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Abstract

We have previously identified NOD2 genotype and inflammatory bowel diseases (IBD) phe-

notype, as associated with shifts in the ileal microbiome (“dysbiosis”) in a patient cohort.

Here we report an integrative analysis of an expanded number of Crohn’s disease (CD)

related genetic defects in innate immune function (NOD2, ATG16L1, IRGM, CARD9, XBP1,

ORMDL3) and composition of the ileal microbiome by combining the initial patient cohort

(Batch 1, 2005–2010, n = 165) with a second consecutive patient cohort (Batch 2, 2010–

2012, n = 118). These combined patient cohorts were composed of three non-overlapping

phenotypes: 1.) 106 ileal CD subjects undergoing initial ileocolic resection for diseased

ileum, 2.) 88 IBD colitis subjects without ileal disease (predominantly ulcerative colitis but

also Crohn’s colitis and indeterminate colitis, and 3.) 89 non-IBD subjects. Significant differ-

ences (FDR < 0.05) in microbiota were observed between macroscopically disease unaf-

fected and affected regions of resected ileum in ileal CD patients. Accordingly, analysis of

the effects of genetic and clinical factors were restricted to disease unaffected regions of the

ileum. Beta-diversity differed across the three disease categories by PERMANOVA (p <
0.001), whereas no significant differences in alpha diversity were noted. Using negative

binomial models, we confirmed significant effects of IBD phenotype, C. difficile infection,

and NOD2 genotype on ileal dysbiosis in the expanded analysis. The relative abundance of

the Proteobacteria phylum was positively associated with ileal CD and colitis phenotypes,

but negatively associated with NOD2R genotype. Additional associations with ORMDL3 and

XBP1 were detected at the phylum/subphylum level. IBD medications, such as immuno-

modulators and anti-TNFα agents, may have a beneficial effect on reversing dysbiosis asso-

ciated with the IBD phenotype. Exploratory analysis comparing microbial composition of the

disease unaffected region of the resected ileum between 27 ileal CD patients who subse-

quently developed endoscopic recurrence within 6–12 months versus 34 patients who did
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not, suggested that microbial biomarkers in the resected specimen helped stratify patients

with respect to risk of post-surgical recurrence.

Introduction

Inflammatory bowel disease (IBD) describes a group of disorders in which the intestines

become inflamed. Two major types of IBD are ulcerative colitis (UC) and Crohn’s disease

(CD). UC is limited to the colon or large intestine. Crohn’s disease, on the other hand, can

involve any part of the gastrointestinal tract from the mouth to the anus. Most commonly,

though, it affects the ileum or the colon or both. Abnormal host-microbial interactions and

genetic susceptibility are implicated in the pathogenesis of IBD, reviewed in [1]. We previously

examined the effects of the NOD2 and ATG16L1 polymorphisms on ileal microbial composi-

tion in 1) ileal CD subjects undergoing initial ileal resection, 2) IBD colitis without ileitis (pre-

dominantly ulcerative colitis) subjects and 3) subjects without inflammatory bowel disease

(non-IBD) [2–4]. These previous studies identified NOD2 genotype and C. difficile infection,

in addition to IBD phenotype, as associated with shifts in ileal microbiota or “dysbiosis” [2–4].

We also found that differential expression of genes involved in Paneth cell function were asso-

ciated with shifts in ileal microbial composition [5]. In the current study, the effects of an

expanded panel of Crohn’s disease risk alleles [6–10] that are associated with defects in innate

immunity (NOD2, ATG16L1, IRGM, CARD9, XBP1, ORMDL3) on ileal microbial composi-

tion, were analyzed by combining the original patient cohort (referred to as “Batch 1 2005–

2010”) with a second consecutive patient cohort collected between 2010 and 2012 (“Batch 2

2010–2012”, see Table 1”) Some of these genes are implicated in autophagy (e.g. ATG16L1,

IRGM), or endoplasmic reticulum stress (e.g. XBP1, ORMDL3), and/or Paneth cell dysfunc-

tion (NOD2 ATG16L1, IRGM).

The majority of patients with the ileal CD phenotype eventually undergo surgical resection

of diseased ileum because of stricturing and penetrating complications [11]. Unfortunately,

disease recurrence in previously disease-free segments of the ileum at the surgical anastomosis

is common [12–16]. A reduced relative abundance of Faecalibacterium prausnitzii, a commen-

sal anaerobic bacterium in the distal intestine (ileum and colon), has been a consistent feature

associated with the ileal CD phenotype [1, 3,4,17–21]. This bacterial species, along with other

closely related clostridial species, are key sources of the short chain fatty acid butyrate, which is

the preferred energy source for enterocytes in the distal intestine, and exhibits anti-inflamma-

tory and pro-intestinal barrier properties in experimental mouse models [22]. A diminished

relative abundance of ileal F. prausnitzii at the time of resection has been associated with a

higher risk of post-operative endoscopic recurrence of ileal CD six months after surgery

[17,23–25]. Consequently, an additional goal of this study was to determine whether alter-

ations in the relative abundances of specific bacterial taxa, such as F. prausnitzii, at the time of

ileal resection were predictive of subsequent endoscopic recurrence. To this end, ileal micro-

biota in the disease unaffected region of the ileal resection were compared between a group of

ileal CD subjects who subsequently developed endoscopic recurrence in the neo-terminal

ileum and a group of ileal CD subjects who did not, 6–12 months after initial surgery.

Materials and methods

Patient recruitment

This study was approved by the Institutional Review Boards of Stony Brook University (IRB#

245010), Washington University-St. Louis (IRB# 201101774), and the University of North

Ileal microbiome in ileal Crohn’s disease
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Carolina (IRB# 10–0355). Patient written consents were obtained from all study participants

and assent and parental consents were obtained for children <18 years of age at their respec-

tive institutions. Coded samples stripped of all identifying information were collected from

subjects in the three following categories: 1) Ileal CD patients undergoing initial ileocolic

resection (ICR) of diseased ileum; 2) colitis patients without ileitis (predominantly ulcerative

colitis or UC, but also Crohn’s colitis and indeterminate colitis) undergoing initial total colect-

omy; and 3) patients without IBD undergoing initial right or total colectomy were prospec-

tively enrolled to donate tissue, blood and longitudinal clinical information in a consecutive

fashion by the Stony Brook University GI Biobank (Batch 2, 2010–2012), the Washington Uni-

versity Digestive Diseases Research Core Center Biobank Core (Batch 1, 2005–2010; Batch 2,

2010–2012) and the U. of North Carolina Multidisciplinary IBD Center (Batch 2, 2011–2012)

as previously described [4]. The diagnosis of ileal CD, UC, indeterminate colitis and Crohn’s

colitis was made ultimately on the basis of pathological criteria (surgical resection specimen)

[26–28]. A minimum of 4 ex-vivo biopsies were taken separately from the macroscopically dis-

ease unaffected proximal ileal margin (from all subjects) and from the disease affected region

Table 1. Distribution of NOD2, ATG16L1, IRGM, CARD9 and ORMDL3 risk alleles and clinical characteristics in ileal CD, colitis and non-IBD subjects in batches

1 and 2. The percent of subjects recruited at each of the three IBD centers with complete genotype and clinical characteristics with at least one risk allele and the percent of

subjects who have at least one risk allele (see Methods) are listed.

