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A B S T R A C T

Preterm infants are at high risk for brain injury during the perinatal period. Intraventricular hemorrhage and
periventricular leukomalacia, the two most common patterns of brain injury in prematurely-born children, are
associated with poor neurodevelopmental outcomes. The hippocampus is known to be critical for learning and
memory; however, it remains unknown how these forms of brain injury affect hippocampal growth and how the
resulting alterations in hippocampal development relate to childhood outcomes. To investigate these relation-
ships, hippocampal segmentations were performed on term equivalent MRI scans from 55 full-term infants, 85
very preterm infants (born ≤32 weeks gestation) with no to mild brain injury and 73 very preterm infants with
brain injury (e.g., grade III/IV intraventricular hemorrhage, post-hemorrhagic hydrocephalus, cystic periven-
tricular leukomalacia). Infants then underwent standardized neurodevelopmental testing using the Bayley Scales
of Infant and Toddler Development, 3rd edition at age 2 years, corrected for prematurity. To delineate the effects
of brain injury on early hippocampal development, hippocampal volumes were compared across groups and
associations between neonatal volumes and neurodevelopmental outcomes at age 2 years were explored. Very
preterm infants with brain injury had smaller hippocampal volumes at term equivalent age compared to term
and very preterm infants with no to mild injury, with the smallest hippocampi among those with grade III/IV
intraventricular hemorrhage and post-hemorrhagic hydrocephalus. Further, larger ventricle size was associated
with smaller hippocampal size. Smaller hippocampal volumes were related to worse motor performance at age
2 years across all groups. In addition, smaller hippocampal volumes in infants with brain injury were correlated
with impaired cognitive scores at age 2 years, a relationship specific to this group. Consistent with our preclinical
findings, these findings demonstrate that perinatal brain injury is associated with hippocampal size in preterm
infants, with smaller volumes related to domain-specific neurodevelopmental impairments in this high-risk
clinical population.

1. Introduction

Despite advances in neonatal and perinatal care, prematurely-born
infants remain at high risk for brain injury (Ment et al., 2009) and
neurodevelopmental impairment (Baron and Rey-Casserly, 2010). In-
deed, outcomes for infants with forms of brain injury common in this
population, including intraventricular hemorrhage (IVH), post-

hemorrhagic hydrocephalus (PHH) and cystic periventricular leuko-
malacia (cPVL), are among the worst in newborn medicine, with rates
of cognitive and motor deficits as high as 85% in some clinical popu-
lations (Rifai and Tawil, 2015). Recent advances in neuroimaging have
enabled improved characterization of the deleterious effects of pre-
mature birth and brain injury on brain growth and development, de-
monstrating regional and brain-wide effects. While these previous
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studies have demonstrated links between preterm brain injury and
adverse neurodevelopmental outcomes, the mechanisms underlying
these deficits remain unclear (Adams-Chapman et al., 2008; Anderson
et al., 2017; Ment et al., 2005).

Across multiple neuroimaging investigations, reductions in both
global and region-specific brain volumes have been demonstrated in
preterm children in comparison to full-term (FT) peers. Due to its in-
tegral role in learning and memory and associations with neurodeve-
lopmental disorders, many studies have focused on the hippocampus, a
component of the limbic system which rapidly develops from mid-ge-
station through the first years of life (Cheong et al., 2016; Nosarti et al.,
2002; Omizzolo et al., 2013; Thompson et al., 2008). Across these in-
vestigations, preterm children demonstrate impaired hippocampal
growth (Beauchamp et al., 2008; Thompson et al., 2008) and folding
(Thompson et al., 2013), changes attributed to clinical exposures in-
cluding hypoxic-ischemic injury, glucocorticoid use and stress. Further,
these changes may be clinically significant, with smaller neonatal hip-
pocampal volumes associated with worse cognitive performance during
childhood (Beauchamp et al., 2008; Thompson et al., 2008). While
subjects with brain injury have been included in some prior studies, the
effect of injury on hippocampal development was not an area of pri-
mary focus for these investigations. Further, while white matter injury
was associated with altered hippocampal development, most in-
vestigations included only limited numbers of subjects with brain injury
of varying types and severities (Beauchamp et al., 2008; Thompson
et al., 2008).

The pathogenesis of preterm brain injury is complex, encompassing
both direct injury and widespread indirect pathology (Volpe, 2009).
IVH is the most common form of preterm brain injury, typically oc-
curring in the first three days of life in up to 31% of very preterm in-
fants (VPT; born ≤32weeks gestation) (Christian et al., 2016; Gale
et al., 2017; Radic et al., 2015; Stoll et al., 2010, 2015). The combi-
nation of intraventricular blood and periventricular hemorrhagic in-
farction results in suppression of cell proliferation, white matter injury
and release of inflammatory cytokines and free radicals, disrupting
neural cell migration and progenitor cell formation (Del Bigio, 2011;
Strahle et al., 2012; Whitelaw, 2001). High-grade IVH (i.e., Papile grade
III/IV) leads to hydrocephalus requiring neurosurgical intervention in
up to 28% of affected neonates (i.e., post-hemorrhagic hydrocephalus;
PHH) (Christian et al., 2016). PHH results from inflammation, blood
breakdown product toxicity, ventricular wall disruption and cilia dys-
function, leading to impaired cerebrospinal fluid (CSF) absorption and
flow through the ventricular system (Garton et al., 2016a; McAllister
et al., 2017; Strahle et al., 2012). IVH-PHH has been strongly associated
with poor outcomes, leading to disability across motor, cognitive, lan-
guage and social domains in> 50% of infants (Adams-Chapman et al.,
2008; Ment et al., 2005). In comparison, cPVL, the most severe form of
white matter injury occurring in< 5% of VPT infants, results from
focal, macroscopic necrosis which evolves to cystic change over weeks
(Gale et al., 2017; Volpe et al., 2011). Although its pathogenic lesions
are predominantly in white matter, cPVL also results in disrupted gray
matter development and decreased gray matter volumes (Pierson et al.,
2007; Tzarouchi et al., 2011). Despite its decreasing prevalence, the
deleterious neurodevelopmental effects of cPVL are well-established
and remain severe, with links to motor, cognitive, speech/language,
hearing and vision impairment (Anderson et al., 2017; Hamrick et al.,
2004).

