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Abstract
Background: Adaptive magnetic resonance imaging‐guided radiation therapy 
(MRgRT) can escalate dose to tumors while minimizing dose to normal tissue. We 
evaluated outcomes of inoperable pancreatic cancer patients treated using MRgRT 
with and without dose escalation.
Methods: We reviewed 44 patients with inoperable pancreatic cancer treated with 
MRgRT. Treatments included conventional fractionation, hypofractionation, and 
stereotactic body radiation therapy. Patients were stratified into high‐dose (biologi-
cally effective dose [BED10] >70) and standard‐dose groups (BED10 ≤70). Overall 
survival (OS), freedom from local failure (FFLF) and freedom from distant failure 
(FFDF) were evaluated using Kaplan‐Meier method. Cox regression was performed 
to identify predictors of OS. Acute gastrointestinal (GI) toxicity was assessed for 
6 weeks after completion of RT.
Results: Median follow‐up was 17 months. High‐dose patients (n = 24, 55%) had 
statistically significant improvement in 2‐year OS (49% vs 30%, P = 0.03) and 
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1  |   INTRODUCTION

Radiation therapy (RT) is controversial in the treatment of 
inoperable pancreatic cancer. The results of the phase III 
randomized LAP07 trial illustrate that conventional doses of 
3D conformal radiation (3DCRT) do not confer an overall 
survival (OS) advantage over chemotherapy alone in locally 
advanced pancreatic cancer (LAPC).1 Investigators have 
evaluated RT techniques other than 3DCRT to improve out-
comes. Retrospective and phase I/II studies of stereotactic 
body radiation therapy (SBRT) have shown local control out-
comes generally exceeding 80% but no change in OS as com-
pared to historical data and some concern with unfavorable 
toxicity.2-8 Multiple institutions have demonstrated favorable 
survival results with intensity‐modulated radiation therapy 
(IMRT) after induction chemotherapy.9,10 Krishnan et al have 
demonstrated that dose escalation using simultaneous inte-
grated boost (SIB) with IMRT improved survival and local 
control in LAPC compared to standard radiotherapy doses 
in a single‐institution retrospective study.11 These techniques 
suggest opportunities to potentially improve outcomes with 
dose escalation with RT.

Adaptive magnetic resonance imaging (MRI)‐guided ra-
diation therapy (MRgRT) is a novel modality that potentially 
allows for dose escalation while minimizing excessive radi-
ation dose to the organs at risk (OAR). MRgRT offers ex-
cellent visualization of the stomach, duodenum, small, and 
large intestines in the setting of abdominal RT and thus can 
account for interfractional variability of these organs.12,13 
The ability to adapt treatment plans daily allows for improved 
target volume coverage while meeting OAR constraints that 
is necessitated by daily gastrointestinal (GI) organ motion 
and deformation.14-16 While dose escalation with MRgRT 
appears technically feasible and can spare OARs from high 

doses of radiation, it is not clear whether this leads to changes 
in clinical outcomes. This multi‐institutional study evaluated 
clinical outcomes of inoperable pancreatic cancer patients 
treated with MRgRT and compared patients treated with and 
without adaptive dose‐escalated regimens.

2  |   METHODS

This study was a multi‐institutional, retrospective, cohort 
study based on data from 5 institutions. Eligible patients had 
biopsy‐proven, inoperable, pancreatic cancer treated with 
MRgRT from 2014 through 2016. All patients were evalu-
ated with diagnostic computed tomography (CT) imaging or 
MRI. Patients deemed medically inoperable were included 
in our study as well. The study excluded patients with prior 
pancreas‐directed RT, pancreatic surgery or any clinical‐
radiographic evidence of distant metastasis prior to initia-
tion of RT. Research conformed to the Helsinki Declaration 
and satisfied retrospective review requirements for each 
institution.

Systemic therapy was determined by the local medical 
oncologist or institutional study protocol. Induction chemo-
therapy regimens included nab‐paclitaxel plus gemcitabine, 
FOLFIRINOX, gemcitabine alone, FOLFOX, and combined 
regimens. Concurrent chemotherapy was delivered on the 
day of radiation treatments with conventional fractionated ra-
diation treatments and hypofractionated radiation treatments. 
Concurrent regimens consisted of nab‐paclitaxel plus gem-
citabine, gemcitabine alone, and capecitabine alone. After 
RT, patients received systemic therapy according to institu-
tional preferences.

MRgRT (ViewRay MRIdian System, Oakwood Village, 
OH) was used to treat all patients included in this study, but 

trended towards significance for 2‐year FFLF (77% vs 57%, P = 0.15) compared to 
standard‐dose patients (n = 20, 45%). FFDF at 18 months in high‐dose vs standard‐
dose groups was 24% vs 48%, respectively (P = 0.92). High‐dose radiation (HR: 
0.44; 95% confidence interval [CI]: 0.21‐0.94; P = 0.03) and duration of induction 
chemotherapy (HR: 0.84; 95% CI: 0.72‐0.98; P = 0.03) were significantly correlated 
with OS on univariate analysis but neither factor was independently predictive on 
multivariate analysis. Grade 3+ GI toxicity occurred in three patients in the standard‐
dose group and did not occur in the high‐dose group.
Conclusions: Patients treated with dose‐escalated MRgRT demonstrated improved 
OS. Prospective evaluation of high‐dose RT regimens with standardized treatment 
parameters in inoperable pancreatic cancer patients is warranted.

