
ABSTRACT

Title of dissertation: IMPROVING THE ROUND COMPLEXITY OF
IDEAL-CIPHER CONSTRUCTIONS

Aishwarya Thiruvengadam, Doctor of Philosophy, 2017

Dissertation directed by: Professor Jonathan Katz
Department of Computer Science

Block ciphers are an essential ingredient of modern cryptography. They are

widely used as building blocks in many cryptographic constructions such as en-

cryption schemes, hash functions etc. The security of block ciphers is not currently

known to reduce to well-studied, easily formulated, computational problems. Never-

theless, modern block-cipher constructions are far from ad-hoc, and a strong theory

for their design has been developed. Two classical paradigms for block cipher design

are the Feistel network and the key-alternating cipher (which is encompassed by the

popular substitution-permutation network). Both of these paradigms that are iter-

ated structures that involve applications of random-looking functions/permutations

over many rounds.

An important area of research is to understand the provable security guaran-

tees offered by these classical design paradigms for block cipher constructions. This

can be done using a security notion called indifferentiability which formalizes what

it means for a block cipher to be ideal. In particular, this notion allows us to assert

the structural robustness of a block cipher design. In this thesis, we apply the in-



differentiability notion to the two classical paradigms mentioned above and improve

upon the previously known round complexity in both cases. Specifically, we make

the following two contributions:

• We show that a 10-round Feistel network behaves as an ideal block cipher

when the keyed round functions are built using a random oracle.

• We show that a 5-round key-alternating cipher (also known as the iterated

Even-Mansour construction) with identical round keys behaves as an ideal

block cipher when the round permutations are independent, public random

permutations.



IMPROVING THE ROUND COMPLEXITY OF
IDEAL-CIPHER CONSTRUCTIONS

by

Aishwarya Thiruvengadam

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor Jonathan Katz, Chair/Advisor
Professor Dana Dachman-Soled, Co-Chair
Professor Michelle Mazurek
Professor Charalampos Papamanthou
Professor Lawrence Washington



c© Copyright by
Aishwarya Thiruvengadam

2017



To Dad

ii



Acknowledgements

I would like to thank my advisor, Jonathan Katz, for his support and guidance

throughout my PhD. He has given me the independence to grow while being available

when needed. Learning from him has been a truly enriching experience and I have

benefited immensely from our interactions having always come away with a new

perspective. He has also been a source of valuable advice and has helped me navigate

various aspects of my career. Jon’s views on science, research, and teaching have

helped shape my own and I am very grateful for that. His understanding during

a difficult personal circumstance made my decision to continue with grad school

easier; under different circumstances, I am not sure which path my life would have

taken. Jon has been kind, fair, patient, and forgiving, and with his support, I have

felt fearless in pursuing my research interests. I am deeply grateful to Jon and feel

that I have been extremely fortunate to have him as my advisor.

I would also like to thank my advisor and mentor, Dana Dachman-Soled, for

her support and encouragement. Dana has always had her door open for me and

I took maximum advantage of it. Some of my most enjoyable experiences in grad

school have involved staring at a white board with Dana while reasoning about a

problem. My interactions with her made me feel more comfortable in my own skin

and have helped me come into my own. She taught me the value of perseverance and

has always been willing to engage with me and lead me in new research directions.

She has provided valuable insight and advice in various aspects of research and

academia. I am extremely grateful for her guidance and friendship and feel very

iii



fortunate that my years at UMD overlapped with hers, if only for a few years.

I am grateful to Babis, Larry, and Michelle for serving on my dissertation

committee. I am also immensely grateful to all my co-authors and the research

community and to all my teachers over the years. Thanks especially to Dana and

Jon for collaboration on the work appearing in Chapter 3 and John, Yannick, and

Yuanxi for collaboration on the work appearing in Chapter 4. I have also been lucky

to share space at MC2 with brilliant faculty, staff and students. My gratitude to

them for creating a vibrant atmosphere. I am grateful also to the faculty, students

and staff at the CS department for their support, friendship and mentorship. Thanks

especially to Jenny and Fatima who made any task seem like a breeze.

I have made some wonderful friends at UMD. Thank you all for being there,

through the highs and the lows. Thanks especially to Shweta, Srimathy and Vikas

who were incredibly supportive during difficult times. Vikas has been my rock

throughout this process while going through and learning from similar experiences.

Lastly, I thank my Mom and sister who have shown incredible love, strength

and support. My deepest gratitude to friends and family without whose support I

could not be here today. It is humbling to know that there are those to whom I owe

a deep debt of gratitude that I can never hope to repay. Finally, thanks to Dad for

his immeasurable love and for being my guiding light every step of the way.

iv



Table of Contents

Dedication ii

Acknowledgements iii

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7

3 Indifferentiability of the 10-Round Feistel Network 11
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 The Techniques of Coron et al. . . . . . . . . . . . . . . . . . 11
3.1.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Our Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Informal Description . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Formal Description . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Proof of Indifferentiability . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Indistinguishability of the First and Second Experiments . . . 29
3.4.3 Properties of the Second Experiment . . . . . . . . . . . . . . 43
3.4.4 Indistinguishability of the Second and Third Experiments . . . 82
3.4.5 Indistinguishability of the Third and Fourth Experiments . . . 85

4 Indifferentiability of 5-Round Iterated Even-Mansour 86
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Our Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Informal Description . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.2 Formal Description . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Proof of Indifferentiability . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Properties of the Second Experiment . . . . . . . . . . . . . . 106
4.4.3 Efficiency of the Simulator . . . . . . . . . . . . . . . . . . . . 140
4.4.4 Indistinguishability of the First and Second Experiments . . . 172
4.4.5 Indistinguishability of the Second and Fourth Experiments . . 177

5 Conclusion 190

Bibliography 193

vi



List of Figures

2.1 The 4-round Feistel network. . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The 5-round iterated Even-Mansour construction. . . . . . . . . . . . 8

4.1 Pseudocode of the simulator. . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Pseudocode of the simulator (contd.) . . . . . . . . . . . . . . . . . . 97
4.3 Public procedures Query, Enc, and Dec. . . . . . . . . . . . . . . . . 100

vii



List of Abbreviations

IC Ideal Cipher
IEM Iterated Even-Mansour

viii



Chapter 1: Introduction

Block ciphers are fundamental building blocks of cryptography. They enjoy

widespread use in various cryptographic constructions such as encryption schemes [4],

hash functions [42,50] etc. Block ciphers take a key k and another input x and pro-

duce an output y. They are keyed objects that are intended to produce families of

pseudorandom permutations [44]. Roughly speaking, a permutation is said to be

“pseudorandom” when an efficient attacker interacting with it cannot tell if it is

interacting with the object or a perfectly random permutation.

The design of modern block ciphers follows two main approaches [39] both of

which rely on Shannon’s confusion and diffusion paradigm [32,55]. In this paradigm,

the input is first subjected to a confusion step where a (pseudo-)random function(s)

is applied on part of the input. Then, in the diffusion step, the output of the

confusion step is “mixed” such that the confusion propagates through the output

bits. These two steps together form one round and are repeated multiple times

resulting in what is expected to be a random-looking output.

Feistel Networks. Following this paradigm, one well-known approach for build-

ing practical block ciphers is to use a Feistel network [32], an iterated structure in

which key-dependent, “random-looking” round functions on {0, 1}n are applied in a

1



sequence of rounds to yield a permutation on {0, 1}2n. Block ciphers that are based

on Feistel networks include DES [49], FEAL [56], MISTY [46] and KASUMI [1].

In analyzing the security that Feistel networks provide, it is useful to consider an

information-theoretic setting in which the round functions are instantiated by in-

dependent, truly random (keyed) functions. The purpose of such an analysis is to

validate the structural robustness of the approach. Luby and Rackoff [44] proved

that when independent, random round functions are used, a three-round Feistel

network is indistinguishable from a random permutation under chosen-plaintext at-

tacks, and a four-round Feistel network (depicted in Fig. 2.1) is indistinguishable

from a random permutation under chosen plaintext/ciphertext attacks.

Key-alternating Ciphers/Iterated Even-Mansour Constructions. Another

popular approach for block cipher design is by construction of key-alternating ci-

phers. Such block ciphers alternatively apply two types of transformations to the

current state: the (usually bitwise) addition of a secret round key, and the appli-

cation of a public permutation to the entire block. This is in particular the case of

virtually all Substitution Permutation Networks, a popular methodology for block

cipher construction, such as AES [20]. Other examples of key-alternating ciphers

include block ciphers such as Serpent [9] and PRESENT [13]. This class of block

ciphers has also been analyzed in an information-theoretic setting by modeling the

public permutations as oracles that the adversary can only query in a black-box

way (in both directions), each behaving as a perfectly random permutation. Again,

this approach allows to assert the nonexistence of generic attacks, i.e., attacks not

2



exploiting the particular structure of “concrete” permutations. This approach to an-

alyzing the key-alternating ciphers dates back to Even and Mansour [30] who studied

the one-round case. For this reason, such key-alternating cipher constructions with

public permutations that can be queried only in a black-box manner are often called

the iterated Even-Mansour (IEM) construction, which is the terminology we will use

in the rest of this thesis.

Indistinguishability. In both the Luby-Rackoff [44] and the Even-Mansour [30]

results for Feistel networks and the IEM construction respectively, the security no-

tion considered—namely, indistinguishability—is one in which the key of the overall

block cipher is unknown to the adversary. Indistinguishability results establish that

the block ciphers satisfy the pseudorandomness property, i.e., an efficient adversary

cannot tell whether it is interacting with the block cipher for an unknown key or a

truly random permutation.

Even though pseudorandomness has been the primary security requirement

any block cipher should satisfy, in some cases this property is not enough to estab-

lish the security of higher-level cryptosystems where the block cipher is used. For

example, the security of some real-world authenticated encryption protocols such as

3GPP confidentiality and integrity protocols f8 and f9 [38] rely on the stronger block

cipher security notion of indistinguishability under related-key attacks [5,8]. Another

context where this problem arises is in block-cipher based hash functions [42,50]. In

such cases, the adversary controls both the input and the key of the block cipher,

and hence can exploit “known-key” or “chosen-key” attacks [10,41] in order to break

3



the collision- or preimage-resistance of the hash function.

Hence, cryptographers have come to view a good block cipher as something

close to an ideal cipher (IC) [55], i.e., an oracle where each key defines an indepen-

dent, random permutation. Perhaps not surprisingly, this view has turned out to

be very fruitful for proving the security of constructions based on a block cipher

when the pseudorandomness assumption is not enough [6,7,12,25,34,40,48,57], by

using a model known as the ideal cipher model. However, this ultimately remains

a heuristic approach, as one can construct (contrived) schemes that are secure in

the ideal cipher model, but insecure for any concrete instantiation of the block ci-

pher [11]. This means that there is no hope to formalize (let alone prove) what

it means for a concrete block cipher to “behave” as an ideal cipher and that the

strength of a concrete block cipher in this respect should ultimately be evaluated

through cryptanalysis.

Indifferentiability. This does not mean that the provable security approach has

nothing to offer regarding how to design something close to an ideal cipher. Indeed,

the indifferentiability framework, introduced by Maurer et al. [47] (and popularized

by Coron et al. [16]), helps formalize the notion of what it means for a block cipher to

behave like an ideal cipher. More generally, it allows to assess whether a construction

of some target primitive A (e.g., a block cipher) from some lower-level ideal primi-

tive B (e.g., for the IEM construction, a small number of random permutations or

for the Feistel network, a small number of random functions) is “structurally close”

to the ideal version of A (e.g., an ideal cipher). Furthermore, the notion of indif-

4



ferentiability is accompanied by a powerful composition theorem [47] which ensures

that a large class of protocols that are provably secure when used with the ideal-A

primitive, remain secure in the ideal-B model — as long as one uses a construction

of A from ideal-B that is indifferentiable from ideal-A (see [24, 52] for restrictions

on the applicability of the theorem).

Proving indifferentiability is more complex than proving indistinguishability:

to prove indifferentiability from an ideal cipher IC of a block cipher construction C

that relies on an ideal primitive O, one must exhibit a simulator S such that the

view of any distinguisher interacting with (CO,O) is indistinguishable from its view

when interacting with (IC,S IC). Once a tentative simulator has been determined, the

indifferentiability proof usually entails two technical challenges: on the one hand,

proving that the simulator is never trapped into an inconsistency, and on the other

hand, proving that it runs in polynomial time. Finding the right balance between

these two requirements is at the heart of the design of a suitable simulator.

1.1 Contributions

Indifferentiability of Feistel Networks. In a landmark result building on [18,37,

53], Coron et al. [17] proved that when using independent, random round functions,

a 14-round Feistel network is indifferentiable from a random permutation. This

suffices to show that a 14-round Feistel network with keyed round functions built

using a random oracle is indifferentiable from an ideal cipher. The key question left

open by the work of Coron et al. is one of efficiency : how many rounds are needed

5



in order for indifferentiability to hold? It is known from prior work [17] that 5

rounds are not sufficient, while (as we have just noted) 14 rounds are. In Chapter 3,

we narrow this gap and show that a 10-round Feistel network is indifferentiable

from an ideal cipher.1 The results in this chapter are based on work published in

Eurocrypt 2016 [19].

Indifferentiability of IEM. Andreeva et al. [2] showed that the 5-round IEM con-

struction with an idealized key-schedule (i.e., the function(s) mapping the master

key onto the round key(s) are modeled as random oracles) is indifferentiable from

an ideal cipher. Lampe and Seurin [43] showed that the 12-round IEM construction

with the trivial key-schedule, i.e., in which all round keys are equal, is also indiffer-

entiable from an ideal cipher. In both settings, the question of the exact number of

rounds needed to make the IEM construction indifferentiable from an ideal cipher

remained open. In Chapter 4, considering the case of non-idealized key-schedules

(i.e., key derivation does not make use of an ideal primitive), we show that a 5-round

IEM construction is indifferentiable from an ideal cipher. The results in this chapter

are based on work to be published in Crypto 2017 [21].

Summary. In this thesis, we analyze two popular block cipher design methodolo-

gies, namely the Feistel network and the iterated Even-Mansour construction, and

further our understanding on the number of rounds required for such constructions

to behave like an ideal cipher under certain assumptions.

1 A proof claiming that the 10-round Feistel is indifferentiable from an ideal cipher was published

in [53] but the authors later found a distinguishing attack [54].

6



Chapter 2: Preliminaries

A block cipher with key space {0, 1}κ and message space {0, 1}m is a mapping

C : {0, 1}κ × {0, 1}m → {0, 1}m such that for any key k ∈ {0, 1}κ, x 7→ C(k, x) is a

permutation. An ideal cipher with block length m and key length κ is a block cipher

drawn uniformly at random from the set of all block ciphers with block length m

and key length κ.

The Feistel Network. The r-round Feistel construction, given access to functions

F = (F1, . . . , Fr) from {0, 1}n to {0, 1}n, is defined as follows. Let (Li−1, Ri−1) be

the input to the i-th round, with (L0, R0) denoting the initial input. Then, the

output (Li, Ri) of the i-th round of the construction is given by Li := Ri−1 and

Ri := Li−1 ⊕ Fi(Ri−1). So, for a r-round Feistel, if the 2n-bit input is (L0, R0),

then the output is given by (Lr, Rr). A Feistel network with r = 4 is illustrated in

Figure 2.1.

The Iterated Even-Mansour Construction. Let g = (g0, . . . , gr) be a (r + 1)-

tuple of functions from {0, 1}n to {0, 1}n specifying the key schedule of the IEM.

Then, given access to P = (P1, . . . , Pr) of permutations over {0, 1}n, the r-round

iterated Even-Mansour construction (denoted EMP) maps an input x ∈ {0, 1}n and

7



F1

F2

F3

F4

L0 R0

L4 R4

Figure 2.1: The 4-round Feistel network.

a key k ∈ {0, 1}n to the output defined by

EMP(k, x) = gr(k)⊕ Pr(gr−1(k)⊕ Pr−1(· · ·P2(g1(k)⊕ P1(g0(k)⊕ x)) · · · )).

We say that the key-schedule is trivial when all gi’s are the identity.

We observe that the first and the last key additions do not play any role for

indifferentiability. This is because in the indifferentiability setting the key is just

a “public” input to the construction. Hence, in Chapter 4, we focus on the slight

variant of the trivial key-schedule where g0 = gr = 0 (see Fig. 2.2), but our results

carry over directly to the “standard” trivial key-schedule (and more generally to

any non-idealized key-schedule where the gi’s are permutations of {0, 1}n).

x P1 P2

k

P3

k

P4

k

P5

k
y

Figure 2.2: The 5-round IEM with independent permutations and identical round
keys where the first and last round key additions are omitted.

8



Notation. Throughout, n will denote the block length of the underlying primitive

used for the block cipher construction — in the case of the Feistel network, n denotes

the block length of the round functions Fi, and for the IEM construction, the block

length of the permutations Pi — and will play the role of the security parameter for

asymptotic statements. Given a finite non-empty set S, we write s ←$ S to mean

that an element is drawn uniformly at random from S and assigned to s.

A distinguisher is an algorithm D with oracle access to a finite list of oracles

(O1, O2, . . .) and that outputs a single bit b, which we denote DO1,O2,... = b.

Indifferentiability. We present the standard definition of indifferentiability below.

(For clarity, we state it directly in the context of indifferentiability from an ideal

cipher for a block cipher C instantiated from a primitive O.) This definition is

obtained by adapting the definition used by Coron et al. [17] based on the original

definition of Maurer, Renner, and Holenstein [47].

Definition 1. Let C be a construction that, for any n, accesses oracles O =

(O1, . . . , Or) over {0, 1}n and implements a block cipher with key space {0, 1}κ and

message space {0, 1}m. We say that C is indifferentiable from an ideal cipher if there

exists a simulator S and a polynomial t such that for all distinguishers D making at

most q = poly(n) queries, S runs in time t(q) and

|Pr[DCO,O(1n) = 1]− Pr[DIC,S IC(1n) = 1]|

is negligible, where IC is an ideal cipher with key space {0, 1}κ and message space {0, 1}m.

Note that Definition 1 allows the simulator to depend on the number of

queries q. In fact, the simulators that we present do not depend on q, but these

9



simulators are efficient only with high probability, as will become clear in the proofs.

However, we can modify these simulators such that they can use the knowledge of q

(as allowed in Definition 1) and abort whenever their runtime exceeds t(q), thus

ensuring that the simulator is efficient with probability 1.

10



Chapter 3: Indifferentiability of the 10-Round Feistel Network

As mentioned in Chapter 1, in the context of Feistel networks, it is known

(see [17]) that one can simplify the problem of indifferentiability from an ideal

cipher and focus on indifferentiability of the Feistel network when using independent,

random, unkeyed round functions from a public random permutation; an ideal cipher

can then be obtained by keying the round functions. Coron et al. [17] proved

that a 14-round Feistel network using random, independent, round functions is

indifferentiable from a random permutation. Left unresolved is the best possible

efficiency of the transformation. In this chapter, we improve upon the result of

Coron et al. [17] and show that 10 rounds suffice.

3.1 Overview

We first describe the proof structure used by Coron et al., and then describe

how our proof differs.

3.1.1 The Techniques of Coron et al.

Consider a naive simulator for an r-round Feistel construction, which responds

to distinguisher queries to each of the round functions F1, . . . , Fr, by always return-

11



ing a uniformly random value. Unfortunately, there is a simple distinguisher who

can distinguish oracle access to (FeistelFr , F ) from oracle access to (P,SP ): The dis-

tinguisher will query (x0, x1) to the first oracle, receiving (xr, xr+1) in return and

will use oracle access to the second oracle to evaluate the r-round Feistel and com-

pute (x′r, x
′
r+1) on its own, creating a chain of queries, (x1, . . . , x

′
r). Note that in

the first case (xr, xr+1) = (x′r, x
′
r+1) with probability 1, while in the second case the

probability that (xr, xr+1) = (x′r, x
′
r+1) is negligible, so security is broken.

The following is an approach to fixing the above attack, which essentially gives

the very high-level intuition for how a successful simulator works: If the simulator

can find out the value of P (x0, x1) = (xr, xr+1) before the distinguisher queries the

entire chain, then the simulator can assign values for the remaining queries Fi(xi),

conditioned on the restriction FeistelFr (x0, x1) = (xr, xr+1). More specifically, if there

are two consecutive rounds (i, i + 1), where i ∈ {1, . . . , r − 1}, which have not yet

been queried, the simulator can adapt its assignments to Fi(xi), Fi+1(xi+1) to be

consistent with P (x0, x1) = (xr, xr+1). When the simulator adapts the assignment

of Fi(xi) to be consistent with a constraint P (x0, x1) = (xr, xr+1), we say that this

value of Fi(xi) has been assigned via ForceVal. We next discuss further details of

the Coron et al. [17] construction.

Partial chain detection and preemptive completion. To allow the simulator

to preemptively discover P (x0, x1) = (xr, xr+1), Coron et al. fix two “detect zones”

which are sets of consecutive rounds {1, 2, 13, 14}, {7, 8}. Each time the simulator

assigns a value to Fi(xi), it also checks whether there exists a tuple of the form

12



(x1, x2, x13, x14) such that (1) F1(x1), F2(x2), F13(x13), F14(x14) have all been as-

signed and (2) P (F1(x1)⊕ x2, x1) = (x14, F13(x13)⊕ x14); or whether there exists a

tuple of the form (x7, x8) such that F7(x7) and F8(x8) have both been assigned. A

pair of consecutive round values (xk, xk+1) is referred to as a “partial chain” and

when a new partial chain is detected according to the detect zones described above

it is “enqueued for completion” and will later be dequeued and preemptively com-

pleted. When a partial chain is detected due to a detect zone that includes both x1

and xr, we say it is a “wraparound” chain. Note that preemptive completion of a

chain can cause new chains to be detected and these will then be enqueued for com-

pletion. This means that in order to prove indifferentiability, it is necessary to argue

that for xi that fall on multiple completed chains, all restrictions on the assignment

of Fi(xi) can be simultaneously satisfied. In particular the “undesired case” will

be when some assignment Fi(xi) must be adapted via a ForceVal assignment, but

an assignment to Fi(xi) has already been made previously. If such a case occurs,

we say the value at an adapt position has been “overwritten.” It turns out that

to prove indifferentiability, it is sufficient to prove that this occurs with negligible

probability.

4-Round buffer zone. In order to ensure that overwrites do not occur, Coron

et al. [17] introduce the notion of a 4-round buffer zone. Their simulator has two

4-round buffer zones, corresponding to rounds {3, 4, 5, 6} or {9, 10, 11, 12}. Within

the buffer zones, positions {3, 6} (respectively {9, 12}) are known as the set uniform

positions, and positions {4, 5} (respectively {10, 11}) are known as the adapt posi-

13



tions. Coron et al. [17] prove the following property (which we call henceforth the

strong set uniform property): At the moment that a chain is about to be completed,

the set uniform positions of the buffer zone are always unassigned. This means that

the simulator will always assign uniform values to F3(x3) and F6(x6) (respectively

F9(x9) and F12(x12)) immediately before assigning values to F4(x4) and F5(x5) (re-

spectively F10(x10) and F11(x11)) using ForceVal. This will ensure that ForceVal

never overwrites (except with negligible probability) since x4 = x2 ⊕ F3(x3) is only

determined at the moment F3(x3) is assigned and so the probability that F4(x4) has

already been assigned is negligible (a similar argument holds for the other adapt

positions).

Rigid structure. The fixed 4-round buffer zones of their simulator is used in

their proof in two ways: First, since all assignments, across all completed chains are

uniform except in the fixed adapt positions {4, 5} and {10, 11}, it is easier to argue

about “undesired events” occurring. In particular, since the 4-round buffer of one

chain ({3, 4, 5, 6} or {9, 10, 11, 12}) cannot overlap with the detect zone of another

chain ({1, 2, 13, 14} or {7, 8}), they can argue that if a “undesired event” occurs

while detecting a chain C, then either an equivalent chain was already enqueued or

that event must have been caused by a uniform setting of Fi(xi).

Bounding the simulator’s runtime. The approach of Coron et al. [17] (originally

introduced by Seurin [53]) is to bound the total number of partial chains that get

completed by the simulator. Note that in order to create a partial chain of the form

(x1, x2, x13, x14), it must be the case that P (F1(x1)⊕ x2, x1) = (x14, F13(x13)⊕ x14)

14



and so, intuitively, the distinguisher had to query either P or P−1 in order to

achieve this. Thus, the number of partial chains of the form (x1, x2, x13, x14) (i.e.,

wraparound chains) that will get detected and completed by the simulator is at most

the total number of queries made by the distinguisher. Since there is only a single

middle detect zone {7, 8}, once we have a bound on the number of wraparound

chains that are completed, we can also bound the number of completed partial

chains of the form (x7, x8).

3.1.2 Our Techniques

We next briefly discuss how our techniques differ from the techniques of Coron

et al. [17] in the four main areas discussed above.

Separating detection from completion for wrap-around chains. When the

distinguisher makes a query Fi(xi) to the simulator, our simulator proceeds in two

phases: In the first phase, the simulator does not make any queries, but enqueues for

completion all partial chains which it predicts will require completion. In the second

phase, the simulator actually completes the chains and detects and enqueues only

on the middle detect zone (which in our construction corresponds to rounds {5, 6}).

This simplifies our proof since it means that after the set of chains has been detected

in the first phase, the simulator can complete the chains in a manner that minimizes

“bad interactions” between partial chains. In particular, in the second phase, the

simulator first completes chains C with the property that one of the set uniform

positions is “known” and hence could already been assigned (in the completion of

15



another chain D) before the chain C gets dequeued for completion. (Although this

contradicts the strong set uniform property of [17], in our proof we are able to relax

this requirement. See the discussion of the weak set uniform property below for

further details.) The simulator then proceeds to complete (and detect and enqueue)

other chains. This allows us to simplify our analysis.

Relaxed properties for the 4-round buffer zone. When a partial chain is about

to be completed, we allow the case that one of the set uniform positions has already

been assigned to occur, as long as the adapt position adjacent to this set uniform

position has not yet been assigned. Henceforth, we call this the weak set uniform

property. We prove that the weak set uniform property holds in Claim 3.35.

Relaxed structure. Requiring only the weak set uniform property allows us to

consider a more relaxed structure for detect zones and 4-round buffer zones. Instead

of requiring that for every chain that gets completed the 4 round buffer positions

({3, 4, 5, 6} or {9, 10, 11, 12} in the case of [17]) are always unassigned, we allow more

flexibility in the position of the 4-round buffer. For example, depending on whether

the detected chain is of the form (x1, x2, x10), (x1, x9, x10), or (x5, x6), our 4-round

buffer will be one of: {3, 4, 5, 6} or {6, 7, 8, 9}, {2, 3, 4, 5} or {5, 6, 7, 8}, {1, 2, 3, 4} or

{7, 8, 9, 10}, respectively. This flexibility allows us to reduce the number of rounds.

However, now, the adapt zone of one chain may coincide with the detect zone of

another chain. Since there are no dedicated roles for fixed positions and since partial

chains in the middle detect zone are detected during the completion of other chains,

we need additional bad events BadlyHitFV and BadlyCollideFV to argue that unde-

16



sired effects do not occur. Furthermore, in order to prove that a new wraparound

chain does not get created during the completion of other chains we introduce the

new bad event BadlyCollideP.

Bounding the simulator’s runtime. In comparison to the construction of Coron

et al. [17], our construction has more detect zones and, moreover, for wraparound

chains, we detect on partial chains consisting of three consecutive queries instead of

four consecutive queries. Nevertheless, at a high-level, our proof that the simulator

runtime is bounded follows very similarly to theirs. We can first bound the number

of completed partial chains of the form (x1, x2, x10) and (x1, x9, x10) (such chains are

wraparound chains since they contain both x1 and x10). Once we have done this,

we again have only a single non-wraparound detect zone and so we can follow the

argument of Coron et al. [17] to bound the number of completed partial chains of

the form (x5, x6). Once we have a bound on the number of completed partial chains,

it is fairly straightforward to bound the simulator complexity.

3.1.3 Related Work

Dai and Steinberger have since showed that a 8-round Feistel network is in-

differentiable from an ideal cipher [22, 23]. In other related work, Ramzan and

Reyzin [51] proved that a 4-round Feistel network remains indistinguishable from a

random permutation even if the adversary is given access to the middle two round

functions. Gentry and Ramzan [33] showed that a 4-round Feistel network can

be used to instantiate the random permutation in the Even-Mansour cipher [29]

17



and proved that such a construction is a pseudorandom permutation, even if the

round functions of the Feistel network are publicly accessible. Dodis and Puniya [27]

studied security of the Feistel network in a scenario where the adversary learns in-

termediate values when the Feistel network is evaluated, and/or when the round

functions are unpredictable but not (pseudo)random.