While the pathogenesis of these forms of brain injury and their se-
quelae are well-characterized, their regional impact on devel-
opmentally important structures, including the hippocampus, remains
unknown. Critically, the ventricles have a large surface area adjacent to
numerous subcortical structures, including the hippocampus. Thus,
ventricular/periventricular injury and inflammation, such as that oc-
curring in association with IVH, PHH and cPVL, place the hippocampus
and other periventricular structures at unique risk for injury due to
their anatomic proximity (Cherian et al., 2003). In addition, our

preclinical models demonstrate increased neuronal death and smaller
hippocampal volumes after IVH with PHH (Garton et al., 2016b; Lekic
et al., 2012). Further, in rodent models, intracranial hemorrhage in
combination with IVH, a scenario mimicking neonatal grade IV IVH,
results in greater neuronal death in the hippocampus and worse cog-
nitive outcomes compared to IVH alone (Chen et al., 2015). This con-
stellation of preclinical findings suggests the hippocampus may be un-
iquely susceptible to clinically significant effects of IVH, PHH and cPVL
(Cai et al., 2001; Debillon et al., 2000; Field et al., 1993; Hagberg et al.,
2002; Marumo et al., 2001; Uehara et al., 1999). However, few studies
examining the effects of preterm brain injury on morphological devel-
opment of the human hippocampus have been performed.

We leverage advanced neuroimaging acquisition and analytic
techniques to investigate the effects of preterm brain injury, including
IVH, PHH and cPVL, on neonatal hippocampal development and neu-
rodevelopmental outcomes at age 2 years in VPT children. For these
investigations, we hypothesized that: 1) infants with grade III/IV IVH,
PHH and cPVL would have smaller hippocampal volumes than VPT
infants with no to mild brain injury and FT infants, with infants with
PHH demonstrating the smallest hippocampi; 2) increased ventricular
size due to brain injury would relate to smaller hippocampal volumes;
and 3) smaller hippocampal size would relate to worse neurodevelop-
mental outcomes, with group- and domain-specific effects.

2. Materials and methods

2.1. Participants

In this longitudinal, observational study, VPT infants (born
≤32weeks gestation) were recruited from the St. Louis Children's
Hospital Neonatal Intensive Care Unit from 2007 to 2015. A subset of
the VPT infants was specifically enrolled due to concern for brain injury
(e.g., grade III/IV IVH, PHH, cPVL) identified on cranial ultrasound
within the first month of life. Healthy, FT infants (born ≥36weeks
gestation) were recruited from the Newborn Nursery at Barnes-Jewish
Hospital to serve as a comparison cohort. All FT infants had no history
of in utero illicit substance exposure and no evidence of acidosis
(pH<7.20) on umbilical cord gas assessments. FT infants were socio-
demographically matched to the VPT cohort. In both groups, infants
were excluded if found to have chromosomal abnormality or suspected/
proven congenital infection. The study was approved by the Human
Research Protection Office of the study site. Parental informed consent
was obtained for each subject prior to participation.

Detailed clinical information was systematically recorded for all
infants. These data were used to develop markers of risk reflecting the
severity of clinical illness for VPT infants based upon an established
medical risk index (Woodward et al., 2012). Variables included: small
for gestational age/intrauterine growth restriction (IUGR; weight≤ 2
SD below mean), oxygen therapy at 36 weeks, maternal antenatal
steroids (no=1, yes= 0), received postnatal dexamethasone (no=0,
yes= 1), necrotizing enterocolitis (NEC), patent ductus arteriosus
(PDA), retinopathy of prematurity (ROP), culture-positive sepsis,
change in weight-for-height/length standard deviation score (SDS; ≥3
SD from birth to term equivalent) and length of total parenteral nutri-
tion (above/below upper quartile). For each variable, data were di-
chotomized into those that met (1) and did not meet (0) clinical risk
criteria. The dichotomous variables were summed across measures to
create a Clinical Medical Risk Index (scale 0–10) (Lean et al., 2018).

2.2. Magnetic resonance imaging (MRI) scanning

VPT infants underwent MRI at term equivalent (36–40weeks post-
menstrual age). FT infants underwent scans during the first four days of
life. All infants were imaged without sedation during natural sleep or
while resting quietly (Mathur et al., 2007). The timing of scan acqui-
sition for all VPT subjects was determined by clinical status and medical
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course. MRI data were collected using a Siemens Trio 3 T scanner using
an infant-specific head coil. T2-weighted data were acquired with the
following sequence parameters: TR 8600ms; TE 161ms; voxel size
1× 1×1mm3. High-quality (i.e., low motion) T2 data were available
for all infants.

2.3. Volumetric measures

T2-weighted MRI data initially underwent automated segmentation
using Morphologically Adaptive Neonatal Tissue Segmentation
(MANTiS) (Beare et al., 2016), followed by manual editing of hippo-
campal results using ITK-SNAP software by a single highly-experienced
rater (DA) (Fig. 1). For this procedure, outlines were inspected and
adjusted in the coronal view of the T2-weighted image from posterior to
anterior sections. The segmentations were subsequently modified in the
axial and sagittal views. The left and right hemispheres were in-
dependently outlined. Anatomical boundaries generally followed the
approaches of Watson and Thompson, with reference to an anatomic
atlas (Duvernoy, 2005; Thompson et al., 2011; Watson et al., 1992).
Intracranial volume (ICV) masks were also created in MANTiS with
manual modifications. Hippocampal volumes were then divided by the
ICV to generate standardized corrected hippocampal (cHC) volumes,
which are displayed as ratios without units of measurement (Gilmore
et al., 2010; L. G. Matthews et al., 2018; Paniagua et al., 2017;
Thompson et al., 2008; Zacharia et al., 2006).

From the T2-weighted axial images, ventricular size was estimated
using the Fronto-Occipital Horn Ratio (FOHR) (O'Hayon et al., 1998), a
standard measure employed in the pediatric neurosurgical literature
and validated versus ventricular volumes in infantile hydrocephalus
(Ragan et al., 2015). Total maximal frontal and occipital horn widths of
the lateral ventricles were measured manually by the same rater and
used to calculate FOHR for each subject. To account for asymmetric
hemorrhage and ventricular size, unilateral left- and right-sided FOHRs
were also calculated, using the interhemispheric fissure as the central
landmark.

2.4. Brain injury categorization

Three clinical raters (JS, RT, CS) reviewed T2-weighted images for
structural abnormalities and presence/absence of focal, extensive or
cystic white matter lesions. Multiple cranial ultrasounds obtained as
part of routine clinical care for each subject were also reviewed for the
presence of injury. All VPT subjects with moderate-severe white matter
injury or IVH were further sub-categorized according to the presence of:

1) Papile grade III/IV IVH (Papile et al., 1978); 2) Papile grade III/IV
IVH with PHH requiring neurosurgical intervention prior to term
equivalent (TE) MRI (e.g., reservoir, ventriculoperitoneal shunt place-
ment, endoscopic third ventriculostomy with choroid plexus cauter-
ization [ETV-CPC]); or 3) cPVL based upon the maximum injury grade
reported (Fig. 2).