Ileal CD Colitis Non-IBD

n = 106 n = 88 n = 89

Batch1 Batch2 P value Batch1 Batch2 P value Batch1 Batch2 P value

n = 50 n = 56 n = 59 n = 29 n = 56 n = 33

IBD Center
Wash. U.-St. Louis 100% 62% 100% 83% 100% 73%

Stony Brook U. 0% 9% 0% 17% 0% 27%

U. of North Carolina 0% 29% 0% 0% 0% 0%

IBD Risk Allele
NOD2R composite 40% 30% 0.38 19% 14% 0.78 14% 52% <0.001

ATG16L1R 94% 79% 0.05 81% 76% 0.79 77% 79% 0.99

IRGMR 30% 27% 0.90 29% 17% 0.34 27% 18% 0.38

CARD9R 94% 96% 0.98 93% 93% 1 88% 91% 0.85

XBP1R 12% 14% 0.99 10% 14% 0.84 14% 0% 0.01

ORMDL3R 76% 73% 0.90 75% 79% 0.88 62% 70% 0.51

Clinical covariates
Male gender % 46% 43% 0.91 53% 55% 1 41% 39% 0.99

Caucasian race % 94% 82% 0.11 91% 97% 0.55 89% 94% 0.56

Median age years

(range)

33

(18–72)

32

(17–67)

44

(18–69)

47

(20–72)

61

(24–84)

62

(17–86)

Duration IBD years

(range)

5

(0–38)

5

(0–35)

5

(0–45)

5

(0.1–30)

NA NA

Current smoker % 32% 29% 0.90 10% 3% 0.46 27% 18% 0.38

+ fecal C. difficile toxin % 0% 5% 0.32 24% 0% 0.01 0% 6% 0.23

Colon Cancer % 6% 0% 0.20 17% 3% 0.13 54% 45% 0.46

Median BMI kg/m2

(range)

24

(16–41)

23

(14–44)

26

(16–43)

28

(19–36)

28

(18–47)

26

(20–48)

5-ASA % 60% 38% 0.04 63% 48% 0.27 0% 3% 0.65

Steroids % 48% 54% 0.67 54% 52% 1 2% 12% 0.11

Immunomodulators % 48% 30% 0.09 29% 28% 1 4% 6% 0.98

Anti-TNF alpha % 24% 45% 0.04 31% 52% 0.09 2% 0% 0.96

https://doi.org/10.1371/journal.pone.0213108.t001
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(from ileal CD subjects) of fresh pathological specimens using Radial Jaw4 large capacity

biopsy forceps (Boston Scientific, Natick, MA), and immediately placed in RNA stabilization

solution (RNAlater, Life Technologies, Grand Island, NY, USA) overnight at 4˚C prior to stor-

ing at -80o C. A subset of the ileal CD patients (n = 61) underwent follow up colonoscopy

within 6–12 months to assess endoscopic disease recurrence as previously described [29]. Ex-
vivo research ileal biopsies, blood and longitudinal clinical information were also prospectively

collected from non-IBD patients undergoing colonoscopies for colon cancer screening by the

Stony Brook University GI Biobank (2010–2012) and the Washington University Digestive

Diseases Research Core Center Biobank Core (2005–2012).

Additional clinical metadata on smoking, obesity, and IBD medications were obtained on

samples collected by the Stony Brook University GI Biobank and the Washington University

Digestive Disease Research Core Center Biobank Core and Dr. Sartor’s laboratory, by review-

ing the medical records including the pathology report of the resected intestine by a gastroen-

terologist (EL, RBS) [4]. Preoperative mechanical bowel preparations were not routinely

ordered for surgical procedures on IBD patients but were often ordered for the non-IBD

patients. A smoker was defined as smoking�7 cigarettes a week for at least a year [12,30]. In

order to assess the potentially confounding effect of obesity [31], body mass index (BMI) was

also recorded. C. difficile infection, which has been associated with IBD [32], was recorded as

the presence of a positive fecal C. difficile toxin B [33] within a week of the sample collection.

Antibiotics have a significant effect on the microbiome [34] and all patients received preopera-

tive surgical antibiotic prophylaxis (long-acting beta lactam 30 minutes before the initial inci-

sion was made) [35]. Patients diagnosed with C. difficile infections (predominantly colitis

patients) were treated with oral vancomycin up until surgery. The few non-IBD (total<10)

subjects from whom ileal research biopsies were collected during colonoscopy did not receive

antibiotics prior to collection of the ileal biopsies for at least two months. Dietary information

collected on the subjects revealed that none of the subjects were vegetarian and none of the

subjects were on either elemental or polymeric enteral feedings [34]. Because there was no sig-

nificant difference between the three institutions with respect to race and ethnicity (all pre-

dominantly non-Hispanic White/Caucasian), the Batch 2 patients were analyzed as a single

cohort.

IBD genotyping

Because of their relationship to Crohn’s disease phenotype, our analysis focused on the follow-

ing single nucleotide polymorphisms (SNPs), which are implicated in microbial sensing,

autophagy, endoplasmic reticulum stress, and/or Paneth cell dysfunction [6–10]: 1) NOD2

risk alleles (rs2066847, rs2066884, rs2066845, rs5743289) [9,36–41], ATG16L1 (rs2241880)

[42–45], IRGM (rs13361189) [46–48], 2) CARD9 (rs10870077) [49,50], 3) XBP1 (rs35873774)

[51], 4) ORMDL3 (rs2872507) [52]. The subjects were categorized as 1) homozygous for

both non-risk alleles NR/NR), termed NR or 2) carrying at least one risk allele (R/NR, R/R),

termed R. Four major NOD2 risk alleles were combined to form two composite categories: 1)

