 5.97967801 3.98645 3 2 0.2070 

Univariate Tests of Hypotheses for Within Subject Effects 
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Source 
TASK*STAGE 
Error 

DF 
19 
76 

Type III SS 
2317839.664 
1663900.096 

Mean Square F Value Pr > F G - G H - F 
121991.561 5.57 0.0001 0.0195 0.0004 
21893.422 

Greenhouse-Geisser Epsilon = 0. 13 15 
Huynh-Feldt Epsilon= 0.3682 
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B-3 . Post hoc repeated measures multivariate analysis of variance of pairwise contrasts 
for EPG Stage-II duration between selected discrete swallowing tasks. Only cases where 
12<0.05 are included below, although a for these comparisons was set at 0.01. 5W = 5cc 
water; 30W = 30cc water; 5G = 5cc gelatin; 30G = 30cc gelatin. 

Manova Test Criteria and Exact F Statistics for 
the Hypothesis of no Overall INTERCEPT Effect 

on the variables defined by the M Matrix Transformation 
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix 

S=l M=-0.5 N=l 

Contrast variable: 30W - 30G 

Statistic 
Wilks' Lambda 
Pillai's Trace 
Hotelling-Lawley Trace 
Roy's Greatest Root 

Contrast variable: 5W - 5G 

Statistic 
Wilks' Lambda 
Pillai's Trace 
Hotelling-Lawley Trace 
Roy's Greatest Root 

Contrast variable: 30G - 5G 

Statistic 
Wilks' Lambda 
Pillai's Trace 
Hotelling-Lawley Trace 
Roy's Greatest Root 

Contrast variable: 3 OW - 5W 

Statistic 
Wilks' Lambda 
Pillai's Trace 
Hotelling-Lawley Trace 
Roy's Greatest Root 

Value 
0.03998767 
0.96001233 
24.0077058 
24.0077058 

Value 
0.13149271 
0.86850729 
6.60498432 
6.60498432 

Value 
0.21751734 
0.78248266 
3.59733454 
3.59733454 

Value 
0.32967607 
0.67032393 
2.03328048 
2.03328048 

F 
96.0308 
96.0308 
96.0308 
96.0308 

F 
26.4199 
26.4199 
26.4199 
26.4199 

F 
14.3893 
14.3893 
14.3893 
14.3893 

F 
8.13312 
8. 13312 
8.13312 
8. 13312 

NumDF 
1 
1 
1 
1 

DenDF 
4 
4 
4 
4 

NumDF DenDF 
1 4 
1 4 
1 4 
1 4 

NumDF DenDF 
1 4 
1 4 
1 4 
I 4 

Pr > F 
0.0006 
0.0006 
0.0006 
0.0006 

Pr>F 
0.0068 
0.0068 
0.0068 
0.0068 

Pr>F 
0.0192 
0.0192 
0.0192 
0.0192 

Num DF Den DF Pr> F 
I 4 0.0463 
1 4 0.0463 
I 4 0.0463 
I 4 0.0463 
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B-3 . (continued) 

Contrast variable: 5G - Dry 

Statistic Value F NumDF DenDF Pr > F 
Wilks' Lambda 0.03570459 108.03 1 4 0.0005 
Pillai's Trace 0.96429541 108.03 1 4 0.0005 
Hotelling-Lawley Trace 27.0076063 108.03 1 4 0.0005 
Roy's Greatest Root 27.0076063 108.03 1 4 0.0005 

Contrast variable: (mean of30W and 30G) - (mean of 5W and 5G) 

Statistic Value F NumDF DenDF Pr>F 
Wilks' Lambda 0.22283645 13.9504 1 4 0.0202 
Pillai's Trace 0.77716355 13 .9504 1 4 0.0202 
Hotelling-Lawley Trace 3.48759618 13.9504 1 4 0.0202 
Roy's Greatest Root 3.48759618 13 .9504 1 4 0.0202 

Contrast variable: (mean of 30W and 5W) - (mean of30G and 5G) 

Statistic Value F NumDF DenDF Pr>F 
Wilks' Lambda 0.03871082 99.3303 1 4 0.0006 
Pillai's Trace 0.96128918 99.3303 1 4 0.0006 
Hotelling-Lawley Trace 24.8325734 99.3303 1 4 0.0006 
Roy's Greatest Root 24.8325734 99.3303 1 4 0.0006 
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B-4. Post hoc repeated measures multivariate analysis of variance of pairwise contrasts 
for EPG Stage-III duration between selected discrete swallowing tasks. Only cases where 
12<0.05 are included below, although a for these comparisons was set at 0.01. SW= 5cc 
water; 30W = 30cc water; 5G = 5cc gelatin; 30G = 30cc gelatin. 