2.5. Neurodevelopmental and behavioral testing

Subjects returned for standardized developmental testing at age
2 years, corrected for prematurity. A blinded psychometrician assessed
subjects using the Bayley Scales of Infant and Toddler Development, 3rd
edition (Bayley-III), generating composite scores in three domains:
motor, language and cognitive performance (Bayley, 2006).

Parents also completed the Infant and Toddler Social Emotional
Assessment (ITSEA) questionnaire. The ITSEA generated t-scores in the
domains of Externalizing Behavior, Internalizing Behavior,
Dysregulation and Competence (Carter et al., 2003). The Competence
domain was most relevant to this study, as low Competence is related to
symptoms of autism or attention deficit hyperactivity disorder, both of
which have been correlated with hippocampal size and have increased
incidence among children born VPT and/or with perinatal brain injury
(Hoogman et al., 2017; Movsas et al., 2013; Rogers et al., 2012;
Schendel and Bhasin, 2008; Stjernqvist and Svenningsen, 1999;
Sussman et al., 2015).

Parents provided standardized sociodemographic information,
which was used to define sociodemographic risk using a composite
index modeled after Hack and Whitaker (Hack et al., 1992; Whitaker
et al., 1996). The following five characteristics were coded as 1 (pre-
sent) or 0 (absent) and summed to yield an index: 1) not a high school
graduate, 2) African-American, 3) public insurance, 4) gave birth at age
18 or younger and 5) single parent household. When data were missing
for one or two components, the mean of the remaining components was
substituted for the missing one(s) in calculating the sum. Socio-
demographic risk was not calculated for individuals missing three or
more items (Lean et al., 2018).

2.6. Statistical analysis

Analyses were performed using SPSS version 24 (IBM Corporation,
New York). Left and right cHC volumes and neurodevelopmental out-
comes (Bayley-III composite and ITSEA competence scores) were
compared in the context of demographic and clinical factors.
Independently significant variables were determined using stepwise

Fig. 1. Hippocampal segmentations in full-term infant and very preterm infant with brain injury. T2-weighted MRI images demonstrating axial, coronal and sagittal
views and 3D volumetric reconstructions of segmented hippocampi bilaterally for a representative individual A) full-term infant and B) very preterm infant with post-
hemorrhagic hydrocephalus. Note the gross difference in hippocampal volumes between the control and injured infants. Blue= right and red= left hippocampus.
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linear regression and run individually for left and right cHC volumes as
dependent variables with group (full-term, VPT, brain injury [BI]),
medical risk score, sex, race, gestational age at birth and postmenstrual
age at scan entered into models in these analyses. Gestational age at
birth and birthweight were found to be collinear; therefore birthweight
was excluded from all models. Surviving variables were entered into
linear mixed models with clustering between siblings entered as a
random effect in the model.

Stepwise linear regression was repeated using Bayley-III motor,
language and cognition and ITSEA competence scores as the dependent
variables and group, left and right cHC volumes, sex, medical risk score,
sociodemographic risk score, gestational age at birth and postmenstrual
age at scan as independent variables. Race and sociodemographic risk
scores were found to be collinear; therefore, race was excluded from all
models. Surviving variables were again corrected for sibling effects
using linear mixed models.

The outlined injury sub-categories were assessed individually in
secondary analyses of VPT infants. Further, clinical variables shown to
have significant effects on hippocampal development in prior studies,
including components of the medical risk composite score, were in-
vestigated in secondary analyses. These included exposure to antenatal
and postnatal steroids, indomethacin, necrotizing enterocolitis (NEC),
confirmed sepsis and chorioamnionitis (Hatfield et al., 2011; Thompson
et al., 2008).

3. Results

3.1. Clinical characteristics

A total of 213 infants were recruited and satisfied entry criteria. The
FT group included 55 infants (29 male) with a mean gestational age of
39.2 weeks. The VPT group included 85 infants with no to mild BI (37
male) with a mean gestational age of 26.7 weeks. The BI group included
73 infants with BI (46 male) with a mean gestational age of 25.4 weeks.
Clinical characteristics across each group are included in Table 1.

3.2. Hippocampal volumes

3.2.1. Brain injury
Stepwise linear regression demonstrated differences in corrected

hippocampal volumes between males and females and between FT, VPT
and BI infants (Table 2). In these analyses, males had smaller left and

right cHC volumes than females across all groups (left p= .005, right
p= .004). VPT and BI infants had smaller cHC volumes than FT infants
(VPT left 7% reduction, p= .039; right 7% reduction, p= .002; BI left
19% reduction, p < .001; right 21% reduction, p < .001; Fig. 3).
Further, BI infants had smaller cHC volumes than VPT infants (left 12%
reduction, p < .001; right 15% reduction, p < .001). Linear mixed
models were performed to control for sibling confounders and evaluate
for interactions between sex and infant group. No interactions were
identified.

To evaluate for potential unanticipated effects from ICV correction,
uncorrected HC volumes were also analyzed using identical procedures.
These analyses demonstrated comparable findings across all results
(Supplementary Table 1).

3.2.2. Ventricular size
Unilateral FOHR was used to investigate the effects of unilateral or

asymmetric injury on cHC size. Across all three infant groups, larger
ventricular sizes were associated with smaller cHC volumes (left
r=−0.70, right r=−0.67), with significant associations for VPT and
BI infants (Fig. 4). Among BI infants, these negative relationships were
strongest for infants with IVH alone and PHH (Supplementary Table 2).

3.2.3. Clinical variables
As both VPT and BI infants displayed smaller cHC volumes, we

evaluated the association of clinical characteristics, including medical
risk composite score, sex, race, gestational age at birth and post-
menstrual age at scan with cHC volumes across groups. For these
analyses, birth weight was excluded based on collinearity with gesta-
tional age at birth (r=0.79, p < .001). In these results, left cHC vo-
lumes were related to group, postmenstrual age at scan and gestational
age at birth (β=−0.46, p < .001; β=−0.25, p= .001; β=−0.20,
p= .007, respectively). Right cHC volumes were related to group,
postmenstrual age at scan, gestational age at birth and sex (β=−0.48,
p < .001; β=−0.22, p= .002; β=−0.22, p= .002; β=0.14,
p= .03, respectively). There were no significant interactions. As in
prior analyses, males had smaller left and right cHC volumes than fe-
males across both groups (Table 3). All infants with brain injury had
smaller cHC volumes (left and right) than infants with no to mild brain
injury. Specifically, infants with PHH had smaller cHC volumes (left
and right) than infants with IVH alone and those with cPVL (Table 3,
Fig. 3). In this cohort, postmenstrual age at scan and medical risk
composite score were moderately correlated (r=0.51, p < .001), with

Fig. 2. Injury categories determined by MRI results. Axial T2-weighted MRI scans demonstrating representative individual infants in each brain injury category. A)
Full-term infant; B) very preterm infant without BI, note dolichocephalic shape and decreased folding but otherwise normal anatomy; C) very preterm infant with
grade III/IV intraventricular hemorrhage (IVH), note presence of intra- and periventricular hemorrhage; D) very preterm infant with IVH and post-hemorrhagic
hydrocephalus (PHH) requiring neurosurgical intervention, note dilated lateral ventricles; and E) very preterm infant with cystic periventricular leukomalacia
(cPVL), note cysts surrounding the lateral ventricles. All MRI scans performed at term equivalent postmenstrual age.

