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Abstract

We examine incomplete preference structures in a framework that allows for various re-

laxations of the independence axiom. We derive preference representations in terms of

willingness-to-pay measures, and demonstrate how these representation can be used to de-

termine preference incompleteness and to elicit preferences empirically.



Decision makers faced with an array of choices that are poorly understood or diffi cult to

compare may experience “...sensations of indecision or vacillation, which we may be reluctant

to identify with indifference”(Savage 1954). In such settings, a number of authors (Aumann

1962, Kannai 1963, Fishburn 1965, Bewley 1986 and 2002, Dubra, Maccheroni, and Ok

2001, Mandler 2004, Baucells and Shapley 2008, and Galabaatar and Karni 2013) have

argued that it may be inappropriate to impose the completeness axiom on rational choice

behavior. Relaxing the completeness axiom while maintaining the other standard axioms,

including transitivity and ‘irrelevance of independent alternatives’, yields a decision criterion

that requires one alternative to dominate another for a set of probability measures before it

can be regarded as preferred (Aumann 1962, Bewley 1986 and 2002).

Even for complete preferences, it is widely understood that the independence axiom can

be unduly restrictive. A large number of generalizations of expected utility theory have

been proposed, and nearly all weaken the independence axiom (for example, Dekel 1986,

Schmeidler 1989, Gilboa and Schmeidler 1989, Gul and Lantto 1990, Maccheroni, Marinacci,

and Rustichini 2006).

Further diffi culties arise when preferences are incomplete. Standard arguments for in-

dependence, such as Savage’s ‘sure-thing principle’require that decision makers rank, not

only the choices open to them, but all possible choices. In particular, the idea of ‘compound

independence’inherent in the sure-thing principle requires that decision makers can evalu-

ate a given act by considering arbitrary compound lotteries yielding the same probability

distribution over outcomes. By contrast, the appeal of the transitivity axiom is, at least

for the case of individual decisions, enhanced in the case of incompleteness. Because no re-

quirement then exists to rank alternatives that may be diffi cult to compare, there is less risk

that combining two choices using transitivity will yield a ranking incompatible with actual

preferences.

Regardless of which axioms are maintained, very few attempts have been made to examine

incomplete preference structures empirically. We are aware of only two such studies (Danan

and Ziegelmeyer 2006 and Cettolin and Riedl 2016). We conjecture that one reason for this

empirical paucity is the lack of empirically implementable tests possessing a solid theoretical

foundation on which empirical analysis of incomplete preferences can be based.
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This paper examines incomplete preference structures in an axiomatic framework that

relaxes independence. Our particular focus is on developing representation results and pre-

dictions that can be easily tested in a laboratory or field-experiment setting. That concern

causes us to depart from the usual tradition in decision theory that focuses on obtaining

“utility function” representations. Instead we focus our analysis on preference representa-

tions in terms of willingness-to-pay measures that both fully characterize preferences and

can be easily elicited empirically.

In what follows, we first discuss briefly the existing theoretical literature on preference

incompleteness in the absence of independence and the empirical literature on examining

preference incompleteness. Then we introduce the basic decision set up and introduce and

characterize the willingness-to-pay measures (Proposition 1). These measures are then shown

to characterize preferences exhaustively (Proposition 2). Empirical tests for and measures

of the comparability of two gambles and for preference completeness are then developed

(Proposition 3).

The next step is to introduce five alternatives to or weakening of independence (weak-

certainty independence, radial independence, certainty independence, betweenness, and dom-

inance independence). We then identify the structural restrictions for the willingness-to-pay

measures implied by the imposition of the different alternatives to independence (Proposi-

tion 6). The consequence of these restrictions for empirical testing are then discussed and

compared.

The next section studies local approximations to incomplete preference structures. In

particular, it is shown that any incomplete preference structure satisfying our fundamental

axioms generates two local multiple-prior preference functionals that evaluate differential

adjustments in gambles as would an individual with a multiple prior preference function. The

essential idea is to extend Machina’s (1982) notion of a local-utility function to our set up.

The sets of priors defining these local multiple-prior preference functionals characterize the

individual’s local perception of ambiguity. Computationally, they are derived from the Clarke

superdifferential correspondence applied to our willingness-to-pay measures that characterize

preferences. Once these local multiple-prior preference functionals are derived, the structural

consequences for them of different alternatives to independence are derived (Proposition 13).
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After these local multiple-prior preference functionals are developed, Fenchel conjugation

is used to induce incomplete multiple-prior functionals that globally represent “hulls” of

arbitrary incomplete preferences that are consistent with, respectively, uncertainty aversion

and mixture domination. The motivation for these developments follows from the fact that

Bewley’s (1986 and 2002) incomplete preference model and Faro’s (2015) extension of that

model maintain both uncertainty aversion and mixture domination. Our penultimate section

then treats Bewley preferences and shows their specific relation to the different alternatives

to independence that we consider. The final section concludes.

1 Previous Work

Only a handful of studies both abandon the completeness axiom and weaken the indepen-

dence axiom (Maccheroni 2004, Safra 2014, Zhou 2014, Faro 2015 and Karni and Zhou 2017).

Maccheroni (2004) drops the completeness axiom and replaces the independence axiom by

comonotonic independence. Using Yaari’s dual characterization, he demonstrates that when

preferences are incomplete there exists a set of probability transformation functions such

that one prospect is preferred to another if and only if the former’s rank-dependent expected

value is larger for every probability transformation function in that set of transformations.

Safra (2014) examines incomplete preferences that satisfy the betweenness axiom. He de-

rives a multi-betweenness functional representation for these preferences. Safra (2014) also

demonstrates that the same representation holds when the transitivity axiom is replaced by

a weaker requirement of dominance. Zhou (2014) and Karni and Zhou (2017) substitute the

independence axiom with an analogue of weak substitution axiom (Chew and MacCrimmon

1979, Chew 1989) to obtain a multiple weighted utility representation which accommodates

two sources of preference incompleteness. The first pertains to the incompleteness of tastes

and it is represented by multiple utility function. The second captures the incompleteness of

perception and it is characterized by multiple weight functions. Faro (2015) considers the

case of a policymaker who must combine the judgments of advisers of differering credibility.

In this context, as in other models of collective decisionmaking, transitivity may break down.

Faro (2015) presents a generalized variational Bewley model, with the standard model arising
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as a special case when either transitivity or independence is imposed.

Danan and Ziegelmeyer (2006) develop an experimental procedure where subjects choose

between two alternatives and have the ability to postpone their choice at a small cost. The

authors argue that subjects who choose postponement reveal indecisiveness. Cettolin and

Riedl (2016) conduct an experiment where subjects face a sequence of choices that include a

risky and an ambiguous prospects. In addition to these two options, subjects can choose an

indifference option in which case one of the two options is selected by a randomization device.

The authors argue that when the same subject chooses indifference on multiple occasions

she reveals preference incompleteness. Our procedure (Proposition 3) is different from the

ones pursued in these studies. It relies on willingess-to-pay measures, applies to any setting,

and allows one to elicit a function representation of decision-makers’preferences in addition

to determining whether these preferences are incomplete.

2 Axioms, Cardinal Representation Results, and Com-

parability and Completeness Tests

Uncertainty is represented by a finite state space, S, and states are indexed with a slight

abuse of notation by (1, 2, ..., S) . To focus attention on empirically measurable outcomes,

we treat the case where consequences (outcomes) are restricted to a compact convex subset

of the real numbers A. Acts, therefore, can be identified with elements of AS. ∆ ⊂ AS

represents the unit simplex identifying the probability measures over S. X ⊂ AS denotes

the constant acts and we write x ∈ X to denote the constant act taking the same real value,

x, in each state of Nature.

Preferences are represented by a binary relation defined on AS and denoted by < where
f < g is to be read as f ∈ AS is weakly preferred to g ∈ AS. We will say that acts f and

g are comparable if f < g or g < f. A preference relation is complete if and only if all pairs

of acts are comparable. We define an indifference relation ∼ corresponding to < as follows:
f ∼ g if and only if f < g and g < f. The strict preference relation � corresponding to < is
defined as follows: f � g if and only if f < g but (g < f)c , where superscript c denotes the

4



negation operator. Note that the preference relation <n, defined as f <n g ⇔ (g � f)c , is

in general different from the preference relation < (Karni, 2011).
The least-as-good correspondence P : AS ⇒ AS, associated with the upper contour sets

of <, is defined as
P (g) =

{
f ∈ AS : f < g

}
,

the no-better-than correspondence N : AS ⇒ AS associated with the lower contour sets of
< is defined as

N (g) =
{
f ∈ AS : g < f

}
,

and their intersection I : AS ⇒ AS is defined

I (g) =
{
f ∈ AS : f ∈ N (g) ∩ P (g)

}
.

P and N are lower inverses (in the sense of Berge 1963) of one another, that is, for example

N (g) =
{
f ∈ AS : g ∈ P (f)

}
.

We impose the following axioms on <:
(A.1) (Reflexivity) ∀f ∈ AS, f < f.

(A.2) (Transitivity) For all h, f, g ∈ AS, h < f and f < g implies h < g.

(A.3) (Strict Monotonicity) For all f ∈ AS and all g ∈ RS+/ {0} , f + g � f

(A.4) (Continuity) For all g ∈ AS, both P (g) and N (g) are closed.

Axioms (A.1) through (A.4) are standard. Only A.2 requires comment. As noted in

the introduction, transitivity is at least as appealing a condition for individual choice in the

absence of completeness as in the case of complete preferences. However, as in Faro (2015)

group rankings may display both incompleteness and intransitivity.

Because of our emphasis on testing for the presence of incompleteness and other struc-

tural restrictions, we consider two cardinal representations of <, originally due to Blackorby
and Donaldson (1980) and extended by Luenberger (1992), that can be directly elicited in

empirical or experimental settings.

The upper translation function t : AS ×AS → R̄ is defined as

(1) t (f, g) ≡ max {β ∈ R : f − β < g} ,
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if there exists β ∈ X such that f − β < g and −∞ otherwise. Given A.4, the maximum

in the definition of the translation function is well defined. The lower translation function

b : AS ×AS → R̄ is defined as

b (f, g) ≡ max {β ∈ R : g < f + β}

if there exists β ∈ X such that g < f + β and −∞ otherwise.