NOD2NR, subjects harboring none of the four major risk alleles 2) NOD2R, subjects harboring

at least one of the four major risk alleles (i.e., NOD2R/NR + NOD2R/R). Illumina Immunochip

genotyping using genomic DNA prepared from peripheral blood and/or tissue was performed

on all of the subjects [53–55]. A subset of these patients had previously undergone genotyping

by using the Sequenom MassArray System (Sequenom Inc., San Diego, CA) in the Washing-

ton University Sequenom Technology Core 3]. In the patients for which genotyping of the

three major nonsynonymous NOD2 risk alleles, Leu1007fs (rs2066847, SNP13), R702W

(rs2066884, SNP8) and G908R (rs2066845, SNP12), could not be assigned by Illumina

Ileal microbiome in ileal Crohn’s disease
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Immunochip, genotyping for these SNPs was performed by Taqman Genotyping Assays (Life

Technologies, Grand Island, NY, USA) as previously described [4]. For the ATG16L1 and

IRGM genotypes, the value of a missing SNP was imputed from other tightly linked SNPs. For

ATG16L1 the tightly linked SNP was rs12994997 and for IRGM genotype the SNPs were

rs10065172 and rs11747270.

16S rRNA amplicon library construction and sequencing

Amplicons of the V3-V5 hypervariable regions of the bacterial 16S rRNA gene were sequenced

using the 454 FLX Titanium Sequencing Platform and the same primers employed for charac-

terizing the microbial communities in healthy individuals at different body sites including the

gastrointestinal tract by the Human Microbiome Project [4, 56]. Library construction and

sequencing for Batch 1 samples (2005–2010), was performed at the Genome Institute at Wash-

ington University-St. Louis. Library construction and sequencing for a small subset (n = 15) of

Batch 1 samples and for all the Batch 2 (2010–2012) samples for all subjects recruited was per-

formed in the Frank laboratory (UC Denver) and the sequencing was performed at The Centre

for Applied Genomics at the Hospital for Sick Children in Toronto, Canada following the

same standard operating procedures [4]. The variance in the relative abundances of phyla/sub-

phyla taxa between duplicate libraries sequenced at the two different centers (n = 15) did not

exceed the variance observed for duplicate libraries sequenced at a single center (n = 15). Clini-

cal, genotyping, and sequencing data can be accessed through the dbGAP authorized access

system (Request access to: phs000255.v2). In order to request access to any of the individual-

level datasets within the controlled-access portions of the database, the Principal Investigator

(PI) and the Signing Official (SO) at the investigator’s institution will need to co-sign a request

for data access, which will be reviewed by an NIH Data Access Committee at the appropriate

NIH Institute or Center (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login).

Sequence reads were screened for basic quality defects by the software program BARTAB

[57]. All sequences were checked for chimerism with Uchime (usearch6.0.203_i86linux32)

[58] using the Schloss Silva references [59]. The filtered sequences were aligned and classified

with SINA (1.2.11 using the 418,497 bacterial sequences in Silva 115NR99 as reference config-

ured to yield Silva technology [60,61]. Operational taxonomic units (OTUs) at the genera level

were produced by clustering sequences with identical taxonomic assignments. Relative abun-

dances were calculated by dividing OTU counts were normalized between samples by dividing

sequence counts by the total number of high-quality 16S sequences generated per sample to

calculate the average relative abundance values shown in (Table 2). Phylum/subphyla level

OTU tables were generated by collapsing lower level OTUs into higher-level categories corre-

sponding to the categories used previously [4]: 1) Actinobacteria, 2) Bacteroidetes, 3) Firmi-
cutes/Clostridia/Ruminococcaceae (family corresponding to Clostridia Group IV), 4)

Firmicutes/Clostridia/Lachnospiriceae (family corresponding to Clostridia Group XIVa), 5)

Firmicutes/Clostridia/Other, 6) Firmicutes/Bacillus (class), 7) Firmicutes/Other, 8) Proteobac-
teria, and 9) Other taxa.

Quantitative PCR for targeted bacterial subgroups

QPCR assays were performed using established primers for total bacteria (forward, 5’- GTG
STG CAY GGY TGT CGT CA-3’ and reverse 5’- ACG TCR TCC MCA CCT TCC
TC-3’) [62], F. prausnitzii (forward 5’-CCC TTC AGT GCC GCA GT-3’ and reverse

5’-GTC GCA GGA TGT CAA GAC-3’) [63], C. coccoides-E. rectales subgroup (forward,

5’–CGG TAC CTG ACT AAG C-3’and reverse 5’–AGT TT(C/T) ATT CTT GCG
AAC G-3’) [63]. The log2 transformation of the relative abundance of each bacterial

Ileal microbiome in ileal Crohn’s disease
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subgroup was measured by ΔCt = Ct (threshold cycle) total bacteria−Ct subgroup. All assays were

carried out in triplicate and results averaged. Plasmid quantification standards were prepared

from representative clones of the target organisms to insure that the assays were conducted

within the linear range and with similar slopes [64].

Statistical analysis

Patient samples with less than 100 total high-quality 16S rRNA sequence counts were excluded

from the analysis. Alpha diversity indices (i.e., Chao1, Shannon complexity H) were calculated

for each using the software package Explicet (v2.9.4, www.explicet.org) [65]. Beta diversity was

calculated using the adonis function in the R vegan package as previously described [66,67] at

the phylum/subphylum level, family and genus levels. This function uses a non-parametric

multivariate analysis of variance test (PERMANOVA) [68], which was applied using Bray-

Curtis, Morisita-Horn and Jaccard indices as distance measurements [69].

Because over-dispersion is often observed in microbiome sequence count data, negative

binomial regression models [70, 71] were used to analyze the 16S rRNA sequence data. The

OTUs (relative abundance�0.0001 and prevalence�0.01) were grouped primarily at the phy-

lum/subphylum level as described above [4]. To identify taxa with significant differences in rel-

ative abundance between disease affected and disease unaffected regions of the resected ileum

in ileal CD patients undergoing initial ICR, a generalized linear mixed model was used:

logðmijkÞ ¼ bi0k þ b1kPathologyij þ b2kBatchi þ ðlog total countÞij

bi0k ¼ b0k þ bikIfPatient ¼ ig

Yijk � NBðmijk; �kÞ

Here Yijk denotes the OTU k’s observed count for tissue j in patient i with μijk being its mean.