K E Y W O R D S
magnetic resonance imaging, pancreatic cancer, radiation therapy
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simulation and planning techniques varied between institu-
tions. The Supplemental methods and Table S1 offer a de-
tailed overview of simulation and planning information for 
each institution. In general, patients were simulated with a 
planning CT and planning 0.35T MRI scan in the supine 
position. Gross tumor volume (GTV) included the primary 
tumor with or without inclusion of any enlarged regional 
lymph nodes (>1 cm in short axis) and was delineated using 
MRI simulation, CT simulation and diagnostic imaging. 
Some institutions contoured regional lymph nodes into the 
clinical target volume (CTV) while others did not treat en-
larged regional lymph nodes and considered GTV equal to 
CTV. Planning target volume (PTV) was generated with a 
5 mm isotropic margin from GTV or CTV.

Adaptive MRgRT treatments were delivered for patients 
receiving 15 or fewer fractions and required patients to re-
ceive a volumetric MRI prior to each fraction. Patients were 
aligned daily to the GTV based on their volumetric MRI, and 
their radiation plan was evaluated on their current anatomy. 
If the plan did not meet OAR constraints or the target was 
not covered adequately, a new plan was created using the 
same beam angles. If the new plan did not resolve constraint 
violations and/or improve coverage, then the prior plan was 
utilized for treatment of that fraction. Adaptive MRgRT 
plans prioritized strict OAR constraints even at the expense 
of PTV coverage. However, if favorable OAR anatomy was 
noted during adaptive treatment, dose escalation to improve 
PTV coverage could be performed while maintaining OAR 
constraints.14-17 In some cases, an adaptive plan could be 
generated to treat above the prescription dose. For patients 
receiving >15 fractions of treatment, nonadaptive MRgRT 
was delivered using conventional treatment planning with no 
adjustment for daily internal anatomy.

In order to compare the effects of various dose and frac-
tionation schedules on outcomes, the biologically effective 
dose (BED10) was calculated for each patient using the radia-
tion prescription dose and alpha/beta ratio of 10 as previously 
reported in the literature.11 Patients receiving a radiation pre-
scription with BED10 >70 Gy were grouped in the high‐dose 
cohort while those receiving a radiation prescription with 
BED10 ≤70 Gy were grouped in the standard‐dose cohort. 
Table 1 provides complete RT regimen details for the study 
patients.

2.1  |  Outcomes and statistical analysis
Endpoints included OS, freedom from local failure (FFLF), 
freedom from distant failure (FFDF) and rate of acute grade 
3 or higher GI toxicities. All time to endpoint calculations 
were performed from start date of RT. Surviving patients 
were censored at last follow‐up. Both local and distant failure 
events were determined using routine clinical‐radiographic T
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studies. Local failure was defined as radiographic progres-
sion noted at the primary tumor site or regional nodes. 
Distant failure was defined as radiographic progression at 
any other site. Kaplan‐Meier curves were generated and dif-
ferences between groups were determined using the log‐rank 
method. Acute GI toxicity was graded based on the Common 
Terminology Criteria for Adverse Events version 4 and re-
corded from start of RT until 6 weeks after completion of RT.

Baseline patient characteristics were evaluated by Fisher's 
exact testing for categorical variables and Mann‐Whitney U 
testing for continuous variables. Statistical significance was 
defined as a P < 0.05 and all testing was two‐sided. Univariate 
(UVA) and multivariate (MVA) analyses were performed for 
OS using Cox regression. CA 19‐9 was analyzed as a binary 
categorical variable (cutoff value of 37 U/mL based on prior 
studies18). As the number of events was limited, only factors 
with univariate P < 0.05 were included in the MVA. The 
MVA defined significance as a P < 0.05. Statistical analyses 
were performed using IBM SPSS Statistics, version 23 (IBM 
Corp., Armonk, NY) and SAS (Version 9.4, SAS Institute 
Inc, Cary, NC).

3  |   RESULTS

A total of 44 patients were included in the study (high‐dose, 
n = 24; standard‐dose, n = 20). Concurrent chemotherapy 
was administered with all the conventional fractionated pa-
tients and all but two hypofractionated radiation patients. As 
expected, treatment fraction adaptation was more common in 
the high‐dose group (83%) vs the standard‐dose group (15%). 
After completion of RT, six patients (two in high‐dose group 
and four in the standard‐dose group) underwent surgical re-
section with five patients (two in high‐dose, three in stand-
ard‐dose) demonstrating microscopically negative margins. 
Further patient and treatment characteristics are listed in 
Table 2.