J.M. Strahle, et al. NeuroImage: Clinical 22 (2019) 101787

4



higher medical risk composite scores among patients with greater
postmenstrual age at scan. This was driven by the fact that sicker pa-
tients (i.e., greater medical risk composite) were often scanned later in
their NICU course (i.e., at later postmenstrual age); this may also

explain the negative relationships between postmenstrual age at scan
and cHC volumes, as smaller left and right cHC volumes were related to
later postmenstrual age at scan (left and right r=−0.35, p < .001).

Relationships between cHC volumes and exposure to antenatal and

Table 1
Clinical characteristics.

Total
N=213

Full-Term
n=55

Very Preterm n=85 Brain Injury n=73

GA (weeks), mean (SD) – 39.2 (1.2)⁎⁎ 26.7 (1.8)⁎⁎ 25.4 (1.9)⁎⁎

PMA at time of scan (weeks), mean (SD) – 39.4 (1.2) ‡ 37.8 (1.5) ‡† 39.2 (2.4) †

Birthweight (grams), mean (SD) – 3314 (452)‡⁎ 951 (258)‡ 874 (222)⁎

Male, n (%) 112 (53) 29 (53) 37 (44) 46 (63)
African American, n (%) 110 (52) 33 (60) 38 (45) 53 (54)
Siblings, n (%) 33 (15) 1 (3) 27 (32) 5 (7)
Sociodemographic risk score, mean (SD) – 1.85 (1.5) 1.37 (1.2)† 2.0 (1.4) †

IVH, n (%) – – – 33 (45)
PHH, n (%) – – – 27 (37)
cPVL, n (%) – – – 13 (18)
Clinical medical risk index, mean (SD) – – 1.9 (1.8)† 3.1 (1.9)†

Intrauterine Growth Restriction (IUGR), n (%) – – 5 (6)† 2 (3)†

Oxygen at 36 weeks, n (%) – – 45 (53)† 60 (82)†

No antenatal steroids, n (%) – – 8 (9)† 26 (36)†

Postnatal dexamethasone, n (%) – – 11 (13) 9 (12)
Necrotizing enterocolitis, n (%) – – 5 (6)† 22 (30)†

Patent ductus arteriosus, n (%) – – 46 (54)† 56 (77)†

Retinopathy of prematurity, n (%) – – 11 (13)† 22 (30)†

Sepsis, n (%) – – 21 (25)† 37 (51)†

Change in weight-for-height/length, n (%) – – 2 (2) 2 (3)
Prolonged TPN, n (%) – – 13 (15)† 26 (36)†

Chorioamnionitis, n (%) – – 32 (38) 27 (37)

Variables expressed using means were compared using ANOVA or t-tests. Variables expressed as frequencies compared using Chi-square.
Italicized variables were factored into clinical medical risk index.

⁎⁎ p≤ .01 when comparing between the three groups.
‡ p≤ .01 between FT and VPT.
⁎ p≤ .01 between FT and BI.
† p≤ .01 between VPT and BI.

Table 2
Brain and neurodevelopmental measures.

FT n=55
[95% CI]

VPT n=85
[95% CI]

BI n= 73
[95% CI]

df β P

Left cHC volume 0.0027
[0.0026–0.0028]

0.0025
[0.0025–0.0026]

0.0022
[0.0021–0.0023]

211 −0.49 < 0.001⁎⁎

Right cHC volume 0.0028
[0.0027–0.0029]

0.0026
[0.0025–0.0027]

0.0022
[0.0021–0.0023]

211 −0.54 < 0.001⁎⁎

Motor score 103.5
[97.6–109.5]

85.2
[82.3–88.0]

68.4
[64.6–72.2]

134 −0.51 < 0.001⁎⁎

Language score 102.0
[94.9–109.1]

89.3
[86.3–92.3]

77.5
[73.1–82.0]

132 −0.50 < 0.001⁎⁎

Cognition score 93.9
[88.9–98.8]

86.0
[83.5–88.5]

75.0
[71.4–78.6]

137 −0.39 < 0.001⁎⁎

ITSEA competence 49.5
[44.2–54.8]

43.1
[39.8–46.4]

36.5
[32.0–41.0]

132 −0.30 < 0.001⁎⁎

Left FOHR 0.36
[0.36–0.37]

0.40
[0.39–0.40]

0.46
[0.44–0.48]

210 F <0.001⁎⁎

52.8
Right FOHR 0.36

[0.36–0.37]
0.40
[0.39–0.40]

0.47
[0.45–0.49]

210 61.1 < 0.001⁎⁎

Males n=112
[95% CI]

Females n=101 [95% CI] df β P

Left cHC volume 0.0024
[0.0023–0.0024]

0.0025
[0.0025–0.0026]

211 0.17 0.004⁎

Right cHC volume 0.0024
[0.0024–0.0025]

0.0026
[0.0025–0.0027]

211 0.18 0.002⁎

cHC= corrected hippocampal volume (ratio).
FOHR= fronto-occipital horn ratio.
Motor, Language and Cognition scores were generated using the Bayley Scales of Infant and Toddler Development, 3rd edition.
All values corrected; those denoted with β-coefficients were derived from stepwise linear regression models including sex, race and medical risk composite score,
while all values denoted with F statistics were derived from ANOVA.

⁎⁎ p < .001 when comparing between three groups.
⁎ p < .005 when comparing between two groups.
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postnatal steroids, indomethacin, confirmed sepsis, chorioamnionitis
and NEC were analyzed in a post-hoc fashion among VPT and BI in-
fants. Exposure to antenatal steroids was associated with larger cHC
volumes (left and right p < .001). In contrast, exposure to postnatal
dexamethasone or hydrocortisone had no association with cHC volumes
in either the VPT or BI groups. Infants with exposure to indomethacin
(n=18) also did not have significantly different cHC volumes. Further,
there were no differences in cHC volumes among VPT or BI infants
attributable to chorioamnionitis or sepsis, both in models correcting for
associated variables and when using t-tests. Finally, while NEC was
common in infants with brain injury, there were no differences in left or
right hippocampal volumes in affected infants in the BI group (analyzed
independently due to the low prevalence of NEC in the VPT group).