In contrast to utility-based characterizations of preferences, where the functional repre-

sentation only depends on a single act being evaluated, both translation functions depend on

two acts. Intuitively, f and g can be thought as the decision-maker’s “new”and “original”

(status quo) positions, respectively. The upper translation function, t (f, g) , measures the

decision-maker’s willingness to pay in units of the riskless asset, 1 ∈ X, for the variation in

the gamble (f − g) ∈ AS from g. b (f, g) measures the corresponding willingness to accept

(sell). Thus, the former characterizes < from the perspective of P (g) and the latter from

the perspective of N (g) . Empirical and experimental studies of choice under uncertainty

routinely elicit versions of t (f, g) or b (f, g) (see, for example, Eisenberger and Weber 1995,

Harbaugh, Krause and Vesterlund 2010).

We have:1

Proposition 1 2 ,3 Suppose that < satisfies (A.1)− (A.4). Then, t satisfies

(a) (Indication) for all f, g ∈ AS, f < g ⇔ t (f, g) ≥ 0 and t (g, g) = 0;

(b) (Translatability in the numeraire) t (f + x, g) = t (f, g) + x for all f, g ∈ AS, x ∈ X;

(c) (Monotonicity) for all f, f o, g, go ∈ AS, (f o,−go) ≥ (f,−g) ⇒ t (f o, go) ≥ t (f, g) with

strict inequality if f o − f ∈ RS+\ {0} or g − go ∈ RS+\ {0} ; and

(d) (Lipschitz in f) for all f, g ∈ AS, t (f, g) is Lipschitz in f ∈ AS and continuous in g.

Suppose that < satisfies (A.1)− (A.4). Then, b satisfies

(a’) (Indication) for all f, g ∈ AS, g < f ⇔ b (f, g) ≥ 0 and b (g, g) = 0;

(b’) (Translatability in the numeraire) b (f + x, g) = b (f, g)− x for all f, g ∈ AS, x ∈ X;
1The proofs of all results are relegated to Appendix.
2Parts (b) and (f) of the Proposition require only axiom A.4.
3Analogues to (a) through (d) of Proposition 1 were established in Chambers (2014) in the context of a

strict but potentially incomplete preference order. Chambers and Quiggin (2007) establish similar results

for complete preference structures.
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(c’) (Monotonicity) for all f, f o, g, go ∈ AS, (f,−g) ≥ (f o,−go)⇒ b (f o, go) ≥ b (f, g) with

strict inequality if f o − f ∈ RS+\ {0} or g − go ∈ RS+\ {0} ; and

(d’) (Lipschitz in f) for all f, g ∈ AS, b (f, g) is Lipschitz in f ∈ AS and continuous in g.

Our next result establishes equivalence between the axioms imposed on < and the prop-
erties of t :

Proposition 2 Preferences < satisfy (A.1) through (A.4) if and only if t satisfies parts

(a)-(d) of Proposition 1.

Indication ensures that either condition in Proposition 2 is equivalent to requiring that b

satisfies parts (a’)-(d’) of Proposition 1. Our central result on testing for comparability and

completeness is:

Proposition 3 For all f, g ∈ AS,

(a) < is complete if and only if b (f, g) + t (f, g) = 0 for all f, g ∈ AS;

(b) f and g are comparable if and only if b (f, g) · t (f, g) ≤ 0; and

(c) mins∈S {fs − gs} −maxs {fs − gs} ≤ t (f, g) + b (f, g) ≤ 0.

Figure 1 illustrates Proposition 3. Geometrically, incompleteness permits the existence

of “gaps” between P (g) and N (g) . In Figure 1, all acts in the union of the areas AgC

and BgD are non-comparable to act g. Acts falling in these gaps are not comparable to g

because they do not fall in either g’s least-as-good set CgD or its no-better-than set AgB.

Similarly, all acts in the union of the areas GfE and HfF are non-comparable to act f.

Note that acts f and g in Figure 1 are non-comparable. The value of the upper translation

function evaluated at (f, g) is given by the negative of the length of the line segment fI

while the value of the lower translation function evaluated at (f, g) is given by the negative

of the length of the line segment fJ. Hence, we have that b (f, g) · t (f, g) > 0 which confirms

Proposition 3.b.

The largest gap between the least-as-good set P (g) and no-better-than set N (g) will

occur when P (g) consists of only those points that weakly dominate g in a vector sense

and N (g) consists of points weakly dominated by g. Intuitively, this is the case of maximal
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preference incompleteness. The first inequality in Proposition 3.c uses this scenario to place

a lower bound on t (f, g) + b (f, g) . The upper bound shows that the translation of f in

the direction of the riskless asset 1 that makes, say, f at least as good as g can never be

any larger than the translation that makes f no better than g. And so, for example, because

f−t (f, g) < g, g can never be strictly preferred to f−t (f, g) and, hence, b (f − t (f, g) , g) =

t (f, g) + b (f, g) ≤ 0. The first part of the Proposition shows what is required to always

translate a gamble, f, to a common frontier, I (g) , regardless of whether the lower or the

upper notion of translation is used. When both translations bring the act to a common point

for all possible f, the preference structure is complete.

An example illustrates the force of Proposition 3. Under completeness, the (upper)

certainty equivalent for a gamble g

inf {γ : γ < g} = −t (0, g)

provides a complete function representation of < in the sense that f < g ⇔ −t (0, f) ≥

−t (0, g) . But without completeness, the implication runs only one way, that is

0− t (0, f) < f < g

and indication and translation establish that t (0− t (0, f) , g) = t (0, g)− t (0, f) ≥ 0.

The converse, however, is not generally true. Another (lower) certainty equivalent exists,

max {β : g < β} = b (0, g) ,

which (Proposition 3.c) satisfies

b (0, g) ≤ −t (0, g) .

When this inequality is strict, certainty equivalents falling in the interval (b (0, g) ,−t (0, g))

are not comparable to g. Hence, complete ordering by certainty equivalents is not possible.

Completeness eliminates this possibility. Proposition 3.a then ensures that the “gap”

between the upper and lower certainty equivalents disappears. Hence,

0 + b (0, g) = 0− t (0, g) ∈ I (g) ,
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and

0 + b (0, f) = 0− t (0, f) ∈ I (f) ,

and thus t (0, g)− t (0, f) ≥ 0 implies

f ∼ 0− t (0, f) ≥ 0− t (0, g) ∼ g.

Monotonicity and transitivity axioms then imply f < g as required. For latter reference, we

summarize this example in corollary form as

Corollary 4 If < satisfies A.1-A.4 and is complete, the following statements are equivalent:
(a) f < g;

(b) t (0, g)− t (0, f) ≥ 0; and

(c) b (0, f)− b (0, g) ≥ 0.

Example 5 To illustrate the testing procedure in Proposition 3, consider an hypothetical

experimental setting where subjects are confronted in a two-state setting with three assets:

Asset Payout

f (0, 2)

g (1, 1)

h (2, 0)

.

Also presume that a subject has been endowed with g and that his or her elicited willingness-

to-pay and williness-to-sell measures are

Asset t (·, g) b (·, g)

f -.5 -.5

g 0 0

h 0 -.5

.

The evidence indicates that preferences are incomplete, that act g is comparable to itself and

act h (because b (h, g) · t (h, g) = 0), but that g not comparable to f because b (f, g) · t (f, g) =

.25 > 0.

The most conservative approximation to P (g) that rationalizes these choices under A.1 to
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A.4 is given by the free disposal hull of the points f − t (f, g) = (.5, 2.5) , g = (1, 1) , and

h− t (h, g) = (2, 0) :

P̂ (g) =
{
f ∈ AS : f ≥ (.5, 2.5) , f ≥ (1, 1) , and f ≥ (2, 0)

}
.

For N (g) , the corresponding conservative approximation is the free disposal hull (from below)

of the points f + b (f, g) = (−.5, 1.5) , g = (1, 1) , and h+ b (h, g) = (1.5,−.5) :

N̂ (g) =
{
f ∈ AS : f ≤ (−.5, 1.5) , f ≤ (1, 1) , and f ≤ (1.5,−.5)

}
.

Notice that versions of P̂ and N̂ can be constructed for any data set in the above form and

that they will satisfy A.1-A.4. Thus, strictly speaking these axioms are not falsifiable in an

empirical context.

3 Structural Restrictions

The results in the previous section apply for arbitrary monotonic preference structures,

whether complete or not. Decision-theoretic models, however, routinely consider more re-

strictive axiomatic structures. We now consider how various relaxations of the “indepen-

dence”axiom manifest themselves as structural restrictions on t (f, g) and b (f, g) . We con-

sider five such structural restrictions: weak-certainty independence, radial independence,

certainty independence, betweeness, and dominance independence.

Maccheroni, Marinacci, and Rustichini (2006) proposed weak-certainty independence as

a replacement for Gilboa and Schmeidler’s (1989) certainty independence criterion.

(A.5.1) (Weak Certainty Independence) For all f, g ∈ AS, x, y ∈ X,α ∈ (0, 1) , αf +

(1− α)x < αg + (1− α)x⇔ αf + (1− α) y < αg + (1− α) y.

Weak certainty independence requires that if convex combinations of an act f and a

riskless act x dominate convex combinations of another act g and x, then all such convex

combinations of f and g with riskless acts preserve the preference ordering. Thus, mixing

riskless assets with arbitrary acts does not distort the ordering of the acts by < .

The next restriction replaces invariance to mixing with riskless acts to radial expansions

or contractions of acts being compared.
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(A.5.2) (Radial Invariance) For all f, g,∈ AS, α ∈ (0, 1) , f < g ⇔ αf < αg.