Median follow‐up was 17 months (24 months for sur-
viving patients). OS at 2 years from start of radiation in 
the high‐dose vs standard‐dose groups was 49% (95% con-
fidence interval [CI]: 28‐69%) vs 30% (95% CI: 10‐50%), 
respectively (P = 0.03, Figure 1). FFLF at 2 years from ra-
diation was 77% (95% CI: 58‐95%) for the high‐dose group 
vs 57% (95% CI: 34‐80%, P = 0.15, Figure 2) for the stan-
dard‐dose group. FFDF at 18 months was not significantly 
different between the high‐dose and standard‐dose groups 
[24% (95% CI: 5‐44%) vs 48% (95% CI: 23‐73%), respec-
tively, P = 0.92, Figure S1]. The OS calculated from diag-
nosis had similar differences between the groups, with 67% 
survival at 2 years in the high‐dose group and 30% survival 
at 2 years in the standard‐dose group (P = 0.03). On MVA, 
neither high‐dose RT group nor length of induction chemo-
therapy was independently predictive of OS (Table 3). Due 

to a number of patients receiving the same radiation pre-
scription, an exploratory analysis was performed to eval-
uate OS from diagnosis stratified by BED10 of maximum 
point dose in target volume (MaxBED10); a swimmer's plot 
was generated to illustrate the findings (Figure S2).

Severe acute GI toxicity (grade 3 or higher) occurred 
in three patients (7%). All three patients were in the stan-
dard‐dose cohort and received concurrent gemcitabine‐based 
chemotherapy. Two patients developed abdominal infections 
requiring hospitalization, and one patient experienced a grade 
4 duodenal ulcer requiring intensive care unit admission. No 
patient died of their acute toxicity.

4  |   DISCUSSION

This study suggests that adaptive MRgRT is a promising 
approach to advance the treatment of inoperable pancreatic 
cancer. MaxBED10 of treatment was shown in our study to 
be associated with improved OS and FFLF. By using online 
adaptive treatment planning to spare OARs and optimize RT 
dose delivery to target volumes, MRgRT appears to be a safe 
technique for ablative dose escalation.

Dose escalation in pancreatic cancer is an area of keen in-
terest in the radiation oncology community. Early approaches 
included intraoperative radiation therapy (IORT) where vis-
ible tumor was irradiated with a single electron portal. This 
procedure was limited to those fit for surgical exploration 
with constraints on size of tumors. Modern reports of this 
technique show median OS of 25 months from diagnosis for 
patients receiving IORT without resection.19 With the advent 
of 3DCRT and IMRT approaches, moderate dose escalation 
to BED from 60‐70 Gy became possible. A recent review of 
134 patients by Huguet et al noted a median survival from 
diagnosis of 23 months for patients treated with 56 Gy/28 
fractions (BED10 = 67.2 Gy) with chemoradiation.9

Stereotactic body radiation therapy led to attempts at 
dose escalation but with a concomitant increase in toxicity. 
Schellenberg et al evaluated concurrent gemcitabine with 
high‐BED (25 Gy/1 fraction, BED10 = 87.5 Gy) SBRT for 
LAPC reported local recurrences in only 19% of patients. 
They reported 15% grade 2 ulcers and one patient with a 
duodenal perforation.20 Moreover, an early SBRT regimen 
prior to routine onboard image guidance of 45 Gy/3 fractions 
(BED10 = 112.5 Gy) by Hoyer et al resulted in 5 out of 22 
patients developing severe mucositis or perforation.7 As a 
result, modern SBRT regimens use lower doses to maintain 
safety of therapy. A retrospective series by Moningi et al using 
dose of 33 Gy in 5 fractions (BED10 = 54.8 Gy) showed a 
median survival from start of radiation of 14 months21 while 
Mahadevan and colleagues used a dose of 24‐36 Gy/2‐3 frac-
tions (BED10 range: 52.8‐79.2 Gy) resulting in median sur-
vival from diagnosis of 20 months.4
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T A B L E  2   Patient, tumor and treatment characteristics

Characteristics Overall (N = 44) High‐dose (N = 24) Standard‐dose (N = 20) P‐value

Age at diagnosis (y) 
(median [range])

66 [47‐85] 68 [51‐85] 61 [47‐84] <0.01

ECOG PS (%)

0 13 (29.5) 10 (41.7) 3 (15.0) 0.11

1 29 (65.9) 13 (54.2) 16 (80.0)  

2 2 (4.6) 1 (4.1) 1 (5.0)  

Sex

Male 26 (59.1) 14 (58.3) 12 (60.0) 1.00

Female 18 (40.9) 10 (41.7) 8 (40.0)  

Maximum tumor 
dimension at 
diagnosis (cm)a 

N = 41 
3.5 [1.5‐6.7]

N = 22 
3.6 [1.5‐6.7]