Coron et al. [16] adapted the notion of indifferentiability to the framework of

interactive Turing machines. Various relaxations of indifferentiability, such as public

indifferentiability [27, 58], or honest-but-curious indifferentiability [26], have also

been considered. Dodis and Puniya [26] proved that a Feistel network with super-

logarithmic number of rounds is indifferentiable from an ideal cipher in the honest-

but-curious setting. Mandal et al. [45] proved that the 6-round Feistel network is

publicly indifferentiable from an ideal cipher.

3.2 Preliminaries

Since we are focusing on the indifferentiability of the Feistel network from

a random permutation, instead of Definition 1 which presented the definition of

indifferentiability from an ideal cipher, we recall the definition of indifferentiability

from a random permutation which was used by Coron et al. [17]. (Again, based on

the definition of Maurer, Renner, and Holenstein [47].)

Definition 2. Let C be a construction that, for any n, accesses functions F =

(F1, . . . , Fr) over {0, 1}n and implements an invertible permutation over {0, 1}2n.

(We stress that C allows evaluation of both the forward and inverse direction of the

18



permutation.) We say that C is indifferentiable from a random permutation if there

exists a simulator S and a polynomial t such that for all distinguishers D making at

most q = poly(n) queries, S runs in time t(q) and

|Pr[DCF,F(1n) = 1]− Pr[DP,SP (1n) = 1]|

is negligible, where F are random, independent functions over {0, 1}n and P is a

random permutation over {0, 1}2n. (We stress that P can be evaluated in both the

forward and inverse direction.)

3.3 Our Simulator

We present an informal overview of the simulator before giving a formal de-

scription.

3.3.1 Informal Description

The queries to F1, . . . , F10 are answered by the simulator through the proce-

dure S.F(i, x) for i = 1, . . . , 10. When the distinguisher asks a query F(i, x), the

simulator checks to see if response to the query has already been set. The queries

that are already set are held in tables G1, . . . , G10 as pairs (x, y) such that if F(i, x) is

queried, and if x ∈ Gi, then y is returned as the answer to query F(i, x). If the query

has not already been set, then the simulator adds x to the set Aji where j indicates

the jth query of the distinguisher. The simulator then checks if i ∈ {1, 2, 5, 6, 9, 10}

(where these positions mark the endpoints of the detect zones) and, if so, checks

to see if any new partial chains of the form (x9, x10, 9), (x1, x2, 1) and (x5, x6, 5)

19



need to be enqueued. Informally, (xk, xk+1, k) is referred to as a partial chain where

(xk, xk+1) denote two consecutive round values for rounds k and k + 1. If no new

partial chains are detected, the simulator just sets the value of Gi(x) uniformly at

random and returns that value. If new partial chains are detected and enqueued in

Qenq, then the simulator evaluates these partial chains “forward” and “backward”

as much as possible (without setting any new values of Gi′(x
′) for any i′ and x′). Say

the evaluation stopped due to x′ /∈ Gi′ for some x′ and i′. Then, the simulator adds

x′ to Aji′ and checks if i′ ∈ {1, 2, 5, 6, 9, 10} and, if so, detects any additional partial

chains and enqueues them for completion if necessary and continues repeating the

process until no more partial chains are detected.

The chains enqueued for completion during this process are enqueued in queues

Q1,Q5,Q6,Q10 and Qall. Any chain that has been enqueued in Qenq is also enqueued

in Qall. The chains enqueued in Qb for b ∈ {1, 5, 6, 10} are those that exhibit the weak

set uniform property. Specifically, say a partial chain C = (xk, xk+1,k) is enqueued

to be adapted at positions ` and `+ 1 and the “set uniform” positions for C are at

`− 1 and ` + 2. The design of the simulator ensures that one of the “set uniform”

positions is adjacent to the query that caused the chain C to be enqueued. We refer

to this “set uniform” position as “good” set uniform position g and the other “set

uniform” position as “bad” set uniform position b. (Thus, g, b ∈ {` − 1, ` + 2} by

definition.) The chain C is enqueued in Qb if at the time of enqueueing of the chain

C, C can be evaluated up to the “bad” set uniform position b and the value of chain

20



C at b, say xb, is such that xb /∈ Gb.
1

The completion of enqueued chains starts with the completion of the chains

enqueued in Qb for b ∈ {1, 5, 6, 10}. This process proceeds similarly to the comple-

tion process in Coron et al. [17]. A chain C is dequeued from Qb and the simulator

evaluates the chain forward/backward up to the 4-round buffer setting Gi(xi) values

uniformly for any xi /∈ Gi that comes up in the evaluation. In the 4-round buffer

consisting of the “set uniform” positions and the “adapt” positions, the simulator

sets the values of C at the set uniform positions uniformly (if it has not already been

set) and forces the values at the adapt positions such that evaluation of the Feistel

is consistent with the random permutation. (Note that this could possibly lead to

a value in Gi(·) getting overwritten. A major technical part of the proof is to show

that this happens with negligible probability.) Once the simulator has completed

the chain C, it places C in the set CompletedChains along with the chains that are

obtained by evaluating C forward that are in the detect zone positions, i.e., chains

of the form (xk, xk+1, k) for k = 1, 5, 9.

Once the simulator completes the chains enqueued in Qb for all b ∈ {1, 5, 6, 10},

the simulator completes the remaining chains enqueued in Qall. The completion

process for the remaining chains enqueued in Qall is the same as the completion

1 There are chains that exhibit this property that are not enqueued for completion and are

instead added to a set MidEquivChains. The reason for not enqueueing these chains is only to

simplify the analysis for the bound of the complexity of the simulator. We will later show that

ignoring these chains does not affect the simulation and in fact, these chains will be completed at

the end of the simulator’s run while answering D’s jth query.

21



process described above except that the simulator detects additional partial chains

of the form (x5, x6, 5) during the completion and enqueues them in a queue Qmid, i.e.,

during the completion of a chain C in Qall, if an assignment occurs such that xk ∈ Gk

for some k ∈ {5, 6} due to the assignment and xk /∈ Gk before the assignment, then

the simulator enqueues the partial chain (x5, x6, 5) in Qmid for all xk′ ∈ Gk′ such

that k′ ∈ {5, 6} and k 6= k′. (Note that the assignment could be a ForceVal

assignment as well.)

Finally, the simulator completes all the chains in Qmid that are not already in

CompletedChains. The completion process again is the same as the process described

for chains enqueued in Qb. The simulator then returns the answer Gi(x) to the

query F(i, x).

3.3.2 Formal Description

The simulator S internally uses hashtables G1, . . . , G10 to store the function

values. Additionally, it uses sets A1, . . . , A10 to detect partial chains that need to

be completed; Ai stores input values that will be added to Gi in the future. The

simulator uses a queue Qenq to detect partial chains that need to be completed

and stores a copy of Qenq in a queue Qall that is used during completion. Queues

Q1, Q5, Q6, Q10 are used to store the chains in Qenq whose “bad” set uniform position

is known at the time of detection. Additionally, a queue Qmid is used to store new

chains of the form (x5, x6, 5) that are enqueued during the completion of chains from

Qall. A set CompletedChains is used to store the chains that have been completed

22



already. Finally, a set MidEquivChains is used to hold chains of the form (x1, x2, 1)

and (x9, x10, 9) that are detected due to P/P−1 queries made by the simulator. This

set is needed only for the purpose of analyzing the complexity of the simulator.

Variables: QueuesQenq, Qall, Q1, Q5, Q6, Q10, Qmid, hashtablesG1, . . . , G10, sets

Aji initialized to ∅ for i = 1, . . . , 10 and j = 1, . . . , q where q is the maximum

number of queries made by the distinguisher, set CompletedChains:= ∅ and set

MidEquivChains := ∅. Initialize j := 0.
The public procedure F(i, x) of the simulator provides the interface to a dis-

tinguisher.

1 procedure F(i, x):
2 j := j + 1
3 for i ∈ {1, . . . , 10} do
4 Aji := ∅
5 FENQ(i, x)
6 while ¬Qenq.Empty() do
7 (xk, xk+1, k, `, g, b) := Qenq.Dequeue()
8 if (xk, xk+1, k) /∈ CompletedChains then
9 (xr, xr+1, r) := EvalFwdEnq(xk, xk+1, k, `− 2)

10 if r + 1 = b ∧ xr+1 /∈ Gr+1 then
11 Qb.Enqueue(xk, xk+1, k, `, g, b)

12 (xr, xr+1, r) := EvalBwdEnq(xk, xk+1, k, `+ 2)
13 if r = b ∧ xr /∈ Gr then
14 Qb.Enqueue(xk, xk+1, k, `, g, b)

15 for each Q ∈ 〈Q1, Q5, Q6, Q10, Qall, Qmid〉 do . processed in that order
16 while ¬Q.Empty() do
17 (xk, xk+1, k, `, g, b) := Q.Dequeue()
18 if (xk, xk+1, k) /∈ CompletedChains then
19 (x`−2, x`−1) := EvalFwdComp(Q, xk, xk+1, k, `− 2)
20 (x`+2, x`+3) := EvalBwdComp(Q, xk, xk+1, k, `+ 2)
21 Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b)
22 (x1, x2) := EvalBwdComp(⊥, xk, xk+1, k, 1)
23 (x5, x6) := EvalFwdComp(⊥, x1, x2, 1, 5)
24 (x9, x10) := EvalFwdComp(⊥, x1, x2, 1, 9)
25 CompletedChains := CompletedChains∪{(x1, x2, 1), (x5, x6, 5), (x9, x10, 9)}
26 FCOMP(⊥, i, x)
27 return Gi(x)

23



28 procedure EvalFwdEnq(xk, xk+1, k,m):
29 if k = 5 then
30 flagForMid:= 1

31 while (k 6= m) ∧ ((k = 10) ∨ (FENQ(k + 1, xk+1) 6=⊥)) do
32 if k = 10 then
33 (x0, x1) := P−1(x10, x11)
34 k := 0
35 else
36 if k = 9 ∧ flagForMid = 1 then
37 MidEquivChains := MidEquivChains ∪ {(xk, xk+1, k)}
38 xk+2 := xk ⊕G(k + 1, xk+1)
39 k := k + 1

40 flagForMid:= 0
41 return (xk, xk+1, k)

42 procedure EvalBwdEnq(xk, xk+1, k,m):
43 if k = 5 then
44 flagForMid:= 1

45 while (k 6= m) ∧ ((k = 0) ∨ (FENQ(k, xk) 6=⊥)) do
46 if k = 0 then
47 (x10, x11) := P (x0, x1)
48 k := 10
49 else
50 if k = 1 ∧ flagForMid = 1 then
51 MidEquivChains := MidEquivChains ∪ {(xk, xk+1, k)}
52 xk−1 := xk+1 ⊕G(k, xk)
53 k := k − 1

54 flagForMid:= 0
55 return (xk, xk+1, k)

56 procedure FENQ(i, x):
57 if x ∈ Gi then
58 return Gi(x)
59 else if x ∈ Aji then
60 return ⊥
61 else
62 Aji := {x} ∪ Aji
63 if i ∈ {1, 2, 5, 6, 9, 10} then
64 EnqNewChains(i, x)

65 return ⊥

66 procedure EnqNewChains(i, x):
67 if i = 1 then

24



68 for all (x9, x10, x1) ∈ (G9 ∪ Aj9)×G10 × {x} do
69 if CheckBwd(x10, G10(x10)⊕ x9, x1) then
70 if (x9, x10, 9) /∈ MidEquivChains then
71 Qenq.Enqueue(x9, x10, 9, 3, 2, 5)
72 Qall.Enqueue(x9, x10, 9, 3, 2, 5)

73 if i = 2 then
74 for all (x10, x1, x2) ∈ (G10 ∪ Aj10)×G1 × {x} do
75 if CheckFwd(x2 ⊕G1(x1), x1, x10) then
76 if (x1, x2, 1) /∈ MidEquivChains then
77 Qenq.Enqueue(x1, x2, 1, 4, 3, 6)
78 Qall.Enqueue(x1, x2, 1, 4, 3, 6)

79 if i = 5 then
80 for all (x5, x6) ∈ {x} × (G6 ∪ Aj6) do
81 Qenq.Enqueue(x5, x6, 5, 2, 4, 1)
82 Qall.Enqueue(x5, x6, 5, 2, 4, 1)

83 if i = 6 then
84 for all (x5, x6) ∈ (G5 ∪ Aj5)× {x} do
85 Qenq.Enqueue(x5, x6, 5, 8, 7, 10)
86 Qall.Enqueue(x5, x6, 5, 8, 7, 10)

87 if i = 9 then
88 for all (x9, x10, x1) ∈ {x} ×G10 × (G1 ∪ Aj1) do
89 if CheckBwd(x10, G10(x10)⊕ x9, x1) then
90 if (x9, x10, 9) /∈ MidEquivChains then
91 Qenq.Enqueue(x9, x10, 9, 6, 8, 5)
92 Qall.Enqueue(x9, x10, 9, 6, 8, 5)

93 if i = 10 then
94 for all (x10, x1, x2) ∈ {x} ×G1 × (G2 ∪ Aj2) do
95 if CheckFwd(x2 ⊕G1(x1), x1, x10) then
96 if (x1, x2, 1) /∈ MidEquivChains then
97 Qenq.Enqueue(x1, x2, 1, 7, 9, 6)
98 Qall.Enqueue(x1, x2, 1, 7, 9, 6)

99 procedure CheckFwd(x0, x1, x10):
100 (x′10, x

′
11) := P (x0, x1)

101 return x′10
?
= x10

102 procedure CheckBwd(x10, x11, x1):
103 (x′0, x

′
1) := P−1(x10, x11)

104 return x′1
?
= x1

105 procedure EvalFwdComp(Q, xk, xk+1, k,m):
106 while k 6= m do
107 if k = 10 then

25



108 (x0, x1) := P−1(x10, x11)
109 k := 0
110 else
111 xk+2 := xk ⊕ FCOMP(Q, k + 1, xk+1)
112 k := k + 1

113 return (xm, xm+1)

114 procedure EvalBwdComp(Q, xk, xk+1, k,m):
115 while k 6= m do
116 if k = 0 then
117 (x10, x11) := P (x0, x1)
118 k := 10
119 else
120 xk−1 := xk+1 ⊕ FCOMP(Q, k, xk)
121 k := k − 1

122 return (xm, xm+1)

123 procedure FCOMP(Q, i, x):
124 if x /∈ Gi then
125 Gi(x)← {0, 1}n
126 if Q 6=⊥ ∧Q = Qall ∧ i ∈ {5, 6} then
127 EnqNewMidChains(i, x)

128 return Gi(x)

129 procedure EnqNewMidChains(i, x):
130 if i = 5 then
131 for all (x5, x6) ∈ {x} ×G6 do
132 Qmid.Enqueue(x5, x6, 5, 2, 4, 1)

133 if i = 6 then
134 for all (x5, x6) ∈ G5 × {x} do
135 Qmid.Enqueue(x5, x6, 5, 8, 7, 10)

136 procedure Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b):
137 flagMidAdapt0 := 0
138 flagMidAdapt1 := 0
139 FCOMP(Q, `− 1, x`−1)
140 x` := x`−2 ⊕G`−1(x`−1)
141 if (Q = Qall) ∧ (` = 5 ∨ ` = 6) ∧ (x` /∈ G`) then
142 flagMidAdapt0 := 1

143 FCOMP(Q, `+ 2, x`+2)
144 x`+1 := x`+3 ⊕G`+2(x`+2)
145 if (Q = Qall) ∧ (`+ 1 = 5 ∨ `+ 1 = 6) ∧ (x`+1 /∈ G`+1) then
146 flagMidAdapt1 := 1

26



147 ForceVal(x`, x`+1 ⊕ x`−1, `)
148 if flagMidAdapt0 = 1 then
149 EnqNewMidChains(`, x`)

150 ForceVal(x`+1, x` ⊕ x`+2, `+ 1)
151 if flagMidAdapt1 = 1 then
152 EnqNewMidChains(`+ 1, x`+1)

153 procedure ForceVal(x, y, `):
154 G`(x) := y

3.4 Proof of Indifferentiability

Let Feistel denote the 10-round Feistel construction, let F be 10 independent

random functions with domain and range {0, 1}n, and let P denote a random per-

mutation on {0, 1}2n. We let S denote the simulator from the previous section. This

section is dedicated to proving the following result:

Theorem 3.1. The probability that a distinguisher D making at most q queries

outputs 1 in an interaction with (P,SP ) and the probability that it outputs 1 in an

interaction with (FeistelF,F) differ by at most O(q12/2n). Moreover, S runs in time

polynomial in q.

For the remainder of the chapter, fix some distinguisher D making at most q

queries.

3.4.1 Proof Overview

Our proof structure utilizes four hybrid experiments H1, . . . , H4 as in the proof

of Coron et al. [17]. Hybrid H1 denotes the scenario in which D interacts with

27



(P,SP ), and H4 denotes the scenario in which D interacts with (FeistelF,F). To

prove indifferentiability, we show that the difference between the probability D out-

puts 1 in H1 and the probability D outputs 1 in H4 is at most O(q12/2n).

In H2, we replace the random permutation P in H1 with a two-sided random

function R that also implements R.CheckFwd and R.CheckBwd. Following

Coron et al. [17], we first upper bound the simulator complexity in hybrid H2. In

order to bound the simulator’s complexity in H1, we would like to argue that the

simulator ’s views are indistinguishable in H1 and H2. However, in H1 the simu-

lator itself implements CheckFwd and CheckBwd, while in H2 the procedures

R.CheckFwd and R.CheckBwd are provided by the two-sided random func-

tion R. Thus, we introduce an additional hybrid H1.5 in which D interacts with

(P, ŜP+
), where P+ denotes a random permutation equipped with additional pro-

cedures CheckFwd and CheckBwd that are implemented as in the simulator S.

The simulator Ŝ in H1.5 implements the procedures CheckFwd and CheckBwd

by simply calling P+.CheckFwd and P+.CheckBwd. Thus, the difference in hy-

brids H1 and H1.5 is purely conceptual. To bound the simulator’s complexity in H1

we then argue that (1) the number of queries made by the simulator is essentially

the same in H1 and H1.5; and (2) the views of the simulator in H1.5 and H2 are

indistinguishable.

Next, we define certain low-probability events (referred to as “bad events”)

that can occur in an execution of H2, and show that if these events do not occur in

an execution of H2, then we can prove certain “good” properties; in particular, we

can prove that for every call to ForceVal(x, ·, j) that occurs in the execution, we

28



have that x /∈ Gj before the call. If this is true, we say that “ForceVal does not

overwrite.” This is the main technical part of the proof.

In H3, we replace the two-sided random function R from H2 with the 10-round

Feistel construction Feistel. This implies that the distinguisher D interacts with

(Feistel, ŜFeistel+), where Feistel+ (similar to P+) denotes the Feistel construction with

additional procedures CheckFwd and CheckBwd, and the Feistel construction

and the simulator share the same randomness. Given the property that ForceVal

does not “overwrite,” we prove that the distinguishing advantage of D is exactly the

probability with which the “bad events” occur by explicitly mapping the randomness

used in H2 to the randomness used in H3. The mapping and the proof follow exactly

along the lines of the proof in Coron et al. [17].

Finally, in H4, the distinguisher accesses the random functions F directly

instead of accessing them through the simulator.

3.4.2 Indistinguishability of the First and Second Experiments

Recall that in experiment H1, the distinguisher D interacts with (P,SP ). We

define an intermediate hybrid experiment H1.5 in which D interacts with (P, ŜP+
),

where P+ is a random permutation that provides procedures CheckFwd and

CheckBwd that are implemented as in the simulator S. Also, the simulator Ŝ in

experiment H1.5 differs from S in that Ŝ.CheckFwd simply calls P+.CheckFwd

and Ŝ.CheckBwd simply calls P+.CheckBwd.

The difference between experiments H1 and H1.5 is only conceptual, as all

29



we have done is to move the CheckFwd and CheckBwd procedures from the

simulator into an oracle to which the simulator has access. The following is thus

immediate.

Lemma 3.2. The probability that D outputs 1 in H1 is equal to the probability it

outputs 1 in H1.5. Moreover, the number of queries S makes to P plus the number of

times S internally runs CheckFwd and CheckBwd in H1 is equal to the number

of queries Ŝ makes to P+ in H1.5.

ExperimentH2 differs fromH1.5 in that we replace the random permutation P+

with a random two-sided function R. This two-sided function maintains a hashtable

p containing elements of the form (↓, x0, x1) and (↑, x10, x11) that can be mapped to

each other. Whenever the procedureR.P(x0, x1) is queried, R checks if (↓, x0, x1) ∈ p

and if so, answers accordingly, i.e., it returns (x10, x11) = p(↓, x0, x1). Otherwise, an

independent uniform output (x10, x11) is picked and (↓, x0, x1) as well as (↑, x10, x11)

are added to p, mapping to each other. Queries to the procedure R.P−1(·) are

answered analogously.

In addition to procedures P and P−1, R contains the following two proce-

dures: CheckFwd(x0, x1, x10) and CheckBwd(x10, x11, x1).
2 The former, proce-

dure CheckFwd(x0, x1, x10), works as follows: If (↓, x0, x1) ∈ p, it returns true if

(↓, x0, x1) maps to (x10, x11) for some value of x11 ∈ {0, 1}n and false otherwise. The

latter procedure CheckBwd(x10, x11, x1) works as follows: If (↑, x10, x11) ∈ p, it

returns true if (↑, x10, x11) maps to (x0, x1) for some value of x0 ∈ {0, 1}n and false

2This is similar to the check procedure in [17].

30



otherwise.

The pseudocode for the two-sided random function R, using hashtable p, is as

follows:

1 procedure P(x0, x1):
2 if (↓, x0, x1) /∈ p then

3 (x10, x11)
$← {0, 1}2n

4 p(↓, x0, x1) := (x10, x11)
5 p(↑, x10, x11) := (x0, x1) // May overwrite an entry

6 return p(↓, x0, x1)

7 procedure P−1(x10, x11):
8 if (↑, x10, x11) /∈ p then

9 (x0, x1)
$← {0, 1}2n

10 p(↑, x10, x11) := (x0, x1)
11 p(↓, x0, x1) := (x10, x11) // May overwrite an entry

12 return p(↑, x10, x11)

13 procedure CheckFwd(x0, x1, x10):
14 if (↓, x0, x1) ∈ p then
15 (x′10, x

′
11) := p(↓, x0, x1)

16 return x′10
?
= x10

17 return false

18 procedure CheckBwd(x10, x11, x1):
19 if (↑, x10, x11) ∈ p then
20 (x′0, x

′
1) := p(↑, x10, x11)

21 return x′1
?
= x1

22 return false

Figure 3.1: Random two-sided function R.

Next, we show that H2 and H1.5 are indistinguishable.

Indistinguishability of H2 and H1.5. We first bound the effect of replacing P+

with R as a function of the total number of queries q′ made to this oracle. Let S ′

consist of both the simulator and D and the number of queries to S ′ correspond to

31



the queries to P/P−1 and CheckFwd/CheckBwd made by both the simulator

and the distinguisher. To conclude the proof of indistinguishability, we bound the

number of queries to the oracle as a function of the total number of queries q made

by D.

Theorem 3.3. Let S ′ be an algorithm that makes at most q′ queries to an oracle.

Then the difference between the probability that S ′ outputs 1 when interacting with

P+, and the probability that S ′ outputs 1 when interacting with R is at most 12q′2/2n.

Proof. In order to prove this theorem, we consider experiments E0, E1, . . . , E3, where

E0 corresponds to S ′ interacting with P+, and E3 corresponds to S ′ interacting

with R.

Experiment E0: S ′ interacts with P+.

Experiment E1: S ′ interacts with P1 where procedure P1.P is defined as follows:

1 procedure P1.P(x0, x1)
2 if (↓, x0, x1) /∈ p then

3 (x10, x11)
$← {0, 1}2n

4 if (↑, x10, x11) ∈ p then

5 (x10, x11)
$← {0, 1}2n \ {(x′10, x′11)|(↑, x′10, x′11) ∈ p}

6 p(↓, x0, x1) := (x10, x11)
7 p(↑, x10, x11) := (x0, x1)

8 return p(↓, x0, x1)

Procedure P1.P
−1 is defined analogously. Procedures P1.CheckFwd and

P1.CheckBwd are defined as follows.

1 procedure CheckFwd(x0, x1, x10):
2 if (↓, x0, x1) ∈ p then
3 (x′10, x

′
11) := p(↓, x0, x1)

4 return x′10
?
= x10

5 (x′10, x
′
11) := P(x0, x1) //Note that procedure P1.P is called

6 return x′10
?
= x10

32



7 procedure CheckBwd(x10, x11, x1):
8 if (↑, x10, x11) ∈ p then
9 (x′0, x

′
1) := p(↑, x10, x11)

10 return x′1
?
= x1

11 (x′0, x
′
1) := P−1(x10, x11) //Note that procedure P1.P

−1 is called

12 return x′1
?
= x1

Claim 3.4. The probabilities that S ′ outputs 1 in E0 and E1 are identical.

Proof. The values assigned through procedures P and P−1 are chosen uniformly

from the set of values that have not been assigned so far in both E0 and E1. Also,

the procedures CheckFwd and CheckBwd are implemented in a similar manner

in both experiments. So, experiments E0 and E1 behave identically.

Experiment E2: S ′ interacts with P2 where the procedures P2.P and P2.P
−1 are

defined exactly asR.P andR.P−1 respectively, while procedures P2.CheckFwd and

P2.CheckBwd are defined as in P1.CheckFwd and P1.CheckBwd respectively.

Claim 3.5. The probability that S ′ outputs 1 in E1 differs from the probability that

it outputs 1 in E2 by at most q′2/22n.

Proof. The proof of the claim follows exactly along the lines of [17, Lemma 3.8].

Experiment E3: S ′ interacts with R.

Claim 3.6. The probability that S ′ outputs 1 in E2 differs from the probability that

it outputs 1 in E3 by at most 11q′2/2n.

Proof. In order to prove this claim, we introduce events BadCheckForward, Bad-

CheckBackward, BadOverwrite, and BadBackwardQuery and prove that these events

33



occur with probability at most 11q′2/2n. We proceed to argue that if none of these

events occur the experiments E2 and E3 behave exactly the same.

The event BadCheckForward occurs if P ′.CheckFwd returns true in the last

line in E2. Similarly, the event BadCheckBackward occurs if P ′.CheckBwd returns

true in the last line in E2. The probability of the events BadCheckForward and

BadCheckBackward is at most q′/2n.

The event BadOverwrite occurs if in either E2 or in E3, in any call to the

procedures P or P−1, an entry of p is overwritten. The probability that BadOverwrite

occurs in E2 and E3 is at most 2(q′)2/22n.

The event BadBackwardQuery occurs if in E2 either one of the two following

events occur. (1) There exists (x0, x1), (x
∗
10, x

∗
11) such that all of the following hold:

(i) The query P(x0, x1) is issued in the last line of a CheckFwd query, and

p(↓, x0, x1) is set to (x∗10, x
∗
11).

(ii) A query P−1(x∗10, x
∗
11) or CheckFwd(x0, x1, x

∗
10) or CheckBwd(x1, x

∗
10, x

∗
11)

is issued after (1).

(iii) The query P(x0, x1) is not issued by the distinguisher between point (i) and

point (ii).

(2) There exist (x∗0, x
∗
1), (x10, x11) such that all the following hold:

(i) The query P−1(x10, x11) is issued in the last line of a CheckBwd query, and

p(↑, x10, x11) is set to (x∗0, x
∗
1).

(ii) After (i), a query P(x∗0, x
∗
1) or CheckFwd(x∗0, x

∗
1, x10) or CheckBwd(x∗1, x10, x11)

34



is issued.

(iii) The query P−1(x10, x11) is not issued by the distinguisher between point (i)

and point (ii).

Consider the probability with which the event (BadBackwardQuery∧

¬BadCheckForward ∧ ¬BadCheckBackward) occurs. To analyze the probability of

this event, let us consider the first case by which BadBackwardQuery can occur.

Consider any pair (x0, x1, x
∗
10, x

∗
11) such that condition (i) of event (1) holds. Since

BadCheckForward does not occur, we have that the CheckFwd query returns false.

Now, as long as the queries P(x0, x1), P−1(x∗10, x
∗
11), CheckFwd(x0, x1, x

∗
10) or

CheckBwd(x1, x
∗
10, x

∗
11) are not made by the distinguisher, the value (x∗10, x

∗
11) is

distributed uniformly in the set of all pairs (x′10, x
′
11) for which CheckFwd(x0, x1, x

′
10)

and CheckBwd(x1, x
′
10, x

′
11) were not queried. Thus, the probability that in a single

query, the distinguisher queries (a) P−1(x∗10, x
∗
11), is at most q′

22n−q′ , (b) CheckFwd(x0,

x1, x
∗
10), is at most q′

2n−q′ , or (c) CheckBwd(x1, x
∗
10, x

∗
11) is at most q′

22n−q′ . By a

similar argument for event (2) and by assuming q′ < 2n/2 and since there are at

most q′ queries made by the distinguisher, the probability of (BadBackwardQuery ∧

¬BadCheckForward ∧ ¬BadCheckBackward) is at most 2 ∗ (2(q′)2/22n + 2q′2/2n) ≤

8(q′)2/2n.