3.3. Neurodevelopmental outcomes at age 2 years

3.3.1. Motor
Stepwise linear regression demonstrated significant effects of infant

group, medical risk scores and left and right cHC volumes with Bayley-
III motor composite scores. Group, medical risk and left and right cHC
volumes were subsequently included in a linear mixed model control-
ling for sibling effects. There were no significant interactions between
these variables, indicating the relationship between larger left and right
cHC volumes and higher motor scores was similar across all groups.

There were significant stepwise decreases in motor scores among
FT, VPT and BI infants and significant differences in BI sub-groups
(Supplementary Fig. 1A). Infants with BI had the lowest motor scores
compared to FT and VPT infants, and those with cPVL scored lowest
overall. As VPT and BI infants had lower motor scores, we used stepwise
linear regression to evaluate the association of motor scores with more
detailed clinical characteristics, including medical risk composite score,
sex, social risk score, gestational age at birth, postmenstrual age at scan,
group and cHC volumes. There were significant effects of group (as
above; β=−0.48, p < .001) and medical risk composite scores (as
above; β=−0.23, p= .006), with higher medical risk scores corre-
sponding to lower motor scores (r=−0.38, p < .001).

3.3.2. Language
Stepwise linear regression revealed significant effects of infant

group and social risk scores on language composite scores. There was
no interaction between group and social risk. Secondary analyses de-
monstrated that language scores decreased across all three groups as
social risk scores increased. The effect of cHC volumes was not sig-
nificant, indicating there were no relationships between cHC volumes
and language outcomes.

There were also significant stepwise decreases in language scores
among FT, VPT and BI infants (Supplementary Fig. 1B). Infants with BI
had the lowest language scores compared to FT and VPT infants. Among
infants with BI, there were no significant differences in scores between
injury sub-groups. As VPT and BI infants also had lower language
scores, the same clinical characteristics were similarly evaluated using
stepwise linear regression. In these analyses, there was again only a
significant effect of group (as above; β=−0.39, p < .001).

3.3.3. Cognition
Stepwise linear regression revealed significant effects of infant

group, social risk scores and left and right cHC volumes on cognitive
scores. The resulting secondary analyses demonstrated that cognitive
scores decreased across all three groups as social risk scores increased.
In addition, there were significant interactions between infant group
and left and right cHC volumes (F=8.4, p < .001; F= 3.6, p= .03,
respectively). Specifically, among the BI infants only, larger left and

Fig. 3. Corrected hippocampal volumes across groups. Plots demonstrating
corrected hippocampal volumes for each infant category, including full-term
infants (FT), very preterm infants with no to mild brain injury (VPT), very
preterm infants with grade III/IV intraventricular hemorrhage (IVH), very
preterm infants with IVH and post-hemorrhagic hydrocephalus requiring neu-
rosurgical intervention (PHH) and very preterm infants with cystic periven-
tricular leukomalacia (cPVL). Overall, the PHH group had the smallest hippo-
campi. Black= left and white= right corrected hippocampal volumes (ratios).
Error bars represent one standard deviation.

Fig. 4. Corrected hippocampal volumes
decrease as ventricular size increases.
Scatter plots demonstrating A) left and B)
right corrected hippocampal volumes (cHC;
ratios) versus hemisphere-specific fronto-
occipital horn ratios (FOHR) for infants
grouped by injury category. Fit lines gen-
erated using Pearson's correlation.
Circle= full-term infants (FT), cross= very
preterm infants with no to mild brain injury
(VPT) and triangle= very preterm infants
with brain injury (BI).
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right cHC volumes were associated with higher cognitive scores
(r=0.42, p= .001; r=0.35, p= .005, respectively Fig. 5).

There were also significant decreases in cognitive scores among FT,
VPT and BI infants without significant differences between BI sub-
groups (Supplementary Fig. 1C). Infants with BI had the lowest cogni-
tive scores compared to FT and VPT infants, and those with cPVL and
PHH scored lowest overall. For cognition scores, on stepwise linear
regression including clinical characteristics, there were significant ef-
fects of group (as above; β=−0.24, p= .019), left and right corrected
hippocampal volumes (as above; β=0.26, p= .008; β=0.28,
p= .005, respectively) and gestational age at birth (β =0.19, p= .03).

Earlier gestational age at birth corresponded to lower cognitive scores
(r=0.28, p= .002).

3.3.4. ITSEA competence
Stepwise linear regression demonstrated a significant effect of group

and social risk scores on ITSEA competence scores. Secondary analyses
demonstrated that ITSEA competence scores and social risk scores were
negatively correlated (r=−0.33, p < .001). The effect of cHC vo-
lumes was not significant, indicating no relationship between cHC vo-
lumes and ITSEA competence scores.

Infants with BI had the lowest competence scores, with no

Table 3
Brain and neurodevelopmental measures for brain injury groups.

IVH n=33
[95% CI]

PHH n=27
[95% CI]

cPVL n=13
[95% CI]

df β p

Left cHC volume 0.0024
[0.0023–0.0025]

0.0018
[0.0017–0.0019]

0.0024
[0.0022–0.0025]

72 −0.24 0.036^

Right cHC volume 0.0024
[0.0023–0.0025]

0.0019
[0.0018–0.0020]

0.0023
[0.0022–0.0025]

72 −0.26 0.025^

Motor score 74.4
[69.6–79.2]

65.1
[59.0–71.2]

56.9
[45.4–68.3]

43 −0.50 < 0.001⁎⁎

Language score 81.5
[74.5–88.5]

74.6
[68.7–80.5]

72.3
[56.1–88.4]

40 −0.22 0.06

Cognition score 80.4
[75.6–85.1]

69.7
[65.2–74.3]

69.4
[55.0–83.8]

44 −0.29 0.034^

ITSEA competence 41.9
[36.0–47.7]

37.9
[30.1–45.8]

21.7
[11.9–31.5]

42 −0.45 0.001⁎⁎

Left FOHR 0.41
[0.39–0.43]

0.54
[0.50–0.57]

0.43
[0.39–0.47]

70 F <0.001⁎⁎

25.2
Right FOHR 0.42

[0.40–0.44]
0.55
[0.51–0.59]

0.44
[0.40–0.47]

70 22.8 < 0.001⁎⁎

Male n=46
[95% CI]

Female n= 27
[95% CI]

df β P

Left cHC volume 0.0021
[0.0020–0.0022]

0.0023
[0.0021–0.0025]

72 0.23 0.043^

Right cHC volume 0.0021
[0.0020–0.0023]

0.0023
[0.0022–0.0025]

72 0.24 0.034^

IVH=Papile grade III/IV intraventricular hemorrhage; PHH=post-hemorrhagic hydrocephalus requiring neurosurgical intervention; cPVL= cystic periventricular
leukomalacia; cHC= corrected hippocampal volume (ratio); FOHR= fronto-occipital horn ratio.
Motor, Language and Cognition scores generated using Bayley Scales of Infant and Toddler Development, 3rd edition.
All values corrected; those denoted with β-coefficients were derived from stepwise linear regression models including sex, race and medical risk composite score,
while all values denoted with F statistics were derived from ANOVA.