N = 19 
3.1 [2.0‐6.5]

0.73

Tumor location

Head 30 (68.2) 17 (70.8) 13 (65.0) 0.75

Body/tail 14 (31.8) 7 (29.2) 7 (35.0)  

CA 19‐9 at diagnosis 
(U/mL)a 

N = 40 
119.5 [0.8‐5645.0]

N = 21 
313.0 [17.0‐5645.0]

N = 19 
63.0 [0.8‐2350.0]

0.01

Stage

BRPC 10 (22.7) 4 (16.7) 6 (30.0) 0.41

LAPC 32 (72.7) 18 (75.0) 14 (70.0)  

Medically 
inoperable

2 (4.6) 2 (8.3) 0  

Adjacent organ 
invasion

4 (9.1) 3 (12.5) 1 (5.0) 0.61

Node positive disease 9 (20.5) 4 (16.7) 5 (25.0) 0.71

Post‐RT 
pancreatectomy

6 (13.6) 2 (8.3) 4 (20.0) 0.39

Planning tumor 
volume (cc)

87.6 [13.8‐426.0] 73.3 [13.8‐239.0] 123.5 [31.0‐426.0] 0.03

Number of fractions 
adapted per patient

2.5 [0‐15] 5 [0‐15] 0 [0‐13] <0.01

Induction chemotherapy

Nab‐paclitaxel and 
gemcitabine

16 (36.3) 8 (33.3) 8 (40.0) 0.29

Gemcitabine alone 1 (2.3) 0 1 (5.0)  

FOLFIRINOX 19 (43.2) 9 (37.5) 10 (50.0)  

FOLFOX 1 (2.3) 1 (4.2) 0  

Multiple regimens 4 (9.1) 4 (16.7) 0  

None 3 (6.8) 2 (8.3) 1 (5.0)  

Duration of induction 
chemotherapy (mo)

3.0 [0‐11.5] 3.9 [0‐11.5] 1.7 [0‐7.4] 0.19

Concurrent chemotherapy

Nab‐paclitaxel and 
gemcitabine

9 (20.5) 3 (12.5) 6 (30.0) 0.01

Gemcitabine alone 4 (9.1) 0 4 (20.0)  

Capecitabine 7 (15.9) 3 (12.5) 4 (20.0)  

None 24 (54.5) 18 (75.0) 6 (30.0)  

(Continues)
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More recently, data by Krishnan et al found that high‐
BED treatments (BED10: 70.4‐100 Gy) using SIB in se-
lected patients lead to improved OS (36% at 2 years) and 
loco‐regional recurrence free survival, but patients only 
received dose escalation if their tumors were more than 

1 cm away from GI mucosal structures.11 This study did 
not select specific patients for dose escalation but used 
MRI‐guidance to allow clinicians to make the decision re-
garding plan adaptation and feasibility based on daily eval-
uation of internal anatomy. Dose escalation was evaluated 

F I G U R E  1   Overall survival from start 
of radiation therapy stratified by biologically 
effective dose (BED10). Standard error bars 
displayed at each 6‐mo timepoint

F I G U R E  2   Freedom from local 
failure from start of radiation therapy 
stratified by biologically effective dose 
(BED10). Standard error bars displayed at 
each 6‐mo timepoint

Characteristics Overall (N = 44) High‐dose (N = 24) Standard‐dose (N = 20) P‐value

Post‐RT chemotherapy 
(maintenance and/or 
salvage)

30 (68.2) 17 (70.8) 13 (65.0) 0.75

BRPC, borderline resectable pancreatic cancer; ECOG PS, Eastern Cooperative Oncology Group performance status; FOLFIRINOX, fluorouracil, leucovorin, irinote-
can, oxaliplatin; FOLFOX, fluorouracil, leucovorin, oxaliplatin; LAPC, locally advanced pancreatic cancer; RT, radiation therapy.
aData not available for all patients. 

T A B L E  2   (Continued)
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with BED10 to compare the various radiation treatment 
regimens. In addition to the survival benefit, high‐dose 
regimens demonstrated a trend toward significance for im-
proved local control.

The median OS of 10.8 months in our standard‐dose 
cohort emulated historical controls receiving conven-
tional chemoradiation therapy demonstrating that standard 

radiation doses may not improve outcomes even if visual-
ization of internal anatomical changes leads to improved 
localization and motion management. Malik et al reported 
LAPC patients undergoing chemoradiation range in median 
survival from 7 to 11 months while the same group in the 
LAP07 trial reached a median OS of 15.2 months.1,22 Of 
note, the OS outcome in LAP07 was inclusive of the time 