The symbol ϕk is the dispersion parameter for the count of OTU k. The OTU k of patient i is

associated with a random coefficient bik in order to assess paired disease affected and disease

unaffected samples collected from the same patient i. The Batch variable refers to whether

Table 2. Comparison of the relative abundances of phyla/subphyla taxa between the disease unaffected and disease affected regions of resected ileum in ileal CD

subjects undergoing initial ICR. The mean relative abundance ± standard deviation is shown for each bacterial category in Batch 1 (2005–2010) and Batch 2 (2010–2012)

as well as the FDR for respectively macroscopic pathology (disease affected vs. disease unaffected) and the sample batch (Batch 1 Batch 2). A total of 101 disease affected

and 111 disease unaffected samples were analyzed, of which 91 were paired samples.

Disease affected Disease unaffected FDR

Batch 1 Batch 2 Batch 1 Batch 2 Path Batch

Actinobacteria 0.028

±0.055

0.006

±0.011

0.049

±0.088

0.009

±0.016

0.092 <0.001

Bacteroidetes 0.314

±0.272

0.447

±0.255

0.292

±0.273

0.356

±0.278

0.346 0.165

Firmicutes/Clostridia/
Lachnospiraceae

0.166

±0.161

0.172

±0.141

0.127

±0.135

0.148

±0.144

0.071 0.449

Firmicutes/Clostridia/
Ruminococcaceae

0.028

±0.039

0.045

±0.074

0.021

±0.031

0.036

±0.08

0.023 0.473

Firmicutes/Clostridia/
Other

0.059

±0.121

0.056

±0.127

0.058

±0.136

0.061

±0.141

0.631 0.449

Firmicutes/Bacilli 0.124

±0.195

0.051

±0.119

0.149

±0.177)

0.088

±0.177

0.071 <0.001

Proteobacteria 0.158

±0.206

0.146

±0.183

0.197

±0.223

0.204

±0.222

0.026 0.637

https://doi.org/10.1371/journal.pone.0213108.t002
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samples were collected in Batch 1 (2005–2010) or Batch 2 (2010–2012). The log total count of

each patient sample is considered as an offset.

Negative binomial models were used to identify associations between OTUs and IBD phe-

notype (ileal CD, colitis without ileal disease, and control non-IBD), IBD genotype, and clini-

cal co-variates (see Table 1).

For OTU k, the model is:

Yik � NBðmik; �kÞ

logðmikÞ ¼ b0k þ b1kphenotypei þ SjajkGenotypesij þ Slglkcovariatesil þ b2kBatchi

þinteractionsþ ðlog total countÞi

Yik is the observed counts for subject i on OTU k. The IBD genotypes and covariates in the

model are listed in Table 1. The Batch variable refers to whether samples were collected in Batch

1 (2005–2010) or Batch 2 (2010–2012). The interactions included first-order interactions between

phenotype, genotypes, clinical covariates and Batch. Stepwise variable selection based on Bayesian

information criterion (BIC) was applied to generate the final model. The p value of coefficients in

final model was subject to FDR correction [72], with the FDR threshold set at 0.05.

The relative abundances of F. prausnitzii and C. coccoides-E.rectales measured by qPCR

were analyzed using a permutation-based linear regression model.

Results

Distribution of IBD phenotype, genotype, and clinical covariates in Batch 1

(2005–2010) and Batch 2 (2010–2012) samples

Samples were analyzed from 154 subjects in Batch 2 in addition to the 170 subjects in Batch 1

analyzed in our previous study [4]. Of the 324 total subjects, genotype, and clinical data were

completed for 283 (87%) subjects. The distributions of IBD phenotype, genotype, and clinical

covariates for the 283 of 324 subjects with complete datasets are summarized in Table 1. All of

the Batch 1 samples and the majority (62–83%) of Batch 2 samples were collected at the Wash-

ington University–St. Louis medical center and the remaining subjects (17–38%) were

recruited at the Stony Brook University and University of North Carolina medical centers

(Table 1). At all three institutions, the race and ethnicity of the subjects were predominantly

White/Caucasian. The proportion of subjects for each disease phenotype who had at least one

of the following risk alleles: the NOD2 risk super allele (rs2066847, rs2066884, rs2066845,

rs5743289), the ATG16L1T300A allele (rs2241880), the IRGM risk allele (rs13361189), the

CARD9 risk allele (rs10870077), the XBP1 risk allele (rs35873774), and the ORMDL3 risk

allele (rs2872507) are shown in Table 1. The high proportion of NOD2R non-IBD subjects in

Batch 2 reflects preferential selection of these individuals since our previous analysis indicated

that NOD2 genotype was associated with shifts in ileal microbiome composition, independent

of disease phenotype.

The clinical covariates for Batch 1 and Batch 2 samples (Table 1) revealed that the median

duration of IBD prior to initial surgery was 5 years for both ileal CD and colitis subjects. As

previously noted [4], ileal CD subjects were younger than non-IBD patients, and active smok-

ing was less prevalent in colitis subjects. A higher proportion of the Batch 2 ileal CD and colitis

subjects received anti-TNF alpha biologics at the time of surgery than Batch 1 subjects (See

Table 1). A lower proportion of the Batch 2 colitis subjects had C. difficile infections immedi-

ately prior to surgery than the Batch 1 colitis patients.
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16S rRNA sequencing analysis of ileal CD, colitis and non-IBD samples

A total of 5,739,816 high-quality V3–V5 sequences (median 6024 reads/sample, IQR 2950–

10314) were generated from the ileal specimens in this study. All libraries had a Goods cover-

age of� 95% (median 98%, IQR 97.9–98.8%) at the rarefaction point of 500 sequences. All of

the sequences were binned using an updated pipeline as described in Methods. Greater than

90% of the sequences could be binned into the following eight phylum/subphylum categories:

1) Actinobacteria, 2) Bacteroidetes, 3) Firmicutes/Clostridia/Ruminococcaceae, 4) Firmicutes/
Clostridia/Lachnospiraceae, 5) Firmicutes/Clostridia/Other, 6) Firmicutes/Bacillus, 7) Firmi-
cutes/Other, 8) Proteobacteria, (see Fig 1). The Firmicutes phyla were sub-divided between clas-

ses Clostridia, Bacilli and Firmicutes/Other. The Clostridia taxa were then further subdivided

into Clostridia/Ruminococcaceae and Clostridia/Lachnospiraceae at the family level, corre-

sponding to the Clostridium Group IV and XIVa phylum/subphylum categories designated

when the Batch 1 samples were previously analyzed [4]. The remaining Clostridia OTUs were

grouped as Clostridia/Other.
Because samples were collected from both the macroscopically disease unaffected region

(proximal margin) and the disease affected region of the resected ileum, we first examined the

within-subject differences in microbiota between disease unaffected and affected regions of

the ileum. To this end, a generalized linear mixed effect negative binomial model was used to

measure the effects of pathology (disease affected vs. disease unaffected) as well as sample

batch on ileal microbiota binned at the phyla/subphyla level (see Table 2). The effect of pathol-

ogy was significant for Ruminococcaceae (FDR = 0.023) and Proteobacteria (FDR = 0.026, see

Table 2). As shown in Fig 2 and S1 Table, the mean relative abundance of Proteobacteria was

consistently higher in the disease unaffected regions than the adjacent disease affected regions

from ileal CD subjects.