Axiom (A.5.2) requires rankings of acts to be independent of scaling. Figures 2 and 3

illustrate the difference between (A.5.1) and (A.5.2). Figure 2 depicts preferences that satisfy

(A.5.1). By weak certainty independence, better-than and no-better than sets are translates

of one another in the direction of the sure thing. In Figure 2, the cone with a vertex at point

g+x, which represents the better-than set at g+x, can be obtained by sliding the cone with

a vertex at point g, which represents the better-than set at g, along the line connecting g

and g+x. A similar correspondence holds for acts ĝ and ĝ+x. However, the cones at points

g and ĝ, which lie along different lines parallel to the certainty line, are in general different.

Axiom (A.5.2), on the other hand, requires that better-than and no-better than sets are

radial blow ups of one another. In Figure 3, the better-than set at αg can be obtained by

sliding the better-than set at g from g to αg along the ray that passes through αg and g.

Hence, the amount of ambiguity perceived by a decision maker and characterized by the size

of the kink at the original act g remains constant when g is scaled down. This property of

better-than sets, which provides the motivation for the name of axiom (A.5.2), also holds

for acts ĝ and ĝ + x in Figure 3 that also lie along the same ray from the origin. However,

the cones at points g and ĝ, which lie along different rays from the origin, are different. This

reflects the fact that axiom (A.5.2) does not restrict the relationship between better-than

sets of acts which are not scaled up or down versions of each other.

Gilboa and Schmeidler’s (1989) certainty independence requires both weak-certainty in-

dependence and radial invariance. And so in terms of Figures 2 and 3, it requires that the

better-than and worse-than sets are preserved along both rays from the origin and rays that

parallel X.

(A.5.3) (Certainty independence) For all f, g,∈ AS, α ∈ (0, 1) , x ∈ X, f < g ⇔ αf +

(1− α)x < αg + (1− α)x.

Our next axiom requires that both P (g) − g and N (g) − g be absorbing sets, so that

shrinking any act that dominates or is dominated by g towards g maintains the preference

ordering.

(A.5.4) (Betweenness) For all f, g,∈ AS, α ∈ (0, 1) , f < g ⇔ αf + (1− α) g < g.

Our final axiom is due to Faro (2015).
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(A.5.5) (Dominance Independence) For all f, g, h, i ∈ AS, α ∈ (0, 1) , f < g and h < i ⇒

αf + (1− α)h < αg + (1− α) i.

Dominance independence requires that the correspondences P andN satisfy the following

convexity requirements for all α ∈ (0, 1) , go, g∗ ∈ AS

αP (go) + (1− α)P (g∗) ⊂ P (αgo + (1− α) g∗) ,

and

αN (go) + (1− α)N (g∗) ⊂ N (αgo + (1− α) g∗) .

As a consequence, both P (g) and N (g) are closed convex sets for all g ∈ AS. Behaviorally,

convexity of P (g) translates into uncertainty aversion in the sense of Gilboa and Schmeidler

(1989). Convexity of N (g) , on the other hand, translates into mixture domination so that if

g dominates two outcomes, f o and f ∗, it also dominates all mixtures of those acts. Geomet-

rically, therefore, dominance independence strengthens betweenness (A.5.4). In particular, it

requires sets of the form P (g)− g must be convex absorbing sets.

Uncertainty aversion is a common feature of complete preference structures for decision

makers facing uncertain choices. Mixture domination, on the other hand, which requires

uncertainty-loving behavior in the neighborhood of g is not commonly maintained. And, in

fact, for a complete preference structure, it is only consistent with uncertainty aversion if

the preference functional is linear (see, for example, Proposition 15 below). Nevertheless,

dominance independence weakens the standard independence criterion which also requires

both mixture domination and uncertainty aversion (see, for example, Galabaatar and Karni

2013). The difference between independence and dominance independence is that the impli-

cation defining the latter only runs in one direction, while independence requires it to run

in both directions. By taking i = h, it is easy to see that dominance independence and

reflexivity imply a weakened (one way) version of independence.

We detail the implications of these axioms for the translation functions in the following:

Proposition 6 Suppose that preferences < satisfy (A.1) through (A.4) so that t satisfies

parts (a)-(d) of Proposition 1, and b (f, g) satisfies parts (a’)-(d’). Then,

(e.1) (Translation Invariance) Preferences satisfy (A.5.1) if and only if all f, g ∈ AS and
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x ∈ X, t (f, g) = b (g, f) .

(e.2) (Radial Invariance) Preferences satisfy (A.5.2) if and only if all f, g ∈ AS and µ > 0,

t (µf, µg) = µt (f, g) and b (µf, µg) = µb (f, g) .

(e.3) (Radial Invariance and Translation Invariance) Preferences satisfy (A.5.3) if and only

if preferences satisfy (e.1) and (e.2).

(e.4) (Betweeness) Preferences satisfy (A.5.4) if and only if for all f, g ∈ AS and α ∈ (0, 1) ,

t(f+α(g−f),g)−t(f,g)
α

≥ −t (f, g) and b(f+α(g−f),g)−b(f,g)
α

≥ −b (f, g) .

By Proposition 6.e.1 and e.2 and Proposition 3, the weak-certainty independent and

certainty-independent cases are particularly tractable frameworks in which to conduct em-

pirical tests of comparability and completeness because they only require looking at either t

or b. We have:

Corollary 7 If preferences satisfy (A.5.1) or (A.5.3), then

(a) f and g are comparable if and only if t (g, f) · t (f, g) ≤ 0 (or, equivalently, b (g, f) ·

b (f, g) ≤ 0); and

(b) < is complete if and only if t (g, f) + t (f, g) = 0 = b (g, f) + b (f, g) for all f, g ∈ AS.

The structural consequence of radial invariance is that radially shrinking or expanding

gambles does not change their relative preference ranking. Instead, it simply renormalizes

the units in which our willingness-to-pay measures are counted. Betweenness requires that

“differential”valuations (for example, t(f+α(g−f),g)−t(f,g)
α

) towards the status quo, g, from an

aribtrary act are always bound by the discrete valuation.

Faro (2015) has established that if < satisfies (A.1)-(A.4) and dominance independence,
the model reduces to Bewley’s set up with independence replacing (A.5.5). On the other

hand, if (A.2) (transitivity) is not satisfied then dominance independence does not imply

independence and one obtains what he refers to as the Bewley variational model. To state

his result in our terms, define the conjugates t∗ : ∆× AS → R and b∗ : ∆× AS → R, of the

functions t and b as

(2) t∗ (π, g) = inf
f
{π′f − t (f, g)} ,
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and

(3) −b∗ (π, g) = sup
f
{π′f + b (f, g)} ,

respectively.4

Proposition 8 (Faro 2015) If preferences satisfy (A.1), (A.3), (A.4), and (A.5.5), then

t (f, g) = inf
π∈∆
{π′g − t∗ (π, g)} ,

with t∗ (π, g) closed concave in π, nondecreasing and convex in g, and t∗ (π, g)− π′g ≤ 0. If

preferences satisfy (A.1), (A.3), (A.4), and (A.5.5), then

−b (f, g) = sup
π∈∆
{π′g + b∗ (π, g)} ,

with b∗ (π, g) closed concave in π, nonincreasing and convex in g, and b∗ (π, g)− π′g ≥ 0.

The first multiple-prior preference functional in Proposition 8 extends both the Mac-

cheroni, Marinacci, and Rustichini (2006) variational preference class and the Chambers and

Quiggin (2007) dual multiple-prior preference relation to encompass incomplete preference

structures. By Corollary 4 (also see Section 4.2 below), the Maccheroni, Marinacci, and

Rustichini (2006) variational representation requires, in our notation, that

−t (0, g) = inf
π∈∆
{π′g − c (π)}

where c is a closed, concave function that indexes ambiguity attitudes.

The representation in Proposition 8 extends the Maccheroni, Marinacci, and Rustichini

(2006) representation in several ways. There is no requirement for completeness. The index

of ambiguity attitudes, t∗ (π, g) in our notation, depends on the status quo g. And that index

is nondecreasing and convex in g. The last reflects the dominance-independence requirement

that P (g) and N (g) be intersecting (tangent to one another at g) convex sets. Bewley

preferences also require P (g) and N (g) to be convex but they must also be conical.

Dominance independence, therefore, represents a strong smoothness criterion. The multiple-

prior form of the representations ensure that t (f, g) and b (f, g) are closed concave functions

4For more on the conjugate representation, see Section 4.2.
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of f , and the convexity of t∗ and b∗ in g, in turn, ensure concavity in g. Thus, both represen-

tations will be differentiable in f and g almost everywhere on the relative interiors of their

effective domains.5 And where they are not differentiable, superdifferentials in the sense

of convex analysis exist. Hence, except in pathological cases, local behavior in the face of

uncertainty will be characterizable in differential terms under dominance independence.

That smoothness, in turn, ensures the existence of a closed convex set of probability

measures conditioned by the status quo g, D (g) ⊂ ∆, such that for all f, g ∈ AS

f < g ⇔ π′ (f − g) ≥ 0 for all π ∈ D (g) .

In words, under dominance independence f is preferrred to g if and only if every probability

measure in D (g) assigns a higher expected value to f than to g.6 It is natural in this context

to interpret D (g) as a set of local beliefs that the decision maker will entertain as possible

representations of the likelihood of different outcomes s ∈ S in an ambiguous decision setting.

And thus, as Faro (2015) points out, it is natural to interpret dominance independence as

leading to an extended version of Bewley’s incomplete preference structure that he refers to

as Bewley variational preferences.

Example 9 Recall the structure of the elicited t (f, g) and b (f, g) measures in Example 5

Asset t (·, g) b (·, g)

f -.5 -.5

g 0 0

h 0 -.5

.

Proposition 6.e.1 shows that (A.5.1) requires that t (f, g) = b (g, f) so that t (f, g + 1) =

b (g + 1, f) = b (g, f)−1 = t (f, g)−1. Similarly, b (f, g + 1) = t (g + 1, f) imples b (f, g + 1) =

5The effective domain of t (f, g) (in f) is defined by

{f : t (f, g) > −∞} .