If the bad events defined above do not occur, the experiments E2 and E3

behave identically.

Theorem 3.3 follows from Claims 3.4–3.6.

Theorem 3.3 bounds the effect of replacing P+ with R in terms of the total

35



number of queries q′ made to the P+/R oracle. In the following sequence of claims,

we show that q′ = O(q6) (where, recall, q is the total number of queries made by

the original distinguisher D).

Claim 3.7. In H2, the simulator dequeues from the queue Qenq a partial chain of

the form (x1, x2, 1, `, g, b) such that (x1, x2, 1) /∈ CompletedChains at most q times in

total.

Proof. Consider such a dequeue call and let (x1, x2, 1, `, g, b) be the chain dequeued

from Qenq. The chain must have been enqueued in Qenq when CheckFwd(x2 ⊕

G1(x1), x1, x10) = true for a fixed x10 in lines 75 and 95 of the simulator. Since G1(x1)

is never overwritten (as 1 is not an adapt position for any chain), there is a tuple

(x0, x1, x10) where x0 = x2 ⊕ G1(x1) such that CheckFwd(x2 ⊕ G1(x1), x1, x10) =

true when the chain was enqueued. This implies that there must have been a call

either to P(x0, x1) such that (x10, x11) was chosen uniformly in line 3 of R, or to

P−1(x10, x11) such that (x0, x1) was chosen uniformly in line 9 of R for some x11 ∈

{0, 1}n. This call to P or P−1 was made by the distinguisher or the simulator. If

(x1, x2, 1) /∈ CompletedChains, we claim that this call was made by the distinguisher.

This is because, by definition, the simulator queries P or P−1 only in the following

cases:

1. in a call to EvalFwdEnq or EvalBwdEnq

2. in a call to EvalFwdComp or EvalBwdComp

We first consider the case where the simulator queried P/P−1 during a call to

EvalFwdEnq(xk, xk+1, k,m) or EvalBwdEnq(xk, xk+1, k,m). If k ∈ {1, 9}, then

36



the query to P/P−1 is such that the triple (↑, x10, x11) or (↓, x0, x1) is already in p.

This is because CheckFwd/CheckBwd must have returned true for these chains

to have been enqueued. If k = 5, then the partial chain resulting from a query to

P/P−1 is added to the set MidEquivChains and chains belonging to that set are not

enqueued by definition of the simulator.

In case 2, the partial chain (x1, x2, 1) resulting from a query to P/P−1 is imme-

diately added to CompletedChains by definition of the simulator. So, if (x1, x2, 1) /∈

CompletedChains when it is dequeued, the call to P/P−1 is due to a query made by

the distinguisher. We also claim that there is a unique distinguisher query corre-

sponding to the chain (x1, x2, 1). Say this is not the case and there is another chain

(x′1, x
′
2, 1) that has been enqueued such that CheckFwd(x′2⊕G1(x

′
1), x

′
1, x
′
10) = true

due to the same distinguisher query. If D’s query was (↓, x0, x1) that returned

(x10, x11), we have that x′10 = x10, x1 = x′1 and G1(x
′
1) ⊕ x′2 = x2 ⊕ G1(x1), giving

x2 = x′2. If D’s query was (↑, x10, x11) that returned (x0, x1), we have the same

result again. So, there is a unique distinguisher query corresponding to the chain

(x1, x2, 1). Since D makes at most q queries, we have that there are most q such

partial chains dequeued.

The following can be proved similarly to Claim 3.7.

Claim 3.8. In H2, the simulator dequeues from the queue Qenq a partial chain of

the form (x9, x10, 9, `, g, b) such that (x9, x10, 9) /∈ CompletedChains at most q times

in total.

For a hashtable G we let |G| denote the number of entries in G.

37



Claim 3.9. In H2, at most 90q2 partial chains of the form (x5, x6, 5) are enqueued.

Proof. Before we bound the number of partial chains of the form (x5, x6, 5), we will

bound the size of |G5| and |G6|. The size of G5 can increase only in the following

ways: (a) the distinguisher queries F(5, ·), (b) during the completion of a (x9, x10, 9)

partial chain, (c) during the completion of a (x1, x2, 1) partial chain, or (d) during

the completion of a (x5, x6, 5) partial chain where x5 /∈ G5 and x5 ∈ Aj5.

There are at most q queries that the distinguisher makes. The simulator only

completes (x9, x10, 9) such that (x9, x10, 9) /∈ CompletedChains. By Claim 3.7, we

have that there are at most q such chains dequeued from Qenq and hence at most

q such chains can be dequeued from the queues Q1, Q5, Q6, Q10 and Qall. Similarly,

by Claim 3.8, we have that there are at most q completions of a partial chain of the

form (x1, x2, 1).

For the last case, a value x5 ∈ {0, 1}n gets added to Aj5 for j = 1, . . . , q

only when x5 /∈ G5. So, a bound on
∑j

i=1A
j
5 gives a bound on the number of

values x5 added to G5 due to a completion of a (x5, x6, 5) partial chain. A value

x5 ∈ {0, 1}n gets added to Aj5 for j = 1, . . . , q only in one of the following ways:

(a) the distinguisher queried F(5, x5) (b) the simulator made a call to EvalFwdEnq

or EvalBwdEnq during the completion of a (x9, x10, 9) chain where (x9, x10, 9) /∈

CompletedChains (c) the simulator made a call to EvalFwdEnq or EvalBwdEnq

during the completion of a (x1, x2, 1) chain where (x1, x2, 1) /∈ CompletedChains.

Thus, we have
∑j

i=1A
j
5 ≤ 3q by Claims 3.7 and 3.8. So, putting everything together,

we have that |G5| ≤ 6q and by a similar argument, |G6| ≤ 6q.

38



Now, the number of partial chains of the form (x5, x6, 5) that are enqueued in

Qall can be bounded by
∑q

j=1 |A
j
5| · |G6 ∪Aj6|+

∑q
j=1 |G5 ∪Aj5| · |A

j
6| and hence can

be bounded by 54q2. And, the number of partial chains of the form (x5, x6, 5) that

are enqueued in Qmid can be bounded by |G5| · |G6| and hence can be bounded by

36q2.

Claim 3.10. In H2, we have |Gi| ≤ 93q2 for all i.

Proof. The size of Gi can only increase in the following ways: (a) the distinguisher

queries F(i, ·), (b) during the completion of a (x9, x10, 9) partial chain, (c) during the

completion of a (x1, x2, 1) partial chain, or (d) during the completion of a (x5, x6, 5)

partial chain.

There are at most q distinguisher queries and at most q completions each of

partial chains of the form (x9, x10, 9) and (x1, x2, 1) by Claims 3.7 and 3.8. There

are at most 90q2 completions of a (x5, x6, 5) partial chain by Claim 3.9. So, |Gi| ≤

90q2 + 3q ≤ 93q2.

Claim 3.11. In H2, the simulator makes at most 644q2 queries to R.P and R.P−1.

Proof. The simulator makes calls to R.P/R.P−1 only in procedures EvalFwdEnq,

EvalBwdEnq, EvalFwdComp, and EvalBwdComp. By the bounds on the

number of partial chains that are enqueued for completion given in Claims 3.7, 3.8,

and 3.9 and by definition of the simulator, the number of calls to P/P−1 is bounded

by 92q2 · 7 = 644q2.

Claim 3.12. In H2, the simulator makes at most 3, 166, 000q6 queries to the proce-

dures R.CheckFwd and R.CheckBwd.

39



Proof. The number of CheckFwd queries made by the simulator is bounded by∑q
j=1 |(G10 ∪ Aj10| × |G1| × |Aj2|) +

∑q
j=1 |(G2 ∪ Aj2| × |G1| × |Aj10|).

A value x10 ∈ {0, 1}n gets added to Aj10 for j = 1, . . . , q only in one of the fol-

lowing ways: (a) the distinguisher queried F(10, x10), (b) the simulator made a call to

EvalFwdEnq or EvalBwdEnq during the completion of a (x1, x2, 1) chain where

(x1, x2, 1) /∈ CompletedChains, or (c) the simulator made a call to EvalFwdEnq or

EvalBwdEnq during the completion of a (x5, x6, 5) chain.

There are at most q distinguisher queries, and by Claims 3.8 and 3.9, there

are at most q and 90q2 such calls to EvalFwdEnq and EvalBwdEnq. So,∑q
j=1A

j
10 ≤ 90q2 + 2q ≤ 92q2. In a similar manner, we can bound

∑q
j=1A

j
2 ≤

90q2 + 2q ≤ 92q2. So, the number of CheckFwd queries made by the simulator is

bounded by 1582860q6. By a similar argument, the number of CheckBwd queries

made by the simulator is bounded by 1582860q6. Hence, there are at most O(q6)

queries to R.CheckFwd and R.CheckBwd.

Corollary 3.13. In H1.5 and H1, the simulator makes at most 3.2× 106q6 queries

to P+ and P respectively, except with probability at most 1015q12

2n
·

Proof. For the sake of contradiction, assume that there exists a distinguisher D

that makes at most q queries such that in H1.5 the simulator makes more than

3.2× 106q6 queries to P+ with probability greater than 1015q12

2n
· By Claims 3.11 and

3.12, the simulator makes at most 3, 166, 644q6 queries to R in H2. Now, consider

a distinguisher S ′ that consists of D and the simulator together. S ′ outputs 1 if D

and the simulator make more than 3.2 × (10q)6 queries. Then, S ′ issues at most

40



q′ = 3.2× (10q)6 queries and distinguishes R from P+ with probability greater than

1015q12

2n
≥ 12·(3.2×(10q)6)2

2n
which contradicts Theorem 3.3. Hence, the simulator makes

at most 3.2 × 106q6 queries to P+ except with probability 1015q12

2n
· Combining this

with Lemma 3.2, we get the result.

Lemma 3.14. The probability that D outputs 1 in H1 differs from the probability

that it outputs 1 in H2 by at most 2·1015q12
2n
·

Proof. By Lemma 3.2, we have that the distinguisher D outputs 1 in H1 and H1.5

with the same probability. Now, for the sake of contradiction, assume that D distin-

guishes H1.5 from H2 with advantage greater than 2·1015q12
2n
· We construct a distin-

guisher S ′ that consists of D and the simulator where S ′ makes at most 3.3× (10q)6

queries and distinguishes R from P+. S ′ works as follows: S ′ outputs 1 if the num-

ber of queries issued by D and the simulator exceeds 3.3 × (10q)6; otherwise, it

outputs whatever is output by D. By Corollary 3.13, the simulator makes at most

3.2 × (10q)6 queries in H1.5 except with probability 1015q12

2n
and by Claims 3.11 and

3.12, the simulator makes at most 3, 166, 644q6 queries in H2. So, distinguisher S ′

making at most 3.3 × (10q)6 queries can distinguish R and P+ with probability

greater than 1015q12

2n
≥ 12·(3.3×(10q)6)2

2n
which contradicts Theorem 3.3.

By extending the analysis, we also bound the overall running time of the

simulator.

Claim 3.15. In H2, the simulator runs in time O(q6).

Proof. We analyze the running time of the procedures of Ŝ. Procedure FENQ runs

in time O(1) except for the run-time of procedure EnqNewChains. Procedures

41



EvalFwdEnq and EvalBwdEnq run in time O(1) except for the run-time of pro-

cedure FENQ. Procedures EvalFwdComp and EvalBwdComp run in time O(1)

except for the run-time of procedure FCOMP. Procedure Adapt runs in time O(1)

except for the run-time of procedures FCOMP and EnqNewMidChains. Procedure

FCOMP runs in timeO(1) except for the run-time of procedure EnqNewMidChains.

Procedures CheckFwd, CheckBwd, and ForceVal run in time O(1).

Procedure EnqNewChains runs in time O(q4) by the bounds on |Gi| given

by Claim 3.10 and by the bounds on
∑q

j=1 |A
j
i | for i ∈ {1, 2, 5, 6, 9, 10} derived in

Claims 3.9 and 3.12. Procedure EnqNewMidChains runs in time O(q2) by the

bounds on |G5| and |G6| derived in Claim 3.9.

Calls to FENQ are made either by a direct query by the distinguisher, or

in calls to EvalFwdEnq or EvalBwdEnq. There are at most O(q2) calls to

EvalFwdEnq and EvalBwdEnq by the bounds established on the number of

partial chains enqueued in Qenq given by Claims 3.7, 3.8, and 3.9. So, the maximum

number of calls to FENQ is bounded by O(q2). Calls to EnqNewChains are made

only during calls to FENQ. So, there are at most O(q2) calls to EnqNewChains.

Calls to CheckFwd and CheckBwd are only made in EnqNewChains - so there

are at most O(q6) calls to CheckFwd and CheckBwd.

There are at most O(q2) calls to EvalFwdComp, EvalBwdComp, and

Adapt by the bounds on the number of partial chains enqueued in Qenq and

Qmid given by Claims 3.7, 3.8, and 3.9. There are at most O(q2) calls to FCOMP

since FCOMP is called only in EvalFwdComp, EvalBwdComp, Adapt, or as

a result of a direct distinguisher query. Calls to EnqNewMidChains are made

42



only during calls to FCOMP and Adapt. So, there are at most O(q2) calls to

EnqNewMidChains. There are at mostO(q2) calls to ForceVal since ForceVal

is called only during Adapt. Putting all of this together, the simulator runs in

time O(q6).

Corollary 3.16. In H1.5 (and hence H1), the simulator runs for at most O(q6)

steps and makes at most 3.2× (10q)6 queries except with probability at most 1015q12

2n
·

Proof. By Claims 3.11 and 3.12, the simulator makes at most 3.2× (10q)6 queries to

R in H2 and by Claim 3.15, runs in time at most r(q) ∈ O(q6) in H2. For the sake

of contradiction, assume that there exists a distinguisher D that makes at most q

queries such that in H1.5 the simulator runs in time greater than r(q) or makes more

than 3.2× (10q)6 queries to P+ with probability greater than 1015q12

2n
· Now, consider

a distinguisher S ′ which aims to distinguish P+ and R making only r′(q) queries.

The distinguisher S ′ consists of D and the simulator together. S ′ outputs 1 if the

simulator runs for more than r(q) steps or if D and the simulator make more than

3.3× (10q)6 queries. Then, S ′ issues at most 3.3× (10q)6 queries and distinguishes

R from P+ with probability greater than 1015q12

2n
≥ 12·(3.3×(10q)6)2

2n
which contradicts

Theorem 3.3. Combining this with Lemma 3.2, we get the result.

3.4.3 Properties of the Second Experiment

Before we define the third hybrid experiment, we introduce some definitions

and establish some properties of executions in the second experiment H2. The

definitions here follow closely along the lines of the definitions in [17]. A partial

43



chain is a triple (xk, xk+1, k) ∈ {0, 1}n × {0, 1}n × {0, . . . , 10}. If C = (xk, xk+1, k)

is a partial chain, we let C[1] = xk, C[2] = xk+1, and C[3] = k.

Definition 3. Fix tables G = Ŝ.G and p = R.p in an execution of H2, and let

C = (xk, xk+1, k) be a partial chain. We define functions next, prev, val+, val−, and

val as follows:

1 procedure next(xk, xk+1, k):
2 if k < 10 then
3 if xk+1 /∈ Gk+1 then return ⊥
4 xk+2 := xk ⊕Gk+1(xk+1)
5 return (xk+1, xk+2, k + 1)
6 else if k = 10 then
7 if (↑, x10, x11) /∈ p then return ⊥
8 (x0, x1) := p(↑, x10, x11)
9 return (x0, x1, 0)

10 procedure prev(xk, xk+1, k):
11 if k > 0 then
12 if xk /∈ Gk then return ⊥
13 xk−1 := xk+1 ⊕Gk(xk)
14 return (xk−1, xk, k − 1)
15 else if k = 0 then
16 if (↓, x0, x1) /∈ p then return ⊥
17 (x10, x11) := p(↓, x0, x1)
18 return (x10, x11, 10)

19 procedure val+i (C):
20 while (C 6=⊥) ∧ (C[3] /∈ {i− 1, i}) do
21 C := next(C)

22 if C =⊥ then return ⊥
23 if C[3] = i then return C[1]
24 else return C[2]

25 procedure val−i (C):
26 while (C 6=⊥) ∧ (C[3] /∈ {i− 1, i}) do
27 C := prev(C)

28 if C =⊥ then return ⊥
29 if C[3] = i then return C[1]
30 else return C[2]

44



31 procedure vali(C):
32 if val+i (C) 6=⊥ then return val+i (C)
33 else return val−i (C)

We say that ⊥ /∈ Gi for i ∈ {1, . . . , 10}. So, if vali(C) /∈ Gi, then either

vali(C) =⊥ or vali(C) 6=⊥ and vali(C) /∈ Gi.

Definition 4. For a given set of tables G, p, two partial chains C,D are equivalent

(denoted C ≡ D) if they are in the reflexive, transitive closure of the relations given

by next and prev.

So, two chains C and D are equivalent if C = D, or if D can be obtained by

applying next and prev finitely many times to C.

Definition 5. The set of table-defined chains contains all chains C for which

next(C) 6=⊥ and prev(C) 6=⊥.

Definition 6. A chain C = (xk, xk+1, k, `, g, b) is called an enqueued chain if

C is enqueued for completion. For such an enqueued chain, we define next(C)

as the procedure next applied to the partial chain (xk, xk+1, k), i.e., next(C) :=

next(xk, xk+1, k). The procedures prev, val+, val−, and val on an enqueued chain

C are defined in a similar manner.

Definition 7. The set Q∗all contains chains that are enqueued in Qall but not in Q1,

Q5, Q6, or Q10.

Definition 8. We say that a uniform assignment to Gk(xk) occurs when the simu-

lator sets Gk(xk) through an assignment Gk(xk)← {0, 1}n, i.e., a uniform value is

45



chosen from the set of n-bit strings and Gk(xk) is assigned that value.

A uniform assignment to Gk(xk) occurs in line 125 of the simulator’s execution.

In particular, if Gk(xk) is set through a ForceVal(xk, ·, k) call, then it is not a

uniform assignment.

Definition 9. We say that a uniform assignment to p occurs in a call to R.P(x0, x1)

if (↓, x0, x1) /∈ p when the call is made and p(↓, x0, x1) is set through the assignment

p(↓, x0, x1) := (x10, x11) where (x10, x11) is chosen uniformly from the set of 2n-bit

strings.

Similarly, it occurs in a call to R.P−1(x10, x11) if (↑, x10, x11) /∈ p when the

call is made and p(↑, x10, x11) is set through the assignment p(↑, x10, x11) := (x0, x1)

where (x0, x1) is chosen uniformly from the set of 2n-bit strings.

A uniform assignment to p(↓, x0, x1) occurs in line 4 of R in Figure 2 and a

uniform assignment to p(↑, x10, x11) occurs in line 10 of R in Figure 2.

In the remainder of the section, we let T = O(q2) be an upper bound on the

sizes of Gi and p as well as the upper bound on the number of enqueued chains and

hence the number of calls to the Adapt procedure in an execution of H2. A bound

on T is derived from Claims 3.7–3.11.

Bad executions. We define a set of “bad” events, and show that these occur

with negligible probability. Following that, we analyze execution of the experiment

assuming that none of these bad events occur.

Definition 10. We say that event BadP occurs in H2 if either:

46



• Immediately after choosing (x10, x11) in a call to R.P(·, ·), either (↑, x10, x11) ∈ p

or x10 ∈ G10.

• Immediately after choosing (x0, x1) in a call to R.P−1(·, ·), either (↓, x0, x1) ∈ p

or x1 ∈ G1.

Lemma 3.17. The probability of event BadP in H2 is at most 2T 2/2n.

Proof. The proof follows exactly as in [17, Lemma 3.18].

Definition 11. We say that event BadlyHit+ occurs in H2 if either:

• Immediately after a uniform assignment to Gk(xk), there is a partial chain

(xk, xk+1, k) such that prev(prev(xk, xk+1, k)) 6=⊥.

• Immediately after a uniform assignment to Gk(xk), there is a partial chain

(xk−1, xk, k − 1) such that next(next(xk−1, xk, k − 1)) 6=⊥.

and the relevant partial chain is either table-defined or an enqueued chain in Qall.

Lemma 3.18. The probability of event BadlyHit+ in H2 is at most 40T 3/2n.

Proof. Consider the case where a uniform assignment to Gk(xk) occurs and immedi-

ately after the assignment, there exists an enqueued chain C = (xk, xk+1, k) in Qall

such that prev(prev(xk, xk+1, k)) 6=⊥. For this to occur, xk−1 := xk+1⊕Gk(xk) should

take one of T values (for k ∈ {2, . . . , 10}, xk−1 should be such that xk−1 ∈ Gk−1 and

for k = 1, (↓, xk−1, xk) should be in p). The probability of this is at most T/2n. The

analysis for the case where C is table-defined is exactly the same. There are at most

T enqueued chains and at most T options for xk+1 such that C is table-defined. So,

47



the total probability of the first case is 2T 2/2n. The second case can be analyzed

in a similar fashion. So, the total probability of BadlyHit+ for a uniform assignment

Gk(xk) is 4T 2/2n. Since there can be at most 10T such assignments, the probability

of BadlyHit+ is 40T 3/2n.

Definition 12. We say that event BadlyCollide+ occurs in H2 if a uniform assign-

ment to Gi(xi) is such that there exist two partial chains C and D such that for

some ` ∈ {0, . . . , 11} and σ, ρ ∈ {+,−} all the following are true:

• Immediately before the assignment, C and D are not equivalent.

• Immediately before the assignment, valσ` (C) =⊥ or valρ` (D) =⊥.

• Immediately after the assignment, valσ` (C) = valρ` (D) 6=⊥.

and one of the following is true:

• Immediately after the assignment, C and D are table-defined.

• Immediately after the assignment, C is table-defined and D is a chain enqueued

in Qall.

• C and D are chains enqueued in Qall.

Lemma 3.19. The probability of event (BadlyCollide+∧¬BadlyHit+∧¬BadP) in H2

is at most 21160T 5/2n.

Proof. Let C and D be the partial chains in Definition 12.

Case 1: After the assignment C and D are table-defined. The proof for this

case follows exactly as in [17, Lemma 3.21].

48



Case 2: C is a chain enqueued in Qall and D is table-defined after the assign-

ment. Consider the case that the enqueued chain C is of the form (xk, xk+1, k) where

xk ∈ Ajk and xk+1 ∈ Ajk+1 for some j ∈ {1, . . . , q}. Let val−` (C) = val−` (D) =⊥ be-

fore the assignment and val−` (C) = val−` (D) 6=⊥ after the assignment. For val−` (C)

to change, we must have i = k. Since BadlyHit+ does not occur, we have that

val−`+1(C) = val−`+1(D) and `+ 1 = k. But, since C is not equivalent to D before the

assignment, it cannot be the case that val−` (C) = val−` (D) 6=⊥ after the assignment

and hence this case has probability 0.

Let val−` (C) =⊥ and val−` (D) 6=⊥ before the assignment and val−` (C) =

val−` (D) 6=⊥ after the assignment. For val−` (C) to change i = k. Since BadlyHit+

does not occur and val−` (D) does not change due to the assignment, we have that

xk+1 ⊕Gk(val−k (C)) = val−k−1(D) where `+ 1 = k. The probability of this is 1/2n.

Let val+` (C) = val−` (D) =⊥ before the assignment and val+` (C) = val−` (D) 6=⊥

afterward. For val+` (C) to change after the assignment, it must be the case that

` = k + 2 and i = k + 1 since BadlyHit+ does not occur. But for val−` (D) to change

when ` = k+2, we need i = k+3 since BadlyHit+ does not occur as D is table-defined

after the assignment. So, we see that val+` (C) cannot change in this case.

Let val+` (C) =⊥ and val−` (D) 6=⊥ before the assignment and val+` (C) =

val−` (D) 6=⊥ after the assignment. For val+` (C) to change i = k+ 1. Since BadlyHit+

does not occur and val−` (D) does not change due to the assignment, we have that

xk ⊕Gk+1(val+k+1(C)) = val−k+2(D) where ` = k + 2. The probability of this is 1/2n.

The remaining four cases follow similarly. The case for xk ∈ Gk, xk+1 ∈ Ajk+1,

and xk ∈ Ajk, xk+1 ∈ Gk+1, and xk ∈ Gk, xk+1 ∈ Gk+1 where C = (xk, xk+1, k) is the

49



enqueued chain, follow in a similar fashion. So, the total probability of this event

can be bounded as follows. There are at most T enqueued chains and at most 11T 2

table-defined chains before the assignment and there are at most 2T chains that

were not table-defined before the assignment but were table-defined after. There

are at most 10T uniform assignments to Gi(xi) and there are at most 4 possibilities

for σ, ρ. Thus, the probability is at most 10T ·T · (11T 2 +2T ) ·4 ·4/2n ≤ 2080T 4/2n.

Case 3: C and D are chains enqueued in Qall. The proof follows similar to the

proof of Case 2.

Definition 13. We say that event BadlyCollideP occurs in H2 if either:

• A uniform assignment p(↓, x0, x1) := (x10, x11) is such that there exist partial

chains C and D such that for some σ, ρ ∈ {+,−} the following are all true:

– Immediately before the assignment, C and D are not equivalent.

– Immediately before the assignment, valσ10(C) =⊥ or valρ10(D) =⊥.

– Immediately after the assignment, valσ10(C) = valρ10(D) = x10 6=⊥.

and one of the following conditions hold:

– Before the assignment, C and D are chains in Q∗all.

– Immediately after the assignment, C and D are table-defined.

– Before the assignment, C is a chain enqueued in Qall and immediately

after the assignment, D is table-defined.

• A uniform assignment p(↑, x10, x11) := (x0, x1) is such that there exist two

50



partial chains C and D such that for some σ, ρ ∈ {+,−} the following are all

true:

– Immediately before the assignment, C and D are not equivalent.

– Immediately before the assignment, valσ1 (C) =⊥ or valρ1(D) =⊥.

– Immediately after the assignment, valσ1 (C) = valρ1(D) = x1 6=⊥.

and one of the following conditions hold:

– Before the assignment, C and D are chains in Q∗all.

– Immediately after the assignment, C and D are table-defined.

– Before the assignment, C is a chain enqueued in Qall and immediately

after the assignment, D is table-defined.

Lemma 3.20. The probability of event BadlyCollideP in H2 is at most 314T 5/2n.

Proof. Consider the case that after a uniform choice of (x0, x1) leading to an assign-

ment p(↑, x10, x11) := (x0, x1), the event BadlyCollideP occurs. The value val−1 (C)

for a chain C does not change due to the assignment since it is a p(↑, x10, x11) as-

signment and val−1 (C) can change only due to a p(↓, x0, x1) assignment by definition

of val−(·).

Suppose that val+1 (C) =⊥ and val−1 (D) 6=⊥ before the assignment, and after

the assignment val+1 (C) = val−1 (D) = x1. The value val−1 (D) does not change due to

the assignment as mentioned above. So, the probability that val+1 (C) = val−1 (D) =

x1 is 2−n.

51



Suppose that val+1 (C) = val+1 (D) =⊥ before the assignment and after the

assignment val+1 (C) = val+1 (D) = x1. For this to happen, val10(C) = val10(D) = x10

and val11(C) = val11(D) = x11 implying that C and D are equivalent chains. So,

the probability of this event is 0.

Suppose that val+1 (C) =⊥ and val+1 (D) 6=⊥ before the assignment and after

the assignment val+1 (C) = val+1 (D) = x1. Now, the value of val+1 (D) stays the same

after the assignment (even if BadP occurs). So, the probability that val+1 (C) =

val+1 (D) = x1 is 2−n.

The analysis for the other case follows similarly. There are at most T assign-

ments of the form p(↑, x10, x11) or p(↓, x0, x1). There are at most 11T 2 possibilities

for a chain to be table-defined before the assignment and T possibilities for a chain

to be table-defined after the assignment but not before. There are at most T chains

enqueued for completion in Qall. So, the probability of the event BadlyCollideP is at

most T ·((11T 2+T )
2
+T 2+T ·(11T 2+T ))·2

2n
.

Definition 14. We say that event BadlyHitFV occurs in H2 if in a uniform assign-

ment to Gs(xs) that occurs in a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b), for

some s ∈ {g, b}, one of the following happens (where we let C = (x`−2, x`−1, `− 2)):

• s = `+ 2 and the following holds:

– Immediately before the assignment, val−`+1(C) =⊥.

– Immediately after the assignment, val−`+1(C) 6=⊥.