Fig 1. Phylum/Subphylum comparison of ileum-associated bacterial communities of ileal CD, colitis, and non-

IBD samples. The average relative abundances of 6 of 8 phylum/subphylum bacterial category are shown for

macroscopically disease affected and macroscopically disease unaffected samples, respectively from ileal CD, and from

macroscopically disease unaffected samples from colitis and control subjects. In this figure “Other” includes

Firmicutes/Clostridia/Other, Firmicutes/Other and all remaining taxa.

https://doi.org/10.1371/journal.pone.0213108.g001
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Fig 2. The mean relative abundances of selected phyla/subphyla groups between disease affected ileal samples from

ileal CD subjects, disease unaffected ileal samples from ileal CD subjects and disease unaffected ileal samples from

non-IBD subjects. A. Batch 1; B. Batch 2; C. Batch 1 and Batch 2 combined.

https://doi.org/10.1371/journal.pone.0213108.g002
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No significant differences (p< 0.05) were detected in measures of alpha diversity (complex-

ity measured by Shannon H or richness, measured by Chao1) of the ileal microbiome in ileal

CD, colitis, and non-IBD disease unaffected samples or between disease unaffected and disease

affected ileal CD samples. There were significant differences in beta diversity using three dif-

ferent dissimilarity indices, Bray-Curtis (p< 0.001, Fig 3), Jaccard (p< 0.001), and Morasita-

Horn (p<0.001) of the ileal microbiome in disease unaffected regions between the three phe-

notypes. Furthermore, pairwise comparisons revealed significant differences between all three

phenotypes (see S2 Table). While significant differences were detected for individual phyla/

subphyla categories, particularly Proteobacteria, between disease unaffected and disease

affected ileal CD samples, no significant difference in beta diversity was detected using any

three of the dissimilarity indices.

Integrated analysis of the effect of IBD phenotype, genotype and clinical

covariates on phyla/subphyla bacterial categories

Because significant differences were detected between disease affected and disease unaffected

samples from ileal CD subjects, analysis of the effects of IBD genotype (NOD2, ATG16L1,

IRGM, CARD9, XBP1 and ORMDL3) on each phylum/subphylum category was restricted to

only disease-unaffected samples from the three phenotypes (ileal CD, colitis, and non-IBD).

Integrated analysis of the effects of the three IBD phenotypes, six IBD genotypes, 11 clinical

covariates, sample batch, and all first order interactions, was conducted by building negative

binomial models for each of the eight phyla/subphyla categories, using these factors as predic-

tor variables (see Table 3).

The relative abundance of the Actinobacteria phylum was positively associated with both

ileal CD and colitis phenotype and negatively associated with detection of C. difficile fecal

toxin and anti-TNFα biologic use within 8 weeks of surgery. Significant first order interactions

were observed for C. difficile fecal toxin b�age, C. difficile fecal toxin � current smoker, and

IBD duration � anti-TNFα use.

Fig 3. Principal coordinate analysis (PCoA) conducted on genus-level microbiome data using a dissimilarity

matrix of Bray Curtis scores. The IBD phenotypes are color coded as follows: ileal CD (designated by red circle),

colitis without ileal disease (designated by red triangle), non-IBD (designated by green square). The four largest

dimensions (PC1, PC2, PC3, PC4) are shown and account for 11.8%, 6.5%, 3.3% and 2.9% of the differences,

respectively.

https://doi.org/10.1371/journal.pone.0213108.g003
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Table 3. Negative binomial model results for IBD phenotype, genotype and clinical covariates at the phylum/subphylum level. Variables with significant effects are

bolded.

Actinobacteria Log fold change p -value FDR

Main effects1

ileal CD 2.055 <0.0001 <0.0001

Colitis 1.368 <0.0001 <0.0001

Duration IBD -0.064 <0.0001 <0.0001

Batch -1.194 <0.0001 <0.0001

+ C. difficile fecal toxin -2.878 0.0056 0.0083

Anti TNF alpha -0.889 0.0015 0.0026

Current smoker -0.333 0.1081 0.1179

Age 0.001 0.9801 0.9801

First order interactions

+ C. difficile fecal toxin�Current smoker 2.806 0.0009 0.0017

+ C. difficile fecal toxin �Age 0.530 0.0124 0.0149

Duration IBD � Anti TNF alpha 0.008 0.0064 0.0083

Firmicutes/Clostridia/Lachnospiraceae Log fold change p -value FDR

Main effects

Immunomodulators -0.347 0.0068 0.0068

Firmicutes/Clostridia/Ruminococcaceae Log fold change p -value FDR

Main effects

ileal CD -0.989 0.0001 0.0002

Colitis -0.244 0.2714 0.2714

Age -0.017 0.0030 0.0032

Immunomodulators 1.879 0.0160 0.0224

BMI 0.0282 0.0674 0.0787

First order interactions

Immunomodulators � BMI -0.939 0.0012 0.0027

Firmicutes/Clostridia/Other Log fold change p -value FDR

NOD2R 0.569 0.0028 0.0042

ORMDL3R 0.716 0.0001 0.0003

XBP1R -1.000 0.0001 0.0003

+ C. difficile fecal toxin 1.365 0.0001 0.0003

Steroids 0.606 0.0026 0.0042

Immunomodulators -2.387 0.0027 0.0042

BMI -0.0416 0.0065 0.0081

Colon Cancer -0.0384 0.8703 0.8703

Current smoking -0.3546 0.2724 0.3143

First order interactions

Current smoking � 5-ASA 1.9875 <0.0001 0.0002

Current smoking � Steroids -1.287 0.006 0.0081

Immunomodulators � BMI 0.1074 0.0002 0.0005

Firmicutes/Bacilli Log fold change p-value FDR

Main effects

ileal CD 1.7384 <0.0001 <0.0001

Colitis 1.2696 <0.0001 <0.0001

Batch -0.9925 <0.0001 <0.0001

5-ASA -0.8868 0.0049 0.0057

Steroids -0.3359 0.2659 0.2659

(Continued)
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The relative abundance of the Firmicutes/Clostridia/Lachnospiraceae (Clostridia Group

XIVa) family was negatively associated with immunomodulatory use. The relative abundance

of C. coccoides-E. rectales bacterial group determined by qPCR corresponds roughly to the rela-

tive abundance of the Clostridia/Lachnospiraceae family [4]. Univariate analysis did not detect

a significant difference between NOD2R and NOD2NR ileal CD patients as previously reported

for the Batch 1 samples [4]. A linear regression model (see Table 4) detected a positive associa-

tion with the colitis phenotype. There was a trend towards a negative association between rela-

tive abundance of the C. coccoides-E. rectales group and immunomodulatory use and a

significant association with the immunomodulator � C. difficile fecal toxin first order

interactions.