6When t (f, g) is differentiable at f = g, D (g) = {∇f t (g, g)} where ∇f t (f, g) represents the gradient

of t in f. When t (f, g) is not differentiable at f = g , D (g) = ∂f t (g, g) ⊂ ∆ where ∂f t (f, g) is the

superdifferential of t in f. Chambers (2014, Lemma 1) establishes that ∂f t (f, g) ⊂ ∆ for all f, g.
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b (f, g) + 1. Hence, if (A.5.1) is to hold then changing the status quo position from g to g+ 1

requires that

Asset t (·, g + 1) b (·, g + 1)

f -1.5 .5

g + 1 0 0

h -1 .5

,

while consistency with (A.5.2) requires that for any µ > 0

Asset t (·, µg) b (·, µg)

µf -.5µ -.5µ

µg 0 0

µh 0 -.5µ

.

For (A.5.3) both of these response patterns must hold. Evidence against any of these response

patterns would constitute empirical evidence against maintenance of the respective structural

restriction.

4 Multiple-Prior Representations of Incomplete Pref-

erences

Dominance independence and independence both induce multiple-prior preference represen-

tations. As the preceding arguments have shown, these characteristics emerge from the

smoothing requirements that dominance independence and independence impose upon indi-

vidual behavior. Smoothness can fail in those set ups, but only on sets of measure zero that

are associated with “kinked”indifference curves. And those kinks, which imply behavioral

inertia in the neighborhood of g, are the behavioral consequence of perceived ambiguity.

More generally, multiple-prior preference representations have proven an important, if

not dominant, class of decision-theoretic models that accommodate uncertain and ambigu-

ous decision settings. The next subsection shows that all incomplete preference structures

satisfying our basic axioms have local multiple-prior preference representations. This finding
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considerably extends the practical applicability of multiple-prior models well beyond existing

structures to ones that only require extremely modest restrictions on rational behavior.

It accomplishes this extension by developing two local multiple-prior preferences func-

tionals that characterize the local behavior of any preference structure. Once that is done,

the structural consequences of the various alternatives to independence for the local multiple-

prior preference functionals are derived. The subsection that then follows shows how either

uncertainty aversion or mixture domination can be used to develop multiple-prior preference

functionals that generalize both the Bewley variational structures and the Bewley structures.

Some basic results from variational analysis are needed. For m : AS → R define its

(one-sided) Clarke directional derivative, mf : AS ×AS → R in the direction of h ∈ AS as

mf (f ;h) = lim inf
fo→f,λ↓0

m (f o + λh)−m (f o)

λ
.

If m is Lipschitz of order K at f, then mf is closed superlinear in f. The Clarke superdiffer-

ential correspondence, ∂fm : AS → AS is defined as

∂fm (f) =
{
q ∈ AS : q′h ≥ mf (f ;h) for all h ∈ AS

}
.

It is nonempty, convex, and satisfies

mf (f ;h) = inf
h

{
q′h : q ∈ ∂fm (f)

}
,

and

(4) ∂fm (f) = co
{

lim∇m
(
f i
)

: f i → f, f i /∈ L, f i /∈ Ω
}
,

where co denotes the convex hull, ∇m denotes the usual gradient, L ⊂ RS is a set of measure

zero, and Ω is the set of points at which m is not differentiable.

When m is concave, ∂fm (f) is equal to the gradient {∇m (f)} whenever m is differen-

tiable (almost everywhere) and equal to the superdifferential in the sense of convex analysis,

∂fm (f) , everywhere else (Clarke 1983), where

∂fm (f) = {q : q′ (f ′ − g) ≥ m (f ′)−m (f) for all f ′} .
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4.1 Local Multiple-Prior Preferences

The Lipschitz property of both t and b ensure that they typically admit Clarke directional

derivatives in f. For t and b, let superscript f denote the Clarke derivative with respect to

the first argument and superscript g denote the Clarke derivative (when it exists) in the

second argument. We have:

Proposition 10 If < satisfies (A.1) through (A.4), then for all f, g ∈ AS and x ∈ X

tf (f, g;x) = x and bf (f, g;x) = −x,

and ∂f t (f, g) ⊂ ∆ and ∂fb (f, g) ⊂ −∆.

Both ∂f t (f, g) and −∂fb (f, g) have natural interpretations as, respectively, sets of “sub-

jective beliefs”and “risk-neutral probabilities”that partially characterize preferences in the

neighborhood of f. This connection between the Clarke superdifferential and the belief struc-

ture mirrors in the incomplete preference case the connection between the Clarke superdif-

ferential of the preference functional and “revealed ambiguity” established by Ghirardato,

Maccheroni, and Marinacci (2004) in the complete preference case. That contribution, in

turn, generalized Gilboa and Schmeidler’s (1989) identification of perceived ambiguity with

the set of priors characterizing their maximin expected utility model. That maximin set of

priors is the (ordinary) superdifferential of the preference function in the neighborhood of

the sure thing.

Intuitively speaking, the “size”of ∂f t (f, g) and ∂fb (f, g) communicate information about

the decisionmaker’s perceived ambiguity when comparing gambles f and g. Each consists

of a set of “possible probabilistic scenarios”that must be examined in comparing these two

acts. When either consists of a singleton set, the corresponding representation is smooth, and

the decisionmaker’s local perceptions can be approximated by those of an expected-utility

maximizer characterized by those subjective probabilities. When these sets of priors are not

singleton sets, the resulting local nonsmoothness in the preference representation captures

the decisionmaker’s ambiguity perceptions looking upward from the status-quo gamble in the

case of ∂f t (f, g) and downward in the case of ∂fb (f, g) . The bigger the set, the larger the
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number of probabilistic scenarios that must be considered in evaluating alternatives. These

beliefs are local and will vary over gambles.

From the observation that t (g, g) = 0, it follows immediately

(5) tf (g, g;h− g) = inf
{
π′ (h− g) : π ∈ ∂f t (g, g)

}
can be interpreted as a local multiple-prior preference functional in the sense that differential

adjustments from g in the direction h − g ∈ AS are judged similarly to an individual with

the multiple-prior preference function defined by a perceived ambiguity of ∂f t (g, g) . So

instead of the linear local utility preference functions derived by Machina (1982), we obtain

superlinear local preference functionals, where superlinearity is characterized by the range

of subjective beliefs that the decision maker will entertain about the true state of the world.

Similarly,

(6) bf (g, g;h− g) = − sup
{
π′ (h− g) : −π ∈ ∂fb (g, g)

}
,

is interpretable as a local multiple-prior preference functional that judges differential adjust-

ments from g as would an individual with the multiple-prior preference function defined by

−∂fb (g, g). Notice, however, that tf (g, g;h− g) ≥ 0 is interpretable as a local preference

for h over g and bf (g, g;h− g) ≥ 0 as a local preference for g over h.

Both tf and bf are closed superlinear functions. The former evaluates differential depar-

tures from g from the perspective of P (g) , and the latter from N (g). Because, for example,

h /∈ P (g) does not imply h ∈ N (g) , both perspectives are needed to examine local behavior.

Nevertheless, even though these local multiple-prior preference functionals describe differ-

ent manifestations of preferences, they are not independent of one another because they have

been derived from a common < . A clear way to grasp the innate nature of the connection

is to recall that Indication (Proposition 1.a) implies

b (f, g) = max {β : t (g, f + β) ≥ 0} .

The generalized envelope theorem then ensures that ∂fb (g, g) is closely connected with

∂gt (g, g) (assuming that the latter is well-defined). As we shall demonstrate below, this

correspondence is exact under (A.5.1) and (A.5.3).
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So while there can be disagreement between the two local multiple-prior preference

functionals on “subjective”beliefs, that disagreement has its limits:

Proposition 11 For all g, h ∈ AS,

0 ∈ ∂f t (g, g) + ∂fb (g, g) ,

and

min
s∈S
{fs − gs} −max

s
{fs − gs} ≤ tf (g, g;h) + bf (g, g;h) ≤ 0.

The first part of Proposition 11 requires that belief sets overlap. Beliefs derived from a

common preference structure cannot be totally disparate. P (g) andN (g)must be supported

by a common prior and that prior must separate some (but not all) elements of the former

from the latter. In particular, axiom (A.3) ensures that this common prior will separate

{g} + AS++ from {g} − AS++ because the former consists of points that strictly dominate g

and the latter of points strictly dominated by g.

Figure 4, which is drawn for the case where P (f) = P (g) and strictly convex, helps

illustrate. The set P (f) = P (g) is given by the area above the curve CfgD while the set

N (f) = N (g) is given by the area below the curve AfgB. At point f, ∂fb (f, g) consists

of the set of supporting hyperplanes to N (f) = N (g) at f illustrated by the lines between

KK ′ and LL′. Similarly, ∂f t (f, g) is illustrated by the (singleton) hyperplane tangent to

P (f) = P (g) at f (not drawn). These supporting hyperplanes do not agree, but as f moves

towards g that difference will disappear. A single tangent will emerge. Local beliefs are

common from above and from below.

Notice, however, that this is only one perspective. The hyperplane tangent to P (g) at

g (not drawn) portrays the variation in g (and not f) that balances t (f, g), and it is more

naturally associated with ∂gt (f, g) , which in this nicely smooth case exists. For the special

case drawn where t (f, g) = t (g, f) , we naturally have locally that ∂gt (f, g) = ∂f t (g, f) .

More generally, however, this will not be true, and the information captured by these two

sets of local probabilities will be different, just as will the local information communicated

by ∂gt (f, g) = ∂f t (g, f) .

The second part of Proposition 11 establishes that tf (g, g;h) + bf (g, g;h) must respect

the same bounds as t (f, g) + b (f, g) . The upper bound will be attained, for example, when
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the differential adjustment is from g to an element of I (g) . But if a differential adjustment

carries the individual into the interior of either P (g) or N (g) or to a point not comparable

to g, the sum of the local multiple-prior preference functionals will be negative.

When preferences are complete, these types of discrepancies disappear. For example,

in the case of complete beliefs N (g) corresponds to everything falling below the convex

indifference curve CfgD, and not the area below the curve AfgB. There is no longer any

disagreement between the hyperplanes supporting the boundaries. This occurs whether the

boundary to P (g) possesses “kinks”or not. More formally,

Proposition 12 If < is complete, then for all f, g ∈ AS

0 ∈ ∂f t (f, g) + ∂fb (f, g) .