^ p < .05.
⁎⁎ p≤ .001.

Fig. 5. Relationship between corrected hippocampal volumes and cognitive outcomes. Scatter plots demonstrating relationships between neonatal A) left and B) right
corrected hippocampal volumes (cHC; ratios) and Bayley Scales of Infant and Toddler Development, 3rd edition cognitive composite scores at age 2 years for each
group. Note that the very preterm infants with brain injury demonstrate strong positive relationships unique to this group. Circle= full-term infants (FT),
cross= very preterm infants with no to mild brain injury (VPT) and triangle= very preterm infants with brain injury (BI).
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difference in scores between FT and VPT infants (Supplementary
Fig. 1D). Among infants with BI, those with cPVL had the lowest
competence scores, without significant differences between infants with
IVH and PHH. When evaluating the effects of clinical characteristics on
ITSEA Competence scores, there were significant effects of group (as
above; β=−0.21, p= .03), social risk scores (as above; β=−0.28,
p= .003) and sex (β=−0.22, p= .017). Females had lower compe-
tence scores than males. Additionally, there was a significant effect of
the right cHC (β=0.25, p= .008), with lower ITSEA competence
scores related to smaller right cHC volumes (r=0.21, p= .027).

4. Discussion

4.1. Summary of findings

Using advanced neuroimaging methods and gold standard manual
hippocampal segmentations, we demonstrate that preterm brain injury,
including IVH, PHH and cPVL, is associated with smaller hippocampal
volumes. This work is consistent with our preclinical findings of hip-
pocampal injury in IVH-PHH (Garton et al., 2016b). VPT infants with
brain injury demonstrated smaller cHC volumes than VPT infants with
no to mild brain injury and FT infants. Within the BI group, infants with
PHH had the smallest hippocampal volumes. Further, in infants with
brain injury, larger ventricle size was associated with smaller hippo-
campal volumes. Sex differences were noted across all infant groups,
consistent with prior reports. While antenatal steroids related to larger
hippocampal volumes, we found no relationship between postnatal
steroid administration and hippocampal size. BI infants demonstrated
the worst neurodevelopmental performance across all domains. Larger
neonatal hippocampal volumes were associated with better motor
outcomes at age 2 years across all infant groups. However, the re-
lationship between larger hippocampal volumes and improved cogni-
tive outcomes was unique to BI infants, a finding with important im-
plications for improving our understanding of the pathophysiology
underlying IVH-PHH and the relationships between these forms of brain
injury and neurodevelopmental outcomes.

4.2. Relation to previous studies of hippocampal development in
prematurely-born children

4.2.1. Hippocampal size
Recent studies in infants and older children have provided conver-

ging evidence of impaired hippocampal growth and development in
children born preterm (Beauchamp et al., 2008; Nosarti and Froudist-
Walsh, 2016; Omizzolo et al., 2013; Thompson et al., 2008, 2013).
These investigations demonstrate both hippocampal volume and shape
are altered in VPT infants in comparison to FT peers, differences at-
tributed to exposures to stress, metabolic insults and hypoxic-ischemic
injury. These patterns persist into childhood and adolescence, with VPT
children continuing to have smaller hippocampi later in life (Nosarti
et al., 2002), commonly in association with other volumetric reductions
in the white and gray matter and cerebellum (de Kieviet et al., 2012).
However, these differences did not remain significant across all studies
when accounting for differences in brain size. This suggests the hip-
pocampus is susceptible to the same deleterious factors impairing
growth brain-wide, though whether it possesses unique vulnerability to
these effects remains unclear. Our finding of smaller hippocampal vo-
lumes in the VPT and BI cohorts is consistent with these data, though
we identified differences in both uncorrected values and those cor-
rected for ICV. Further, the magnitude of the reductions in hippocampal
volumes was greater in our cohort than the literature, which may relate
to differences in medical risk.

4.2.2. Brain injury
Reductions in hippocampal volumes were most prominent in VPT

infants with BI, with the magnitude of differences dependent upon

injury type and severity. Prior studies in this population have included
only limited numbers of infants with white matter injury assessed using
qualitative injury scoring systems centered on white matter volumes,
myelination and injury. These studies demonstrated white matter injury
to be an important determinant of hippocampal size from infancy
through adolescence (Nosarti et al., 2002; Thompson et al., 2008).
However, the single study evaluating effects of high-grade IVH on
hippocampal development included only seven affected children and
failed to identify differences (Thompson et al., 2013). Our study in-
cludes large numbers of infants with high-grade IVH and PHH, an im-
portant clinical population with high rates of disability. Further, we
investigated infants identified to have each of these common forms of
injury. As hypothesized, injured infants were found to have smaller
hippocampi than term and VPT infants with no to mild BI, with infants
with PHH having the smallest hippocampi. These differences suggest
subtype-specific injury relationships, consistent with our preclinical
data (Garton et al., 2016b).

4.2.3. Other clinical variables
While brain injury was the focus of this investigation, we evaluated

additional clinical and demographic predictors previously linked to
hippocampal development and outcome. We found the right hippo-
campus to be larger than the left across groups, including in BI infants,
similar to previous investigations (Pfluger et al., 1999; Thompson et al.,
2009). Also consistent with prior reports, we found differences in hip-
pocampal volumes based upon sex, with males having smaller hippo-
campi than females across all groups, including in injured infants. The
exact mechanisms underlying these differences remain unknown, with
prior reports implicating genetic and/or environmental variables
(Peper et al., 2007; Stefanis et al., 1999). However, these findings
highlight that these hemispheric and sex-related differences may begin
in utero and persist even when growth trajectories are altered by pre-
mature birth and/or brain injury. Interestingly, this differs in compar-
ison to other regional brain volumes where there have been no sex
differences identified in preterm children (Thompson et al., 2007).
Further, these differences may be clinically significant, with hippo-
campal size previously related to hyperactivity in girls but not boys
(Rogers et al., 2012).