The relative abundance of the Firmicutes/Clostridia/Ruminococcaceae (Clostridia Group IV)

family was strongly negatively associated with ileal CD phenotype and to a lesser extent with

age, and positively associated with immunomodulator use. A significant first order interaction

was observed for immunomodulators � BMI (see Table 3). At a more granular level, the relative

abundance of the Faecalibacterium genus within the Ruminococcaceae family revealed signifi-

cant negative associations with ileal CD phenotype (FDR = 0.0004) and age (FDR = 0.004),

and significant positive associations with immunomodulatory use (FDR = 0.004) and BMI

(FDR = 0.0006). In addition, a significant first order interaction was observed for immunomod-

ulators � BMI (FDR = 0.0007). The negative association with ileal CD was further confirmed by

Table 3. (Continued)

Actinobacteria Log fold change p -value FDR

First order interactions

5-ASA�Steroids 1.4087 0.0014 0.0019

Proteobacteria Log fold change p-value FDR

Main effects

ileal CD 0.6767 <0.0001 0.0001

Colitis 0.5257 0.002 0.0023

NOD2R -1.0788 0.0002 0.0003

ORMDL3R -0.2539 0.1433 0.1433

First order interactions

NOD2R� ORMDL3R 1.3856 <0.0001 0.0001

https://doi.org/10.1371/journal.pone.0213108.t003

Table 4. Linear regression results for disease phenotype, IBD genotype and additional clinical covariates (see Table 1) and the relative abundance of the C. coc-
coides-E. rectales bacterial subgroup and F. prausnitzii. Log fold change was determined by real time qPCR. Variables with significant effects were bolded.

C. coccoides-E-rectales bacterial subgroup Log fold change p-value FDR

Main effects

ileal CD 0.129 0.772 0.772

Colitis 1.456 0.002 0.004

Immunomodulators -0.762 0.095 0.143

C. difficile fecal toxin -1.08 0.290 0.347

First order interactions

Immunomodulators� C. difficile fecal toxin 4.71 0.001 0.004

Faecalibacterium prausnitzii Log fold change p-value FDR

Main effects

ileal CD -1.691 0.001 0.001

Colitis -0.930 0.074 0.074

https://doi.org/10.1371/journal.pone.0213108.t004
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measuring the relative abundance of F. prausnitzii by qPCR (FDR = 0.001, see Table 4). In

addition, within the Ruminococcaceae (Clostridia Group IV) family, the relative abundance of

the Subdoligranulum genus was also negative associated with the ileal CD phenotype (FDR<

0.0001) and colitis phenotype (FDR = 0.006).

Multiple associations, including IBD genotype (NOD2R, ORMDL3R, XBP1R), medications

(steroids, immunomodulators), C. difficile fecal toxin and BMI were detected with the relative

abundance of the remaining Clostridia taxa binned as Firmicutes/Clostridia/Other (see

Table 3). Exploratory analyses did not detect associations between these three IBD genotypes

with the predominant families binned within this group, such as Clostridiales/Clostridiaceae or

Clostridiales/Peptostreptococcaceae.

The relative abundance of the Firmicutes/Bacilli class was positively associated with both

ileal CD and colitis phenotype and negatively associated with 5-ASA (see Table 3). A signifi-

cant first order interaction was observed for 5-ASA � Steroids. At a more granular level, similar

associations with ileal CD (FDR = 0.04) and colitis (FDR = 0.02) phenotypes and negatively

associated with 5-ASA (FDR = 0.003) were observed for the Streptococcaceae family, which is

binned within this subphylum.

The relative abundance of the Proteobacteria phylum was positively associated with ileal

CD and colitis phenotypes, but negatively associated with NOD2 genotype (see Table 3). Sig-

nificant first order interactions were observed for NOD2R � ORMDL3R genotype and 5-ASA �

anti-TNFα. Similar associations were observed for the relative abundance of the Pseudomona-
daceae family and ileal CD phenotype (FDR<0.0001) and colitis phenotype (FDR = 0.0006).

A similar association was observed between the relative abundance of the Pseudomonas genus

and ileal CD phenotype (FDR<0.0001). In addition, significant associations were detected

with XBP1R (FDR = 0.0004) and with NOD2R�XBP1R first order interactions (FDR = 0.005).

Although the negative association between relative abundance of the Enterobacteriaceae family

and NOD2Rgenotype did not reach significance (FDR = 0.15, FDR threshold = 0.05), a signifi-

cant association was detected with first order NOD2R � IRGMR interaction. Finally, significant

associations were detected between the Enterobacteriaceae family and ATG16L1R genotype

(FDR = 0.03), 5-ASA (FDR = 0.035), BMI (FDR = 0.001), and 5-ASA � BMI first order interac-

tions (FDR = 0.01).

No significant effects were detected for the relative abundance of the remaining phyla/sub-

phyla categories including the Bacteroidetes phylum.

Microbial biomarkers of post-operative endoscopic recurrence in ileal CD

subjects

Of the 124 ileal CD subjects included in this study, 61 subjects underwent postoperative ileo-

scopy of the neo-terminal ileum 6–12 months after surgery. The distribution of subjects for

each Rutgeerts score were as follows: i0, n = 22; i1, n = 12; i2, n = 15; i3, n = 7; i4, n = 5. There-

fore, 34 ileal CD subjects did not subsequently develop endoscopic recurrence (i0-i1) in the

neo-terminal ileum, whereas the remaining 27 ileal CD subjects did subsequently develop

endoscopic recurrence (i2-i4). Further analyses were conducted to compare the microbial

composition of the disease unaffected region of the resected ileum in the 27 subjects who sub-

sequently developed endoscopic recurrence with that of the 34 subjects who did not.