The local multiple-prior preference functionals in (5) and (6) have been derived using

only axioms (A.1)-(A.4). It is apparent, however, that each of the axioms (A.5.1)-(A.5.5)

impose additional structure upon tf (g, g;h− g) and bf (g, g;h− g) :

Proposition 13 Assume (A.1)− (A.4).

(a) If < satisfies (A.5.1), then for all f, g, h ∈ AS, tf (f + x, g + x;h) = tf (f, g;h) for

all x ∈ X, tf (f, g;h) = bg (g, f ;h) , tg (f + x, g + x;h) = tg (f, g;h) for all x ∈ X, and

tg (f, g;h) = bf (g, f ;h) ;

(b) If < satisfies (A.5.2), then for all f, g, h ∈ AS and all α > 0, tf (αf, αg;αh) =

αtf (f, g;h), bf (αf, αg;αh) = αbf (f, g;h);

(c) If < satisfies (A.5.3), then both (a) and (b) apply;

(d) If < satisfies (A.5.4), then for all f, g, h ∈ AS, t (f, g) + tf (f, g; g − f) ≥ 0 and

b (f, g) + bf (f, g; g − f) ≥ 0; and

(e) Assume (A.1), (A.3), (A.4), and (A.5.5). For all f, g in the relative interior of the

effective domain of t, the Clarke directional derivatives tf and tg exist with

tf (f, g;h) = ∇f t (f, g)′ h

and

tg (f, g;h) = ∇gt (f, g)′ h,
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almost everywhere.

Assume (A.1), (A.3), (A.4), and (A.5.5). For all f, g in the relative interior of the effective

domain of b, the Clarke directional derivatives bf and bg exist with

bf (f, g;h) = ∇fb (f, g)′ h

and

bg (f, g;h) = ∇gb (f, g)′ h,

almost everywhere.

Proposition 13 establishes the implications of common structural restrictions for the

Clarke directional derivatives. These in turn have direct implications for the associated local

multiple-prior preference functionals and their belief sets.

From part (a), it follows that for all x

∂f t (f + x, g + x) = ∂f t (f, g) ,

and

∂fb (f + x, g + x) = ∂fb (f, g) ,

so that both local multiple-prior preference functionals and their belief sets are invariant to

mixing g with riskless acts. Moreover, it follows immediately that

∂f t (f, g) = ∂gb (g, f) .

Part (b) shows that radial invariance requires that local subjective beliefs are invariant to

radial transformations of f and g because for α > 0

∂f t (αf, αg) =
{
q : q′αh ≥ tf (αf, αg;αh) for all αh

}
=

{
q : q′h ≥ tf (f, g;h) for all h

}
= ∂f t (f, g) .

Certainty independence requires that subjective beliefs be both radially invariant and trans-

lation invariant. And finally, betweenness requires that for all f, g

f + tf (f, g; g − h) < g
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because

t (f, g) + tf (f, g; g − h) ≥ 0⇒ t
(
f + tf (f, g; g − h) , g

)
≥ 0,

by translatability. Similar comments apply for bf .

Dominance independence has particularly strong differential implications for both t and

b. Concavity ensures differentiability in the usual sense almost everywhere on the relative

interior of the effective domain of the function in question. Differentiability in turn allows

us to replace the Clarke differentials defining the local-multiple prior preference functions

with derivatives interpretable as local probability measures almost everywhere. On those

sets of measure zero where differentiability fails, beliefs are captured by superdifferentials

just as they are in the Gilboa and Schmeidler (1989) maximin case. And, thus, with the

exception of pathological cases, we can generate well-defined superlinear local-multiple prior

preferences functions everywhere from two perspectives, both above and below.

Example 14 Recall that in Example 5, the response pattern can be rationalized by a P (g)

and N (g) corresponding to

P̂ (g) =
{
f ∈ AS : f ≥ (.5, 2.5) , f ≥ (1, 1) , and f ≥ (2, 0)

}
,

and

N̂ (g) =
{
f ∈ AS : f ≤ (−.5, 1.5) , f ≤ (1, 1) , and f ≤ (1.5,−.5)

}
,

respectively. For these approximations, t̂ ((1, 1) , (1, 1)) = 0 and b̂ ((1, 1) , (1, 1)) with ∂f t̂ ((1, 1) , (1, 1)) =

∆ = −∂f b̂ ((1, 1) , (1, 1)) (using (4)) and

t̂f ((1, 1) , (1, 1) ;h− (1, 1)) = min
s∈S
{hs − 1}

and

b̂f ((1, 1) , (1, 1) ;h− (1, 1)) = −max
s∈S
{hs − 1} ,

reflecting the complete ambiguity that is associated with < defined by ≥ .

4.2 Conjugating t and b

Proposition 8 shows that dominance independence ensures that preferences not only man-

ifest a local multiple-prior representation but a global one as well. The same, of course, is
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true for independence. That smooth structure is an immediate consequence of both ver-

sions of independence requiring that preferences exhibit uncertainty aversion and mixture

domination. But satisfying both of these restrictions is not required to ensure that < has a
multiple-prior representation. Maintaining either one alone is suffi cient.

The importance of this realization is underlined by the implications of maintaining both

for complete preference structures. Uncertainty aversion, with little doubt, is the more

conventional assumption. Mixture domination, which implies a preference for gambling

under completeness, is less conventional. Complete preference structures, therefore, can

maintain both only at the expense of inducing linearity in the preference maps.

Proposition 15 If P (g) and N (g) are convex, preferences are complete if and only

t (f, g) =
∑
s

π (fs − gs) .

We, therefore, turn our attention to alternative axiomatic structures that continue to

support multiple-prior representations. Fenchel conjugation of t and b provides a natural

approach. Recall that for t and b consistent with (A.1)-(A.4), their conjugates are defined

by (2) and (3), respectively. Proposition 10.a (Indication) ensures that t∗ (π, g) ≤ π′g and

−b∗ (π, g) ≥ π′g. Moreover, it is well-known (Rockafellar, 1970, Section 12) that t∗ and b∗

are closed concave functions of π.

The conjugates of the conjugates are defined by applying the conjugacy mapping to t∗

and b∗:

t∗∗ (f, g) = inf
π∈∆
{π′f − t∗ (π, g)}

and

(7) −b∗∗ (f, g) = sup
π∈∆
{π′f + b∗ (π, g)} .

The following results are well-known (for example, Rockafellar 1970, Theorem 12.2):

t∗∗ (f, g) ≥ t (f, g) , −b∗∗ (f, g) ≥ −b (f, g) ,

t∗ (π, g) = inf
f
{π′f − t∗∗ (f, g)}

and

−b∗ (π, g) = sup
f
{π′f + b∗∗ (f, g)} .
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Under our maintained assumptions, t∗∗ (f, g) and b∗∗ (f, g) are closed concave functions of

f. The former is non-decreasing in f and non-increasing in g, and the latter is non-increasing

in f and non-decreasing in g. Moreover, both are translatable in the direction X. In other

words, these are closed concave functions satisfying (b)-(d) and (b’)-(d’) of Proposition 1.

Proposition 2 thus implies that the preference structure <∗ induced by

f <∗ g ⇔ t∗∗ (f, g) ≥ 0,

and the preference structure <∗ induced by

g <∗ f ⇔ b∗∗ (f, g) ≥ 0,

will satisfy (A.1)-(A.4).

Preference structure <∗ is not equivalent to <, but it is true that f < g ⇒ f <∗ g. P ∗ (g)

induced by

P ∗ (g) = {f : f <∗ g}

is the convex hull of P (g) . Similarly, <∗ is not equivalent to <, but it is true that g < f ⇒

g <∗ f and that
N∗ (g) = {g : g <∗ f}

is the convex hull of N (g) .

Preference structure <∗ is characterized by uncertainty aversion. Preference structure
<∗, on the other hand, is characterized by mixture domination. Thus, these conjugate rep-
resentations extend the variational representation of Maccheroni, Marinacci, and Rustichini

(2006) and the dual representation of Chambers and Quiggin (2007) by generating multiple-

prior representations for incomplete structures. They also extend the Bewley variational

preference structure and the Bewley structure by not requiring simultaneous satisfaction

of uncertainty aversion and mixture domination. In particular, note that there is now no

requirement that t∗ (π, g) or b∗ (π, g) satisfy particular curvature conditions in g.

Example 16 Any P̂ (g) or N̂ (g) developed as in Example 5 can be made consistent with

(A.5.5) by constructing its free disposal convex hull. By Carathéodory’s Theorem, imposing

convexity solely upon P̂ (g) requires that the convex hull of {(.5, 2.5) , (1.1) , (2, 0)} ,

co {(.5, 2.5) , (1, 1) , (2, 0)} =
{
f ∈ A2 : f = λ1 (.5, 2.5) + λ2 (1.1) + λ3 (2, 0) , λ ∈ ∆3

}
,
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where ∆3 is the unit simplex for R3, belong to the new-least-as good set. It is then evident

that the following least-as-good set satisfying (A.1)-(A.4) and (A.5.5),

P̂ ∗ (g) =
{
f ∈ A2 : f ≥ λ1 (.5, 2.5) + λ2 (1, 1) + λ3 (2, 0) , λ ∈ ∆3

}
,

is consistent with these data. Moreover, the corresponding upper translation function for

arbitrary f can be calculated via

t∗ (f, g) = max
{
β : f − β ≥ λ1 (.5, 2.5) + λ2 (1, 1) + λ3 (2, 0) , λ ∈ ∆3

}
,

which is a simple linear program. For this represesentation ∂f t∗ (g, g) = ∂f t∗ (g, g) is the

convex hull of the vectors normal to (.5, 2.5)+α [(1, 1)− (.5, 2.5)] and (2, 0)+α [(1, 1)− (2, 0)]

for α ∈ (0, 1) .

Example 17 Exactly parallel arguments demonstrate how to construct a no-better-than set

consistent with (A.5.5) for any observed data set. It follows immediately that

f <∗∗ g ⇔

 (f, g) : f ≥ λ1 (.5, 2.5) + λ2 (1, 1) + λ3 (2, 0) ,

g ≤ λ1 (−.5, 1.5) + λ2 (1, 1) + λ3 (1.5,−.5) , λ ∈ ∆3


is consistent with (A.1)-(A.4) and (A.5.5). And thus a dominance independent preference

order can be constructed that will rationalize any observed data set.