– Immediately after the assignment, y := val`−1(C)⊕ val−`+1(C) is such that

x′`+1 ⊕ x′`−1 = y for some x′`+1 ∈ G`+1 and x′`−1 ∈ G`−1.

52



• s = `− 1 and the following holds:

– Immediately before the assignment, val+` (C) =⊥.

– Immediately after the assignment, val+` (C) 6=⊥.

– Immediately after the assignment, y := val`+2(C) ⊕ val+` (C) is such that

x′`+2 ⊕ x′` = y for some x′`+2 ∈ G`+2 and x′` ∈ G`.

Lemma 3.21. The probability of event BadlyHitFV in H2 is at most 2T 3/2n.

Proof. Consider the first case where s = `+2. Note that for a chain C with s = `+2

the “value” at the adapt position `+1 is set as val`+1(C) := val`+3(C)⊕Gs(vals(C))

where val`+3(C) 6=⊥ is one of the arguments to Adapt. Since the assignment to

Gs(xs) happens inside the Adapt call, val−`+1(C) =⊥ until the assignment and

val−`+1(C) 6=⊥ immediately after the assignment.

Now, y := val`−1(C) ⊕ val−`+1(C). Note that val`−1(C) 6=⊥ since val`−1(C) =

x`−1 is one of the arguments of the Adapt procedure. So, for y := val`−1(C) ⊕

val`+3(C) ⊕ Gs(vals(C)) to be such that y = x′`−1 ⊕ x′`+1, where x′`−1 ∈ G`−1 and

x′`+1 ∈ G`+1, the value y needs to take one of T 2/2n values. Note that there are at

most T such calls to Adapt by assumption. So, the probability of the first case is

at most T 3/2n.

The analysis for the second case is analogous.

Definition 15. We say that event BadlyCollideFV occurs in H2 if in a uniform

assignment to Gs(xs) that occurs in a call to Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b),

for some s ∈ {g, b}, the following happens (where we let C = (x`−2, x`−1, `− 2) and

53



D is a chain in Q∗all):

• s = ` + 2, and for some (k, k′) ∈ {(` − 1, ` + 1), (` + 1, ` − 1)} the following

holds:

– Immediately before the assignment, val−`+1(C) =⊥ and valk(D) 6=⊥.

– Immediately after the assignment, val−`+1(C) 6=⊥.

– Immediately after the assignment, y := val`−1(C)⊕ val−`+1(C) is such that

x⊕ y = valk(D) for some x ∈ Gk′.

• s = `− 1, and for some (k, k′) ∈ {(`, `+ 2), (`+ 2, `)} the following holds:

– Immediately before the assignment, val+` (C) =⊥ and valk(D) 6=⊥.

– Immediately after the assignment, val+` (C) 6=⊥.

– Immediately after the assignment, y := val`+2(C) ⊕ val+` (C) is such that

x⊕ y = valk(D) for some x ∈ Gk′.

Lemma 3.22. The probability of event BadlyCollideFV in H2 is at most 4T 3/2n.

Proof. Consider the first case where s = ` + 2. Note that during the Adapt call

the “value” at the adapt position `+1 is set as val`+1(C) := val`+3(C)⊕Gs(vals(C))

where val`+3(C) 6=⊥ is one of the arguments to Adapt. Since the assignment to

Gs(xs) happens inside the Adapt call, val−`+1(C) =⊥ until the assignment and

val−`+1(C) 6=⊥ immediately after the assignment.

Now, y := val`−1(C) ⊕ val−`+1(C). Note that val`−1(C) 6=⊥ since it is one of

the arguments of the Adapt procedure. Also note that if valk(D) 6=⊥ before the

54



assignment, then valk(D) does not change due to the assignment. Say k = `−1 and

k′ = `+1. So, for y := val`−1(C)⊕val`+3(C)⊕Gs(xs) to be such that y = x⊕val`−1(D)

where x ∈ G`+1, the value y would have to take one of T 2/2n values. Similarly for

the case where k = ` + 1 and k′ = ` − 1. So, for a single call to Adapt where

s = ` + 2, we have that the probability that the event occurs is 2T 2/2n. There are

at most T calls to Adapt by assumption and hence, the probability of the first case

is at most 2T 3/2n.

The analysis for the second case is analogous.

We say that an execution of H2 is good if none of the events BadP, BadlyHit+,

BadlyCollide+, BadlyCollideP, BadlyHitFV or BadlyCollideFV occur. Lemmas 3.17–

3.22 thus imply:

Lemma 3.23. The probability that an execution of H2 is good is at least 1 −

O(T 5)/2n.

Properties of good executions. We prove that during a good execution of H2,

every call to ForceVal(x, ·, a) is such that x /∈ Ga, i.e., a ForceVal call does not

“overwrite”.

Before we proceed with the proofs, we introduce some notation. For a chain

C = (xk, xk+1, k, `, g, b) that is enqueued for completion, the adapt positions are at

`, ` + 1. These positions are those where the simulator uses ForceVal(·, ·, `) and

ForceVal(·, ·, ` + 1) to force the values at G`(·) and G`+1(·). Also, for the chain

C, the “set uniform” positions are at `− 1, `+ 2. (These are the buffer zones that

surround the adapt positions.) One of these “set uniform” positions is adjacent to

55



the query that caused the chain to be enqueued and this position is denoted by g and

referred to as the “good” set uniform position. The other “set uniform” position is

referred to as the “bad” set uniform position. Note that g, b ∈ {` − 1, ` + 2} and

g 6= b; Let a be the adapt position that is adjacent to a “bad” set uniform position.

So, if b = ` − 1, then a = `; else, if b = ` + 2, a = ` + 1. Consider a call

Adapt(x`−2, x`−1, x`+2, x`+3, `, g, b). If b = `− 1: if x`−1 ∈ G`−1, then xa is defined

as xa = x` := x`−2⊕G`−1(x`−1); else, xa is defined as xa = x` =⊥. Else if b = `+ 2:

if x`+2 /∈ G`+2, then xa is defined as xa = x`+1 := x`+3 ⊕ G`+2(x`+2); else, xa is

defined as xa = x`+1 =⊥.

Also, for a chain C enqueued in Qb we say adapting is safe if just before the call

to Adapt for C, we have xg /∈ Gg and xa /∈ Ga. Analogously, for a chain C in Q∗all or

Qmid we say adapting is safe if just before the call to Adapt for C, we have x`−1 /∈

G`−1 and x`+2 /∈ G`+2. Also, we loosely use the statement C ∈ CompletedChains

where C = (xk, xk+1, k, `, g, b) to mean that (xk, xk+1, k) ∈ CompletedChains.

To prove that ForceVal does not “overwrite,” we will prove that for every

call to Adapt that occurs during the completion of a chain C = (xk, xk+1, k, `, g, b),

we have valg(C) /∈ Gg before the call and if C is enqueued in Qb, vala(C) /∈ Ga before

the call; else, valb(C) /∈ Gb before the call. I.e., every call to Adapt is “safe.” In

order to prove the above statements, we prove that at the time a chain C is enqueued

in Qall, valg(C) =⊥ and if C is a chain enqueued in Qb for some b ∈ {1, 5, 6, 10},

then valb(C) /∈ Gb; else, valb(C) =⊥ when C was enqueued. Similarly, if a chain C

is enqueued in Qmid, then we prove that valg(C) =⊥ and valb(C) =⊥ just before

the assignment that precedes C being enqueued occurs. We also need to prove

56



properties of equivalent chains in order to prove that if a chain equivalent to C

has been completed before C, then C ∈ CompletedChains when it is dequeued.

All of this put together will help us prove that ForceVal does not “overwrite”

(Theorem 3.38). While the structure explained above is similar to the structure of

the proof in [17], the major difference is in how we prove the properties of chains

at the time they are enqueued. This is due to the fact that we separate enqueueing

from completion in our simulation.

Properties of Equivalent Chains

Claim 3.24. Consider a good execution of H2. Suppose that at some point in the

execution, two partial chains C and D are equivalent. Then there exists a sequence

of partial chains C1, . . . , Cr such that

• C = C1 and D = Cr, or else D = C1 and C = Cr,

• for r ≥ 2, Ci = next(Ci−1) and Ci−1 = prev(Ci) for all i ∈ {2, . . . , r},

• for r ≥ 3, C2, . . . , Cr−1 is table-defined,

• D = (valρj (C), valρj+1(C), j) where valρj (C) 6=⊥ and valρj+1(C) 6=⊥ for some

ρ ∈ {+,−},

• C = (valσk(D), valσk+1(D), k) where valσk(D) 6=⊥ and valσk+1(D) 6=⊥ for some

σ ∈ {+,−}.

Proof. By definition, C ≡ D implies that we can apply next and prev finitely many

times to get D from C. Since BadP does not occur, we have that the relation

57



≡ is symmetric and hence, ≡ is an equivalence relation. The chains C1, . . . , Cr

represent the sequence where either next or prev is repeatedly applied to C or D to

derive the shortest sequence and since BadP does not occur, if Ci = next(Ci−1) then

Ci−1 = prev(Ci) and vice versa. Since each Ci for all i ∈ {2, . . . , r − 1} is such that

next(Ci) 6=⊥ and prev(Ci) 6=⊥, Ci is table-defined for all i ∈ {2, . . . , r−1}. The last

two bullet points follow from the definition of the procedures val+(·) and val−(·) and

the existence of the sequence of chains C1, . . . , Cr.

Claim 3.25. Consider some point in a good execution of H2 and assume that x 6∈ Gj

before every call to ForceVal(x, ·, j) prior to this point in the execution. Then, if

the partial chains C = (xk, xk+1, k) with k ∈ {1, 5, 9} and D = (x′m, x
′
m+1,m) with

m ∈ {1, 5, 9} are equivalent at this point in the execution, then C ∈ CompletedChains

if and only if D ∈ CompletedChains.

Proof. Consider the case where C has just been placed in CompletedChains after

being adapted. By Claim 3.24, the chains equivalent to C at this point are exactly

those chains (vali(C), vali+1(C), i) where i ∈ {0, . . . , 10}. Hence, if C and D are

equivalent and k,m ∈ {1, 5, 9}, then both C,D ∈ CompletedChains (by definition of

the simulator). Since BadP does not occur and ForceVal does not overwrite (by

assumption in the lemma), vali(C) does not change during a good execution of H2,

and hence this property continues to hold even after C,D ∈ CompletedChains.

Properties of Enqueued Chains

Recall that {1, 5, 6, 10} are “bad” set uniform positions.

58



Claim 3.26. Say a chain C = (xk, xk+1, k, `, g, b) is enqueued to be completed in Qb.

Then at the time C is enqueued, valg(C) =⊥ and valb(C) /∈ Gb.

Proof. Say C = (x5, x6, 5, 2, 4, 1) where g = 4 and b = 1. Such a chain C is

enqueued in Q1 only if x5 /∈ G5, by construction of the simulator. Otherwise,

EnqNewChains(5, x5) is not called. Since x5 /∈ G5 when enqueued, val−4 (C) =⊥

at the time C is enqueued.

Similarly, by construction of the simulator, a chain C is enqueued in Qb only

if valb(C) 6=⊥ and valb(C) /∈ Gb. So, we have val4(C) =⊥ and val1(C) /∈ G1 at the

time the chain C is enqueued. The other cases are analogous.

Effects of a Call to ForceVal

For the following claims, note that g, b ∈ {`− 1, `+ 2} and g 6= b.

Claim 3.27. In a good execution of H2, let x`−1 /∈ G`−1 (respectively x`+2 /∈ G`+2)

immediately before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b). Then, before the

call to ForceVal(x`, ·, `) (respectively ForceVal(x`+1, ·, ` + 1)) in that Adapt

call, we have x` /∈ G` (respectively x`+1 /∈ G`+1).

Proof. The proof follows exactly as in Lemma [17, Lemma 3.26(a)].

Corollary 3.28. In a good execution of H2, consider a call to Adapt(Q, x`−2, x`−1,

x`+2, x`+3, `, g, b) and assume that adapting was safe for all chains C that were de-

queued from Q1, Q5, Q6, Q10, Q∗all, or Qmid before this Adapt call. Then, before

the call to ForceVal(x`, ·, `) and ForceVal(x`+1, ·, ` + 1) that occurs in the call

59



Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b), we have x` /∈ G` and x`+1 /∈ G`+1 respec-

tively.

Proof. The proof follows immediately from Claim 3.27.

Claim 3.29. In a good execution of H2, suppose that x`−1 /∈ G`−1 (resp., x`+2 /∈

G`+2) immediately before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b). Then, if C

is a table-defined chain before the call to Adapt, vali(C) for i ∈ {1, . . . , 10} stays

constant during the call to ForceVal(x`, ·, `) (resp., ForceVal(x`+1, ·, `+ 1)).

Proof. The proof follows exactly as in Lemma [17, Lemma 3.26(b)].

Claim 3.30. Consider a good execution of H2. Suppose that x`−1 /∈ G`−1 (respec-

tively, x`+2 /∈ G`+2) immediately before a call Adapt(Q, x`−2, x`−1, x`+2, x`+3, `, g, b).

Then, if C is a chain enqueued in Qall, vali(C) for i ∈ {1, . . . , 10} stays constant

during the call to ForceVal(x`, ·, `) (respectively, ForceVal(x`+1, ·, ` + 1)) that

occurs in the Adapt call.

Proof. Consider the case that C is equivalent to the chain being adapted. If C is

equivalent to the chain being adapted, then vali(C) stays constant during the calls

to ForceVal by definition of the procedure.

Consider the case where the chain C is not equivalent to the chain being

adapted. Then vali(C) can change during the call to ForceVal(x`, ·, `) only if

valρ` (C) = x` for some ρ ∈ {+,−}. This implies that BadlyCollide+ occurred on the

uniform assignment to G`−1(x`−1) that happened in the Adapt call. This is because

C is a chain enqueued for completion in Qall, and C is not equivalent to the chain

60



D = (x`−2, x`−1, ` − 2) by assumption. Now, before the assignment val+` (D) =⊥,

and after the assignment valρ` (C) = val+` (D) 6=⊥ and D is table-defined. A similar

argument works for the call to ForceVal(x`+1, ·, `+ 1) when x`+2 /∈ G`+2.

Claim 3.31. In a good execution of H2, consider a call to Adapt(Q, x`−2, x`−1,

x`+2, x`+3, `, g, b) for some Q ∈ {Q1, Q5, Q6, Q10}. Assume that adapting was safe

for all chains C that were dequeued from Q1, Q5, Q6, Q10 before this Adapt call. If

xa /∈ Ga and xg /∈ Gg (where a is the adapt position adjacent to the “bad” set uniform

position) before the Adapt call, then if C is a chain enqueued in Qall, vali(C) for

i ∈ {1, . . . , 10} stays constant during the call to ForceVal(xa, ·, a) that occurs in

the Adapt call.

Proof. Consider the case where C is equivalent to the chain being adapted. Then,

vali(C) stays constant during the call to ForceVal(xa, ·, a) by definition of the

procedure.

Consider a chain C that is not equivalent to the chain (x`−2, x`−1, `− 2) being

adapted. Assume the lemma has held until the Adapt call of the chain D currently

being adapted i.e. ForceVal(xa′ , ·, a′) did not affect vali(C) for any chain C such

that C is a chain enqueued in Qall and a′ is the adapt position adjacent to the

“bad” set uniform b′ of a chain D′ enqueued in Qb′ and dequeued before the current

Adapt call.

Let D be the chain enqueued in Qb during whose completion the Adapt call

occurred. Now, by construction of the simulator, D is equivalent to (x`−2, x`−1, `−2)

and hence not equivalent to C. For vali(C) to change during the call to ForceVal(xa, ·, a)

61



that occurs during the Adapt call, it must be the case that vala(C) = vala(D) = xa.

For a chain D enqueued in Qb, we have valb(D) /∈ Gb and valg(D) =⊥ when D was

enqueued by Claim 3.26. So, vala(D) =⊥ when chain D was enqueued.

Consider the case where just before the Adapt call of D, we have xb /∈ Gb.

Then, vala(D) =⊥ since xb /∈ Gb and xg /∈ Gg by assumption. So, if vala(C) =

vala(D) 6=⊥ before the call to ForceVal(xa, ·, a), then BadlyCollide+ occurred on

the uniform assignment to Gb(xb). Consider next the case where just before the

Adapt call of D, we have xb ∈ Gb. So, if vala(C) = vala(D) 6=⊥ before the

ForceVal call, then this occurred during the completion of a chain E that was

dequeued before D. Then, E was dequeued from Qb′ for some b′ ∈ {1, 5, 6, 10}

by construction of the simulator. Consider the last assignment that happened be-

fore vala(C) = vala(D) 6=⊥ was true. As stated above, this assignment must have

happened during the completion of a chain E that was dequeued before D. This as-

signment can either be (a) a p(↑, x10, x11) or p(↓, x0, x1) assignment, but then BadP

occurred, (b) a ForceVal assignment, but by assumption that the lemma has held

so far and by Claim 3.30, this cannot be true, or (c) a uniform assignment to Gj(xj),

but then BadlyCollide+ occurred.

So, if C is a chain enqueued for completion in Qall, vali(C) for i ∈ {1, . . . , 10}

stays constant during the call to ForceVal(xa, ·, a).

62



Additional Properties of Enqueued Chains

For the following claim, if a chain C = (xk, xk+1, k, `, g, b) is enqueued in

Qmid, then the assignment Gi(xi) that precedes C being enqueued happens either

in lines 125, 147, or 150 of the simulator’s execution.

Claim 3.32. In a good execution of H2, if at the time a chain C = (xk, xk+1, k, `, g, b)

is enqueued in Qmid, no chain equivalent to C has been enqueued for completion and

adapting was safe for every chain dequeued from Q1, Q5, Q6, Q10 or Q∗all so far, then

valg(C) =⊥ and valb(C) =⊥ just before the assignment Gi(xi) that precedes C be-

ing enqueued. Also, val9(C) = val2(C) =⊥ just before the assignment Gi(xi) that

precedes C being enqueued.

Proof. Say a chain C = (x5, x6, 5, 2, 4, 1) is enqueued in Qmid with g = 4 and

b = 1. Then, the assignment G5(x5) that precedes the enqueueing of C is such

that x5 /∈ G5 before the assignment, by construction of the simulator. Otherwise,

EnqNewMidChains(5, x5) is not called. Hence, val−4 (C) =⊥ just before the as-

signment G5(x5) that precedes C being enqueued. Also, since val−4 (C) =⊥, we have

val−1 (C) =⊥.

Before we prove val+4 (C) =⊥ and val+1 (C) =⊥ (and hence, val4(C) =⊥ and

val1(C) =⊥), we make the following observation. If a partial chain (x5, x6, 5) is

enqueued in Qmid such that no equivalent chain has been enqueued previously, by

construction of the simulator, either (1) val5(D) = x5 for a chain D belonging to

Q∗all where val5(D) =⊥ when D was enqueued or (2) val6(E) = x6 for a chain E

enqueued in Q∗all where val6(E) =⊥ when E was enqueued or (3) both. In other

63



words, either x5 /∈ G5 ∪ At5 or x6 /∈ G6 ∪ At6 or both when Qenq.Empty() = true in

line 6 of the simulator’s execution after D’s tth query.

Consider a chain C = (x5, x6, 5, 2, 4, 1) that was enqueued in Qmid such that

no chain equivalent to C was enqueued previously. Such a chain C is enqueued

in Qmid, when x6 ∈ G6, val5(C) = val5(D) = x5 and x5 ∈ G5 right before C was

enqueued (and not earlier) where D is a chain belonging to Q∗all and x5 ∈ G5 due to

the completion of D.

For val1(C) 6=⊥ at the time of the assignment that precedes the enqueueing of

C, we need val+1 (C) 6=⊥. Then, in particular, we have that x7 := val7(C) ∈ G7 and

x8 := val8(C) ∈ G8 (otherwise, val+9 (C) =⊥ implying that val+1 (C) =⊥).

Consider the partial chains C = (x5, x6, 5), C1 = (x6, x7, 6) and C2 = (x7, x8, 7).

For val+9 (C) 6=⊥ just before the assignment that precedes the enqueueing of C,

we need (1) C1 = next(C), C2 = next(C1) (and hence, x6 ∈ G6 and x7 ∈ G7),

(2) x5 = val5(D) for a chain D in Q∗all, and (3) x8 ∈ G8 or x8 = val8(E) for a chain

E enqueued in Qall. Note that this condition is not true at the time the simulator

finished enqueueing chains in Qall since we have either x5 /∈ G5∪At5 or x6 /∈ G6∪At6

or both. Hence, the conditions must have been met during the completion of chains

in Qall. Consider the last assignment that was made before all the above conditions

were met.

Consider the case when the last assignment (such that all the conditions listed

above were met immediately after this assignment) happened, the chain C1 was

already table-defined. Now, if the assignment was a P/P−1 assignment, then BadP

occurred. It cannot be a ForceVal assignment since ForceVal does not change

64



the value of a chain enqueued in Qall by Claims 3.30 and 3.31. If it were a uniform

assignment to Gi(xi), then BadlyCollide+ occurred.

Consider the case when the last assignment (such that all the conditions listed

above were met immediately after this assignment) happened, the chain C1 was not

table-defined before the assignment but table-defined immediately after. Recall that

if C1 = (x6, x7, 6) is table-defined then x6 ∈ G6 and x7 ∈ G7. So, the assignment

was either to G6(x6) or G7(x7).

Consider the case that the last assignment (such that all the conditions listed

above were met immediately after this assignment) set G7(x7). If this were a

uniform assignment to G7(x7), then BadlyCollide+ occurred since C1(≡ C) and

E are not equivalent as no chain equivalent to C has been enqueued previously.

If this were a ForceVal assignment, then BadlyCollideFV occurred. This is be-

cause 7 is an adapt position only for partial chains that are either of the form

(a) X = (x9, x10, 9) such that (x9, x10, 9, 6, 8, 5) belongs to Q∗all, or (b) Y = (x1, x2, 1)

such that (x1, x2, 1, 7, 9, 6) is enqueued in Q6. For case (a), by assumption for chains

in Q∗all, we have val5(X) /∈ G5 before the Adapt call for such a chain. For case (b),

the adapt position 7 is adjacent to the “bad” set uniform position 6. By assump-

tion for chains enqueued in Q6, we have val9(Y ) /∈ G9 before the Adapt call for

such a chain. Hence, BadlyCollideFV occurred due to the assignment G5(val5(X)) or

G9(val9(Y )) that occurs in the Adapt call. The analysis for the case when G6(x6)

is set is similar. So, the above conditions are not met for a chain C to be enqueued

in Qmid. Hence, for such a chain C = (x5, x6, 5, 2, 4, 1), val+9 (C) =⊥ just before

the assignment that caused C to be enqueued. Since val+9 (C) =⊥ and val−4 (C) =⊥

65



before the assignment, we have val4(C) =⊥, val9(C) =⊥ and val1(C) =⊥ just before

the assignment that precedes C being enqueued. The analysis for the case where

C = (x5, x6, 5, 8, 7, 10) is analogous.

Claim 3.33. Consider a good execution of H2. Just before the execution of line 27

during the simulator’s execution, if adapting was safe for every chain dequeued from

Q1,Q5,Q6,Q10, Q
∗
all or Qmid so far, then it holds that:

(i) if x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 such that R.CheckBwd(x10, x9⊕G10(x10), x1) =

true, then (x9, x10, 9) ∈ CompletedChains.

(ii) if x1 ∈ G1, x2 ∈ G2, x10 ∈ G10 such that R.CheckFwd(x2⊕G1(x1), x1, x10) =

true, then (x1, x2, 1) ∈ CompletedChains.

(iii) if x5 ∈ G5, x6 ∈ G6, then (x5, x6, 5) ∈ CompletedChains.

Proof. We start by proving (i). For a triple (x9, x10, x1), we say that the “condition

holds” if (x9, x10, x1) is such that x9 ∈ G9, x10 ∈ G10, x1 ∈ G1 andR.CheckBwd(x10,

x9 ⊕G10(x10), x1) = true. Also, we refer to the partial chain (x9, x10, 9) as the par-

tial chain associated with the triple (x9, x10, x1). So, our aim is to prove that for

every triple (x9, x10, x1) such that the condition holds, the associated partial chain

(x9, x10, 9) ∈ CompletedChains. Assume the claim holds right before (and hence

immediately after) line 27 of the simulator’s execution while answering the distin-

guisher’s (t − 1)th query to F(·, ·). Let the distinguisher ask its tth query F(k, x).

The aim is to prove that at line 27 of the simulator’s execution while answering

the distinguisher’s tth query to F(·, ·), if a triple T ∗ = (x9, x10, x1) is such that the

66



condition holds, then the partial chain C∗ = (x9, x10, 9) associated with the triple

is such that C∗ ∈ CompletedChains. Note that the distinguisher could have made

queries to P/P−1 between the (t− 1)th and tth queries to F(·, ·); but if those queries

resulted in the condition holding, then BadP occurred.

Suppose that there exists a triple T ∗ such that the condition holds at line 27

of the simulator’s execution while answering the distinguisher’s tth query. If the

condition held at the end of simulator’s execution while answering the previous

distinguisher query, then by the assumption that the claim has held so far, the

partial chain C∗ associated with the triple T ∗ is such that C∗ ∈ CompletedChains. If

the condition held at the end of the simulator’s execution of the current query t (and

not at the end of the previous query), we differentiate cases where the associated

partial chain C∗ was enqueued for completion during the simulator’s execution while

answering the tth query and when it was not.

Consider the case where a chain equivalent to C∗ was enqueued in Qall during

the simulator’s execution while answering the distinguisher’s current query. If C∗ =

(x9, x10, 9) was enqueued during the tth query, then (x9, x10, 9) ∈ CompletedChains

by construction of the simulator. Note also that chains in MidEquivChains are not

enqueued for completion by the simulator. By definition of the set MidEquivChains,

these chains are such that they are equivalent to a chain of the form (x5, x6, 5)

that has been enqueued for completion. Since BadP does not occur and ForceVal

does not overwrite, the equivalence holds when (x5, x6, 5) ∈ CompletedChains and

hence, by Claim 3.25, such a chain in MidEquivChains is placed in CompletedChains

as well. By the same argument, if a chain equivalent to C∗ has been enqueued for

67



completion, then C∗ ∈ CompletedChains by the end of the simulator’s execution of

the current query. So, if a chain equivalent to C∗ was enqueued for completion or

was in MidEquivChains during the simulator’s execution while answering the current

query t, then C∗ ∈ CompletedChains.

Consider the case where no chain equivalent to C∗ was enqueued in Qall and

C∗ /∈ MidEquivChains during the simulator’s execution while answering the dis-

tinguisher’s current query. We differentiate between the cases where (1) C =

next(C∗) 6=⊥ and next(C) 6=⊥ when Qenq.Empty() = true in line 6 of the simu-

lator’s execution when answering the distinguisher’s tth query and (2) when this is

not the case.

Consider the case when C = next(C∗) 6=⊥ and next(C) 6=⊥ at the time the

simulator stops enqueueing chains in Qall, i.e., when Qenq.Empty() = true in line 6

of the simulator’s execution when answering the distinguisher’s tth query. This

implies that x10 ∈ G10 and (↑, x10, x11) ∈ P , where x11 := x9 ⊕G10(x10), and hence

C = (x10, x11, 10) is table-defined at the time the simulator stops enqueueing chains

in Qall. Since the triple T ∗ is such that the associated partial chain C∗ = (x9, x10, 9)

was not enqueued for completion and not in MidEquivChains, we have that either

(a) x9 /∈ G9 ∪ At9 or (b) x1 /∈ G1 ∪ At1 when Qenq.Empty() = true in line 6. For

the condition to hold, we need x1 ∈ G1 and x9 ∈ G9, and hence we have that

the condition does not hold for the triple T ∗ when Qenq.Empty() = true in line 6.

Consider the case where x1 /∈ G1 ∪ At1. For x1 ∈ G1 to be true by the end of the

simulator’s execution while answering the distinguisher’s tth query, it must be the

case that val1(D) = val1(C) = x1 at some point for a chain D that has been enqueued

68



in Qall or Qmid. Before analyzing the case that val1(D) = val1(C) = x1 occurs, we

make the following observations. First, C and D are not equivalent as C ≡ C∗

and no chain equivalent to C∗ (including itself) has been enqueued. Second, for

all chains D that have been enqueued in Qall, val1(D) 6= x1 when D was enqueued

since x1 /∈ G1 ∪ At1. Now, if val1(D) 6= x1 and val1(D) 6=⊥, it cannot be that

val1(D) = x1 at a later point since ForceVal does not overwrite and BadP does

not occur. Hence, if val1(D) = x1 at a later point, then val1(D) =⊥ when enqueued.

Similarly, for all chains D that have been enqueued in Qmid it holds that val1(D) =⊥

just before the assignment that precedes the enqueueing of D by Claim 3.32. Since

BadlyHit+ and BadlyHitFV do not occur, val1(D) =⊥ at the time D is enqueued.