Characteristic
Univariate HR 
[95% CI] P‐value

Multivariate 
HR [95% CI] P‐value

Older agea  1.01 [0.96‐1.05] 0.84    

ECOG PS >0 1.05 [0.46‐2.39] 0.90    

Male sex 1.01 [0.48‐2.15] 0.97    

Larger tumor sizea  0.94 [0.68‐1.29] 0.68    

Tumor located in head 0.64 [0.30‐1.40] 0.27    

CA 19‐9 >37 U/mL 2.75 [0.82‐9.17] 0.10    

BRPC 1.15 [0.49‐2.70] 0.76    

Adjacent organ invasion 0.57 [0.14‐2.43] 0.45    

Node positive disease 1.28 [0.50‐3.25] 0.61    

Pancreatectomy 0.32 [0.08‐1.35] 0.12    

Larger PTVa  1.00 [1.00‐1.01] 0.56    

High‐dose RT 0.44 [0.21‐0.94] 0.03 0.56 [0.25‐1.26] 0.16

Longer duration of 
induction 
chemotherapya 

0.84 [0.72‐0.98] 0.03 0.87 [0.74‐1.03] 0.11

Concurrent 
chemotherapy

1.03 [0.49‐2.17] 0.94    

Post‐RT chemotherapy 0.86 [0.39‐1.92] 0.72    

BRPC, borderline resectable pancreatic cancer; CI, confidence interval; ECOG PS, Eastern Cooperative 
Oncology Group performance status; HR, hazard ratio; OS, overall survival; PTV, planning tumor volume; RT, 
radiation therapy.
aCharacteristic analyzed as a continuous variable in regression analysis. 

T A B L E  3   OS univariate and 
multivariate cox regression analysis

T A B L E  4   Survival outcomes with RT for inoperable pancreatic cancer

Study RT technique
Number of 
patients Median OS (mo) 2‐y OS (%)

Hammel et al, Phase III1 3DCRT 133 15.2 N/A

Krishnan et al11a  Mostly 3DCRT 153 15.0 19

Krishnan et al11a  Mostly IMRT 47 17.8 36

Standard‐dose (current 
series)a 

MRI‐guided IMRT and conventional SBRT 20 10.8 30

Huguet et al9 IMRT 134 23.0 48

Mahadevan et al4 SBRT 39 20.0 N/A

Moningi et al21a  SBRT 88 13.7 15

High‐dose (current series)a  Adaptive MRI‐guided Hypofractionated and 
high‐dose SBRT

24 20.8 49

3DCRT, 3‐D conformal radiation therapy; IMRT, intensity modulated radiation therapy; MRI, magnetic resonance imaging; N/A, not available; OS, overall survival; RT, 
radiation therapy; SBRT, stereotactic body radiation therapy.
aOS calculated from start of radiation therapy. 



2130  |      RUDRA et al.

of induction chemotherapy whereas we calculated OS from 
start of RT. This accounts for the numerical difference in 
survival between our standard‐dose cohort and the LAP07 
cohort. More impressively, patients in the high‐dose group 
of this study demonstrated a sizeable survival advantage 
compared to the standard‐dose group despite this cohort 
having older age and higher CA 19‐9 levels, which are 
known negative prognostic factors.23 Table 4 lists survival 
outcomes from previous studies compared to this study 
cohorts.

FFDF rates were similar between the two groups despite 
the large difference in OS. We postulate that effective doses 
of radiation prevent preclinical local failure symptoms such 
as anorexia, cachexia, and nausea that often preclude effec-
tive systemic therapy at progression. In addition, post‐RT 
pancreatectomy rates did not change with the high‐dose reg-
imens, and the overall rate of resection of 14% was low in 
this study as compared to historical series.9,10 Determining 
resectability radiographically is difficult after neoadjuvant 
therapy due to tissue fibrosis complicating imaging inter-
pretation.24 Use of high‐dose regimens may increase the risk 
of fibrosis even further. However, even without the benefit 
of surgical resection, high‐dose patients had favorable OS 
outcomes.

Fear of treatment‐related toxicity is a hurdle for using ab-
lative RT doses in pancreatic cancer. Patients in this study 
experienced an overall acute grade 3+ GI toxicity rate of 7% 
with one patient experiencing duodenal toxicity. No patient 
in the high‐dose cohort experienced severe toxicity suggest-
ing that adaptive radiation and decreased use of concurrent 
chemotherapy diminished this risk. Plan adaptation was fre-
quently used in the high‐dose group to limit dose to OARs 
when significant internal anatomical changes occurred. 
Further follow‐up will be required to assess for late toxicities, 
but it is reassuring that high‐dose adaptive MRgRT appears 
to be well tolerated acutely.