No difference in alpha- or beta-diversity at the phylum, family, or genus level, was detected

in the disease unaffected specimens collected from the ileal CD subjects who did or did not

subsequently develop recurrence. To identify potential microbial biomarkers of recurrence,

univariate negative binomial analyses were conducted to identify taxa with significant differ-

ences in relative abundances between the ileal CD subjects who did or did not subsequently

Ileal microbiome in ileal Crohn’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0213108 February 28, 2019 13 / 22

https://doi.org/10.1371/journal.pone.0213108


develop recurrence. No significant difference was observed when the bacteria were binned at

the phyla/subphyla level. At the family level, the relative abundance of a number of bacterial

taxa, including two potentially pathogenic families, Pasteurellaceae and Mycobacteriaceae, dif-

fered between ileal CD patients with and without recurrence (see Table 5). However, although

the relative abundance of the Ruminococcaceae family was decreased in ileal CD patients who

subsequently developed endoscopic recurrence compared to those who did not, the difference

did not reach statistical significance. QPCR measurements of the relative abundance of C. Coc-
coides-E. rectales (i.e., members of the Lachnospiraceae family), and F. prausnitzii (i.e., an

abundant species of the Ruminococcaceae family indicated significantly reduced levels of both

taxa in patients with endoscopic recurrence (see Table 4). The difference between the qPCR

and 16S rRNA sequence count data may reflect in part the looser correlation between qPCR

and sequencing compared to the correlation between different sequencing platforms [73].

Discussion

The current studies report findings from an integrative approach to examine the relationships

between host genetic factors, clinical factors, and dysbiosis in an expanded IBD patient dataset

collected from three institutions with approximately double the number of subjects than was

previously reported [4]. This study focused on ileal CD phenotypes and, to reduce heterogene-

ity, included two non-overlapping phenotypes without ileal CD: 1) non-IBD subjects and 2)

colitis subjects without evidence of ileal disease. It is important to note however that the IBD

genotype profiles associated with UC/indeterminate colitis, Crohn’s colitis and ileal CD/ileo-

colonic CD phenotypes represent a continuum [9]. Our analysis emphasizes samples taken

from macroscopically disease-unaffected regions of the ileum, because we detected significant

differences in ileal microbiota between samples obtained from adjacent disease-affected

regions of the ileum, and included only samples from initial ileocolic resections. This is

Table 5. Univariate negative binomial results (p-value and FDR) for endoscopic recurrence: family-level analysis. Only families with FDR corrected p-values<0.05

are included.

Ileal CD p-value FDR

Increased in recurrence Recurrence

Mean ±std

No recurrence

Mean ±std

Proteobacteria/Gammaproteobacteria/
Pasteurellales/Pasteurellaceae

0.0467

±0.1581

0.0173

±0.0664

1E-5 0.002

Proteobacteria/Alphaproteobacteria/
Rhodospirillales/ Acetobacteraceae

0.0005

± 0.1583

0.0000

±0.0001

5E-5 0.004

Firmicutes/Clostridia/Clostridiales/
Other

0.0354

± 0.1405

0.0022

± 0.0046

4E-4 0.016

Actinobacteria/Corynebacteriales/
Mycobacteriaceae

0.0001

±0.0003

0.0000

±0.0003

0.001 0.026

Decreased in recurrence

Proteobacteria/Alphaproteobacteria/
Rhizobiales/ Methylobacteriaceae

0.0092

± 0.023

0.0137

± 0.0505

1E-4 0.006

Proteobacteria/Betaproteobacteria/
Burkholderiales/ Comamonadaceae

0.0028

± 0.0044

0.018

± 0.0663

0.001 0.02

Proteobacteria/Gammaproteobacteria/ Pseudomonadales/Moraxellaceae 0.001

± 0.002

0.0185

± 0.0799

0.001 0.02

Proteobacteria/Betaproteobacteria/
Burkholderiales/ Alcaligenaceae

0.004

±0.005

0.018

± 0.02

0.001 0.02

Firmicutes/Erysipelotrichi/
Erysipelotrichales/Erysipelotrichaceae

0.0001

± 0.0003

0.007

± 0.030

0.002 0.03

https://doi.org/10.1371/journal.pone.0213108.t005
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because increased reflux of colonic content into the neo-terminal ileum, would be anticipated

after surgical removal of the ileocolic valve.

This study linking IBD genotype and clinical covariates to ileal mucosal samples represents

one of the larger patient cohorts and is comparable in size to a previous study, which combined

ileal mucosal biopsies from three institutions in Boston, Toronto and the Netherlands [55].

The V3-V5 pyrosequencing platform used in the current study, differs from the previous study

which utilized the V4 Illumina sequencing [55]. The Illumina sequencing platform is generally

conducted at a greater depth of sequencing (9,55,76–79), however Illumina sequencing read

lengths (V1-V2, V3-V4, V4) are shorter than the pyrosequencing read length (V3-V5),. In the

current study, significant differences in α-diversity were not detected between the three phe-

notypes, possibly because of the lower depth of sequencing using the pyrosequencing

platform.

The dimensions of the linked data sets in the current study were reduced for integrative

analysis by restricting the number of distinct non overlapping IBD phenotypes to 3, binning

the taxa into 8 major phyla/subphyla categories, and by restricting the IBD loci to 6 that have

previously been associated with innate immunity. The analysis was also restricted to macro-

scopically normal appearing disease unaffected ileum at the time of initial surgical resection, in

contrast to the previous study where the ileal samples analyzed were more heterogeneous [55].

Our study is also unique in that detection of fecal C. difficile toxin (primarily in colitis subjects)

was included as a potentially confounding co-variate. The rationale for including this co-vari-

ate is based on our previous study of Batch 1 subjects [4], and a more recent study analyzing

the effect of FMT demonstrated marked dysbiosis associated with recurrent C. difficile infec-

tions in patients with and without ulcerative colitis compared to healthy subjects and com-

pared to ulcerative colitis patients without C. difficile infections [74]. However it remains

difficult to determine whether the marked dysbiosis is related to C. difficile infection or antibi-

otic treatment of the infection.