Their closely parallel structure ensures that developments made for t∗ translate readily

into developments for b∗. Therefore, in what follows attention is concentrated on the former.

BorrowingMaccheroni, Marinacci, and Rustichini’s (2006) terminology, we refer to t∗ (π, g)

as a (local) uncertainty aversion index. (Implicitly, uncertainty neutrality is defined as π′g.)

The main difference between their construct and ours is that ours is reference-dependent.

Consequently, where the Maccheroni, Marinacci, Rustichini (2006) analogue to t∗ (π, g) is

always “grounded” or bounded by zero, ours is grounded by the expected value of the

status-quo gamble π
′
g.

This difference reflects the fact that complete preference structures, as Corollary 4 demon-

strates, require three comparisons to make a single pairwise comparison. So, for example, f

is ranked relative to 0 ∈ X, g is ranked relative to 0 ∈ X, and the two are then compared to

arrive at a relative ranking. In our set up, gambles are compared directly.
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The interpretation of t∗ as an index of local uncertainty aversion reflects its ability to

capture how agent behavior departs from that of an individual who exhibits maximal prefer-

ence incompleteness. An individual with maximal preference incompleteness willingly adopts

only alternatives that at least weakly dominate g in all states s ∈ S. This reflects a complete

inability to attach any information to the relative likelihood of alternative states occuring.

Behaviorally, such individuals always prepare for the worst. When confronted with any

chance to gamble at odds π, the individual would anchor himself or herself to g and realize

an expected return of π′g without encountering any marginal risk.

We thus define the index of local absolute uncertainty aversion, A : ∆×AS → R− as

A (π, g) = t∗ (π, g)− π′g ≤ 0.

We then say that preference structure a exhibits more local absolute uncertainty aversion

than b if

Aa (π, g) ≥ Ab (π, g) for all π ∈ ∆, g ∈ AS,

where Aa (π, g) ≡ t∗a (π, g)− π′g, Ab (π, g) ≡ t∗b (π, g)− π′g, t∗a (π, g) denotes the conjugate

function for preference structure a, and t∗b (π, g) denotes the conjugate function for preference

structure b. In other words, the closer the individual sticks to not accepting any marginal

gambles from g, the more uncertainty averse the individual is. Because for all f, g ∈ AS,

f < g implies f <∗ g, but not the other way around, the latter preference relation is never
more uncertainty averse than the former.

Proposition 18 (a) Preference order <∗asatisfying (A.1)− (A.4) is more local uncertainty

averse than preference order <∗b if and only if

t∗∗b (f, g) ≥ t∗∗a (f, g) for all f ∈ AS.

(b) Preference order <a satisfying (A.1)−(A.4) and uncertainty aversion is more uncertainty

averse at g than preference order <b if and only if

tb (f, g) ≥ ta (f, g) for all f ∈ AS.

Restricting attention to the case where f, g ∈ AS++, an exactly parallel argument shows

that defining a local index of relative uncertainty aversion by

R (π, g) =
t∗ (π, g)

π′g
,
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and defining more relatively uncertainty averse in a parallel fashion yields a proposition that

parallels Proposition 18 directly. To conserve space, we leave the details to the reader.

Our next result establishes the consequences of imposing versions of A.5 on <∗ .

Proposition 19 Assume (A.1)− (A.4). Then,

(a) If <∗ satisfies (A.5.1), then for all g ∈ AS, x ∈ X, A (π, g + x) = A (π, g) ;

(b) If <∗ satisfies (A.5.2), then for all g ∈ AS++, µ > 0, R (π, µg) = R (π, g);

(c) If <∗ satisfies (A.5.3), then both parts (a) and (b) apply;

(d) If <∗ satisfies (A.5.4), then for all g ∈ AS, α ∈ (0, 1) , A
(
π
α
, g
)
≤ (1− α)A

(
π

1−α , g
)

;and

(e) Assume (A.1), (A.3), (A.4), and (A.5.5). Then for all g0, g′ ∈ AS, α ∈ (0, 1) , A (π, αg0 + (1− α) g′) ≤

αA (π, g0) + (1− α)A (π, g′) .

Thus, (A.5.1) implies constant absolute uncertainty aversion. (A.5.2) implies constant

relative uncertainty aversion. (A.5.3) implies both constant absolute uncertainty aversion

and constant relative uncertainty aversion, which might be thought of as constant uncertainty

aversion by analogy with constant risk aversion (Safra and Segal 1998, Quiggin and Chambers

1998). Betweeness limits the effect of rescaling of priors on uncertainty aversion.

Dominance independence requires that absolute uncertainty aversion be convex in g and

thus will be minimized where

0 ∈ ∂gt∗ (π, g)− π,

which is satisfied at g where the subdifferential in the sense of convex analysis of ∂gt∗ (π, g) in

g is the prior in question. Standard results from convex analysis (Rockafellar 1970), however,

ensure that

π ∈ ∂tf (f, g)⇔ f ∈ ∂πt∗ (π, g) ,

so that uncertainty aversion is minimized at the g where the priors supporting t (f, g) at f

are the priors supporting t∗ (π, g) at g.

5 Bewley, Variational, and Maximin Preferences

This section demonstrates the relationships between the well-known Bewley preference struc-

ture and our results. Bewley preferences require independence, which strengthens (A.5.1),
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(A.5.2), (A.5.3), (A.5.4), and (A.5.5).

(A.5.6) (Independence) For all f, g, h ∈ AS, α ∈ (0, 1) , f < g ⇔ αf + (1− α)h < αg +

(1− α)h.

Independence requires that the ranking of acts not change even after mixing with ar-

bitrary acts. By contrast, (A.5.1) and (A.5.3) only require that mixing with constant acts

preserve rankings. Independence also requires radial independence as a special case. Finally,

independence strengthens dominance independence by requiring that for all

f, g, h ∈ AS, α ∈ (0, 1) , αf + (1− α)h < αg + (1− α)h⇒ f < g

Under independence, both P (g) and N (g) are convex for all acts g (see, for example,

Galabataar and Karni 2013). Under (A.1)-(A.4) and (A.5.6), a straightforward extension of

Proposition 6 reveals that for all α > 0 and all f, g, h ∈ AS

t (αf + h, αg + h) = αt (f, g) ,

whence

t (f, g) = t (f − g, 0)

and

t (α (f − g) , 0) = αt (f − g, 0) .

Because convexity of P (g) ensures concavity of t (f, g) , positive homogeneity of t (f − g, 0) in

f−g implies superlinearity. Superlinearity in f−g ensures that (Rockafellar 1970, Corollary

13.2.1)

(8) t (f − g, 0) = inf
{
π
′
(f − g) : π ∈ D

}
,

where D ⊂ ∆ is a closed and convex set given by

D =
{
π ∈ ∆ : π

′
(f − g) ≥ t (f − g, 0) for all f − g ∈ AS

}
= ∂tf (0, 0)

= ∂f t (0, 0) .

Expression (8) corresponds to Bewley’s (1986) representation result.
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Maintaining independence, Corollary 7 implies

b (f, g) = t (g, f) = inf {π′ (g − f) : π ∈ D}

= − sup
{
π
′
(f − g) : π ∈ D

}
.

so that completeness occurs if and only if for all f, g

inf
{
π
′
(f − g) : π ∈ D

}
− sup

{
π
′
(f − g) : π ∈ D

}
= 0.

That is, D must be a singleton set so that the Minkowski set difference D −D is singleton

set {0} (Schneider 1993). And so, as previously established by Rigotti and Shannon (2005),

Bewley preferences are complete if and only if they are consistent with those of an expected-

utility maximizer.

The key behavioral difference between dominance independence, (A.5.5), and indepen-

dence, (A.5.6), is that the implication in the definition of the former only runs in one direction

(Faro 2015). Suppose instead that dominance independence were strengthened to require

for all f, g, h, i ∈ AS, α ∈ (0, 1) ,

f < g and h < i⇔ αf + (1− α)h < αg + (1− α) i.

Taking 0 < 0, reflexivity and this strengthened version of dominance independence requires

that for all f, g ∈ AS, α ∈ (0, 1)

f < g ⇔ αf < αg,

whence choosing f and g such that

f

α
< g

α
⇔ f < g

for α ∈ (0, 1) , which implies

f < g ⇔ µf < µg

for all f, g ∈ AS and µ > 0.

Because h
(1−α)

< h
(1−α)

with h arbitrary, it therefore follows that the strengthened version

of dominance independence requires

f < g ⇔ µf + h < µg + h,
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for all f, g, h ∈ AS and µ > 0, which is equivalent to independence. Proceeding as before

then yields the Bewley case.

Weak certainty independence, (A.5.1), relaxes (A.5.5). When weak certainty indepen-

dence is coupled with uncertainty aversion (which is equivalent to convexity of P (g)), the

multiple-prior representation requires that

t (f, g) = inf
π∈∆
{π′f − t∗ (π, g)}

with t∗ (π, g) and closed concave in π and t∗ (π, g + x) = t∗ (π, g)− x for all g ∈ AS, x ∈ X.

By Corollary 7, completeness of < requires that

t (f, g) = −t (g, f) ,

for all f, g, and specifically t (0, g) = −t (g, 0) . Using Corollary 4 then gives

f < g

m

inf
π∈∆
{π′f − t∗ (π, 0)} ≥ inf

π∈∆
{π′g − t∗ (π, 0)}

with t∗ (π, x) = t (x, 0) + x, which corresponds to Maccheroni, Marinacci, and Rustichini’s

(2006) variational model.

By Proposition 6, certainty independence requires that for all α > 0

t (f, αg) = αt

(
f

α
, g

)
,

and thus

t∗ (π, αg) = inf

{
π′f − αt

(
f

α
, g

)}
= αt∗ (π, g) .