Manova Test Criteria and Exact F Statistics for 
the Hypothesis of no Overall INTERCEPT Effect 

on the variables defined by the M Matrix Transformation 
H = Type III SS&CP Matrix for INTERCEPT E = Error SS&CP Matrix 

S=l M=-0.5 N=l 

Contrast variable: 30W - Dry 

Statistic Value F NumDF DenDF Pr>F 
Wilks' Lambda 0.20092697 15.9077 1 4 0.0163 
Pillai's Trace 0.79907303 15.9077 1 4 0.0163 
Hotelling-Lawley Trace 3.97693255 15.9077 1 4 0.0163 
Roy's Greatest Root 3.97693255 15.9077 1 4 0.0163 

Contrast variable: SW - Dry 

Statistic Value F NumDF DenDF Pr>F 
Wilks' Lambda 0.21248622 14.8248 1 4 0.0183 
Pillai's Trace 0.78751378 14.8248 1 4 0.0183 
Hotelling-Lawley Trace 3.70618759 14.8248 I 4 0.0183 
Roy's Greatest Root 3.70618759 14.8248 1 4 0.0183 

Contrast variable: 30W - SW 

Statistic Value F NumDF DenDF Pr>F 
Wilks' Lambda 0.2711003 10.7547 1 4 0.0305 
Pillai's Trace 0.7288997 10.7547 I 4 0.0305 
Hotelling-Lawley Trace 2.68867164 10.7547 1 4 0.0305 
Roy's Greatest Root 2.68867164 10.7547 1 4 0.0305 
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B-5. Analyses of variance of (a) main effect and (b) pairwise contrasts on mean EPG total 
durations for sequential (pooled), 5-cc water (5W), and 30-cc water (30W) swallows, 
using the general linear models procedure. 

(a) Main Effect 

Tests of Hypotheses for Mixed Model Analysis of Variance 

Source: TASK 
Error: 0.9952*MS(TASK*SUBJECT) + 0.0048*MS(Error) 

DF 
2 

Type III MS 
5202717.8634 

Source: SUBJECT 

Denominator Denominator 
DF MS 

8.02 131054.48319 
F Value 
39.6989 

Error: 0.9851 *MS(TASK*SUBJECT) + 0.0149*MS(Error) 
Denominator Denominator 

DF Type III MS DF MS F Value 
4 889601 .00469 8.07 130121.19376 6.8367 

Source: TASK*SUBJECT 
Error: MS(Error) 

Denominator Denominator 
DF Type III MS DF MS F Value 

8 131497.90186 89 39252.950238 3.3500 

Pairwise Contrasts 

Analysis of Variance of Contrast Variables 

Contrast Variable: (Pooled Sequential) - (SW) 

Source DF Type III SS F Value Pr>F 
MEAN I 2515716.871380 44.84 0.0026 
Error 4 224401 .958920 

Contrast Variable: (Pooled Sequential) - (30W) 

Source DF Type III SS F Value Pr>F 
MEAN I 1590243.128820 58.24 0.0016 
Error 4 109218.359880 

Pr>F 
0.0001 

Pr>F 
0.0105 

Pr>F 
0.0021 
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B-6. Analyses of variance of (a) main effect and (b) pairwise contrasts on Front:Back 
percent-contact ratios at time of maximal midline for sequential (pooled), 5-cc water 
(SW), and 30-cc water (30W) swallows, using the general linear models procedure. 