Now, if val1(D) = val1(C) = x1, then this is during the completion of some chain

E during the simulator’s execution while answering the distinguisher’s tth query.

Consider the last assignment before val1(D) = val1(C) = x1 was true. This cannot

be a uniform assignment to Gi(xi) since then BadlyCollide+ occurred. This cannot

be due to a uniform assignment to P since then BadP or BadlyCollideP occurred.

This cannot be a ForceVal assignment since that would contradict Claims 3.29,

3.30 or 3.31. The analysis for the case where x9 /∈ G9 ∪ At9 when the simulator

stops enqueueing chains in Qall is analogous. So, if C was table-defined when the

simulator stops enqueueing chains in Qall, then the condition does not hold for the

triple T ∗ at the end of the simulator’s execution of the current query.

Consider next the case when either next(C∗) =⊥, or C = next(C∗) 6=⊥ and

next(C) =⊥ at the time the simulator stops enqueueing chains in Qall, i.e., when

Qenq.Empty() = true in line 6 of the simulator’s execution when answering the dis-

69



tinguisher’s tth query. Now if the triple T ∗ = (x9, x10, x1) is such that the condition

holds by the end of the simulator’s execution of the current query, then it must be

the case that next(C∗) 6=⊥ and next(next(C∗)) 6=⊥ by the end of the simulator’s exe-

cution. In particular, this means that the partial chain next(C∗) = C = (x10, x11, 10)

where x11 := x9 ⊕ G10(x10) is table-defined (with val1(C) = x1) by the end of the

simulator’s execution. Note that at the moment C becomes table-defined either

x1 /∈ G1 or x9 /∈ G9 as otherwise either BadP or BadlyHit+ occurred. Furthermore,

immediately before the assignment that causes C to be table-defined, we have ei-

ther val1(C) =⊥ or val9(C) =⊥ and immediately after the assignment, we have

val9(C) 6=⊥ and val1(C) 6=⊥ by definition. Say val1(C) =⊥ immediately before the

assignment that caused C to be table-defined and val1(C)(= x1) 6=⊥ immediately

after. For x1 ∈ G1 to be true by the end of the simulator’s execution while answer-

ing the distinguisher’s tth query, it must be the case that val1(D) = val1(C) = x1

at some point for a chain D that has been enqueued in Qall or Qmid. Consider the

last assignment before val1(D) = val1(C) = x1 was true. The rest of the analysis

proceeds similarly to the analysis above. The case when val9(C) =⊥ immediately

before the assignment that caused C to be table-defined and val9(C)(= x9) 6=⊥

immediately after follows in a similar fashion. So, if next(C∗) =⊥ or if next(C∗) 6=⊥

and next(next(C∗)) =⊥ when the simulator stops enqueueing chains in Qall, then the

condition also does not hold for the triple T ∗ at the end of the simulator’s execution

of the current query. Summarizing, if a chain equivalent to C∗ was not enqueued in

Qall and C∗ /∈ MidEquivChains during the simulator’s execution while answering the

distinguisher’s current query, then the condition does not hold for the triple T ∗ at

70



the end of the simulator’s execution of the current query.

The proof of (ii) follows exactly along the lines of the proof of (i) given above.

The proof of (iii) is as follows. Let D ask its tth query F(k, x). Just before the

simulator returns Gk(x) in line 27, let the lemma be false and let this be the first

time that the lemma does not hold implying that there exist x5 ∈ G5 and x6 ∈ G6

such that (x5, x6, 5) /∈ CompletedChains.

If the lemma has held so far, in particular it has held right before (and imme-

diately after) line 27 of the simulator’s execution while answering D’s (t−1)th query

to F(·, ·). Note that the distinguisher could have made queries to P/P−1 between

the (t− 1)th and tth queries to F(·, ·), but those queries cannot result in x5 ∈ G5 or

x6 ∈ G6.

So, x5 ∈ G5, x6 ∈ G6 are such that (x5, x6, 5) /∈ CompletedChains hap-

pened during the simulator’s execution while answering D’s tth query. Now, if

(x5, x6, 5) were enqueued for completion during the tth query then (x5, x6, 5) ∈

CompletedChains. If a chain equivalent to (x5, x6, 5) were enqueued for completion

during the tth query, then (x5, x6, 5) ∈ CompletedChains. This is because equiv-

alent chains are placed in CompletedChains simultaneously, since BadP does not

occur and ForceVal does not overwrite. So, for x5 ∈ G5, x6 ∈ G6 to be such

that (x5, x6, 5) /∈ CompletedChains, the simulator did not enqueue this partial chain.

(Note that chains of the type (x5, x6, 5) are not added to MidEquivChains.)

Let x6 ∈ G6, and say an assignment occurs such that before the assignment

x5 /∈ G5, but after the assignment x5 ∈ G5 leading to the creation of a partial chain

of the form (x5, x6, 5) with x5 ∈ G5, x6 ∈ G6. (The analysis for the other case is

71



analogous.) Such an assignment can happen only by completion of a chain in Q1,

Q5, Q6, Q10 or completion of a chain in Q∗all. We analyze these next.

Case 1: An assignment happens to G5(x5) during the completion of a chain C

enqueued in Qb where b ∈ {1, 5, 6, 10} and x6 ∈ G6 before this assignment. Now, if

x6 ∈ G6 before the assignment causing x5 ∈ G5, then either x6 ∈ G6 before D’s t-th

query or x6 ∈ G6 due to the completion of a chain D enqueued in Q1, Q5, Q6, Q10

and dequeued before C. Again, by construction of the simulator, chains C that are

enqueued in Qb are such that either val5(C) ∈ At5 or val5(C) ∈ G5 at the time C

was enqueued and similarly, chains D that are enqueued in Qb are such that either

val6(D) ∈ At6 or val6(D) ∈ G6 at the time D was enqueued. Since BadP does not

occur and ForceVal does not overwrite, val5(C) = x5 ∈ At5 (since x5 /∈ G5 before

this assignment) and val6(D) = x6 ∈ G6 ∪ At6. Thus, (x5, x6, 5) is enqueued for

completion by construction of the simulator.

Case 2: An assignment happens to G5(x5) during the completion of a chain C in

Q∗all and x6 ∈ G6 before this assignment. If x6 ∈ G6 ∪ At6 and x5 ∈ At5 when the

simulator enqueues chains in Qall, then (x5, x6, 5) is enqueued for completion in Qall.

Else, (x5, x6, 5) is enqueued for completion in Qmid.

This completes the proof.

Claim 3.34. Consider a good execution of H2. If a chain C = (xk, xk+1, k, `, g, b)

belongs to Q∗all such that at the time C is enqueued, adapting was safe for every chain

dequeued from Q1,Q5,Q6,Q10, Q
∗
all or Qmid so far, then valb(C) =⊥ and valg(C) =⊥

at the time C is enqueued.

72



Proof. Say C = (x9, x10, 9, 3, 2, 5) is enqueued where the query preceding the chain’s

enqueueing is G1(x1) where val1(C) = x1. Then, by definition of the simulator,

x1 /∈ G1 as otherwise, EnqNewChains(1, x1) is not called. So, val+2 (C) =⊥. Now,

we claim that val−5 (C) /∈ G5. This is because if val−5 (C) ∈ G5, then val−6 (C) ∈ G6

since otherwise, val−5 (C) =⊥. This implies that the partial chain (x5, x6, 5), where

x5 = val−5 (C) and x6 = val−6 (C), is such that x5 ∈ G5 and x6 ∈ G6. Hence, by

Lemma 3.33, we have that (x5, x6, 5) ∈ CompletedChains since no newGi assignments

have been issued between the moment the simulator returned the answer (in line 27

of its execution) and the moment when chain C is enqueued in Qall. However, since

BadP does not occur, this means that x1 ∈ G1 contradicting the first statement.

Thus, we have that val−5 (C) /∈ G5. Now, val+5 (C) =⊥ since val+2 (C) =⊥. So,

val5(C) /∈ G5.

Since C is not enqueued in Q1,Q5,Q6,Q10, we have val5(C) =⊥ when C is

enqueued. So val2(C) =⊥ and val5(C) =⊥, where g = 2 and b = 5. The other cases

are analogous.

ForceVal(x, ·, j) does not Overwrite Gj(x)

Lemma 3.35. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a

partial chain enqueued in Q1,Q5,Q6, or Q10. At the moment C = (xk, xk+1, k, `, g, b)

is dequeued, assume that adapting was safe for every chain C ′ in Q∗all or Qmid de-

queued so far. Then,

• At the moment C = (xk, xk+1, k, `, g, b) is dequeued, C ∈ CompletedChains, or

73



• Just before the call to Adapt for C, valg(C) /∈ Gg and vala(C) /∈ Ga (where a

is the adapt position adjacent to the “bad” set uniform position b).

Proof of Lemma 3.35. Assume the lemma has held until the moment that some

chain C = (xk, xk+1, k, `, g, b) is dequeued. Note that if the lemma has held until

now we have that for every call to ForceVal(x, ·, j) so far, x /∈ Gj by Corollary 3.28.

Consider the case that at the moment C was dequeued there is a chain D

equivalent to C that was dequeued before C. Now, if D was dequeued before

C, then D ∈ CompletedChains by construction of the simulator. If C and D are

equivalent chains such that D ∈ CompletedChains, then C ∈ CompletedChains by

Claim 3.25.

Next consider the case where no chain equivalent to C was dequeued before C

was dequeued. Say C /∈ CompletedChains when dequeued. If we prove valg(C) /∈ Gg

and vala(C) /∈ Ga at the time C was dequeued, we have that valg(C) /∈ Gg and

vala(C) /∈ Ga just before the call to Adapt for C since otherwise BadP or BadlyHit+

occurred.

By Claim 3.26, we have that valg(C) =⊥ at the time C was enqueued. If

valg(C) ∈ Gg at the time C was dequeued, then this was due to the completion

of a chain D which was enqueued in Qb′ where b′ ∈ {1, 5, 6, 10} due to the same

distinguisher query as C and dequeued(and completed) before C such that valg(C) =

valg(D) 6=⊥.

Consider the last assignment that was made before valg(C) = valg(D) 6=⊥ was

true. This cannot have been a uniform assignment to Gi(xi) since that implies that

74



BadlyCollide+ occurred. This is because C and D are not equivalent(by assumption)

and C and D are both enqueued for completion in Qall and either valg(C) =⊥ or

valg(D) =⊥ before the assignment(otherwise this is not the last assignment before

valg(C) = valg(D) 6=⊥) and valg(C) = valg(D) 6=⊥ after the assignment.

The assignment cannot have been of the form p(↓, x0, x1) = (x10, x11) or

p(↑, x10, x11) = (x0, x1) since then BadP occurred. The assignment cannot have

been a ForceVal query. This is because from Claims 3.31 and 3.30 we have that

ForceVal does not change vali(C) for a chain C enqueued in Qall (including those

enqueued in Q1, Q5, Q6, Q10) during completion of chains in Q1, Q5, Q6, Q10.

Now, consider the argument for vala(C) /∈ Ga when C is dequeued. By

Claim 3.26, we have that valb(C) /∈ Gb and valg(C) =⊥ at the time C was enqueued,

implying that vala(C) =⊥ when C was enqueued (where a is the adapt position

adjacent to “bad” set uniform position). The argument for this case follows similar

to the one above for valg(C).

Lemma 3.36. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a

partial chain in Q∗all. At the moment C = (xk, xk+1, k, `, g, b) is dequeued, assume

that adapting was safe for every chain C ′ in Qmid dequeued so far. Then,

• At the moment C is dequeued, C ∈ CompletedChains or,

• Just before the call to Adapt for C, val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2.

Proof. Recall that g, b ∈ {`− 1, `+ 2} and g 6= b. Assume the lemma has held until

the moment that some chain C = (xk, xk+1, k, `, g, b) is dequeued. Note that if the

75



lemma has held until now we have that for every call to ForceVal(x, ·, j) so far,

x /∈ Gj by Lemma 3.35 and Corollary 3.28.

Consider the case that at the moment C was dequeued, a chain D equiv-

alent to C was dequeued before C. Now, if D was dequeued before C, then

D ∈ CompletedChains by construction of the simulator. If C and D are equivalent

chains such that D ∈ CompletedChains, then C ∈ CompletedChains by Claim 3.25.

Consider the case that no chain equivalent to C was dequeued before C was

dequeued. Note also that if we prove val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2 at the

time C was dequeued, we have that val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2 just

before the call to Adapt for C since otherwise BadP or BadlyHit+ occurs.

From Claim 3.34, we have that val`−1(C) =⊥ and val`+2(C) =⊥ at the time the

chain C is enqueued. Let us consider the case where val`−1(C) ∈ G`−1 at the time C

was dequeued. If val`−1(C) ∈ G`−1 at the time C was dequeued, then this was due to

the completion of a chain D which was enqueued in Qall (including Q1,Q5,Q6,Q10)

as a result of the same distinguisher query as C and was dequeued(and completed)

before C such that val`−1(C) = val`−1(D) 6=⊥ at the time C was dequeued.

Consider the last assignment that was made before val`−1(C) = val`−1(D) 6=⊥

was true. This cannot have been a uniform assignment to Gi(xi) since that implies

that BadlyCollide+ occurred. This is because C and D are not equivalent(by assump-

tion) and either val`−1(C) =⊥ or val`−1(D) =⊥ before the assignment(otherwise

this is not the last assignment before val`−1(C) = val`−1(D) 6=⊥) and val`−1(C) =

val`−1(D) 6=⊥ after the assignment.

The assignment cannot have been of the form p(↓, x0, x1) = (x10, x11) or

76



p(↑, x10, x11) = (x0, x1) since then BadP or BadlyCollideP occurred. The assign-

ment cannot have been a ForceVal assignment since ForceVal does not change

vali(C) for a chain C enqueued in Qall during completion of chains in Q1,Q5,Q6,Q10

by Claims 3.31 and 3.30 and 3.35. Similarly, ForceVal that occurs during the

completion of chains in Qall does not change vali(C) for a chain C enqueued in Qall

by Claim 3.30 as the lemma has held thus far.

The argument for val`+2(C) /∈ G`+2 when C was dequeued is analogous.

Lemma 3.37. Consider a good execution of H2. Let C = (xk, xk+1, k, `, g, b) be a

partial chain enqueued in Qmid. Then,

• At the moment C is dequeued, C ∈ CompletedChains, or

• Just before the call to Adapt for C, val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2.

Proof. Again, we assume the lemma has held until the moment that some chain

C = (xk, xk+1, k, `, g, b) is dequeued. Note that if the lemma has held until now we

have that for every call to ForceVal(x, ·, j) so far, x /∈ Gj by Lemmas 3.35, 3.36

and Corollary 3.28.

Case 1: Consider the case that when a chain C is enqueued in Qmid, there is an

equivalent chain that has been enqueued previously. We analyze two subcases. First,

consider the case that when a chain C is enqueued in Qmid, there is an equivalent

chain D enqueued previously and D ∈ CompletedChains when C is enqueued. If

C equivalent to D and D ∈ CompletedChains, then by Claim 3.25, we have that

C ∈ CompletedChains.

77



Consider the case that when a chain C is enqueued in Qmid, no equivalent

chain belongs to CompletedChains but there is a chain D equivalent to C that has

been enqueued in Qall or Qmid. Now, if C and D are equivalent when C is enqueued,

then there exists a sequence of chains C1, . . . , Cr given by Claim 3.24. Since BadP

does not occur and ForceVal does not overwrite until the moment C is dequeued,

we have that C and D are equivalent when D is placed in CompletedChains. So, by

Claim 3.25, C ∈ CompletedChains and hence, C ∈ CompletedChains at the moment

it is dequeued.

Case 2: Consider the case that no chain equivalent to C was enqueued before

C was enqueued. Note also that if we prove val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2

at the time C was dequeued, we have that val`−1(C) /∈ G`−1 and val`+2(C) /∈ G`+2

just before the call to Adapt for C since otherwise BadP or BadlyHit+ occurs.

Since no chain equivalent to C was enqueued previously, from Claim 3.32, we

have that val`−1(C) =⊥ and val`+2(C) =⊥ immediately before the assignment that

caused the chain C is enqueued. Let us consider the case where val`−1(C) ∈ G`−1

at the time C was dequeued. This could not have happened at the time C was

enqueued since then BadlyHit+ or BadlyHitFV occurred. If val`−1(C) ∈ G`−1 at the

time C was dequeued, then this was due to the completion of a chain D which

was enqueued before C was enqueued and dequeued(and completed) after C was

enqueued. By construction of the simulator, this means that D has to be enqueued

in Qall (but not in Q1,Q5,Q6,Q10) or Qmid. Note also that C and D have to be such

that val`−1(C) = val`−1(D) 6=⊥ at the time C was dequeued.

Consider the last assignment that was made before val`−1(C) = val`−1(D) 6=⊥

78



was true. This cannot have been a uniform assignment to Gi(xi) since that implies

that BadlyCollide+ occurred. This is because C and D are not equivalent(by assump-

tion) and either val`−1(C) =⊥ or val`−1(D) =⊥ before the assignment(otherwise

this is not the last assignment before val`−1(C) = val`−1(D) 6=⊥) and val`−1(C) =

val`−1(D) 6=⊥ after the assignment.

The assignment cannot have been of the form p(↓, x0, x1) = (x10, x11) or p(↑

, x10, x11) = (x0, x1) since then BadP or BadlyCollideP occurred. The assignment

cannot have been a ForceVal query since ForceVal does not change vali(C) for

a table-defined chain C by Claim 3.29.

The argument for val`+2(C) /∈ G`+2 when C was dequeued is analogous.

Theorem 3.38 (No overwrites). In a good execution of H2, we have x /∈ Gj before

any call to ForceVal(x, ·, j).

Proof. Combining the result of Lemmas 3.35, 3.36 and 3.37 with Corollary 3.28, we

have that for every call to ForceVal(x, ·, j), x /∈ Gj before the call.

As in Coron et al. [17], the distinguisher completes all chains, if, at the end of

the execution, it emulates a call to EvalFwdComp(x0, x1, 0, 10) for all queries to

P(x0, x1) or to (x0, x1) = P−1(x10, x11) that it made during the execution.

Lemma 3.39. Consider a good execution of H2 in which the distinguisher completes

all chains. Suppose that during the execution P(x0, x1), respectively P−1(x10, x11), is

queried by the simulator or the distinguisher. Then, p(↓, x0, x1) = (val+10(x0, x1, 0),

val+11(x0, x1, 0)), respectively p(↑, x10, x11) = (val−0 (x10, x11, 10), val−1 (x10, x11, 10)) at

the end of the execution.

79



Proof. The simulator queries P/P−1 either (1) when it is enqueueing chains in Qall

or (2) when it is completing chains in Q1, Q5, Q6, Q10, Q
∗
all and Qmid. In the second

case, when the simulator has completed the chain, we have the result and it holds

even at the end of the execution as ForceVal does not overwrite by Theorem 3.38

and BadP does not occur. In the first case, where the simulator queries P/P−1 when

it is enqueueing chains in Qall, the simulator either enqueues the chain in Qall or

places it in MidEquivChains. If the simulator enqueues the chain in Qall, at the time

the simulator completes the chain, the lemma holds and we have the result at the

end of the execution as well since BadP does not occur and ForceVal does not

overwrite. If the simulator places the chain in MidEquivChains, then an equivalent

chain C was enqueued for completion in Qall. Again, since BadP does not occur and

ForceVal does not overwrite by Theorem 3.38, we have that the equivalence holds

until C ∈ CompletedChains and so the lemma holds at the end of the execution as

well.

Consider the case where the query P(x0, x1) was made by the distinguisher.

Since the distinguisher completes all chains, it eventually queries x5 and x6 cor-

responding to the Feistel evaluation of (x0, x1, 0) at some point. This implies that

x5 ∈ G5 and x6 ∈ G6 at the end of the execution. One of these two values are queried

later by the distinguisher, say x6, and at the moment if (x5, x6, 5) /∈ CompletedChains,

it is enqueued and completed by the simulator and again, by the argument above,

the lemma holds. If (x5, x6, 5) ∈ CompletedChains, then the lemma holds right after

that completion as BadP does not occur and ForceVal does not overwrite.

80



In the following lemma, we make the randomness p used by R explicit. The

randomness p is a list containing 2 · 22n strings of length 2n. Then R runs deter-

ministically given p. So, whenever the procedure R.P(x0, x1) is queried, R checks if

(↓, x0, x1) ∈ p and if so, answers accordingly. Otherwise, R reads (x10, x11) := p(↓

, x0, x1), and then (↓, x0, x1) as well as (↑, x10, x11) are added to p, mapping to each

other. The procedure R.P−1(x10, x11) is implemented analogously.

Lemma 3.40. Consider a good execution of H2 in which the distinguisher completes

all chains. Then, the number of calls to Adapt by the simulator equals the number

of queries to p(·, ·, ·) made by R.

Proof. The number of queries to p(·, ·, ·) equals half the number of entries in the table

P since BadP does not occur. And for each call to Adapt, there is a corresponding

entry in p that was read while evaluating forward/backward; also two calls to Adapt

procedure can’t share the same entry as otherwise BadP occurred or ForceVal has

overwritten contradicting Theorem 3.38.

For a query in p(·, ·, ·), consider the case that the query was made in a call

to P by the simulator. Then, this call was either made while the simulator was

completing a chain, in which case we consider the Adapt call that was made right

after this query, or, this call was made while the simulator was enqueueing a chain

C in Qall. For this case, consider the chains equivalent to C from this moment until

a chain D equivalent to C is dequeued for completion where D is the first chain

equivalent to C to be dequeued. Since no value is overwritten and BadP does not

occur, we can associate the Adapt call that is called during the completion of chain

81



D to the p query.

Consider the case that the distinguisher made a query to p(·, ·, ·). Since the

distinguisher completes all chains, it eventually makes the corresponding queries to

the Feistel and say x5 and x6 are the corresponding Feistel queries. One of them

has to be queried last by the distinguisher and at this moment consider the chain

(x5, x6, 5). If (x5, x6, 5) ∈ CompletedChains, then consider the first chain equivalent

to (x5, x6, 5) that was dequeued and we associate the p query to the Adapt call

that occurred during the completion of this chain. If (x5, x6, 5) /∈ CompletedChains,

then at the moment (x5, x6, 5) is dequeued, consider the first chain equivalent to

(x5, x6, 5) that was dequeued and we associate the p query to the Adapt call that

occurred during the completion of this chain.

3.4.4 Indistinguishability of the Second and Third Experiments

We now describe experiment H3. Here, we explicitly consider the random-

ness z where z is a table containing an independent uniform bitstring of length

n for each i ∈ {1, . . . , 10} and xi ∈ {0, 1}n. Whenever the Feistel construction

needs to query the i-th round function on x, it uses the value z(i, x) instead. In

H3(z), the two-sided random function is replaced by the 10-round Feistel construc-

tion Feistel(z), and the distinguisher D interacts with (Feistel(z), Ŝ(z)Feistel
+(z)). The

construction Feistel+(z) defined below contains additional procedures CheckFwd

and CheckBwd that the simulator has access to. Note that the randomness z

used by Feistel and Ŝ is the same and the simulator answers queries to the round

82



functions by running the procedure Ŝ.F(i, x) and whenever it needs to set Gj(xj) to

a random value, it uses the value z(j, xj) instead. The Feistel construction Feistel(z)

is defined as follows:

1 procedure P(x0, x1):
2 for i := 2 to 11 do
3 xi := xi−2 ⊕ z(i− 1, xi−1)

4 p(↓, x0, x1) := (x10, x11)
5 p(↑, x10, x11) := (x0, x1)
6 return (x10, x11)

7 procedure P−1(x10, x11):
8 for i := 9 to 0 do
9 xi := xi+2 ⊕ z(i+ 1, xi+1)

10 p(↓, x0, x1) := (x10, x11)
11 p(↑, x10, x11) := (x0, x1)
12 return (x0, x1)

The construction Feistel+(z) that the simulator has access to contains the
following CheckFwd and CheckBwd procedures in addition to the procedures
Feistel.P and Feistel.P−1.

1 procedure CheckFwd(x0, x1, x10):
2 if (↓, x0, x1) ∈ p then
3 (x′10, x

′
11) := p(↓, x0, x1)

4 return x′10
?
= x10

5 return false

6 procedure CheckBwd(x10, x11, x1):
7 if (↑, x10, x11) ∈ p then
8 (x′0, x

′
1) := p(↑, x10, x11)

9 return x′1
?
= x1

10 return false

Mapping randomness of H2 to randomness of H3. Before we describe the

mapping, we make the randomness r used by R explicit. The randomness r is a

list containing 2 · 22n strings of length 2n. Then R runs deterministically given r.

83



With regard to the simulator, let f be a table containing an independent uniform

bitstring of length n for each i ∈ {1, . . . , 10} and xi ∈ {0, 1}n. Then whenever the

simulator Ŝ needs to set Gi(xi) to a random value, it uses the value f(i, xi) instead.

We define a map τ which maps a pair of tables (f, r) where f is the randomness

used by the simulator Ŝ and r is the randomness used by the random two-sided

function R either to the symbol λ in case (f, r) does not lead to a good execution

of H2, or to a partial table z. The description of the map follows along the lines

of the map in [17]. A partial table z : {1, . . . , 10} × {0, 1}n → {0, 1}n ∪ {⊥} either

has an actual entry for a pair (i, x), or a symbol ⊥ which indicates that the entry

is unused. This map will be such that H2(f, r) and H3(τ(f, r)) have “exactly the

same behaviour” for good (f, r) (where a “good” (f, r) leads to a good execution of

H2). Whenever we refer to executions of H2(f, r) and H3(z) below, we assume that

they are executed for the same distinguisher.

Definition 16. The function τ(f, r) is defined as follows: If (f, r) is good, run a

simulation of H2 in which the distinguisher completes all chains. Consider the tables

G at the end of this execution, and for any i and x let z(i, x) := Gi(x) in case x ∈ Gi

and z(i, x) :=⊥ otherwise. If (f, r) is not good, let τ(f, r) := λ.

Lemma 3.41. The probability that a distinguisher D outputs 1 in H2 differs at most

by O(q10)/2n from the probability that it outputs 1 in H3.

Proof. The proof of this lemma follows exactly along the lines of the proof of [17,

Lemma 3.37]. So, the probability that a distinguisher D outputs 1 in H2 differs from

the probability that it outputs 1 in H3 by twice the probability that an execution

84



of H2 is not good. By Lemma 3.23, this is given by O(q10)/2n.

3.4.5 Indistinguishability of the Third and Fourth Experiments

In H3, the distinguisher accesses the random functions through the simulator.

In experiment H4, the distinguisher can instead access them directly.

Lemma 3.42. Suppose that in H3(z) the simulator Ŝ(z) eventually answers a query

F(i, x). Then that query is answered with z(i, x).

Proof. The proof follows exactly as in [17, Lemma 3.38].

Lemma 3.43 (Indistinguishability of H3 and H4). The probability that a distin-

guisher outputs 1 in H3 differs by at most by O(q10)/2n from the probability that it

outputs 1 in H4.

Proof. The proof follows exactly along the lines of [17, Lemma 3.38].

85



Chapter 4: Indifferentiability of 5-Round Iterated Even-Mansour

In this chapter, we prove that the 5-round iterated Even-Mansour (IEM) con-

struction with a trivial key-schedule, i.e., where all round keys are equal,1 is indif-

ferentiable from an ideal cipher. As mentioned in Chapter 2, this implies that the

5-round iterated Even-Mansour construction with a non-idealized key schedule is

indifferentiable from an ideal cipher.

Our 5-round feasibility result improves both on the 5-round result of Andreeva

et al. [2] for the IEM construction with an idealized key-schedule and on the 12-

round feasibility result of Lampe and Seurin [43] for the IEM construction with

the trivial key-schedule. Our simulator runs in time O(q5) and makes O(q5) ideal

cipher queries. We remark that the security bound presented in this chapter can be

improved with a more fined-grained analysis of “bad events” (see [21]).

1Actually we consider a slight variant of the trivial key-schedule where the first and last round

keys are omitted, but both our negative and positive results are straightforward to extend to the

“standard” trivial key-schedule. See Section 4.2 for a discussion.

86



4.1 Overview

4.1.1 Our Techniques

Our 5-round simulator follows the traditional “chain detection/completion”

paradigm, pioneered by Coron et al. [17,18,37] for proving indifferentiability of the

Feistel construction, which has since then been used for the IEM construction as

well [2, 43]. (See Section 3.1 for an overview of their techniques.) However, our

simulator is, in a sense, conceptually simpler and more “systematic” than previous

simulators for the IEM construction (something we pay for by a more complex “ter-

mination” proof). In a nutshell, our new 5-round simulator detects and completes

any path of length three, where a path is a sequence of adjacent (round) permu-

tation queries “chained” by the same key as in the IEM construction (and which

might wrap around the ideal cipher). In contrast, the 12-round simulator of Lampe

and Seurin [43] used a much more parsimonious chain detection strategy (inherited

from [17,18,37,53]) which allowed for a much simpler termination argument.