This study highlights a novel approach of dose escalation 
for treatment of inoperable pancreatic cancer, but the study 
design poses limitations which render the findings as hy-
pothesis‐generating. Medically inoperable patients with re-
sectable disease based on imaging criteria were included in 
this study, but bias from these patients is unlikely given that 
only two patients met this criterion. Though this was a multi‐
institutional study, the sample size was relatively small, and 
heterogeneity of treatment approaches existed between insti-
tutions. We also note that radiographic assessment for tumor 
response is challenging after delivery of RT and local eval-
uation of imaging studies can introduce bias. Furthermore, 
high‐dose RT did not predict for OS on MVA. A larger sam-
ple size would be needed to demonstrate significance of high‐
dose RT when grouped by BED10, yet, it is still important 
to note that high‐dose RT remained significant on univariate 
regression and Kaplan‐Meier analyses. Another limitation 

was that a number of patients had the same prescription dose 
but heterogeneous delivered dose due to adaptive treatments. 
Although stratifying patients by BED10 of prescription dose 
did not account for this dose heterogeneity, the swimmer's 
plot stratified patients by MaxBED10 to explore dose hetero-
geneity and its impact on OS. These study data support the 
evaluation of dose‐escalated regimen in a larger, prospective 
setting.

5  |   CONCLUSIONS

High‐dose adaptive MRgRT in the treatment of inoperable 
pancreatic cancer resulted in improved OS in this multi‐in-
stitutional study. Adaptive MRgRT provides an innovative 
technique to administer higher doses of radiation to patients 
without increasing the risk for acute toxicity. A prospec-
tive, phase II multi‐institutional study (NCT03621644) 
prescribing 50 Gy in 5 fractions (100 Gy BED10) using 
adaptive dose escalation with MRgRT is open, accruing, 
and will clarify the role of MRgRT for inoperable pancre-
atic cancer.

CONFLICT OF INTEREST

The authors listed below report the following financial re-
lationships: NJ reports honoraria from ViewRay, outside 
the submitted work. LP reports honoraria and stock from 
ViewRay along with advisory role, speakers’ bureau, and 
research funding from BTG, outside the submitted work. 
EAM reports travel accommodations from ViewRay, out-
side the submitted work. AB and FL report honoraria and 
travel accommodations from ViewRay, outside the submitted 
work. MCR reports travel expenses from Varian and BTG, 
outside the submitted work. MFB reports travel accommo-
dations from ViewRay along with research funding from 
AstraZeneca outside the submitted work, outside the submit-
ted work. PJP reports research funding from ViewRay, out-
side the submitted work. PL reports honoraria, consulting/
advisory role, and travel accommodations from ViewRay, 
AstraZeneca, and Varian along with research funding from 
AstraZeneca, outside the submitted work. All other authors 
have no conflicts to declare.

AUTHOR CONTRIBUTIONS

Soumon Rudra: data curation, investigation, writing original 
draft, writing review, and editing. Naomi Jiang: data curation, 
writing original draft, writing review, and editing. Stephen 
A. Rosenberg: data curation, writing original draft, writing 
review, and editing. Jeffrey R. Olsen: investigation, method-
ology, writing review, and editing. Michael C. Roach: inves-
tigation, methodology, writing review, and editing. Leping 



      |  2131RUDRA et al.

Wan: formal analysis, writing original draft, writing review, 
and editing. Lorraine Portelance: data curation, writing re-
view, and editing. Eric A. Mellon: data curation, writing re-
view, and editing. Anna Bruynzeel: data curation, writing 
review, and editing. Frank Lagerwaard: data curation, writ-
ing review, and editing. Michael F. Bassetti: data curation, 
conceptualization, writing original draft, writing review, 
and editing. Parag J. Parikh: conceptualization, investiga-
tion, methodology, project administration, writing original 
draft, writing review, and editing. Percy P. Lee: conceptual-
ization, investigation, methodology, project administration, 
writing original draft, writing review, and editing.

ORCID

Soumon Rudra   https://orcid.org/0000-0002-1411-4880 

REFERENCES

	 1.	 Hammel P, Huguet F, van Laethem J‐L, et al. Effect of chemora-
diotherapy vs chemotherapy on survival in patients with locally ad-
vanced pancreatic cancer controlled after 4 months of gemcitabine 
with or without erlotinib. JAMA. 2016;315(17):1844. https://doi.
org/10.1001/jama.2016.4324

	 2.	 Koong AC, Christofferson E, Le Q‐T, et al. Phase II study to 
assess the efficacy of conventionally fractionated radiotherapy 
followed by a stereotactic radiosurgery boost in patients with lo-
cally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 
2005;63(2):320‐323. https://doi.org/10.1016/j.ijrobp.2005.07.002

	 3.	 Koong AC, Le QT, Ho A, et al. Phase I study of stereotactic ra-
diosurgery in patients with locally advanced pancreatic cancer. 
Int J Radiat Oncol Biol Phys. 2004;58(4):1017‐1021. https://doi.
org/10.1016/j.ijrobp.2003.11.004

	 4.	 Mahadevan A, Miksad R, Goldstein M, et al. Induction gemcit-
abine and stereotactic body radiotherapy for locally advanced 
nonmetastatic pancreas cancer. Int J Radiat Oncol Biol Phys. 
2011;81(4):e615‐e622. https://doi.org/10.1016/j.ijrobp.2011.04.045