Thus, certainty independence when coupled with uncertainty aversion requires that the fol-

lowing multiple-prior representation characterize preferences

t (f, g) = inf
π∈∆
{π′f − t∗ (π, g)} ,

with t∗ (π, g) closed concave in π and positively homogeneous and translatable in g.
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Imposing completeness (Corollary 7) and taking f = 0, we obtain that for all α > 0

t (0, αg) = αt (0, g)⇔ t (αg, 0) = αt (g, 0) .

Uncertainty aversion implies that t (g, 0) is concave in g. Positive homogeneity then implies

that t (g, 0) is superlinear and the support function for ∂t (0, 0) . Hence,

t (g, 0) = inf {π′g : π ∈ ∂t (0, 0)} ,

which corresponds to the maximin preference structure (Gilboa and Schmeidler 1989).

6 Conclusion

The standard model of decision theory is that of an unboundedly rational agent, who has

well-specified preferences over every conceivable prospect (completeness) and who obeys the

axioms of expected utility theory. This model has long been recognized to be impossibly

demanding for real human agents. In addition to its normative appeal the dominance reflects

in part the availability of tools to derive representations of preferences from observational

data

In this paper, we have developed a characterization of incomplete preferences in terms

of upper and lower translation functions, observable from choice data. We have shown how

the properties of these functions relate to axiomatic conditions on preferences. For local

properties, we have developed the connection between the Clarke superdifferential and the

belief structure, and shown the relationship to various multiple priors models.

Our result have a number of practical implications. The most notable are the following

two mechanisms. First, we have developed a procedure that uses the reports of willingness

to pay and willingness to accept to determine whether decision-makers can rank different

alternatives. Second, we have outlined how to use these reports to construct approximations

of least-as-good and no-better-than sets. The next natural step in this research agenda is to

take this methodology to the lab and naturally occurring data.
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7 Appendix

Proof of Proposition 1: (a) Consider arbitrary f, g ∈ AS with f < g. The latter ranking

implies that 0 ∈ {β ∈ R : f − β < g} . Hence, by the definition of the upper translation

function, t (f, g) ≥ 0. Conversely, consider f, g ∈ AS for which t (f, g) ≥ 0. It then follows

from the definition of the upper translation function that f−t (f, g) < g. Using monotonicity

(axiom (A.3)) and transitivity (axiom (A.2)), we obtain f < g. Finally, strict monotonicity

of < implies that t (g, g) = 0 for arbitrary g ∈ AS.

(b) For arbitrary f ∈ AS and x ∈ X, we have

t (f + x, g) = max {β ∈ R : f + x− β < g}

= x+ max {β − x ∈ R : f − (β − x) < g}

= t (f, g) + x.

(c) Consider arbitrary f, f o, g ∈ AS with f o ≥ f. If f −β < g, then by monotonicity (axiom

(A.3)) and transitivity (axiom (A.2)) we have that f o−β < g. Hence, {β ∈ R : f − β < g} ⊆

{β ∈ R : f o − β < g} , which implies that t (f o, g) ≥ t (f, g) . To establish the second part,

note that f o− t (f o, g) < g < go by the definition of t, monotonicity, and transitivity. Hence,

t (f o, go) ≥ t (f o, g) ≥ t (f, g) .

(d) Translatability in the numeraire requires that

t (f + x, g) = t (f, g) + x for any x ∈ X.

For f, f ′ ∈ AS, choose K ∈ A so that f ≤ f ′ + K ‖f ′ − f‖ . By monotonicity and trans-

latability, we have t (f, g) ≤ t (f ′ +K ‖f ′ − f‖ , g) = t (f ′, g) +K ‖f ′ − f‖ , whence t (f, g)−

t (f ′, g) ≤ K ‖f ′ − f‖ . Switching the roles of g and g′ in the last inequality gives

|t (f, g)− t (f ′, g)| ≤ K ‖f ′ − f‖ ,

establishing the Lipschitz property. Continuity in g follows immediately from continuity of

< . This establishes (d). Parts (a’)-(d’) of the present Proposition are derived in an analogous

manner. �
Proof of Proposition 2: Parts (a)-(d) of Proposition 1 provide one direction of the propo-

sition. We now turn to proving the reverse direction.
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It follows from the definition of the upper translation function and Proposition 1.b (trans-

latability in the numeraire) that t (f, f) = 0. Axiom (A.1) (reflexivity) then follows by ap-

plying Proposition 1.a (indication).

From Proposition 1.c, for all f ∈ AS and all g ∈ AS/ {0} , t (f + g, f) ≥ t (f, f) = 0,

where the last equality follows from the definition of the upper translation function and

Proposition 1.b (translatability in numeraire). From the definition of the translation function,

f + g − t (f + g, f) < f. The latter ordering and t (f + g, f) ≥ 0 imply, by Proposition 1.a

(indication), that f + g < f. It also follows by the definition of the preference structure that

(f < f + g)c . Thus, < satisfies axiom (A.3) (monotonicity).

To prove transitivity, take arbitrary h, f, g ∈ AS and suppose that h < f and f < g.

By the definition of the upper translation function, h − t (h, f) < f and f − t (f, g) < g.

By the definition of the upper translation function and axiom (A.3) (monotonicity), these

two rankings imply t (h, f) ≥ 0 and t (f, g) ≥ 0. By Proposition 1.c (monotonicity), h < f

implies t (h, g) ≥ t (f, g) . Combining the last inequality with t (f, g) ≥ 0, we obtain that

t (h, g) ≥ 0. Hence, by 1.a (indication), f < g. Thus, < satisfies axiom (A.2) (transitivity).

That P (g) is closed follows by Proposition 1.a (indication) and the closed concavity of

t (f, g) in f. Lipschitz continuity of t (f, g) in g establishes that t (f, g) is uniformly continuous

in g and that N (g) is closed.

Consider arbitrary f, g,∈ AS and x ∈ X. By Proposition 1.e, t (f + x, g + x) = t (f, g) .

Proposition 1.a (indication) and the latter equality then imply, by monotonicity, that f < g

is equivalent to f + x < g + x. �
Proof of Proposition 3: We first prove part (a), then part (c), and finally part (b).

(a) ⇒ Assume that b (f, g) + t (f, g) = 0. For this equality to be satisfied, either both of

the functions on the left-hand-side have to be zero, implying comparability, or they have to

have opposite signs. Without loss of generality, suppose b (f, g) is strictly positive so that

g � f . The presumed equality establishes that t (f + b (f, g) , g) = 0 so that g < f + b (f, g)

and f + b (f, g) < g and thus f + b (f, g) ∈ I (g) . ⇐ Assume completeness and suppose that

t (f, g)+b (f, g) < 0, then it must be true that b (f − t (f, g) , g) < 0 so that g � f−t (f, g) < g

which violates axiom (A.3). Hence, t (f, g) + b (f, g) = 0.

(c) We begin with the second inequality in Proposition 3.c; b (f, g) + t (f, g) ≤ 0. If f and
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g are not comparable, Proposition 1.a and a’establish that t (f, g) < 0 and b (f, g) < 0 to

satisfy the second inequality inequality in Proposition 3.c. Now consider the case where f

and g are comparable. Comparability requires that either f < g or that g < f. Without

loss of generality, suppose the latter. Proposition 1.a’requires that b (f, g) ≥ 0 and that

g < f+b (f, g) . Proposition 1.b implies t (f, g)+b (f, g) = t (f + b (f, g) , g) . If t (f, g)+b (f, g)

was strictly positive then, by axiom (A.3), we would have f + b (f, g) � g, which is a

contradiction. Hence, 0 ≥ b (f, g) + t (f, g).

Consider now the first inequality in Proposition 3.c. Axiom (A.3) ensures that for all g

g +AS+ ⊂ P (g) .

Define

t̂ (f, g) = max
{
β : f − β ∈ g +AS+

}
= max {β : fs − gs ≥ β for all s ∈ S}

= min
s∈S
{fs − gs}

and note that

f − t̂ (f, g) ∈ g +AS+

for all f, g. Thus, f − t̂ (f, g) ∈ P (g) for all g, whence t (f, g) ≥ t̂ (f, g) for all f, g. Similarly,

axiom (A.3) also ensures that g −AS+ ⊂ N (g) . Define

b̂ (f, g) = max
{
β : f + β ∈ g −AS+

}
= −max

s∈S
{fs − gs} ,

and note that f −maxs∈S {fs − gs} ∈ g−AS+ to establish that b (f, g) ≥ −maxs∈S {fs − gs}

for all f, g, and thus

b (f, g) + t (f, g) ≥ min
s∈S
{fs − gs} −max

s∈S
{fs − gs} .

(b) ⇒ Without loss of generality suppose that b (f, g) ≥ 0. Then it must be true by part

(c) of the present proposition that t (f, g) ≤ 0, and the desired inequality follows. ⇐To go

the other way, suppose, first, that t (f, g) b (f, g) = 0. There are three possibilities; either
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b (f, g) alone, or t (f, g) alone, or both are zero. All of these possibilities imply comparability

by Proposition 1. Now suppose that t (f, g) b (f, g) < 0. For this inequality to hold, either

t (f, g) or b (f, g) must be strictly positive and either condition implies comparability. �
Proof of Proposition 6: For each part of the proposition,⇐ direction follows by indication

(Proposition 1.a and a’). We now prove the reverse direction for each of the parts.

(e.1) ⇒ Setting x = 0, axiom (A.5.1) can be written as

(9) αf < αg ⇔ αf + (1− α) y < αg + (1− α) y,

for all α ∈ (0, 1) , f, g ∈ AS, and y ∈ X. Because y ∈ X is arbitrary, by taking z ≡ (1− α) y,

condition 9 requires that for all z ∈ X

αf < αg ⇔ αf + z < αg + z,

which can be rewritten as

f ′ < g′ ⇔ f ′ + z < g′ + z

for all z ∈ X and f ′, g′ ∈ AS. Thus,

t (f, g) = max {β : f − β < g}

= max {β : f < g + β}

= b (g, f) .

(e.2) ⇒ By radial invariance, for all f, g,∈ AS, α ∈ (0, 1) ,

f

α
< g

α
⇔ f < g ⇔ αf < αg,

so that f < g ⇔ µf < µg for all µ > 0. Hence,

t (µf, µg) = max {β ∈ R : µ− β < µg}

= µmax

{
β

µ
∈ R : f − β

µ
< g

}
= t (f, g) .