In our investigation, VPT infants with and without brain injury
exposed to antenatal steroids had larger hippocampal volumes.
However, it is worthwhile to note that more VPT infants with no to mild
BI were exposed to antenatal steroids (91%) than VPT subjects with BI
(64%). The literature is mixed with respect to antenatal steroids and the
developing brain; while clinical studies showed improved outcomes and
decreases in BI with a single dose of betamethasone (Baud et al., 1999;
Roberts et al., 2017), preclinical studies demonstrated neuronal loss in
the hippocampus (Bustamante et al., 2014; S. G. Matthews, 2001;
Noorlander et al., 2014). The hippocampus is also known to be sensitive
to corticosteroids during early development, and postnatal steroid ad-
ministration may worsen the response to injury (Tombaugh et al.,
1992). Prior studies demonstrated exposure to postnatal dex-
amethasone impaired hippocampal growth (Thompson et al., 2008),
findings not apparent in our cohort. However, only modest numbers of
subjects in our study were exposed to postnatal dexamethasone (27% of
VPT infants with no to mild BI and 32% of VPT infants with moderate
or severe BI). These discrepancies may also be secondary to differences
in postnatal steroid selection (i.e., hydrocortisone versus dexamethasone
versus both) and administration practices and/or medical comorbidities
in the uninjured VPT population between ours and prior studies
(Kidokoro et al., 2014).

Finally, the effects of perinatal clinical risk factors common in
preterm infants, including sepsis, NEC, chorioamnionitis and in-
domethacin exposure, have been extensively studied, with smaller
hippocampi and larger ventricles among affected infants (Hatfield et al.,
2011). While rates of some factors, such as NEC, were higher in the
brain injury group, targeted post hoc investigations in our cohort
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demonstrated no independent relationships between these clinical ex-
posures and hippocampal volumes in the BI group.

4.2.4. Outcomes
The hippocampus is known to be critical to learning and memory

(Bohbot et al., 2000; Cabeza and Nyberg, 2000; Nadel et al., 2000;
Nelson et al., 2001). Longitudinal studies in VPT cohorts suggest neo-
natal hippocampal volumetric measurements may provide valuable
information regarding cognitive and memory performance during early
and middle childhood. For example, smaller hippocampal volumes have
been associated with greater visual motor impairment in very low
birthweight infants and worse cognition in small for gestational age
infants (Martinussen et al., 2009). Further, prior studies demonstrated
an association between developmental outcome measures and hippo-
campal size, where neonatal left hippocampal volumes predicted
mental developmental index scores on the Bayley Scales of Infant De-
velopment, 2nd edition at age 2 years (Thompson et al., 2008). In our
study, smaller hippocampal volumes were associated with worse motor
outcomes across all infant groups, consistent with these prior studies
which suggested this pattern may reflect global negative associations
with perinatal events and/or treatments on both hippocampal devel-
opment and early motor outcomes rather than a causative relationship
(Thompson et al., 2008). However, we also found that smaller hippo-
campal size was associated with worse cognitive outcomes only in the
BI group, suggesting a unique relationship may exist between brain
structure and function in the setting of brain injury in this high-risk
population.

The persistence and nature of these longitudinal relationships re-
mains to be determined. In a longitudinal study of VPT children, larger
neonatal hippocampal volumes were associated with better learning
and memory performance at age 7 years, though similar results were
not identified for hippocampal shape (Thompson et al., 2013). Further,
across multiple studies of older children and adolescents born prema-
turely, smaller and/or altered hippocampi have been associated with
impaired cognition and memory (Abernethy et al., 2004; Giménez
et al., 2004; Isaacs et al., 2004, 2000; Lodygensky et al., 2005). For
example, reductions in hippocampal volumes have been associated with
worse verbal learning and recognition during adolescence (Giménez
et al., 2004). Further, in neurologically normal children born preterm,
those who displayed larger declines in intelligence quotient (IQ) from
childhood to adolescence had smaller right and left hippocampi than
those who exhibited smaller declines in IQ (Isaacs et al., 2004). Finally,
early studies reported smaller hippocampal volumes were associated
with cognitive deficits in preterm children (Isaacs et al., 2000; Peterson
et al., 2000). However, similar relationships have not been identified in
more recent studies investigating comparable measures obtained cross-
sectionally during childhood or evaluating changes in hippocampal size
and folding over time (Omizzolo et al., 2013). This suggests the need for
additional targeted investigation to comprehensively define these re-
lationships, including in children with brain injury.

4.3. Pathophysiology of brain injury effects on hippocampal development

This study demonstrated impaired hippocampal development and
worse cognitive outcomes in VPT infants with common patterns of
preterm brain injury, including grade III/IV IVH and PHH. The etiology
of volumetric changes of the hippocampus and other brain structures in
the uninjured preterm infant likely relate to disrupted development of
pre-oligodentrocytes, subplate neurons and axons due to stresses on the
neonate (Volpe, 2009). Our study is the first to delineate volumetric
changes to the hippocampus after IVH and PHH, extending findings
from our preclinical work (Garton et al., 2016b). The hippocampus is
located adjacent to the temporal horn of the lateral ventricle; thus, it
may be exposed to direct effects of IVH-induced ependymal injury in
the temporal horn, presumably through an iron-mediated or in-
flammatory pathway based upon our rodent model data (Garton et al.,

2017). As the intraparenchymal component of hemorrhage results in
greater injury to the hippocampus compared to IVH alone in preclinical
models, there may also be other pathways involved (Chen et al., 2015).
Relatedly, in preterm infants with germinal matrix hemorrhage alone,
there is suppression of cell proliferation in the ganglion eminence
which may be indicative of more widespread effects including a smaller
hippocampus (Del Bigio, 2011). This constellation of findings suggests
that following IVH and parenchymal perihemorrhagic infarction (i.e.,
grade IV IVH), there may be injury to the hippocampus and sur-
rounding subcortical structures through several pathways related to
iron, hemoglobin (Strahle et al., 2014) and inflammation (Gram et al.,
2014); however, the exact mechanisms remain to be determined. Fur-
ther, there may be other variables that play roles in modifying this
relationship across clinical settings, including degree of prematurity,
increased intraventricular/intracranial pressure and environmental
and/or pharmacologic exposures (Morales et al., 2015; Urlesberger
et al., 1991).

Animal models of PVL also demonstrated injury and microglial ac-
tivation in the hippocampus following experimental PVL; however, the
exact mechanism of these changes is not yet clear (Cai et al., 2001;
Debillon et al., 2000; Field et al., 1993; Hagberg et al., 2002; Marumo
et al., 2001; Uehara et al., 1999). In these models, periventricular white
matter injury is induced through infectious as well as hypoxic-ischemic
models of PVL, and the same pathophysiologic processes that result in
injury to the white (and gray) matter around the ventricle likely play a
role in injury to the adjacent hippocampus. Oligodendrocyte progenitor
cells and activated microglia are implicated in the pathogenesis of PVL
and have been targeted therapeutically in preclinical models with er-
ythropoietin and minocycline, respectively (Fan et al., 2005; Mizuno
et al., 2008).