	 5.	 Schellenberg D, Goodman KA, Lee F, et al. Gemcitabine che-
motherapy and single‐fraction stereotactic body radiother-
apy for locally advanced pancreatic cancer. Int J Radiat Oncol 
Biol Phys. 2008;72(3):678‐686. https://doi.org/10.1016/j.
ijrobp.2008.01.051

	 6.	 Chang DT, Schellenberg D, Shen J, et al. Stereotactic radiother-
apy for unresectable adenocarcinoma of the pancreas. Cancer. 
2009;115(3):665‐672. https://doi.org/10.1002/cncr.24059

	 7.	 Hoyer M, Roed H, Sengelov L, et al. Phase‐II study on stereo-
tactic radiotherapy of locally advanced pancreatic carcinoma. 
Radiother Oncol. 2005;76(1):48‐53. https://doi.org/10.1016/j.
radonc.2004.12.022

	 8.	 Petrelli F, Comito T, Ghidini A, Torri V, Scorsetti M, Barni S. 
Stereotactic body radiation therapy for locally advanced pancre-
atic cancer: a systematic review and pooled analysis of 19 trials. 
Int J Radiat Oncol. 2017;97(2):313‐322. https://doi.org/10.1016/j.
ijrobp.2016.10.030

	 9.	 Huguet F, Hajj C, Winston CB, et al. Chemotherapy and intensity‐
modulated radiation therapy for locally advanced pancreatic cancer 

achieves a high rate of R0 resection*. Acta Oncol. 2017;56(3):384‐390. 
https://doi.org/10.1080/0284186X.2016.1245862

	10.	 Badiyan SN, Olsen JR, Lee AY, et al. Induction chemotherapy fol-
lowed by concurrent full‐dose gemcitabine and intensity‐modulated 
radiation therapy for borderline resectable and locally advanced 
pancreatic adenocarcinoma. Am J Clin Oncol Cancer Clin Trials. 
2016;39(1):1‐7. https://doi.org/10.1097/COC.0000000000000003

	11.	 Krishnan S, Chadha AS, Suh Y, et al. Focal radiation therapy 
dose escalation improves overall survival in locally advanced 
pancreatic cancer patients receiving induction chemotherapy 
and consolidative chemoradiation. Int J Radiat Oncol Biol Phys. 
2016;94(4):755‐765. https://doi.org/10.1016/j.ijrobp.2015.12.003

	12.	 Noel CE, Parikh PJ, Spencer CR, et al. Comparison of onboard 
low‐field magnetic resonance imaging versus onboard computed 
tomography for anatomy visualization in radiotherapy. Acta 
Oncol. 2015;54(9):1474‐1482. https://doi.org/10.3109/02841
86X.2015.1062541

	13.	 Liu F, Erickson BA, Peng C, Li XA. Characterization and man-
agement of interfractional anatomic changes for pancreatic cancer 
radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(3):e423‐e429. 
https://doi.org/10.1016/j.ijrobp.2011.12.073

	14.	 Bohoudi O, Bruynzeel A, Senan S, et al. Fast and robust on-
line adaptive planning in stereotactic MR‐guided adaptive radi-
ation therapy (SMART) for pancreatic cancer. Radiother Oncol. 
2017;125(3):439‐444. https://doi.org/10.1016/j.radonc.2017.07.028

	15.	 Henke L, Kashani R, Yang D, et al. Simulated online adaptive 
magnetic resonance‐guided stereotactic body radiation therapy for 
the treatment of oligometastatic disease of the abdomen and cen-
tral thorax: characterization of potential advantages. Int J Radiat 
Oncol Biol Phys. 2016;96(5):1078‐1086. https://doi.org/10.1016/j.
ijrobp.2016.08.036

	16.	 Henke L, Kashani R, Robinson C, et al. Phase I trial of stereotac-
tic MR‐guided online adaptive radiation therapy (SMART) for the 
treatment of oligometastatic or unresectable primary malignancies 
of the abdomen. Radiother Oncol. 2018;126(3):519‐526. https://
doi.org/10.1016/j.radonc.2017.11.032

	17.	 Acharya S, Fischer‐Valuck BW, Kashani R, et al. Online magnetic 
resonance image guided adaptive radiation therapy: first clinical 
applications. Int J Radiat Oncol Biol Phys. 2016;94(2):394‐403. 
https://doi.org/10.1016/j.ijrobp.2015.10.015

	18.	 Berger AC, Meszoely IM, Ross EA, Watson JC, Hoffman JP. 
Undetectable preoperative levels of serum CA 19–9 correlate 
with improved survival for patients with resectable pancreatic ad-
enocarcinoma. Ann Surg Oncol. 2004;11(7):644‐649. https://doi.
org/10.1245/ASO.2004.11.025

	19.	 Keane FK, Wo JY, Ferrone CR, et al. Intraoperative radiotherapy 
in the era of intensive neoadjuvant chemotherapy and chemo-
radiotherapy for pancreatic adenocarcinoma. Am J Clin Oncol 
Cancer Clin Trials. 2018;41(6):607‐612. https://doi.org/10.1097/
COC.0000000000000336