Similarly,

b (µf, µg) = max {β ∈ R : µg < αf + β}

= µmax

{
β

α
∈ R : g < f +

β

α

}
.
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(e.3) Follows from (e.1) and (e.2).

(e.4) For all f, g ∈ AS

f − t (f, g) < g

Betweenness thus requires that for all α ∈ (0, 1)

f − t (f, g) + α (g − f + t (f, g)) < g

f + α (g − f)− (1− α) t (f, g) < g,

and hence

t (f + α (f − g) , g) = max {β : f + α (g − f)− β < g}

≥ (1− α) t (f, g) .

Similarly,

g < f + b (f, g) ,

whence

g < f + α (g − f) + (1− α) b (f, g) ,

which implies

b (f + α (f − g) , g) ≥ (1− a) b (f, g) .

Proof of Proposition 8: By definition for all f, g, h, i ∈ AS,

f − t (f, g) < g,

h− t (h, i) < i.

Dominance independence requires that for all α ∈ (0, 1)

αf + (1− α)h− αt (f, g)− (1− α) t (h, i) < αg + (1− α) i,

which implies that

t (αf + (1− α)h, αg + (1− α) i) ≥ αt (f, g) + (1− α) t (h, i) .

Thus, t (f, g) is concave in f. Define the concave conjugate of t by t∗ : ∆×AS → R̄ by

t∗ (π, g) = inf
f
{π′f − t (f, g)} .
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t∗ is closed convex and by Theorem 12.2 and Corollary 12.2.1 of Rockafellar (1970) it forms

a dual pair with t (f, g) in the sense that

t (f, g) = inf
π∈∆
{π′f − t∗ (π, g)} .

This establishes the general structural result. Reflexivity (A.1) establishes that t∗ (π, g) ≤ π′g

and monotonicity establishes that t∗ (π, g) is nondecreasing in g. To establish the desired

convexity note that:

t∗ (π, αgo + (1− α) g′) = inf {π′ (αf o + (1− α) f ′)− t (αf o + (1− α) f ′, αgo + (1− α) g′)}

≤ inf {π′ (αf o + (1− α) f ′)− αt (f o, go) + (1− α) t (f ′, g′)}

= αt∗ (π, go) + (1− α) t∗ (π, g′) .

The proof for b is completely parallel and thus not repeated. �
Proof of Proposition 10: By the Lipschitz property, both t and b possess the Clarke

directional derivatives (Clarke 1983). To establish the first part, note that indication requires

t (f + x, g) = t (f, g) + x for all f, g ∈ AS x ∈ X. Hence,

tf (f, g;x) = lim inf
fo→f,λ↓0

t (f o + λx, g)− t (f, g)

λ

= lim inf
fo→f,λ↓0

t (f o, g) + λx− t (f, g)

λ

= x.

The proof that bf (f, g;x) = −x is virtually identical. Thus, q ∈ ∂f t (f, g) only if for all

x ∈ X

q′x ≥ x and − q′x ≤ −x

so that q′x = 1. That ∂f t (f, g) ⊂ ∆ and ∂fb (f, g) ⊂ −∆ now follows from Proposition 1.�
Proof of Proposition 11: Observe that

g ∈ arg max
f
{t (f, g) + b (f, g)}

from which it follows (Clarke 1983, Proposition 2.3.2) that

0 ∈ ∂f t (g, g) + ∂fb (g, g) ,
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which establishes the first part. For the second, note that

0 = t (g, g) + b (g, g)

≥ t (f, g) + b (f, g)

for all f, g ∈ AS so that t (f, g) + b (f, g) attains its global maximum. Hence, marginal

departures from g in all directions h ∈ AS must be nonpositive, whence

lim inf
fo→f,λ↓0

t (f o + λh, g)− t (f, g) + b (f o + λh, g)− b (f, g)

λ
= lim inf

fo→f,λ↓0

t (f o + λh, g)− t (f, g)

λ

+ lim inf
fo→f,λ↓0

b (f o + λh, g)− b (f, g)

λ

≤ 0

and thus tf (g, g;h) + bf (g, g;h) ≤ 0. �
Proof of Proposition 12: If< is complete, Proposition 3 establishes that t (f, g)+b (f, g) =

0 for all f, g and thus the upper bound established in Proposition 3 implies

AS ⊂ arg max
f
{t (f, g) + b(f, g)}

for all g. Proposition 2.3.2 in Clarke (1983) then implies

0 ∈ ∂f t (f, g) + ∂fb(f, g)

for all f ∈ AS. �
Proof of Proposition 13 (a) Proposition 6 requires t (f, g) = b (g, f) . Hence, both t (f, g)

and b (f, g) are Lipschitz in g establishing that tg and bg exist. Thus,

tf (f + x, g + x;h) = lim inf
fo→f,λ↓0

t (f o + x+ λh, g + x)− t (f o + x, g + x)

λ

= lim inf
fo→f,λ↓0

t (f o + λh, g + x)− t (f o, g + x)

λ

= lim inf
fo→f,λ↓0

b (g + x, f o + λh)− b (g + x, f o)

λ

= lim inf
fo→f,λ↓0

b (g, f o + λh)− b (g, f o)

λ

= bg (g, f ;h)

= tf (f, g;h) ,
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where the second equality follows from Proposition 1.b, the third from t (f, g) = b (g, f) , the

fourth from Proposition 1.b’, and the fifth and sixth from t (f, g) = b (g, f) . This demon-

strates the first and second equalities of this part. The third and fourth equalities follow

similarly.

(b) By Proposition 6 for all f, g ∈ AS and all µ > 0, t (µf, µg) = µt (f, g). Hence,

tf (µf, µg;µh) = lim inf
fo→f,λ↓0

t (µf o + µλh, µg)− t (µf o, µg)

λ

= µ lim inf
fo→f,λ↓0

t (f o + λh, g)− t (f o, g)

λ

= µtf (f, g;h) .

A parallel proof applies for bf .

(c) Part (c) follows from parts (a) and (b).

(d) Proposition 6.e.4 requires that for all f, g ∈ AS and α ∈ (0, 1)

t (f + α (g − f) , g) ≥ (1− α) t (f, g) ,

and thus for all α ∈ (0, 1)

t (f + α (g − f) , g)− t (f, g)

α
≥ −t (f, g) .

Hence,

tg (f, g; g − f) = lim inf
fo→f,λ↓0

t (f o + λ (g − f o) , g)− t (f o, g)

λ

≥ −t (f, g) ,

establishing the result. A parallel proof applies for bf .

(e) Proposition 8 establishes that t and b are concave in their arguments. Theorem 23.4

of Rockafellar (1970) establishes that the one-sided directional derivative (in the sense of

convex analysis) exists and is the support function for its superdifferential. Proposition 2.2.6

and 2.2.7 of Clarke (1983) establish that the Clarke directional derivative corresponds to the

one-sided directional derivative from convex analysis when t or b are concave. �
Proof of Proposition 15⇒Monotonicity ensures that ri (P (g)) ∩ ri (N (g)) = ∅. If both

are convex, then the Finite-Dimensional Separating Hyperplane Theorem (see, for example,
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Aliprantis and Border 2006) ensures the existence of a π ∈ ∆ such that

f ∈ P (g)

implies

π′f ≥ π′g

and f ∈ N (g) requires

π′g ≥ π′f.

To show that π′f ≥ π′g implies f ∈ P (g) , suppose to the contrary that there exists an f

such that π′f ≥ π′g but f /∈ P (g) . Completeness then ensures that f ∈ N (g) which leads

to a contradiction unless π′f = π′g. ⇐ Trivial.

Proof of Proposition 19: (a) By Proposition 6, axiom (A.5.1) implies that t (f, g + x) =

t (f, g)− x for all x ∈ X and, hence,

t∗ (π, g + x) = inf
f
{π′f − t (f, g + x)}

= inf
f
{π′f − t (f, g) + x}

= t∗ (π, g) + x for all x ∈ X.

Hence,

A (π, g + x) = t∗ (π, g + x)− π′ (g + x)

= t∗ (π, g)− π′g

= A (π, g) for all x ∈ X.

(b) By Proposition 6, axiom (A.5.2) requires that t (f, µx) = µt
(
f
µ
, x
)
for all µ > 0, whence

t∗ (π, µg)

= inf
f
{π′f − t (f, µg)}

= µ inf
f

{
π′
f

µ
− t
(
f

µ
, g

)}
= µt∗ (π, g) for all µ > 0.

Hence,

R (π, µg) =
t∗ (π, µg)

µπ′g
=
µt∗ (π, g)

µπ′g
= R (π, g) .
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(c) Follows from parts (b) and (c).

(d) By Proposition 6, axiom (A.5.4) requires that t (αf + (1− α) g, g) ≥ (1− α) t (f, g) for

all α ∈ (0, 1) , whence

inf {π′f − t (αf + (1− α) g, g)}

= inf
{π
α

′
[αf + (1− α) g − (1− α) g]− t (αf + (1− α) g, g)

}
= t∗

(π
α
, g
)
− 1− α

α
π′g

≤ inf {π′f − (1− α) t (f, g)}

= (1− α) inf

{
π

(1− α)

′
f − t (f, g)

}
= (1− α) t∗

(
π

(1− α)
, g

)
for all α ∈ (0, 1) .

Hence,

A
(π
α
, g
)

= t∗
(π
α
, g
)
− π

α

′
g

≤ (1− α) t∗
(

π

(1− α)
, g

)
+

1− α
α

π′g − π

α

′
g

= (1− α)

(
t∗
(

π

(1− α)
, g

)
− π

(1− α)

′
g

)
= (1− α)A

(
π

1− α, g
)
.

(e) Follows immediately from the convexity of t∗ (π, g) .�
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Figure 1. Illustration of Proposition 3
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Figure 2. Incomplete Certainty Independent Preferences
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Figure 3. Incomplete Preferences Satisfying Radial Invariance
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Figure 4. Subjective Beliefs
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