4.4. Post-hemorrhagic hydrocephalus and ventricular size

CSF volume (both intra- and extra-axial) in preterm infants is ap-
proximately twice that of term infants (Thompson et al., 2007). In this
population, ventriculomegaly in the setting of IVH is likely a distinct
clinical entity from PHH requiring surgical treatment, often persisting
into adolescence and adulthood (Nosarti et al., 2002). As infants with
ventricular dilation secondary to hydrocephalus after IVH are known to
be a unique high-risk population, we evaluated infants requiring clin-
ical neurosurgical intervention (e.g., reservoir, ventriculoperitoneal
shunt, ETV-CPC) as a separate group. Indeed, we found that among all
infants, those with PHH had the smallest cHC volumes. This remained
true even when comparing uncorrected hippocampal volumes, elim-
inating the possibility this finding was confounded by increases in ICV
secondary to hydrocephalus. Ventricular size was analyzed separately
for VPT infants with IVH and cPVL, and similarly found to be inversely
related to hippocampal size. In these infants, larger ventricle size may
relate to ependymal expansion or ex vacuo changes from injury around
the ventricle wall. Thus, forms of injury resulting in larger ventricle size
may similarly affect the adjacent hippocampus. While prior reports
investigating ventricular size in IVH have shown smaller deep gray
matter and cerebellar volumes at term equivalent age in preterm infants
with larger ventricles, the hippocampus has not been examined
(Brouwer et al., 2016). These findings across groups, injury types and
structures suggest the relationship between smaller hippocampal vo-
lume and larger ventricle size in infants with PHH may be the result of a
complex pathophysiologic process, including contributions from vari-
ables such as degree of prematurity, inflammation, increased in-
traventricular pressure, clinical and/or pharmacologic exposures in the
NICU, and factors related to surgical treatment of PHH including an-
esthesia (Morales et al., 2015; Urlesberger et al., 1991; Wellons et al.,
2013). Further, our data demonstrate these infants have the worst
outcomes among all neonatal groups, with cognitive outcomes asso-
ciated with hippocampal size in VPT infants with BI. These findings are
consistent with previous reports detailing worse neurodevelopmental
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outcomes in IVH-PHH dependent upon ventricular size (Srinivasakumar
et al., 2013).

Based upon the anatomic proximity of the hippocampi to the lateral
ventricles, prior literature suggests increases in intracranial pressure in
the setting of PHH may also contribute to this effect, although the re-
lationship is likely complex, as even those infants who do not require
treatment for hydrocephalus are likely to have transiently elevated
intracranial pressures (Morales et al., 2015; Urlesberger et al., 1991;
Wellons et al., 2013). Although some have proposed definitions of
ventricular size cut-offs based on normative values for ven-
triculomegaly (Davies et al., 2000; Levene, 1981), there is not a uni-
versally accepted cut-off nor one that is known to predict worse out-
comes. However, as our understanding of the etiology of PHH is
expanding, there are likely widespread processes that concurrently
contribute to brain injury and hydrocephalus. For example, blood
breakdown products within CSF circulate throughout the ventricular
system in infants with PHH resulting in injury mediated through the
toxic effects of iron or white blood cell-associated inflammation (Garton
et al., 2016a). This suggests the pathway to improved neurodevelop-
mental outcomes in this population extends beyond decreasing ven-
tricular size and maintaining lower intracranial pressures alone
(Kulkarni et al., 2017).

4.5. Caveats, limitations and future directions

Our rigorous data quality criteria resulted in a sample size com-
parable to prior investigations, though with a much greater number of
injured infants. Despite this relative large total sample size, the number
of infants in each injury subcategory was small for some diagnoses,
limiting statistical power for some group comparisons. This cohort
demonstrated medical comorbidities common in this clinical popula-
tion (Table 1). Across all groups there was an imperfect balance with
respect to sex, and there was a greater proportion of male infants in the
brain injury cohort than other groups. While relationships between
these clinical variables and key results were carefully examined, their
effects may be incompletely assessed using the medical risk composite
score. In addition, while the hippocampi were identified using gold
standard manual segmentations generated by a highly experienced
rater using images acquired with MRI sequences optimized for tissue
contrast, segmentation of small structures in infants with heterogeneous
brain injury is technically challenging. We employed standardized
neuroanatomical boundaries, rigorous data quality criteria and
methods designed to reduce error in measured results. However, it re-
mains possible our methods may not fully account for variations in
anatomy across subjects. An automatic method for accurately seg-
menting the hippocampus objectively in this clinical population, in-
cluding in infants with brain injury, would be beneficial (Thompson
et al., 2011).

Finally, while we identified longitudinal relationships between
neonatal hippocampal measures and early childhood outcomes, in-
cluding associations specific to infants with brain injury, it is uncertain
if these relationships will persist and/or evolve in later childhood in
light of recent reports (Thompson et al., 2014). Assessments at later
ages enable more detailed assessments across domains known to be
associated with hippocampal function such as memory and learning. In
addition, the majority of prior studies in this domain have been per-
formed in children from Australian families from higher socioeconomic
backgrounds (Beauchamp et al., 2008; Kidokoro et al., 2014; Omizzolo
et al., 2013; Thompson et al., 2008), in contrast to our American so-
cially-disadvantaged preterm sample.

Further longitudinal study in this and related cohorts of VPT chil-
dren extending into later childhood remain necessary to comprehen-
sively characterize the relationships identified in this investigation and
characterize population-based differences which may contribute to
findings. Additional detailed analysis of the effects of brain injury on
hippocampal shape, as well as incorporation of advanced neuroimaging

modalities, including assessment of microstructural and functional
connectivity of the hippocampus to other brain structures, will further
expand upon our findings. Finally, our clinical observations regarding
the association between brain injury and hippocampal size and cogni-
tive outcomes requires validation in preclinical animal model in-
vestigations designed to define the pathophysiology underlying the
relationship and the effects of other clinical variables of interest (e.g.,
intracranial pressure, anesthesia, inflammation, neurosurgical inter-
vention).

5. Conclusions

Characterization of early hippocampal development in VPT infants
with brain injury, including IVH, PHH and cPVL, adds to the growing
body of research exploring the role of the hippocampus in neurodeve-
lopmental outcomes and its susceptibility to the effects of premature
birth. Our results reveal VPT infants with brain injury demonstrate
smaller hippocampal volumes in comparison to full-term and VPT in-
fants with no to mild injury, consistent with our preclinical work in
models of IVH-PHH. Furthermore, we demonstrated unique long-
itudinal associations in this group, with smaller hippocampal volumes
related to worse cognitive outcomes during early childhood. Infants
with PHH demonstrated both the smallest hippocampal volumes and
worst neurodevelopmental outcomes. In infants with brain injury,
larger ventricular size was associated with smaller hippocampal vo-
lumes, a relationship which may inform future studies. Further in-
vestigation of the longitudinal relationships between neonatal hippo-
campal measures and domain-specific outcomes during later childhood
remains necessary to better define the role of the hippocampus in
neurobehavioral development in this high-risk population.
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