The proof that our new 5-round simulator remains consistent with the ideal

cipher(IC) roughly follows the same ideas as in previous indifferentiability proofs.

In short, since the simulator completes all paths of length three, this means that at

the moment the distinguisher makes a permutation query, only incomplete paths of

length at most two can exist. Hence any incomplete path has three “free” adjacent

positions, two of which (the ones on the edge) will be sampled at random, while

the middle one will be adapted to match the IC. The most delicate part consists

87



in proving that no path of length three can appear “unexpectedly” and remain

unnoticed by the simulator (which will therefore not complete it), which ultimately

relies on excluding a (large) number of “bad events.”

The most innovative part of the proof lies in the “termination argument,” i.e.,

in proving that the simulator is efficient and that the recursive chain detection/-

completion process does not “chain react” beyond a fixed polynomial bound. As

in many previous termination arguments [17,18,37,53] the proof is “bootstrapped”

by proving that certain types of paths (namely those that wrap around the IC)

will be detected and completed only if the distinguisher made the corresponding IC

query. Hence, assuming the distinguisher makes at most q queries, at most q such

paths will be completed. In virtually all previous indifferentiability proofs, this fact

easily allows to upper bound the size of permutations “history” for all other “detect

zones” used by the simulator, and hence to upper bound the total number of paths

that will ever be detected and completed. This is not the case for our 5-round sim-

ulator, since the “at most q wrapping paths” trick only allows us to upper bound

the size of the middle permutation P3, which by itself is not sufficient to upper

bound the number of other detected paths. In order to push the argument further,

we need to prove a structural property of the history of adjacent permutations P2

and P4. In more detail, this property is that the table maintaining answers of the

simulator for P2 (respectively, P4) never contains four distinct input/output pairs

(x(i), y(i)), 1 ≤ i ≤ 4, such that
⊕

1≤i≤4(x
(i) ⊕ y(i)) = 0. It is rather straightforward

to prove that such input/output pairs are unlikely to exist if the simulator sets an-

swers at random, but answers are sometimes “adapted” when completing a path,

88



which makes the proof much more complicated.

4.1.2 Related Work

As mentioned in Chapter 1, Andreeva et al. [2] and Lampe and Seurin [43]

showed that the 5-round IEM construction with an idealized key-schedule, and the

12-round IEM construction with the trivial key-schedule, respectively, are indiffer-

entiable from an ideal cipher. Several papers have studied security properties of

the IEM construction that are stronger than pseudorandomness yet weaker than

indifferentiability, such as resistance to related-key [14, 31], known-key [3, 15], or

chosen-key attacks [14,35]. A recent preprint shows that the 3-round IEM construc-

tion with a (non-invertible) idealized key-schedule is indifferentiable from an ideal

cipher [36].

4.2 Preliminaries

As mentioned in Chapter 2, the iterated Even-Mansour construction EM for

a trivial key-schedule is defined as follows: for an input x ∈ {0, 1}n and a key

k ∈ {0, 1}n,

EMP(k, x) = k ⊕ Pr(k ⊕ Pr−1(· · ·P2(k ⊕ P1(k ⊕ x)) · · · )).

where Pi is a permutation over {0, 1}n. See Fig. 2.2 for an illustration of a 5-round

iterated Even-Mansour construction.

Indifferentiability. We recall the standard definition of indifferentiability pre-

sented in Definition 1 and for clarity, we state it directly for the IEM construction.

89



Definition 17. We say that EM is indifferentiable from an ideal cipher if there

exists a simulator S and a polynomial t such that for all distinguishers D making at

most q = poly(n) queries, S runs in time t(q) and

|Pr[DEMP,P(1n) = 1]− Pr[DIC,S IC(1n) = 1]|

is negligible, where P consists of random, independent permutations over {0, 1}n

and IC is an ideal cipher with key space {0, 1}n and message space {0, 1}n.

Recall that Definition 1 and hence Definition 17 allows the simulator S to

depend on the number of queries q. In fact, the simulator that we show in the

pseudocode (cf. Figs. 4.1 and 4.2) does not depend on q, but this simulator is efficient

only with high probability, as will become clear in the proof. In Theorem 4.44, we

discuss an optimized implementation of this simulator that, among other things,

uses knowledge of q to abort whenever its runtime exceeds the limit of a “good”

execution, thus ensuring that the simulator is efficient with probability 1.

4.3 Our Simulator

In this section, we describe our simulator for proving indifferentiability of the

5-round IEM construction from an ideal cipher.

4.3.1 Informal Description

We start with a high-level overview of how the simulator S works, deferring

the formal description in pseudocode to Section 4.3.2. For each i ∈ {1, . . . , 5}, the

90



simulator maintains a pair of tables Pi and P−1i with 2n entries containing either

an n-bit value or a special symbol ⊥, allowing the simulator to keep track of values

that have already been assigned internally for the i-th permutation. Initially, these

tables are empty, meaning that Pi(x) = P−1i (y) = ⊥ for all x, y ∈ {0, 1}n. The

simulator sets Pi(x) ← y, P−1i (y) ← x to indicate that the i-th permutation maps

x to y. The simulator never overwrites entries in Pi or P−1i , and always keeps

these two tables consistent, so that Pi always encodes a “partial permutation” of

{0, 1}n. We sometimes write x ∈ Pi (resp. y ∈ P−1i ) to mean that Pi(x) 6= ⊥ (resp.

P−1i (y) 6= ⊥).

The simulator offers a public interface Query(i, δ, z) allowing the distinguisher

to request the value Pi(z) when δ = + or P−1i (z) when δ = − for input z ∈ {0, 1}n.

Upon reception of a query (i, δ, z), the simulator checks whether P δ
i (z) has already

been defined, and returns the corresponding value if this is the case. Otherwise, it

marks query (i, δ, z) as “pending” and starts a “chain detection/completion” mecha-

nism, called a query cycle in the following, in order to maintain consistency between

its answers and the IC as we now explain. (We stress that some of the wording

introduced here is informal and that all notions will be made rigorous in the next

sections.)

We say that a triple (i, xi, yi) is table-defined if Pi(xi) = yi and P−1i (yi) = xi

(that is, the simulator internally decided that xi is mapped to yi by permutation

Pi). Let us informally call a tuple of j − i + 1 ≥ 2 table-defined permutation

queries at adjacent positions ((i, xi, yi), . . . , (j, xj, yj)) (indices taken mod 5) such

that xi′+1 = y′i ⊕ k if i′ 6= 5 and xi′+1 = IC−1(k, y′i) if i′ = 5 for all i′ ∈ {i, . . . , j} a

91



“k-path of length j + i− 1” (hence, paths might “wrap around” the IC).

The very simple idea at the heart of the simulator is that, before answering

any distinguisher’s query to some simulated permutation, it ensures that any path

of length three (or more) has been preemptively extended to a “complete” path

of length five ((1, x1, y1), . . . , (5, x5, y5)) compatible with the ideal cipher (i.e., such

that IC(k, x1) = y5). For this, assume that at the moment the distinguisher makes

a permutation query (i, δ, z) which is not table-defined yet (otherwise the simulator

just returns the answer that was preemptively set), any path of length three is

complete. This means that any existing incomplete path has length at most two.

These length-2 paths will be called (table-defined2) 2chains in the main body of the

proof, and will play a central role. For ease of the discussion to come, let us call the

pair of adjacent positions (i, i+ 1) of the table-defined queries constituting a 2chain

the type of the 2chain. (Note that as any path, a 2chain can “wrap around”, i.e.,

consists of two table-defined queries (5, x5, y5) and (1, x1, y1) such that IC(k, x1) = y5,

so that possible types are (1, 2), (2, 3), (3, 4), (4, 5), and (5, 1)). Let us also call the

direct input to permutation Pi+2 and the inverse input to permutation Pi−1 when

extending the 2chain in the natural way the resp. right and left endpoint of the

2chain.3

The “pending” permutation query (i, δ, z) asked by the distinguisher, once

2While the difference between a table-defined and table-undefined 2chain will be important in

the formal proof, we ignore this subtlety for the moment.
3Again, there is a slight subtlety for the left endpoint of a (1, 2)-2chain and the right endpoint

of a (4, 5)-2chain since this involves the ideal cipher, but we ignore it here.

92



answered by the simulator, might create new incomplete paths of length three when

combined with adjacent 2chains, that is, 2chains at position (i−2, i−1) for a direct

query (i,+, xi) or 2chains at position (i + 1, i + 2) for a inverse query (i,−, yi).

Hence, just after having marked the initial query of the distinguisher as “pending”,

the simulator immediately detects all 2chains that will form a length-3 path with this

pending query, and marks them as “triggered”. Following the high-level principle of

completing any length-3 path, any triggered 2chain should (by the end of the query

cycle) be extended to a complete path, which might create new incomplete length-3

paths.

To ease the discussion, let us slightly change the notation and assume that

the distinguisher’s query that initiated the query cycle was either a direct query

(i+2,+, xi+2) or an inverse query (i−1,−, yi−1). In both cases, adjacent 2chains that

might get “triggered” are of type (i, i+ 1). For each 2chain which was triggered by

the initial query of distinguisher, the simulator computes its endpoint opposite to the

initial query, and marks it as pending as well. Note that if the distinguisher’s query

was (i+ 2,+, xi+2), then all these new pending queries are of the form (i− 1,−, ·),

while if it was (i−1,−, yi−1), all the new pending queries are of the form (i+2,+, ·).

For each of these new pending queries, the simulator recursively detects whether they

form a length-3 path with other (i, i+1)-2chains, and triggers these 2chains. Hence,

if the initiating query of the distinguisher was of the form (i+ 2,+, ·) or (i−1,−, ·),

any triggered 2chain will be of type (i, i + 1). For this reason, we say such a query

cycle is of type (i, i + 1). Note also that all pending queries will be of the form

(i+ 2,+, ·) or (i− 1,−, ·) The recursive detection process continues until there is no

93



Table 4.1: The five types of (i, i+ 1)-query cycles of the simulator.

Type Initiating query/ReadTape call type Adapt at

(i, i+ 1) (i− 1,−) and (i+ 2,+) i+ 3

(1,2) (5,−) and (3,+) 4

(2,3) (1,−) and (4,+) 5

(3,4) (2,−) and (5,+) 1

(4,5) (3,−) and (1,+) 2

(5,1) (4,−) and (2,+) 3

new (i, i+ 1)-2chain to detect and trigger. Note that the simulator can completely

determine which 2chains should be triggered before starting the completion process

itself.

Once all 2chains that must eventually be completed have been detected and

“triggered”, the simulator starts the completion process. First, it randomly samples

all “pending” queries (which are necessarily of the form (i+2,+, ·) or (i−1,−, ·) for

a query cycle of type (i, i+1)). This “all-at-the-same-time” randomness sampling is

reminiscent of the simulator in [28]. Finally, for all triggered 2chains, it adapts the

corresponding path by computing the corresponding input xi+3 and output yi+3 at

position i + 3 and “forcing” Pi+3(xi+3) = yi+3. In case some collision occurs when

trying to assign a value for some permutation, the simulator aborts. All important

characteristics of an (i, i+ 1)-query cycle are summarized in Table 4.1.

94



4.3.2 Formal Description

We now give the full pseudocode for the simulator. The simulator has access to

the ideal cipher, that we formally capture with two interfaces Enc(k, x) and Dec(k, y)

for encryption and decryption respectively. In the ideal world, cipher queries are

answered by an ideal cipher IC. We make the randomness of IC explicit through two

random tapes ic, ic−1 : {0, 1}n × {0, 1}n → {0, 1}n such that for any k ∈ {0, 1}n,

ic(k, ·) is a uniformly random permutation and ic−1(k, ·) is its inverse. Hence, in the

ideal world, a query Enc(k, x), resp. Dec(k, y), is simply answered with ic(k, x), resp.

ic−1(k, y). The randomness used by the simulator for lazily sampling permutations

P1, . . . , P5 when needed is also made explicit in the pseudocode through uniformly

random permutations tapes p = (p1, p
−1
1 , . . . , p5, p

−1
5 ). By random permutation

tapes, we mean that pi : {0, 1}n → {0, 1}n is a uniformly random permutation and

p−1i is its inverse.

In the pseudocode and more generally throughout this chapter, the result of

arithmetics on positions is automatically wrapped into the range {1, 2, 3, 4, 5}. For

any table or tape T and δ ∈ {+,−}, we let T δ be T if δ = + and be T −1 if δ = −.

Given a list L, L ←↩ x means that x is appended to L. If the simulator aborts

(line 58), we assume it returns a special symbol ⊥ in response to the distinguisher’s

query being processed.

Note that tables Pi and P−1i are modified only by procedure Assign. The table

entries are never overwritten, due to the check at line 58.

95



1 Variables:
2 Tables of defined permutation queries Pi, P

−1
i , i ∈ {1, . . . , 5}

3 Ordered list of pending queries Pending
4 Ordered list of triggered paths Triggered

5 public procedure SimQuery(i, δ, z):
6 if P δ

i (z) = ⊥ then
7 Pending← ((i, δ, z)), Triggered← ∅
8 forall (i, δ, z) in Pending do FindNewPaths(i, δ, z)
9 forall (i, δ, z) in Pending do ReadTape(i, δ, z)

10 forall (i, i+ 1, yi, xi+1, k) in Triggered do AdaptPath(i, i+ 1, yi, xi+1, k)
11 return P δ

i (z)

12 private procedure FindNewPaths(i, δ, z):

13 case (δ = +):
14 xi ← z
15 forall (xi−2, xi−1) in (Pi−2, Pi−1) do
16 yi−2 ← Pi−2(xi−2), yi−1 ← Pi−1(xi−1)
17 if i = 2 then k ← yi−1 ⊕ xi
18 else k ← yi−2 ⊕ xi−1
19 C ← (i− 2, i− 1, yi−2, xi−1, k)
20 if C ∈ Triggered then continue
21 case i ∈ {1, 2}:
22 if ¬Check(k, x1, y5) then
23 continue
24 case i ∈ {3, 4, 5}:
25 if Next(i− 1, yi−1, k) 6= xi then
26 continue
27 Triggered←↩ C
28 yi−3 ← Prev(i− 2, xi−2, k)
29 if (i− 3,−, yi−3) /∈ Pending then
30 Pending←↩ (i− 3,−, yi−3)

31 case (δ = −):
32 yi ← z
33 forall (xi+1, xi+2) in (Pi+1, Pi+2) do
34 yi+1 ← Pi+1(xi+1), yi+2 ← Pi+2(xi+2)
35 if i = 4 then k ← yi ⊕ xi+1

36 else k ← yi+1 ⊕ xi+2

37 C ← (i+ 1, i+ 2, yi+1, xi+2, k)
38 if C ∈ Triggered then continue
39 case i ∈ {4, 5}:
40 if ¬Check(k, x1, y5) then
41 continue
42 case i ∈ {1, 2, 3}:
43 if Prev(i+ 1, xi+1, k) 6= yi then
44 continue
45 Triggered←↩ C
46 xi+3 ← Next(i+ 2, yi+2, k)
47 if (i+ 3,+, xi+3) /∈ Pending then
48 Pending←↩ (i+ 3,+, xi+3)

49 private procedure ReadTape(i, δ, z):
50 if δ = + then Assign(i, z, pi(z)) else Assign(i, p−1i (z), z)

51 private procedure AdaptPath(i, i+ 1, yi, xi+1, k):
52 yi+1 ← Pi+1(xi+1), xi+2 ← Next(i+ 1, yi+1, k), yi+2 ← Pi+2(xi+2)
53 xi+3 ← Next(i+ 2, yi+2, k)
54 xi ← P−1i (yi), yi−1 ← Prev(i, xi, k), xi−1 ← P−1i−1(yi−1)
55 yi−2 ← Prev(i− 1, xi−1, k)
56 Assign(i+ 3, xi+3, yi−2) \\ subscripts are equal because of the wrapping

Figure 4.1: Pseudocode of the simulator.

96



57 private procedure Assign(i, xi, yi):
58 if Pi(xi) 6= ⊥ or P−1i (yi) 6= ⊥ then abort
59 Pi(xi)← yi, P

−1
i (yi)← xi

60 private procedure Next(i, yi, k):
61 if i = 5 then return Dec(k, yi)
62 else return yi ⊕ k

63 private procedure Prev(i, xi, k):
64 if i = 1 then return Enc(k, xi)
65 else return xi ⊕ k

66 private procedure Check(k, x1, y5):
67 return Enc(k, x1) = y5 \\ G1

68 return T (k, x1) = y5 \\ G2,G3,G4

Figure 4.2: Pseudocode of the simulator (contd.)

4.4 Proof of Indifferentiability

Our main result is the following theorem.

Theorem 4.1. The probability that a distinguisher D making at most q queries

outputs 1 in an interaction with (IC,S IC) and the probability that it outputs 1 in an

interaction with (EMP,P) differ by at most O(q38/2n). Moreover, S runs in time

polynomial in O(q5).

Furthermore, the bounds hold even if the distinguisher is allowed to make q

permutation queries in each position (i.e., it can call Query(i, ∗, ∗) q times for each

i ∈ {1, 2, 3, 4, 5}) and make q cipher queries (i.e., Enc and Dec can be called q times

in total).

The proof of the theorem is given in the rest of the chapter, with the indiffer-

entiability simulator being the one described in Section 4.3.

97



4.4.1 Proof Overview

Our proof uses a sequence of games G1, G2, G3 and G4 as described in Figure 4.3,

with G1 being the simulated world and G4 being the real world. We fully describe

the intermediate worlds that will be used in the indifferentiability proof. The distin-

guisher D has access to the public interface Query(i, δ, z), which in the ideal world

is answered by the simulator, and to the ideal cipher/IEM construction interface,

that we (as mentioned earlier) formally capture with two interfaces Enc(k, x) and

Dec(k, y) for encryption and decryption respectively. We will refer to queries to any

of these two interfaces as cipher queries, by opposition to permutation queries made

to interface Query(·, ·, ·). In the ideal world, cipher queries are answered by an ideal

cipher IC. As mentioned previously, we make the randomness of IC explicit through

two random tapes ic, ic−1 : {0, 1}n×{0, 1}n → {0, 1}n such that for any k ∈ {0, 1}n,

ic(k, ·) is a uniformly random permutation and ic−1(k, ·) is its inverse. Hence, in

the ideal world, a query Enc(k, x), resp. Dec(k, y), is simply answered with ic(k, x),

resp. ic−1(k, y). The randomness used by the simulator for lazily sampling per-

mutations P1, . . . , P5 when needed has also been made explicit in the pseudocode

through uniformly random permutations tapes p = (p1, p
−1
1 , . . . , p5, p

−1
5 ). Hence,

randomness in game G1 is fully captured by ic and p.

Since we will use two intermediate games, the real world will be denoted by G4.

In this world, queries to Query(i, δ, z) are simply answered with the corresponding

value stored in the random permutation tapes p, while queries to Enc or Dec are

answered by the IEM construction based on random permutations p. Randomness

98



in G4 is fully captured by p.

Intermediate Games. The indifferentiability proof relies on two intermediate

games G2 and G3. In game G2, the Check procedure used by the simulator (cf.

Fig. 4.2) to detect new external chains is modified such that it does not make

explicit queries to the ideal cipher; instead it first checks to see if the entry exists

in a table T recording cipher queries and if not, returns false. In game G3, the ideal

cipher is replaced with the 5-round IEM construction that uses the same random

permutation tapes p as the simulator (and hence both the distinguisher and the

simulator interact with the 5-round IEM construction instead of the IC).

Summing up, randomness is fully captured by ic and p in games G1 and G2, and

by p in games G3 and G4 (since the ideal cipher is replaced by the IEM construction

EMp when transitioning from G2 to G3).

The pseudocode for the public (i.e., accessible by the distinguisher) procedures

Query, Enc, and Dec is given in Fig. 4.3, together with helper procedures that

capture the changes from games G1 to G4. Lines commented with “\\Gi” apply only

to game Gi. In the pseudocode, the result of arithmetics on positions is automatically

wrapped into the range {1, 2, 3, 4, 5}. For any table or tape T and δ ∈ {+,−}, we

let T δ be T if δ = + and be T −1 if δ = −.

Tables T and T−1 are used to record the cipher queries that have been issued

(by the distinguisher or the simulator).

Throughout the proof we will fix an arbitrary information-theoretic distin-

guisher D with q queries, meaning that D has unlimited computation power and

99



69 Game Gi(ic,p), i = 1, 2 / Gi(p), i = 3, 4

70 Variables:
71 Tables of cipher queries T, T−1

72 Tables of defined permutation queries Pi, P
−1
i , i ∈ {1, . . . , 5}

73 Ordered list of pending queries Pending
74 Ordered list of triggered paths Triggered

75 public procedure Query(i, δ, z):
76 return SimQuery(i, δ, z) \\ G1,G2,G3

77 return pδi (z) \\ G4

78 public procedure Enc(k, x1):
79 if T (k, x1) = ⊥ then
80 y5 ← ic(k, x1) \\ G1,G2

81 y5 ← EM(k, x1) \\ G3,G4

82 T (k, x1)← y5, T
−1(k, y5)← x1

83 return T (k, x1)

84 public procedure Dec(k, y5):
85 if T−1(k, y5) = ⊥ then
86 x1 ← ic−1(k, y5) \\ G1,G2

87 x1 ← EM−1(k, y5) \\ G3,G4

88 T (k, x1)← y5, T
−1(k, y5)← x1

89 return T−1(k, y5)

90 private procedure EM(k, x1):
91 for i = 1 to 4 do
92 xi+1 = pi(xi)⊕ k
93 return p5(x5)

94 private procedure EM−1(k, y5):
95 for i = 5 to 2 do
96 yi−1 = p−1i (yi)⊕ k
97 return p−11 (y1)

98 private procedure Check(k, x1, y5):
99 return Enc(k, x1) = y5 \\ G1

100 return T (k, x1) = y5 \\ G2,G3,G4

Figure 4.3: Public procedures Query, Enc, and Dec for games G1 - G4, and helper
procedures EM, EM−1, and Check. This set of procedures captures all changes from
game G1 to G4.

100



can issue a limited number of queries. Using a trick in [23], we allow the distinguisher

D to make q cipher queries and q permutation queries in each position, as described

in Theorem 4.1. This trick allows us to obtain a better security bound, even though

the distinguisher can make more queries than usual.4 We can assume without loss of

generality that D is deterministic, as any distinguisher can be derandomized using

the “optimal” random tape and achieve at least the same advantage.

Without loss of generality, we assume that D outputs 1 with higher probability

in the simulated world G1 than in the real world G4. We define the advantage of D

in distinguishing between Gi and Gj by

∆D(Gi,Gj) := Pr
Gi

[DQuery,Enc,Dec = 1]− Pr
Gj

[DQuery,Enc,Dec = 1].

Our goal is to upper bound ∆D(G1,G4).

Our proof starts with discussions about the game G2, which will be the start-

ing point of the transitions. As usual, there are bad events that might cause the

simulator to fail. We will prove that bad events are unlikely, and show properties

of good executions in which bad events don’t occur. The proof of efficiency of the

simulator (in good executions of G2) is the most interesting and technical part of

this paper, which is given in Section 4.4.3. During the proof of efficiency we also

obtain upper bounds on the sizes of the tables and on the number of calls to each

procedure, which will be a crucial component for the transitions.

4In the randomness mapping, we will need to convert an arbitrary distinguisher to one that

“completes all paths”. If the distinguisher is allowed q queries in total, the number of queries will

become 6q; if D is allowed q queries in each position, it only increases from q to 2q. Moreover, the

proof works almost the same for the stronger version of distinguishers.

101



For the G1-G2 transition, note that the only difference between the two games

is in Check. If the simulator is efficient, the probability that the two executions

diverge in a call to Check is negligible. Therefore, if an execution of G2 is good, it

is identical to the G1-execution with the same random tapes except with negligible

probability (cf. Lemma 4.42). In particular, this implies that an execution of G1 is

efficient with high probability.

For the G2-G3 transition, we use a standard randomness mapping argument.

We will map the randomness of good executions of G2 to the randomness of non-

aborting executions of G3, so that the G3-executions with the mapped randomness

are identical to the G2-executions with the preimage randomness.

We will show that if a G3-execution has a preimage, then the answers of the

permutation queries output by the simulator must be compatible with the random

permutation tapes (cf. Lemma 4.51). Thus the G3-execution is identical to the G4-

execution with the same random tapes, where the permutation queries are answered

by the corresponding entries of the random tapes. This enables a transition directly

from G2 to G4 using the randomness mapping, which is a small novelty of our proof.

Termination Argument. Since the termination argument—i.e., the fact that our

simulator does not run amok with excessive path completions, except with negligible

probability—is one of the more novel aspects of our proof, we provide a separate

high-level overview of this argument here.

To start with, observe that at the moment when an (i, i+ 1)-path is triggered,

3 queries on the path are either already in existence or already scheduled for future

102



existence regardless of this event: the queries at position i and i + 1 are already

defined, while the pending query that triggers the path was already scheduled to

become defined even before the path was triggered; hence, each triggered path only

“accounts” for 2 new queries, positioned either at i+2, i+3 or at i−1, i−2 (= i+3),

depending on the position of the pending query.

A second observation is that...

– (1, 2)-2chains triggered by pending queries of the form (5,−, ·), and

– (4, 5)-2chains triggered by pending queries of the form (1,+, ·), and

– (5, 1)-2chains triggered by either pending queries of the form (2,+, ·) or (4,−, ·)

...all involve a cipher query (equivalently, a call to Check, in G2) to check the trigger

condition, and one can argue that this query must have been made by the distin-

guisher itself. (Because when the simulator makes a query to Enc/Dec that is not for

the purpose of detecting paths, it is for the purpose of completing a path.) Hence,

because the distinguisher only has q cipher queries, only q such path completions

should occur in total. Moreover, these three types of path completions are exactly

those that “account” for a new (previously unscheduled) query to be created at

P3. Hence, and because the only source of new queries are path completions and

queries coming directly from the distinguisher, the size of P3 never grows more than

q + q = 2q, with high probability.

Of the remaining types of 2chain completions (i.e., those that do not involve

the presence of a previously made “wraparound” cipher query), those that contribute

a new entry to P2 are the following:

103



– (3, 4)-2chains triggered by pending queries of the form (5,+, ·)

– (4, 5)-2chains triggered by pending queries of the form (3,−, ·)

We can observe that either type of chain completion involves values y3, x4, y4, x5

that are well-defined at the time the chain is detected. We will analyze both types

of path completion simultaneously, but dividing into two cases according to whether

(a) the distinguisher ever made the query Query(5,+, x5), or else received the value

x5 as an answer to a query of the form Query(5,−, y5), or (b) the query P5(x5) is

being defined / is already defined as the result of a path completion. (Crucially, (a)

and (b) are the only two options for x5.)

For (a), at most q such values of x5 can ever exist, since the distinguisher

makes at most q queries to Query(5, ·, ·); moreover, there are at most 2q possibilities

for y3, as already noted; and we have the relation

y3 ⊕ x5 = x4 ⊕ y4 (4.1)

from the fact that y3, x4, y4 and x5 lie on a common path. One can show that, with

high probability,

x4 ⊕ y4 6= x′4 ⊕ y′4

for all x4, y4, x
′
4, y

′
4 such that P4(x4) = y4, P4(x

′
4) = y′4 and such that x4 6= x′4.

5

Hence, with high probability (4.1) has at most a unique solution x4, y4 for each y3,

5Probabilistically speaking, this trivially holds if P4 is a random partial permutation defined at

only polynomially many points, though our proof is made more complicated by the fact that P4

also contains “adapted” queries.

104



x5, and scenario (a) accounts for at most 2q2 path completions (one for each possible

left-hand side of (4.1)) of either type above.

For (b), there must exist a separate (table-defined) 2chain (3, x′3, y
′
3), (4, x′4, y

′
4)

whose right endpoint is x5. (This is the case if x5 is part of a previously completed

path, and is also the case if (5,+, x5) became a pending query during the current

query cycle without being the initiating query.) The relation

y′3 ⊕ x′4 ⊕ y′4 = y3 ⊕ x4 ⊕ y4

(both sides are equal to x5) implies

y3 ⊕ y′3 = x4 ⊕ y4 ⊕ x′4 ⊕ y′4 (4.2)

and, similarly to (a), one can show that (with high probability)

x4 ⊕ y4 ⊕ x′4 ⊕ y′4 6= X4 ⊕ Y4 ⊕X ′4 ⊕ Y ′4

for all table-defined queries (4, x4, y4), . . . , (4, X
′
4, Y

′
4) with {(x4, y4), (x′4, y′4)} 6= {(X4,

Y4), (X
′
4, Y

′
4)}. Thus, we have (modulo the ordering of (x4, y4) and (x′4, y

′
4)

6) at most

one solution to the RHS of (4.2) for each LHS; hence, scenario (b) accounts for at

most 4q2 path completions7 of either type above, with high probability.