(a) Main Effect 

Tests of Hypotheses for Mixed Model Analysis of Variance 

Source: TASK 
Error: 0.9952*MS(TASK*SUBJECT) + 0.0048*MS(Error) 

Denominator Denominator 
DF Type III MS DF MS F Value Pr > F 

2 6.6546278153 8.01 0.413608646 16.0892 0.0016 

Source: SUBJECT 
Error: 0.9851 *MS(TASK*SUBJECT) + 0.0149*MS(Error) 

Denominator Denominator 
DF Type III MS DF MS F Value Pr > F 

4 0.5999607626 8.02 0.4097039707 1.4644 0.2987 

Source: TASK*SUBJECT 
Error: MS(Error) 

Denominator Denominator 
DF Type III MS DF MS F Value Pr > F 

8 0.415463811 89 0.0295314676 14.0685 0.0001 

(b) Pairwise Contrasts 

Analysis of Variance of Contrast Variables 

Contrast Variable: (Pooled Sequential) - SW 

Source DF Type III SS F Value Pr > F 
MEAN 1 3. 16808000 22.40 0.0091 
Error 4 0.56572000 

Contrast Variable: (Pooled Sequential) - 30W 

Source DF Type III SS F Value Pr > F 
MEAN 1 2.15168000 14.12 0.0198 
Error 4 0.60972000 



(b) 

!e}~ Analyses of variance of (a) main effect and (b) pairwise contrasts on Lateral:Back 
( SW) nt-contact ratios at time of maximal midline for sequential (pooled), 5-cc water 

' and 30-cc water (30W) swallows, using the general linear models procedure. 

( a) Main Effect 

Tests of Hypotheses for Mixed Model Analysis of Variance 

Source: TASK 
Error: 0.9952*MS(TASK*SUBJECT) + 0.0048*MS(Error) 

Denominator Denominator 
DF 

2 
Type III MS 

l.0427676398 

Source: SUBJECT 

DF MS 
8.01 0.0745735983 

F Value 
13.9831 

Error: 0.9851 *MS(TASK*SUBJECT) + 0.0149*MS(Error) 

DF 
4 

Type III MS 
0.0865437127 

Denominator Denominator 
DF MS 

8.03 0.0739163832 

Source: TASK*SUBJECT 
Error: MS(Error) 

Denominator Denominator 
DF Type III MS DF MS 

8 0.0748858503 89 0.0099276721 

Pairwise Contrasts 

Analysis of Variance of Contrast Variables 

Contrast Variable: (Pooled Sequential) - 5W 

Source DF Type III SS F Value 
MEAN l 0.51842000 20.39 
Error 4 0.10168000 

Contrast Variable: (Pooled Sequential) - 30W 

Source DF Type III SS F Value 
MEAN l 0.31250000 11. 75 
Error 4 0.10640000 

F Value 
1.1708 

F Value 
7.5431 

Pr > F 
0.0107 

Pr > F 
0.0266 

Pr > F 
0.0024 

Pr > F 
0.3918 

Pr > F 
0.0001 
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APPENDIX C. TONGUE LOWERING DURING BOLUS INTAKE IN DISCRETE SWALLOWING 

C-1. Digitized ultrasound images illustrating progressive lowering of the tongue to receive the bolus during a representative single 
swallow. As shown, displacement of the anterior, mid, and dorsal tongue segments (left to right) is graded in extent, while that of the 
posterior segment is minimal throughout bolus presentation. Arrows in each image mark points on the tongue surface. The time under 
each frame reflects second and 1/100th of a second. 

20:02 20:18 20:32 20:38 

20:48 20:55 20:78 



C-2. Composite display oflingual surface curves extracted from the digitized ultrasound images shown in Appendix C-1 , illustrating 
progressive lowering of the tongue to receive the bolus during a representative single swallow. Curve marked "1st" corresponds to 
frame 20:02~ curve marked "last" corresponds to frame 20:78. Each curve is plotted based on the x- (on X axis) and y-values (on Y 
axis) of the coordinates for 101 surface points. Unit of measurement= pixel (with 320x240 pixels per frame and 18 pixels per cm). 
Edge extraction and curve plotting were accomplished using a Matlab-based image processing package (Sze, 1996). 
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