	20.	 Schellenberg D, Kim J, Christman‐Skieller C, et al. Single‐fraction 
stereotactic body radiation therapy and sequential gemcitabine for 
the treatment of locally advanced pancreatic cancer. Int J Radiat 
Oncol Biol Phys. 2011;81(1):181‐188. https://doi.org/10.1016/j.
ijrobp.2010.05.006

	21.	 Moningi S, Dholakia AS, Raman SP, et al. The role of stereotactic 
body radiation therapy for pancreatic cancer: a single‐institution 
experience. Ann Surg Oncol. 2015;22(7):2352‐2358. https://doi.
org/10.1245/s10434-014-4274-5

https://orcid.org/0000-0002-1411-4880
https://orcid.org/0000-0002-1411-4880
https://doi.org/10.1001/jama.2016.4324
https://doi.org/10.1001/jama.2016.4324
https://doi.org/10.1016/j.ijrobp.2005.07.002
https://doi.org/10.1016/j.ijrobp.2003.11.004
https://doi.org/10.1016/j.ijrobp.2003.11.004
https://doi.org/10.1016/j.ijrobp.2011.04.045
https://doi.org/10.1016/j.ijrobp.2008.01.051
https://doi.org/10.1016/j.ijrobp.2008.01.051
https://doi.org/10.1002/cncr.24059
https://doi.org/10.1016/j.radonc.2004.12.022
https://doi.org/10.1016/j.radonc.2004.12.022
https://doi.org/10.1016/j.ijrobp.2016.10.030
https://doi.org/10.1016/j.ijrobp.2016.10.030
https://doi.org/10.1080/0284186X.2016.1245862
https://doi.org/10.1097/COC.0000000000000003
https://doi.org/10.1016/j.ijrobp.2015.12.003
https://doi.org/10.3109/0284186X.2015.1062541
https://doi.org/10.3109/0284186X.2015.1062541
https://doi.org/10.1016/j.ijrobp.2011.12.073
https://doi.org/10.1016/j.radonc.2017.07.028
https://doi.org/10.1016/j.ijrobp.2016.08.036
https://doi.org/10.1016/j.ijrobp.2016.08.036
https://doi.org/10.1016/j.radonc.2017.11.032
https://doi.org/10.1016/j.radonc.2017.11.032
https://doi.org/10.1016/j.ijrobp.2015.10.015
https://doi.org/10.1245/ASO.2004.11.025
https://doi.org/10.1245/ASO.2004.11.025
https://doi.org/10.1097/COC.0000000000000336
https://doi.org/10.1097/COC.0000000000000336
https://doi.org/10.1016/j.ijrobp.2010.05.006
https://doi.org/10.1016/j.ijrobp.2010.05.006
https://doi.org/10.1245/s10434-014-4274-5
https://doi.org/10.1245/s10434-014-4274-5


2132  |      RUDRA et al.

	22.	 Malik NK, May KS, Chandrasekhar R, et al. Treatment of locally 
advanced unresectable pancreatic cancer: a 10‐year experience. J 
Gastrointest Oncol. 2012;3(4):326‐334. https://doi.org/10.3978/j.
issn.2078-6891.2012.029

	23.	 Rudra S, Narang AK, Pawlik TM, et al. Evaluation of predictive 
variables in locally advanced pancreatic adenocarcinoma pa-
tients receiving definitive chemoradiation. Pract Radiat Oncol. 
2012;2(2):77‐85. https://doi.org/10.1016/j.prro.2011.06.009

	24.	 Ferrone CR, Marchegiani G, Hong TS, et al. Radiological and sur-
gical implications of neoadjuvant treatment with FOLFIRINOX 
for locally advanced and borderline resectable pancreatic 
cancer. Ann Surg. 2015;261:12‐17. https://doi.org/10.1097/
SLA.0000000000000867

SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article. 

How to cite this article: Rudra S, Jiang N, Rosenberg 
SA, et al. Using adaptive magnetic resonance image‐
guided radiation therapy for treatment of inoperable 
pancreatic cancer. Cancer Med. 2019;8:2123–2132. 
https://doi.org/10.1002/cam4.2100

https://doi.org/10.3978/j.issn.2078-6891.2012.029
https://doi.org/10.3978/j.issn.2078-6891.2012.029
https://doi.org/10.1016/j.prro.2011.06.009
https://doi.org/10.1097/SLA.0000000000000867
https://doi.org/10.1097/SLA.0000000000000867
https://doi.org/10.1002/cam4.2100

	Washington University School of Medicine
	Digital Commons@Becker
	2019

	Using adaptive magnetic resonance image‐guided radiation therapy for treatment of inoperable pancreatic cancer
	Soumon Rudra
	Naomi Jiang
	Stephen A. Rosenberg
	Jeffrey R. Olsen
	Michael C. Roach
	See next page for additional authors
	Recommended Citation
	Authors


	