Combining these bounds, we find that P2 never grows to size more than 2q +

2q2+4q2 = 6q2+2q with high probability, where the term of 2q accounts for (the sum

of) direct distinguisher queries to Query(2, ·, ·) and “wraparound” path completions

6As argued within the proof, this ordering issue does not actually introduce an extra factor of

two into the bounds.
7Or more exactly, to at most 2q(2q−1) path completions, which leads to slightly better bounds

used in the proof.

105



involving a distinguisher cipher query. Symmetrically, one can show that P4 also

has size at most 6q2 + 2q, with high probability.

One can now easily conclude the termination argument; e.g., the number of

(2, 3)- or (3, 4)-2chains that trigger path completions is each at most 2q · (6q2 + 2q)

(the product of the maximum size of P3 with the maximum size of P2/P4); or,

e.g., the number of (1, 2)-2chains triggered by a pending query (3,+, ·) is at most

2q · (6q2 + 2q) (the product of the maximum size of P3 with the maximum size of

P2), and so forth.

4.4.2 Properties of the Second Experiment

In this section, we will define a set of bad events that may occur in G2. We

will refer to executions of G2 where these events do not occur as good executions.

Later on, we will establish some properties of these good executions. In particular,

we will prove that the simulator does not abort and runs in polynomial time in good

executions of G2.

Notation. Before we define the bad events, we introduce some notation and defi-

nitions.

Queries and 2chains. The central notion for reasoning about the simulator is

the notion of 2chain, that we develop below.

Definition 1. A permutation query is a triple (i, δ, z) where 1 ≤ i ≤ 5, δ ∈ {+,−}

and z ∈ {0, 1}n. We call i the position of the query, δ the direction of the query,

and the pair (i, δ) the type of the query.

106



Definition 2. A cipher query is a triple (δ, k, z) where δ ∈ {+,−} and k, z ∈ {0, 1}n.

We call δ the direction and k the key of the cipher query.

Definition 3. A permutation query (i, δ, z) is table-defined if P δ
i (z) 6= ⊥, and table-

undefined otherwise. Similarly, a cipher query (δ, k, z) is table-defined if T δ(k, z) 6=

⊥, and table-undefined otherwise.

For permutation queries, we sometimes omit i and δ when they are clear from

the context and simply say that xi, resp. yi, is table-(un)defined to mean that

(i,+, xi), resp. (i,−, yi), is table-(un)defined.

Note that if (i,+, xi) is table-defined and Pi(xi) = yi, then necessarily (i,−, yi)

is also table-defined and P−1i (yi) = xi. Indeed, tables Pi and P−1i are only modified

in procedure Assign, where existing entries are never overwritten due to the check

at line 58. Thus the two tables always encode a partial permutation and its inverse,

i.e., Pi(xi) = yi if and only if P−1i (yi) = xi. Hence, we often say that a triple

(i, xi, yi) is table-defined as a shorthand to mean that both (i,+, xi) and (i,−, yi)

are table-defined with Pi(xi) = yi and P−1i (yi) = xi.

Similarly, if a cipher query (+, k, x) is table-defined and T (k, x) = y, then

necessarily (−, k, y) is table-defined and T−1(k, y) = x. Indeed, these tables are

only modified by calls to Enc/Dec, and always according to the IC tape ic, hence

these two tables always encode a partial cipher and its inverse, i.e. T (k, x) = y

if and only if T−1(k, y) = x. Hence, we often say that a triple (k, x, y) is table-

defined as a shorthand to mean that both (+, k, x) and (−, k, y) are table-defined

with T (k, x) = y and T−1(k, y) = x.

107



Definition 4 (2chain). An inner 2chain is a tuple (i, i + 1, yi, xi+1, k) such that

i ∈ {1, 2, 3, 4}, yi, xi+1 ∈ {0, 1}n, and k = yi ⊕ xi+1. A (5,1)-2chain is a tuple

(5, 1, y5, x1, k) such that y5, x1, k ∈ {0, 1}n. A (i, i + 1)-2chain refers either to an

inner or a (5, 1)-2chain, and is denoted generically (i, i+1, yi, xi+1, k), i ∈ {1, . . . , 5},

the second element i+1 being taken mod 5. We call (i, i+1) the type of the 2chain.

Remark 4.2. Note that for a 2chain of type (i, i + 1) with i ∈ {1, 2, 3, 4}, given yi

and xi+1, there is a unique key k such that (i, i + 1, yi, xi+1, k) is a 2chain (hence

k is “redundant” in the notation), while for a 2chain of type (5, 1), the key might

be arbitrary. This convention allows to have a unified notation independently of the

type of the 2chain. See also Remark 4.3 below.

Definition 5. An inner 2chain (i, i + 1, yi, xi+1, k) is said table-defined if both

(i,−, yi) and (i+1,+, xi+1) are table-defined permutation queries, and table-undefined

otherwise. A (5,1)-2chain (5, 1, y5, x1, k) is said table-defined if both (5,−, y5) and

(1,+, x1) are table-defined permutation queries and T (k, x1) = y5, and table-undefined

otherwise.

Remark 4.3. Our definitions above ensure that whether a tuple (i, i+ 1, yi, xi+1, k)

is a 2chain or not is independent of the state of tables Pi/P
−1
i and T/T−1. Only the

fact that a 2chain is table-defined or not depends on these tables.

Definition 6 (endpoints). Let C = (i, i + 1, yi, xi+1, k) be a table-defined 2chain.

108



The right endpoint of C, denoted r(C) is defined as

r(C) = Pi+1(xi+1)⊕ k if i ∈ {1, 2, 3, 5}

= T−1(k, P5(x5)) if i = 4 and (−, k, P5(x5)) is table-defined

= ⊥ if i = 4 and (−, k, P5(x5)) is table-undefined.

The left endpoint of C, denoted `(C) is defined as

`(C) = P−1i (yi)⊕ k if i ∈ {2, 3, 4, 5}

= T (k, P−11 (y1)) if i = 1 and (+, k, P−11 (y1)) is table-defined

= ⊥ if i = 1 and (+, k, P−11 (y1)) is table-undefined.

We say that an endpoint is dummy when it is equal to ⊥, and non-dummy

otherwise. Hence, only the right endpoint of a 2chain of type (4, 5) or the left

endpoint of a 2chain of type (1, 2) might be dummy.

When this is clear from the context, we sometimes identify the right and left

(non-dummy) endpoints of an (i, i+1)-2chain C with the corresponding permutation

queries (i + 2,+, r(C)) and (i − 1,−, `(C)). In particular, when we say that r(C),

resp. `(C) is table-defined, this implicitly means that it is non-dummy and the

corresponding permutation query is table-defined. More importantly, when we say

that one of the endpoints of C is table-undefined, we also implicitly mean that it

is non-dummy. (Hence, an endpoint must be either dummy, or table-undefined, or

table-defined).

Definition 7. A complete path with key k is a 5-tuple of table-defined permutation

109



queries ((1, x1, y1), . . . , (5, x5, y5)) such that

yi ⊕ xi+1 = k for i = 1, 2, 3, 4 and T (k, x1) = y5. (4.3)

The five table-defined queries (i, xi, yi) and the five table-defined 2chains (i, i +

1, yi, xi+1, k), i ∈ {1, . . . , 5}, are said to belong to the complete path.

When a 2chain C belongs to a complete path, we sometimes simply say that C

is complete. Note that if a 2chain C is complete, then r(C) and `(C) are non-dummy

and table-defined. We also have the following simple but important observation.

Lemma 4.4. In any execution of G2, any 2chain belongs to at most one complete

path.

Proof. This follows directly from the fact that tables Pi/P
−1
i always encode a partial

permutation and that tables T/T−1 always encode a partial cipher.

Query Cycles. When the distinguisher makes a permutations query (i, δ, z)

which is already table-defined, the simulator returns the answer immediately. The

definition below introduces some vocabulary related to what happens within the sim-

ulator when the distinguisher makes a permutation query which is table-undefined.

Definition 8 (query cycle). A query cycle is the period of execution between when

the distinguisher issues a permutation query (i0, δ0, z0) which is table-undefined and

when the answer to this query is returned by the simulator. We call (i0, δ0, z0) the

initiating query of the query cycle.

A query cycle is called an (i, i+1)-query cycle if the initiating query is of type

(i− 1,−) or (i+ 2,+) (see Lemma 4.5 (a) and Table 4.1).

110



The portion of the query cycle consisting of calls to FindNewPaths at line 8 is

called the detection phase of the query cycle; the portion of the query cycle consisting

of calls to ReadTape at line 9 and to AdaptPath at line 10 is called the completion

phase of the query cycle.

During a query cycle, we say that a permutation query (i, δ, z) is pending (or

simply that z is pending when i and δ are clear from the context) if it is appended

by the simulator to list Pending at line 7, 30, or 48. We say that a 2chain C =

(i, i + 1, yi, xi+1, k) is triggered if the simulator appends C to the list Triggered at

line 27 or 45.

The lemma below gives some basic properties of query cycles that will be used

throughout the indifferentiability proof. Part (a) justifies the name “(i, i+ 1)-query

cycle”.

Lemma 4.5. During an (i, i+ 1)-query cycle whose initiating query was (i0, δ0, z0),

the following properties always hold:

(a) Only 2chains of type (i, i+ 1) are triggered.

(b) Only permutations queries of type (i− 1,−) or (i+ 2,+) are pending.

(c) Any 2chain that is triggered was table-defined at the beginning of the query cycle.

(d) At the end of the detection phase, any pending query is either the initiating

query, or the endpoint of a triggered 2chain.

(e) If a 2chain C is triggered during the query cycle, and the simulator does not

abort, then C is complete at the end of the query cycle.

111



Proof. The proof of (a) and (b) proceeds by inspection of the pseudocode: note

that calls to FindNewPaths(i − 1,−, ·) can only add 2chains of type (i, i + 1) to

Triggered and permutations queries of type (i + 2,+) to Pending, whereas calls to

FindNewPaths(i + 2,+, ·) can only add 2chains of type (i, i + 1) to Triggered and

permutations queries of type (i − 1,−) to Pending. Hence, if the initiating query

is of type (i − 1,−) or (i + 2,+), only 2chains of type (i, i + 1) will ever be added

to Triggered, and only permutation queries of type (i− 1,−) or (i + 2,+) will ever

be added to Pending. The proof of (c) also follows easily from inspection of the

pseudocode. The sole subtlety is to note that for a (5, 1)-query cycle (where calls

to FindNewPaths are of the form (2,+, ·) and (4,−, ·)), for a (5, 1)-2chain to be

triggered one must obviously have x1 ∈ P1 and y5 ∈ P−15 , but also T (k, x1) = y5

since otherwise the call to Check(k, x1, y5) would return false. The proof of (d) is

also immediate, since for a permutation query to be added to Pending, it must be

either the initiating query, or computed at line 28 or line 46 as the endpoint of a

triggered 2chain. Finally, the proof of (e) follows from the fact that, assuming the

simulator does not abort, all values computed during the call to AdaptPath(C) form

a complete path to which C obviously belongs.

The following lemma analyzes how tables T/T−1 are modified during a query

cycle and will be helpful for the proof.

Lemma 4.6. In any execution of G2, the following properties hold:

(a) During a (1, 2)-query cycle, tables T/T−1 are only modified during the detection

phase by calls to Enc(·, ·) resulting from calls to Prev(1, ·, ·) at line 28.

112



(b) During a (2, 3)-query cycle, tables T/T−1 are only modified during the comple-

tion phase by calls to Enc(·, ·) resulting from calls to Prev(1, ·, ·) at line 55.

(c) During a (3, 4)-query cycle, tables T/T−1 are only modified during the comple-

tion phase by calls to Dec(·, ·) resulting from calls to Next(5, ·, ·) at line 53.

(d) During a (4, 5)-query cycle, tables T/T−1 are only modified during the detection

phase by calls to Dec(·, ·) resulting from calls to Next(5, ·, ·) at line 46.

(e) During a (5, 1)-query cycle, tables T/T−1 are not modified.

Proof. This follows by inspection of the pseudocode. The only non-trivial point

concerns (1, 2)-, resp. (4, 5)-query cycles, since Prev(1, ·, ·), resp. Next(5, ·, ·) are

also called during the completion phase, but a moment of thinking should make it

clear that they are always called with arguments (x1, k), resp. (y5, k) which were

previously used during the detection phase, so that this cannot modify tables T/T−1

any more.

We also introduce the following helper lemma.

Lemma 4.7. Consider any execution of G2. Assume that two table-defined (i, i+1)-

2chains C = (i, i+1, yi, xi+1, k) and C ′ = (i, i+1, y′i, x
′
i+1, k

′) have the same key and

a common non-dummy endpoint, i.e., are such that k = k′ and r(C) = r(C ′) 6= ⊥

or `(C) = `(C ′) 6= ⊥. Then C = C ′.

Proof. We show the result for the case where k = k′ and r(C) = r(C ′), the case

where `(C) = `(C ′) is similar. Consider first the case where i ∈ {1, 2, 3, 5}. By

definition of the right endpoint, this implies that Pi+1(xi+1) = Pi+1(x
′
i+1) and hence

113



xi+1 = x′i+1 since Pi+1 always encodes a partial permutation. It follows that yi =

xi+1 ⊕ k = x′i+1 ⊕ k′ = y′i if i ∈ {1, 2, 3}, and yi = T (k, xi+1) = T (k′, x′i+1) = y′i if

i = 5, and hence C = C ′. Consider now the case i = 4, and let C = (4, 5, y4, x5, k)

and C ′ = (4, 5, y′4, x
′
5, k
′). By assumption, r(C) = r(C ′) 6= ⊥. Then, by definition

of the right endpoint, P5(x5) = T (k, r(C)) = T (k′, r(C ′)) = P5(x
′
5), which implies

that x5 = x′5 since P5 always encodes a partial permutation. It follows that y4 =

x5 ⊕ k = x′5 ⊕ k′ = y′4 and hence C = C ′.

Bad Events. We now define some bad events that may happen during an execution

of G2.

Definition 9. Consider a permutation query (i0, δ0, z0) or a cipher query (δ0, k0, z0)

made by the distinguisher. Let H′ be the multiset of all n-bit strings appearing

in the list of table-defined permutation or cipher queries and of all keys and non-

dummy endpoints of any table-defined 2chain when the query occurs. That is, write

the list of all table-defined permutation queries (i, xi, yi), all table-defined cipher

queries (δ, k, z), all keys and non-dummy endpoints of all table-defined 2chains, and

count each n-bit string as many times as it appears in this list. Then we define the

“history” with respect to a permutation query (i0, δ0, z0) made by the distinguisher

as the multiset

H := H′ ∪ {z0},

and the “history” with respect to a cipher query (δ0, k0, z0) made by the distinguisher

as the multiset

H := H′ ∪ {k0, z0}.

114



When we talk of the history with respect to a query cycle, we mean the history

with respect to its initiating permutation query.

Remark 4.8. The sets in the above definition are time-dependent and do not include

the values added to the tables during the query cycle or due to the distinguisher’s

cipher query (except z0 for a permutation query and k0 and z0 for a cipher query).

Note also that keys and non-dummy endpoints of table-defined 2chains can always be

expressed as the xor of at most three n-bit values appearing in the list of table-defined

permutation of cipher queries, so that strictly speaking the set H′ could consist of

these values only. However, the current definition of the history simplifies the dis-

cussion along the proof.

Definition 10. Given a query cycle, we denote P the multiset of random values

read by ReadTape on tapes (p1, p
−1
1 , . . . , p5, p

−1
5 ) in the current query cycle. Given

a query cycle or a distinguisher’s cipher query, we denote C the multiset of random

values read by Enc and Dec on tapes ic or ic−1.8

We note that P and C are multisets because two randomly sampled values might

turn out to be equal. However, this is unlikely to occur (and it is a “bad event” as

defined below).

Definition 11. Let H⊕i be the set of values equal to the exclusive-or of exactly

i distinct elements in H, and let H⊕0 := {0}. The sets P⊕i and C⊕i are defined

similarly.9

8For a query cycle, these Enc/Dec queries are made by the simulator, while for a distinguisher’s

cipher query, a single call to Enc or Dec is made by the distinguisher.
9Since H, P, and C are multisets, two distinct elements may be equal.

115



Definition 12. BadPerm is the event that the exclusive-or of i distinct elements of

P equals the exclusive-or of j distinct elements of H, i.e. P⊕i∩H⊕j 6= ∅, with i ≥ 1,

j ≥ 0, and i+ j ≤ 8.

Definition 13. BadIC is the event that the exclusive-or of i distinct elements of C

equals the exclusive-or of j distinct elements of H, i.e. C⊕i ∩ H⊕j 6= ∅, with i ≥ 1,

j ≥ 0, and i+ j ≤ 2.

Note that P⊕i and C⊕i are random sets built from values read from tapes

(p1, p
−1
1 , . . . , p5, p

−1
5 ) and ic/ic−1 respectively, while H⊕j is fixed and determined by

the history H.

We have used a coarse definition for the bad events, which is easy to remember

and convenient to use. It is possible to refine the definition and further reduce the

probability of bad events.

Definition 14 (Good Executions). An execution of G2 is said to be good if neither

BadPerm nor BadIC occurs in the execution.

The Simulator Does not Abort in Good Executions. Our goal in this section

is to prove that during a good execution of G2, the simulator never aborts. This

is a two-step process: we first show that this holds under a natural assumption on

query cycles (namely, that they are safe, see definition below); then we show that

all query cycles are indeed safe.

Definition 15 (safe query cycle). A query cycle is said to be safe if for any 2chain

C triggered during the query cycle, both endpoints of C were dummy or table-

116



undefined10 at the beginning of the query cycle.

Informally, the assumption that a query cycle is safe is more or less equivalent

to the assumption that at the beginning of the query cycle, no incomplete path of

length 3 exists (but we do not need to formalize this further).

As just explained, our first step will be to prove that the simulator does not

abort during a safe query cycle. The simulator can only abort in procedure Assign

which is only called during the completion phase. Moreover, this completion phase

can be split into two sub-phases: first, the simulator calls ReadTape(i, δ, z) for each

pending query (i, δ, z), and then it calls AdaptPath(C) for each triggered 2chain C.

We will consider each sub-phase in turn, showing that for a safe query cycle, the

simulator aborts in neither of them.

Consider a query cycle during which a 2chain C is triggered. By Lemma 4.5 (c),

C must be table-defined at the beginning of the query cycle, hence, by definition of

the history H, any endpoint of C which was non-dummy at the beginning of the

query cycle is in H. The following lemma clarifies the situation in case a triggered

2chain has a dummy endpoint at the beginning of the query cycle.

Lemma 4.9. In any execution of G2, if a 2chain triggered during a query cycle had

a dummy endpoint at the beginning of the query cycle, then this endpoint is non-

dummy when the completion phase starts and moreover it is in C, the set of values

read on tapes ic or ic−1 during the query cycle.

10Recall that when we say that an endpoint is table-undefined, this implicitly means it is non-

dummy.

117



Proof. Recall that only the right, resp. left endpoint of a (4, 5)-, resp. (1, 2)-

2chain can be dummy. We consider the case of the right endpoint of a triggered

(4, 5)-2chain, the other case follows by symmetry. A table-defined (4, 5)-2chain

C = (4, 5, y4, x5, k) can be triggered either during a call to FindNewPaths(3,−, ·) or

to FindNewPaths(1,+, ·) in a (4, 5)-query cycle. We first consider the case where

it is triggered during a call to FindNewPaths(3,−, ·). Inspection of the pseudocode

then shows that right after C has been triggered, a call to Dec(k, y5) resulting

from a call to Next(5, y5, k) at line 46 will make C’s right endpoint non-dummy,

and moreover r(C) = ic−1(k, y5) ∈ C. Next, we consider the case where a (4, 5)-

2chain C was triggered during a call to FindNewPaths(1,+, ·). Note that during a

call to FindNewPaths(1,+, x1), the simulator triggers a table-defined 2chain C =

(4, 5, y4, x5, k) only if Check(k, x1, y5), where y5 = P5(x5), is true, which can never be

if r(C) = ⊥. This implies that C had a non-dummy right endpoint at the beginning

of the query cycle. This is because by Lemma 4.6, we know that in a (4, 5)-query

cycle the entries in tables T/T−1 are modified only during the detection phase by

calls to Dec(·, ·) resulting from calls to Next(5, ·, ·) at line 46. By inspection of the

pseudocode, this call occurs right after a (4, 5)-2chain C ′ has been triggered. If this

call changed the right endpoint of C from dummy to non-dummy, we have C = C ′ by

Lemma 4.7 since C and C ′ share a key and a non-dummy endpoint and C ′ will not

be triggered again in the query cycle by the check at line 20 in the pseudocode.

We are now ready to prove that for a safe query cycle, the simulator does not

abort during the calls to ReadTape.

118



Lemma 4.10. Consider a safe query cycle in a good execution of G2. Then the

simulator does not abort during the calls to ReadTape occurring during the query

cycle.

Proof. Let τ0 denote the beginning of the query cycle. Assume towards a contradic-

tion that the simulator aborts in a call to ReadTape during a safe (i, i + 1)-query

cycle. By Lemma 4.5 (b), ReadTape can only be called for permutation queries

of type (i − 1,−) or (i + 2,+). Assume that the simulator aborts in a call to

ReadTape(i + 2,+, xi+2) (the case of a call to ReadTape(i − 1,−, yi−1) is similar).

This means that we have either xi+2 ∈ Pi+2 or pi+2(xi+2) ∈ P−1i+2 (where pi+2 is

the random permutation tape) when the call occurs. Assume first that xi+2 ∈ Pi+2

when the call to ReadTape occurs. We first show that xi+2 is table-undefined (i.e.,

xi+2 /∈ Pi+2) just before the completion phase starts. Procedure ReadTape is only

called on pending queries, hence, by Lemma 4.5 (d), xi+2 is either the initiating

query, or the endpoint of some triggered 2chain. If this is the initiating query, then

it was table-undefined at τ0 (otherwise the simulator would have returned immedi-

ately), and since permutation tables are not modified by the detection phase, it is

still table-undefined when the completion phase starts. If this is the endpoint of a

triggered 2chain C, then, by the assumption that the query cycle is safe, this end-

point was either dummy or table-undefined at τ0. If it was table-undefined at τ0, then

xi+2 is still table-undefined when the completion phase starts since permutation ta-

bles are not modified by the detection phase. Otherwise, if it was dummy at τ0, then

by Lemma 4.9, xi+2 = r(C) is non-dummy when the completion phase starts and is

119



in C. If xi+2 is table-defined when the completion phase starts, then it was already

table-defined at τ0, so that C∩H 6= ∅ and BadIC happens, contradicting the assump-

tion that the execution is good. In all cases, we see that xi+2 is table-undefined just

before the completion phase starts. Hence, if xi+2 ∈ Pi+2 when the call to ReadTape

occurs, this can only be due to another call to ReadTape(i+ 2,+, xi+2) in the same

query cycle. Yet this is impossible since any permutation query is added at most

once to Pending in a given query cycle due to the checks at lines 29 and 47. Assume

now that pi+2(xi+2) ∈ P−1i+2 when the call to ReadTape occurs. If pi+2(xi+2) ∈ P−1i+2

at the beginning of the query cycle, then pi+2(xi+2) ∈ P ∩ H and BadPerm occurs.

Otherwise, this can only happen due to another call to ReadTape(i+ 2,+, x′i+2) in

the same query cycle, where x′i+2 6= xi+2 since any permutation query is added at

most once to Pending in a given query cycle. But again this is impossible since pi+2

encodes a permutation, so that x′i+2 6= xi+2 implies pi+2(x
′
i+2) 6= pi+2(xi+2). Hence,

the simulator does not abort in a call to ReadTape.

Now that we proved that during a safe query cycle, the simulator does not

abort during calls to ReadTape, we know that it will try to “adapt” each triggered

2chain C by calling AdaptPath(C). The lemma below shows that the values used

in the “adaptation” call to Assign when completing a 2chain are random in some

precise sense.

Lemma 4.11. Consider a safe (i, i+ 1)-query cycle in a good execution of G2. Let

C = (i, i + 1, yi, xi+1, k) be a triggered 2chain, and assume that AdaptPath(C) is

120



called during the completion phase.11 Consider the resulting call to Assign(i+ 3,

xi+3, yi+3)
12 at line 56. Then

• if i 6= 3, xi+3 = pi+2(r(C))⊕ k where pi+2(r(C)) ∈ P and k ∈ H;

• if i = 3, xi+3 = x1 = ic−1(k, p5(r(C))) ∈ C;

• if i 6= 2, yi+3 = p−1i−1(`(C))⊕ k where p−1i−1(`(C)) ∈ P and k ∈ H;

• if i = 2, yi+3 = y5 = ic(k, p−11 (`(C))) ∈ C.

Proof. We only prove the result for xi+3, the result for yi+3 follows by symmetry. For

the case i 6= 3, the expression of xi+3 follows directly from the fact that the simulator

does not abort during the calls to ReadTape (Lemma 4.10) and inspection of the

pseudocode. Note that k is the key of C which is table-defined at the beginning

of the query cycle (since it is triggered), hence by definition k ∈ H. Consider now

the case i = 3, i.e., the completion of a (3, 4)-2chain C = (3, 4, y3, x4, k) during a

(3, 4)-query cycle. By Lemma 4.10, the simulator does not abort during the call to

Assign(5, x5, y5) resulting from the call to ReadTape(5,+, x5), where x5 = P4(x4)⊕k

and y5 = p5(x5) ∈ P . Hence, when the call to AdaptPath(C) occurs, by inspection

of the pseudocode, a call to Next(5, y5, k) occurs at line 53, resulting in a call to

Dec(k, y5). We argue that the cipher query (−, k, y5) is table-undefined when this call

occurs. If it is table-defined at the beginning of the query cycle, then by definition

y5 ∈ H, so that P ∩ H 6= ∅ and BadPerm occurs, contradicting the assumption

11The only reason why this call might not occur is because the simulator aborts before the call,

which we cannot assume does not happen at this point of the proof.
12We denote the third argument yi+3 rather than yi−2 for clarity.

121



that the execution is good. If y5 is table-undefined when the query cycle begins,

but table-defined when the call to AdaptPath(C) occurs, then, since by Lemma 4.6,

tables T/T−1 are not modified during the detection phase in a (3, 4)-query cycle,

this can only be due to a call to AdaptPath(C ′) for another triggered 2chain C ′

which caused a call to Dec(k, y5). But this would mean that C and C ′ have the

same key and r(C) = r(C ′) = y5 6= ⊥, which by Lemma 4.7 implies C = C ′, which

is impossible since a 2chain is triggered at most once in a query cycle because of

the checks at lines 20 and 38. Hence, (−, k, y5) is table-undefined when the call to

Dec(k, y5) occurs and hence x1 = ic−1(k, y5) ∈ C.

We are now ready to prove that the simulator does not abort during the calls

to AdaptPath in a safe query cycle.

Lemma 4.12. Consider a safe query cycle in a good execution of G2. Then the

simulator does not abort during the calls to AdaptPath occurring during the query

cycle.

Proof. Assume towards a contradiction that the simulator aborts in a call to AdaptPath

during a safe (i, i+1)-query cycle. Let C = (i, i+1, yi, xi+1, k) be the corresponding

2chain. Consider the resulting call to Assign(i+ 3, xi+3, yi+3). The simulator aborts

only if xi+3 ∈ Pi+3 or if yi+3 ∈ P−1i+3. Let us consider the case where xi+3 ∈ Pi+3

when Assign(i + 3, xi+3, yi+3) is called (the case where yi+3 ∈ P−1i+3 is similar). We

distinguish the case i 6= 3 and i = 3.

Consider first the case i 6= 3. Then, by Lemma 4.11, we have xi+3 = pi+2(xi+2)⊕

k, where xi+2 = r(C), pi+2(xi+2) ∈ P , and k ∈ H. If xi+3 ∈ Pi+3 at the be-

122



ginning of the query cycle, then by definition xi+3 ∈ H, so that P ∩ H⊕2 6= ∅,

which means BadPerm occurs. If xi+3 /∈ Pi+3 at the beginning of the query cy-

cle, xi+3 ∈ Pi+3 before the call to Assign(i + 3, xi+3, yi+3) only due to another

call to AdaptPath(C ′) for a distinct 2chain C ′ = (i, i + 1, y′i, x
′
i+1, k

′) and a result-

ing call to Assign(i + 3, x′i+3, y
′
i+3) with x′i+3 = xi+3. By Lemma 4.11, we have

x′i+3 = pi+2(x
′
i+2)⊕ k′, where x′i+2 = r(C ′). Hence, x′i+3 = xi+3 implies

pi+2(xi+2)⊕ pi+2(x
′
i+2) = k ⊕ k′. (4.4)

Observe that we cannot have xi+2 = x′i+2 (i.e., r(C) = r(C ′)), as otherwise

k = pi+2(xi+2)⊕ x3 = pi+2(x
′
i+2)⊕ x′3 = k′

which by Lemma 4.7 implies C = C ′; but this is impossible since a 2chain is triggered

at most once in a query cycle because of the checks at lines 20 and 38. Hence,

xi+2 6= x′i+2 and Eq. (4.4) implies that P⊕2 ∩H⊕2 6= ∅, i.e., BadPerm occurs.