This expanded study confirmed our previous report [4] linking NOD2R genotype, C. diffi-
cile infection, and IBD phenotype to ileal dysbiosis in Batch1 subjects alone, despite the addi-

tion of four additional genetic loci associated with defects in innate immunity (IRGM,

CARD9, XBP1, and ORMDL3) to the analysis. In our previous study [3], NOD2R genotype

was linked to the relative abundance of the Proteobacteria phylum (p = 0.016, FDR = 0.07)

independent of IBD phenotype. In this current expanded study, this association now reached

significance (FDR = 0.0003). The observation that while ileal CD phenotype is positively asso-

ciated with the relative abundance of Proteobacteria phylum in disease unaffected ileal mucosa,

NOD2R genotype is negatively associated is somewhat puzzling. It may be related to the obser-

vation that the mean relative abundance of Proteobacteria was consistently lower in disease

affected ileal mucosa than in adjacent disease unaffected mucosa in ileal CD subjects. Both

observations reinforce the concept that dysbiosis is detectable in macroscopically normal ileal

mucosa in ileal CD subjects

Aggregate analysis at the phylum/subphylum level could mask the contribution of individ-

ual taxa within each of these groups, particularly if significant associations with phylogeneti-

cally related taxa exhibit opposing polarities. Identifying significant associations with bacterial

subcategories at the family or genus level likely was limited by the reduced relative abundance

of the individual taxa and the increased number of multiple comparisons. We are currently

pursuing deeper sequencing and expanding the patient cohort to increase statistical power to

detect differences in lower-level taxa. Nonetheless, at a more granular level, a possible effect of

NOD2 genotype was detected through NOD2 � XBP1 first order interactions with the relative

abundance of Pseudomonas genus, and through the NOD2�IRGM first order interaction with

the relative abundance of the Enterobacteriaceae family (FDR<0.05). The NOD2�IRGM
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interaction may reflect, at least in part, direct interactions between the IRGM, NOD2, and

ATG16L1 gene products, which have been reported to form a molecular complex that modu-

lates autophagic reactions to microbial products [8]. NOD2R genotype was not significantly

associated with lower Enterobacteriaceae (FDR = 0.15) based on our threshold of FDR = 0.05

in the current study, but the results suggest a trend. In contrast, NOD2 risk dosage has been

previously correlated with higher Enterobacteriaceae (FDR = 0.11, FDR threshold = 0.25) in

ileal samples collected in two of three cohorts in the previous study (Boston and the Nether-

lands, n = 314) [55]. In summary, while both the current and the previous IBD genotype–ileal

microbiota studies [55] detect associations between NOD2 risk alleles and Proteobacteria taxa,

these associations had opposite polarities. This may relate to the analysis of only macroscop-

ically disease unaffected ileal sample obtained from initial ileal resection in three relatively dis-

tinct IBD subphenotypes (ileal CD, colitis and non-IBD) in the current study.

NOD2 and other additional IBD genotypes (ORMDL3, XBP1) were also linked to the rela-

tive abundance of Clostridia spp. not binned into either the Ruminococcaceae or Lachnospira-
ceae families, but we were unable to attribute this association to any of the taxa within this

bacterial category. In the expanded study we could not confirm the increased abundance of C.

coccoides–E. rectales group and F. prausnitzii previously detected by PCR analysis in NOD2R

ileal CD subjects compared to NOD2NR ileal CD subjects in Batch 1 alone [4]

A recent analysis of the effect of NOD2 homozygotes and compound heterozygotes com-

pared to wild type NOD2 homozygotes in CD patients in clinical remission and in non-IBD

controls detected no significant differences in the fecal microbiota [75]. This may be due in

part to the smaller sample size, to the asymptomatic status of the CD patients, and to composi-

tional differences between ileal microbiota and fecal microbiota [76–78].

Associations between ileal CD phenotype were confirmed with the decreased relative abun-

dance of the Ruminococcaceae family and increased relative abundances of the Actinobacteria
phylum and the Firmicutes/Bacillus class. These analyses also confirmed similar associations

between the relative abundances of F. prausntizii within the Ruminococcaceae family, the Cory-
nebacteriaceae family in the Actinobacteria phylum, and the Streptococcaceae family in the

Bacillus class.

The current study has a larger or comparable cohort size compared with previous studies

on microbial predictors of post-ICR endoscopic recurrence at the time of resection [17,22–

25,79]. Q-PCR analysis of F. prausnitzii abundance confirmed that there was reduced abun-

dance of this species in subjects that subsequently went on to develop endoscopic recurrence

at 6–12 months compared to those that did not develop recurrence. In addition exploratory

analysis identified two potentially pathogenic taxa, Pasteurellaceae and Mycobacteriaceae, with

increased abundance in subjects that subsequently developed endoscopic recurrence com-

pared to those that did not. Atypical mycobacteria have been implicated in the pathogenesis of

CD [80]. The abundance of Pasteurellaceae is increased in fecal microbiota collected from

treatment-naïve new-onset CD subjects compared to non-IBD subjects [21]. Somewhat puz-

zling is a report from a recent study [78] that the abundance of Pasteurellaceae is increased in

the resected ileum collected from patients that remain in remission compared to those that

have endoscopic recurrence. It remains to be determined whether the taxa associated with

endoscopic recurrence simply reflect subtle alterations in the local environment, such as

changes in pH or oxidation, or whether they play a causal role in promoting recurrent inflam-

mation in the peri-anastomotic neo-terminal ileum.

Our study likely was limited by the batch effect observed, most notably for the relative

abundance of the Actinobacteria phylum and the Firmicutes/Bacilli class between Batch 1

(2005–2010) and Batch 2 (2010–2012) cohorts. Several differences between the two patient

sample cohorts, Batch 1 and 2, could contribute to this effect. Despite the use of the same

Ileal microbiome in ileal Crohn’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0213108 February 28, 2019 16 / 22

https://doi.org/10.1371/journal.pone.0213108


primers for library construction and the same pyrosequencing platforms, which generated

concordant results in a preliminary duplicate analysis of a small subset of samples, some sys-

tematic technical errors may have contributed to batch effects. Another factor could be related

to demographic differences between Batch 1 and Batch 2 patients, which included a higher

proportion of NOD2R non-IBD patients, a higher proportion of patients treated with anti-

TNFα biologics, and a lower proportion of patients treated with 5-ASA medications in Batch 2

compared to Batch 1 (see Table 1) This study was also limited with respect to assessing the

effect of antibiotics, because all of the patient received antibiotics prior to the collection of the

samples during surgical resection except <10 non IBD subjects, who contributed endoscopic

biopsies in Batch 2, where they received no antibiotics.

In summary, the results of this integrative analysis of a large number of uniformly curated

samples, confirm a significant effect of IBD phenotype, C. difficile infection, and NOD2 geno-

type on ileum-associated microbiota. Furthermore, we present data demonstrating that addi-

tional IBD-related genotypes, specifically alleles of ORMDL3 and XBP1, are associated with

changes in the ileal microbiome at the phyla/subphyla level, particularly Proteobacteria, either

as direct effects or through interactions with NOD2 or other clinical variables. As we continue

to expand our systematic accrual of subjects, further associations between host, environment,

and microbial factors with ileal CD phenotype and clinical outcome will emerge and help

delineate the complex etiology of this disease.
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