Consider now the case i = 3, i.e., we are in a (3,4)-query cycle, the 2chain

for which AdaptPath is called is C = (3, 4, y3, x4, k) and the resulting assignment

is Assign(1, x1, y1). Then, by Lemma 4.11, we have x1 = ic−1(k, y5) ∈ C, where

y5 = p5(r(C)). If x1 ∈ P1 at the beginning of the query cycle, then by definition

x1 ∈ H, so that C ∩ H 6= ∅, which means BadIC occurs. If x1 /∈ P1 at the beginning

of the query cycle, x1 ∈ P1 before the call to Assign(1, x1, y1) only due to another

call to AdaptPath(C ′) for a distinct 2chain C ′ = (3, 4, y′3, x
′
4, k
′) and a resulting call

to Assign(1, x′1, y
′
1) with x′1 = x1. By Lemma 4.11, we have x′1 = ic−1(k′, y′5) ∈ C,

where y′5 = p5(r(C
′)). Hence, x′1 = x1 implies

ic−1(k, y5) = ic−1(k′, y′5). (4.5)

123



Observe that we cannot have (k, y5) = (k′, y′5) since this would imply r(C) =

p−15 (y5) = p−15 (y′5) = r(C ′), which by Lemma 4.7 would imply C = C ′; but this

is impossible since a 2chain is triggered at most once in a query cycle. Hence,

(k, y5) 6= (k′, y′5) and Eq. (4.5) implies that C⊕2 ∩H⊕0 6= ∅, i.e., BadIC occurs.

This concludes the proof.

Lemma 4.13. In a good execution of G2, the simulator does not abort during a safe

query cycle.

Proof. This follows directly from Lemmas 4.10 and 4.12 since the simulator can only

abort during calls to ReadTape and AdaptPath.

It remains now to show that all query cycles in a good execution are safe.

The key observation for this is that the simulator ensures that, at the end of the

completion phase, any table-defined 2chain with a table-defined endpoint (one can

think of it as a “3chain”) necessarily belongs to a complete path as per Definition 7.

We show that this property is preserved by any distinguisher’s cipher query (a direct

consequence of Lemma 4.14) and by any query cycle (Lemmas 4.15, 4.16 and 4.17),

and deduce that this holds at the beginning of any query cycle (Lemma 4.19). We

also show that a 2chain which is complete at the beginning of a query cycle cannot

be triggered (Lemma 4.21). From this we are able to deduce that any query cycle

is safe.

The lemma below says that a cipher query made by the distinguisher cannot

switch the state of a 2chain from table-undefined to table-defined, nor switch an

endpoint from dummy to table-defined.

124



Lemma 4.14. Consider a cipher query made by the distinguisher in a good execution

of G2 that modifies tables T/T−1. Let C be a 2chain. Then the following two

properties hold:

(a) If C is table-undefined before the query, then C is still table-undefined after the

query has been answered.

(b) If C is table-defined and one of its endpoints is dummy before the query and non-

dummy after the query has been answered, then this endpoint is table-undefined

after the query has been answered.

Proof. We first prove (a). The result is obvious for an (i, i + 1)-2chain for i ∈

{1, 2, 3, 4} since whether such a 2chain is table-defined or not is independent from

tables T/T−1. So we only need to consider (5, 1)-2chains. Assume towards a contra-

diction that this is false, i.e., there exists a (5, 1)-2chain C = (5, 1, y5, x1, k) which

is table-undefined just before the query and table-defined just after the query has

been answered. Since tables P1/P
−1
1 and P5/P

−1
5 are not modified by the query, this

necessarily means that (1,+, x1) and (5,−, y5) are table-defined before the query,

T (k, x1) = ⊥ before the query, and T (k, x1) = y5 after the query. Thus, the distin-

guisher’s cipher query was necessarily an encryption query (k, x1) or a decryption

query (k, y5), and in both cases we see that the random value read from ic was in H,

which means C ∩ H 6= ∅ and BadIC happens, a contradiction with the assumption

that the execution is good.

We then prove (b). We prove it in the case of the right endpoint of a (4, 5)-

2chain (the case of the left endpoint of a (1, 2)-2chain follows by symmetry). Let

125



C = (4, 5, y4, x5, k) be a table-defined (4, 5)-2chain, let y5 = P5(x5), and assume

that C’s right endpoint is dummy before the cipher query and table-defined after the

query has been answered. Then T−1(k, y5) = ⊥ before the query, and after the query

T−1(k, y5) = x1 where (1,+, x1) is table-defined. Thus, the distinguisher’s cipher

query was necessarily an encryption query (k, x1) or a decryption query (k, y5),

and in both cases we see that the random value read from ic was in H, which

means C ∩H 6= ∅ and BadIC happens, a contradiction with the assumption that the

execution is good.

Lemmas 4.15, 4.16, and 4.17 below say, informally, that if a new “3chain”

(i.e., a table-defined 2chain with at least one table-defined endpoint) is created

during a query cycle, then it is necessarily complete at the end of the query cycle.

Unfortunately, the only way to prove this important result seems to be through a

delicate case analysis. Since there are many ways to “create a 3chain”, we phrase it

in three distinct lemmas depending on the state of the 2chain at the beginning of the

query cycle. In the three lemmas, we say that “a complete path has been triggered”

if any of the five 2chains belonging to the complete path has been triggered. Note

also that the three lemmas assume a safe query cycle, which by Lemma 4.13 implies

that the simulator does not abort, which by Lemma 4.5 (e) implies that any triggered

2chain is complete at the end of the query cycle.

Lemma 4.15. Consider a safe query cycle in a good execution of G2. Let C be a

2chain which is table-defined at the beginning of the query cycle and such that one

of its endpoints is dummy at the beginning of the query cycle and non-dummy at the

126



end of the query cycle. Then, at the end of the query cycle, C belongs to a complete

path which was triggered during the query cycle.

Proof. We consider the case of the right endpoint of a (4, 5)-2chain. The case of the

left endpoint of a (1, 2)-2chain follows by symmetry. Let τ0 denote the beginning of

the query cycle and τ1 denote its end. Let C = (4, 5, y4, x5, k) be a (4, 5)-2chain such

that r(C) = ⊥ at τ0 and r(C) = x1 6= ⊥ at τ1. Let y5 = P5(x5). This means that

T−1(k, y5) = ⊥ at τ0 and T−1(k, y5) = x1 at τ1. We consider the five possibilities for

the type of query cycle.

• Case of a (1, 2)- or (2, 3)-query cycle. By Lemma 4.6, the simulator only calls

Enc during such query cycles. This means that y5 = ic(k, x1) must have been

read during the query cycle, and since y5 ∈ H, C ∩ H 6= ∅ and BadIC occurs,

contradicting the assumption that the execution is good.

• Case of a (3, 4)-query cycle. By Lemma 4.6, the simulator only calls Dec dur-

ing the completion phase in this case. Moreover, it is easy to check from

the pseudocode that the call Dec(k, y5) can only occur during the call to

AdaptPath(D), where D = (3, 4, y3, x4, k) with x4 = P−14 (y4) and y3 = x4⊕ k.

By Lemma 4.5 (e), D is necessarily complete at τ1, and it is easy to check that

C belongs to the same complete path as D at τ1.

• Case of a (4, 5)-query cycle. By Lemma 4.6, the simulator only calls Dec

during the detection phase in this case. Moreover, it is easy to check from the

pseudocode that the call to Dec(k, y5) can only occur just after C has been

triggered. Hence, by Lemma 4.5 (e), C is necessarily complete at τ1.

127



• Case of a (5, 1)-query cycle. By Lemma 4.6, tables T/T−1 are not modified

during a (5, 1)-query cycle. Hence, r(C) cannot become non-dummy during

the query cycle.

Lemma 4.16. Consider a safe query cycle in a good execution of G2. Let C be

a 2chain which is table-defined at the beginning of the query cycle and such that

one of the endpoints of C is table-undefined at the beginning of the query cycle and

table-defined at the end of the query cycle. Then, at the end of the query cycle, C

belongs to a complete path which was triggered during the query cycle.

Proof. Assume that the query cycle we consider is an (i, i + 1)-query cycle. Let τ0

denote the beginning of the query cycle and τ1 denote its end. We consider each

possible type for the 2chain C.

Case of an (i, i+1)-2chain C = (i, i+1, yi, xi+1, k). We consider the case where

this is the right endpoint of C which goes from non-dummy and table-undefined to

table-defined during the query cycle (the case of the left endpoint follows by symme-

try). Since r(C) is non-dummy and table-undefined at τ0, necessarily (i+2,+, r(C))

became pending during the query cycle (otherwise it would still be table-undefined at

τ1). Since C is table-defined at τ0, C was necessarily triggered (either during the call

to FindNewPaths(i+2,+, r(C)), or during the call the FindNewPaths(i−1,−, `(C))

which then made r(C) pending). Hence, by Lemma 4.5 (e), C is complete at τ1.

Case of an (i+1, i+2)-2chain C = (i+1, i+2, yi+1, xi+2, k). First, note that since

Pi/P
−1
i are not modified during the query cycle, the left endpoint of C cannot go

from non-dummy and table-undefined to table-defined during the query cycle, hence

128



this is necessarily the right endpoint of C which does. Since r(C) is non-dummy at

τ0, then by definition xi+3 := r(C) is in H. The only way xi+3 can become table-

defined during the query cycle is because of a call to Assign(i + 3, x′i+3, y
′
i+3) with

x′i+3 = xi+3 resulting from a call to AdaptPath(C ′), where C ′ = (i, i+ 1, y′i, x
′
i+1, k

′)

has been triggered during the query cycle. By Lemma 4.11, if i 6= 3 we have

x′i+3 = pi+2(r(C
′))⊕k′ where k′ ∈ H and pi+2(r(C

′)) is read during the query cycle,

so that P ∩ H⊕2 6= ∅ and BadPerm happens, whereas if i = 3 then x′i+3 = x′1 =

ic−1(k′, p5(r(C
′))) is read during the query cycle, so that C ∩ H 6= ∅ and BadIC

happens. In all cases this contradicts the assumption that the execution is good.

Case of an (i + 2, i + 3)-2chain C = (i + 2, i + 3, yi+2, xi+3, k). First, note

that since Pi+1/P
−1
i+1 are not modified during the query cycle, the left endpoint

of C cannot go from non-dummy and table-undefined to table-defined during the

query cycle, hence this is necessarily the right endpoint of C which does. Note that

since xi+4 = xi−1 := r(C) is non-dummy at τ0, by definition xi−1 ∈ H. The only

way xi−1 can become table-defined during the (i, i + 1)-query cycle is because of a

call to Assign(i− 1, p−1i−1(yi−1), yi−1) with xi−1 = p−1i−1(yi−1) resulting from a call to

ReadTape(i− 1,−, yi−1). This implies that P ∩H 6= ∅ and hence BadPerm occurs,

contradicting the assumption that the execution is good.

Other cases. The case of an (i− 2, i− 1)-, resp. of an (i− 1, i)-2chain, can be

deduced by symmetry from the case of an (i+2, i+3)-, resp. (i+1, i+2)-2chain.

Lemma 4.17. Consider a safe query cycle in a good execution of G2. Let C be a

2chain such that

129



(i) at the beginning of the query cycle, C is table-undefined;

(ii) at the end of the query cycle, C is table-defined and at least one of its two

endpoints is table-defined.

Then, at the end of the query cycle, C belongs to a complete path which was triggered

during the query cycle.

Proof. Assume that the query cycle we consider is an (i, i + 1)-query cycle. Let τ0

denote the beginning of the query cycle and τ1 denote its end. We consider each

possible type for the 2chain C.

Case of an (i, i+1)-2chain C = (i, i+1, yi, xi+1, k). Since Pi/P
−1
i and Pi+1/P

−1
i+1

are not modified during an (i, i+1)-query cycle, and moreover tables T/T−1 are not

modified during a (5, 1)-query cycle by Lemma 4.6, C cannot be table-undefined

before the query cycle and table-defined after, hence this case is impossible.

Case of an (i+ 1, i+ 2)-2chain C = (i+ 1, i+ 2, yi+1, xi+2, k). First, note that

since tables Pi+1/P
−1
i+1 are not modified during the query cycle, yi+1 must necessarily

be table-defined at τ0 (so that in particular yi+1 ∈ H) for C to be table-defined at

τ1.

We start by showing that xi+2 was necessarily table-undefined at τ0. This is

clear for i 6= 4 (i.e., when C is an inner 2chain) since otherwise C would be table-

defined already at τ0. If i = 4, i.e., we are considering a (4, 5)-query cycle and a

(5, 1)-2chain C = (5, 1, y5, x1, k), and if x1 is already table-defined at τ0, then C

could become table-defined because of an assignment to T/T−1 due to a simulator

call to Next(k, y5) at line 46. Yet this would mean that x1 = ic−1(k, y5), so that

130



C ∩ H 6= ∅ and BadIC occurs, contradicting the assumption that the execution is

good. In all cases, we see that xi+2 was necessarily table-undefined at τ0.

We now distinguish two cases depending on which endpoint of C is table-

defined at τ1. Assume first that this is the left endpoint, and let yi be the value

of `(C) at τ1. Since tables Pi/P
−1
i are not modified during the query cycle, yi was

already table-defined at τ0. Let xi+1 = P−1i+1(yi+1) and D = (i, i+1, yi, xi+1, k). Then

D was table-defined at τ0, its right endpoint was either dummy or equal to xi+2 and

hence table-undefined at τ0, and at τ1 its right endpoint is table-defined since C

is table-defined. Hence, by Lemmas 4.15 and 4.16, D belongs to a complete path

which was triggered during the query cycle, and it is easy to check that C belongs

to the same complete path as D at τ1.

Assume now that this is the right endpoint of C which is table-defined at τ1 and

let xi+3 denote the value of r(C) at τ1. Since xi+2 was table-undefined at τ0 and we

are considering an (i, i+ 1)-query cycle, xi+2 necessarily became pending during the

query cycle and a call to Assign(i+2, xi+2, pi+2(xi+2)) occurred. By Lemma 4.5 (d),

xi+2 is either the initiating query, in which case it is in H by definition, or the

endpoint of some triggered (i, i+ 1)-2chain D, in which case it is in H by definition

if r(D) is non-dummy at τ0, or in C if r(D) is dummy at τ0 by Lemma 4.9, which

might only happen when i = 4. We now distinguish three sub-cases depending on i:

• Case i ∈ {1, 2, 5}. Then C is neither a (4, 5)- nor a (5, 1)-2chain and its

right endpoint is given by xi+3 = pi+2(xi+2) ⊕ k = pi+2(xi+2) ⊕ yi+1 ⊕ xi+2.

Assume first that xi+3 was table-defined already at τ0, so that xi+3 ∈ H.

131



Then pi+2(xi+2) = xi+3 ⊕ k = xi+3 ⊕ yi+1 ⊕ xi+2 ∈ H⊕3 (recall xi+2 ∈ H if

i 6= 4), so P ∩ H⊕3 6= ∅ and BadPerm happens, contradicting the assumption

that the execution is good. Assume now that xi+3 was table-undefined at

τ0. Then it can only become table-defined during the query cycle because

of a call to Assign(i + 3, x′i+3, y
′
i+3) with x′i+3 = xi+3 resulting from a call to

AdaptPath(C ′), where C ′ = (i, i+ 1, y′i, x
′
i+1, k

′) has been triggered during the

query cycle. By Lemma 4.11, we have x′i+3 = pi+2(x
′
i+2) ⊕ k′ where x′i+2 =

r(C ′), pi+2(x
′
i+2) ∈ P and k′ ∈ H. Hence, x′i+3 = xi+3 implies that

pi+2(xi+2)⊕ pi+2(x
′
i+2) = yi+1 ⊕ xi+2 ⊕ k′.

Hence, if xi+2 6= x′i+2, then P⊕2 ∩ H⊕3 6= ∅ and BadPerm occurs, whereas if

xi+2 = x′i+2 then

k = pi+2(xi+2)⊕ x3 = pi+2(x
′
i+2)⊕ x′3 = k′,

and one can check that C belongs to the same completed path as C ′ at τ1.

• Case i = 3. Then we are considering a (3, 4)-query cycle, C = (4, 5, y4, x5, k)

is a (4, 5)-2chain, and its right endpoint at τ1 is given by xi+3 = x1 =

T−1(k, p5(x5)). If (−, k, p5(x5)) was already table-defined at τ0, then p5(x5) ∈

H, so that P ∩ H 6= ∅ and BadPerm occurs. Hence, (−, k, p5(x5)) became

table-defined during the query cycle, which implies that at τ1, the 2chain

(5, 1, p5(x5), x1, k) belongs to a complete path that was triggered during the

query cycle. It is easy to see that C belongs to the same complete path at τ1.

• Case i = 4. Then we are considering a (4, 5)-query cycle, C = (5, 1, y5, x1, k) is

132



a (5, 1)-2chain, and its right endpoint at τ1 is given by xi+3 = x2 = p1(x1)⊕k.

If (−, k, y5) was table-undefined at τ0, then it became table-defined during the

query cycle, so that C belongs to a complete path which was triggered during

the query cycle. Assume now that T−1(k, y5) = x1 already at τ0, so that

k ∈ H. First, if x2 was table-defined already at τ0, then since p1(x1) = x2 ⊕ k

one has P ∩ H⊕2 6= ∅ and BadPerm happens. If x2 was table-undefined at

τ0, then it can only become table-defined during the query cycle because of a

call to Assign(2, x′2, y
′
2) with x′2 = x2 resulting from a call to AdaptPath(C ′),

where C ′ = (4, 5, y′4, x
′
5, k
′) has been triggered during the query cycle. By

Lemma 4.11, we have x′2 = p1(x
′
1) ⊕ k′ where x′1 = r(C ′), p1(x

′
1) ∈ P , and

k′ ∈ H. Hence, x′2 = x2 implies that p1(x1) ⊕ p1(x
′
1) = k ⊕ k′. Hence, if

x1 6= x′1, then P⊕2 ∩H⊕2 6= ∅ and BadPerm occurs, whereas if x1 = x′1, then

k = p1(x1)⊕ x2 = p1(x
′
1)⊕ x′2 = k′,

and one can check that C belongs to the same completed path as C ′ at τ1.

Case of an (i + 2, i + 3)-2chain C = (i + 2, i + 3, yi+2, xi+3, k). Assume first

that the left endpoint of C is table-defined at τ1 and denote yi+1 the value of `(C)

at τ1. Since tables Pi+1/P
−1
i+1 are not modified during an (i, i + 1)-query cycle, yi+1

is already table-defined at τ0. Let D = (i + 1, i + 2, yi+1, xi+2, k), where xi+2 is the

value of P−1i+2(yi+2) at τ1. Then either D is table-undefined at τ0 and table-defined

with a table-defined right endpoint at τ1, in which case we can apply the conclusion

of the analysis for the case of a (i+ 1, i+ 2)-2chain, or D is table-defined at τ0 and

its right endpoint becomes table-defined during the query cycle, in which case we

133



can apply Lemmas 4.15 and 4.16. In all cases we can conclude that D belongs to

a complete path that was triggered during the query cycle, and C belongs to the

same complete path.

Assume now that the right endpoint of C is table-defined at τ1 and denote

xi−1 = xi+4 the value of r(C) at τ1. Since C is table-defined at τ1, let yi+3 =

Pi+3(xi+3).

• Case i ∈ {1, 4, 5}. Then C is neither a (4, 5)- nor a (5, 1)-2chain, hence its

right endpoint is given by xi−1 = yi+3 ⊕ k with k = yi+2 ⊕ xi+3, hence

yi+2 ⊕ xi+3 ⊕ yi+3 ⊕ xi−1 = 0. (4.6)

We will distinguish all possible sub-cases depending on whether yi+2, xi+3,

yi+3, and xi−1 are table-defined at τ0 (in which case these values are in H) or

not. Note that at least one of the two queries yi+2 and xi+3 is table-undefined

at τ0 since C is table-undefined at τ0 (and is not a (5, 1)-2chain). Moreover,

since we are considering an (i, i+ 1)-query cycle, then

– if yi+2 was table-undefined at τ0, then it became table-defined because of

a call to ReadTape(2,+, xi+2) and hence yi+2 = pi+2(xi+2) ∈ P

– if xi+3 (and hence yi+3) was table-undefined at τ0, then it became table-

defined because of a call to Assign(i+3, xi+3, yi+3) resulting from a call to

AdaptPath(C ′), where C ′ = (i, i+1, y′i, x
′
i+1, k

′) has been triggered during

the query cycle. By Lemma 4.11, we have xi+3 = pi+2(x
′
i+2) ⊕ k′ where

x′i+2 = r(C ′), pi+2(x
′
i+2) ∈ P , and k′ ∈ H, and yi+3 = p−1i−1(y

′
i−1) ⊕ k′

where y′i−1 = `(C ′) and p−1i−1(y
′
i−1) ∈ P .

134



– if xi−1 was table-undefined at τ0, then it became table-defined because of

a call to ReadTape(i− 1,−, y′′i−1) and xi−1 = p−1i−1(y
′′
i−1) ∈ P .

Finally, note that for the case where xi+3 was table-undefined at τ0, we can

assume that xi+2 6= x′i+2 since otherwise k = k′ and C belongs to the same

completed path as C ′ at τ1. Hence, we see that when substituting all pos-

sibilities in (4.6) with at least yi+2 or xi+3 table-undefined at τ0 (and hence

involving an element of P), we always end up with an equation implying that

P⊕i ∩ H⊕j 6= ∅ for some 1 ≤ i ≤ 4 and some 0 ≤ j ≤ 4. (For example, if we

assume yi+2, xi+3, yi+3, and xi−1 were all table-undefined at τ0, then Eq. (4.6)

yields

pi+2(xi+2)⊕ pi+2(x
′
i+2)⊕ p−1i−1(y′i−1)⊕ p−1i−1(y′′i−1) = 0

and hence P⊕4∩H⊕0 6= ∅ or P⊕2∩H⊕0 6= ∅ depending on whether y′i−1 = y′′i−1.)

• Case i = 2. Then we are considering a (2, 3)-query cycle, C = (4, 5, y4, x5, k) is

a (4, 5)-2chain, and its right endpoint at τ1 is given by xi+4 = x1 = T−1(k, y5)

where y5 = P5(x5). If the cipher query (−, k, y5) was table-undefined at τ0,

then it became table-defined during the query cycle, which implies that at

τ1, the 2chain (5, 1, y5, x1, k) belongs to a complete path which was triggered

during the query cycle, and C belongs to the same complete path. Assume now

that the cipher query (k, x1, y5) was table-defined at τ0, so that k, x1, y5 ∈ H.

If x1 was table-undefined at τ0, then it became table-defined because of a call

ReadTape(1,−, y1) and hence x1 = p−11 (y1) ∈ P , so that P ∩ H 6= ∅ and

BadPerm happens. Since C is table-undefined at τ0, either y4 or x5 is table-

135



undefined at τ0. Assume first that x5 was table-undefined at τ0. Then it could

only become table-defined because of a call to Assign(5, x5, y5) resulting from

a call to AdaptPath(C ′) where C ′ was triggered during the query cycle. By

Lemma 4.11, we have y5 ∈ C, so that C ∩ H 6= ∅ and BadIC happens. Finally,

assume that x5 was table-defined but y4 was table-undefined at τ0 (hence

x5 ∈ H). Then y4 became table-defined because of a call ReadTape(4,+, x4)

and hence y4 = p4(x4) ∈ P . Moreover, y4 = x5 ⊕ k where k ∈ H, so that

P ∩H⊕2 6= ∅ and BadPerm happens.

• Case i = 3. Then we are considering a (3, 4)-query cycle, C = (5, 1, y5, x1, k)

is a (5, 1)-2chain, and its right endpoint at τ1 is given by xi+4 = x2 = y1 ⊕ k

where y1 = P1(x1). If the cipher query (k, x1, y5) was table-undefined at τ0,

then it became table-defined during the query cycle, which implies that at

τ1, C belongs to a complete path which was triggered during the query cycle.

Assume now that the cipher query (k, x1, y5) was table-defined at τ0, so that

k, x1, y5 ∈ H. Assume that y5 was table-undefined at τ0. Then y5 became

table-defined because of a call ReadTape(5,+, x5), so that y5 = p5(x5) ∈ P .

Hence, P ∩ H 6= ∅ and BadPerm occurs. Assume now that x1 was table-

undefined at τ0. Then it could only become table-defined because of a call to

Assign(1, x1, y1) resulting from a call to AdaptPath(C ′) where C ′ was triggered

during the query cycle. By Lemma 4.11, we have x1 ∈ C, so that C ∩ H 6= ∅

and BadIC happens. Finally, assume that y1 was table-defined and x2 was

table-undefined at τ0 (so that y1 ∈ H). Then x2 became table-defined because

136



of a call ReadTape(2,−, y2) and hence x2 = p−12 (y2) ∈ P . Since x2 = y1 ⊕ k

where k ∈ H, one has P ∩H⊕2 6= ∅ and hence BadPerm occurs.

Other cases. The case of an (i− 2, i− 1)-, resp. of an (i− 1, i)-2chain, can be

deduced by symmetry from the case of an (i+2, i+3)-, resp. (i+1, i+2)-2chain.

We collect Lemmas 4.15, 4.16, and 4.17 under a simpler to grasp form in the

following lemma. To state it more concisely, we introduce the following definition.

Definition 16. We say a 2chain C induces a 3chain if C is table-defined and at

least one of its endpoints is table-defined.

Lemma 4.18. Consider a safe query cycle in a good execution of G2. Let C be

a 2chain which does not induce a 3chain at the beginning of the query cycle, but

induces a 3chain at the end of the query cycle. Then, at the end of the query cycle,

C belongs to a complete path which was triggered during the query cycle.

Proof. Note that the opposite of “C induces a 3chain” is “C is table-defined and

its two endpoints are dummy or table-undefined, or C is table-undefined”. Hence,

Lemmas 4.15, 4.16, and 4.17 cover all possible cases for a 2chain to not induce a

3chain at the beginning of a query cycle and induce a 3chain at the end of the query

cycle.

Lemma 4.19. Consider a point τ0 in a good execution of G2 which is either the

beginning of a query cycle, or the end of the execution, and assume that all query

cycles until τ0 were safe. Let C be a 2chain. Assume that at τ0, C is table-defined

and at least one of the two endpoints of C is table-defined. Then C is complete at τ0.

137



Proof. Let C be a 2chain which induces a 3chain at time τ0. Recall that the opposite

of “C induces a 3chain” is “C is table-defined and its two endpoints are dummy or

table-undefined, or C is table-undefined”. Consider the last assignment to a table

before C induces a 3chain. This cannot have been an assignment to T/T−1 due to a

cipher query made by the distinguisher; indeed, by Lemma 4.14, such an assignment

cannot switch the state of a 2chain from table-undefined to table-defined, nor switch

the endpoint of a table-defined 2chain from dummy to table-defined (and besides

it is clear that it cannot switch an endpoint from non-dummy and table-undefined

to table-defined). Hence this can only have happened during a query cycle that

occurred before τ0 (which was necessarily safe by the assumption that all query

cycles before τ0 were safe). But according to Lemma 4.18, at the end of this previous

query cycle, C was complete, and this still holds at τ0, hence the result.

Lemma 4.20. Consider an (i, i+ 1)-query cycle with initiating query (i0, δ0, z0) in

a good execution of G2. Then, if an (i, i+ 1)-2chain C is triggered during the query

cycle, there exists a sequence of (i, i+ 1)-2chains (C0, . . . , Ct) triggered in this order

such that Ct = C, and, at the beginning of the query cycle, either z0 = r(C0) 6= ⊥,

`(C1) = `(C0) 6= ⊥, r(C2) = r(C1) 6= ⊥, etc. if (i0, δ0) = (i + 2,+), or `(C0) = z0,

r(C1) = r(C0) 6= ⊥, `(C2) = `(C1) 6= ⊥, etc. if (i0, δ0) = (i− 1,−).

Proof. The existence of sequence (C0, . . . , Ct) follows easily from inspection of the

pseudocode, the only non-trivial point to prove is that all endpoints are already

non-dummy at the beginning of the query cycle. But this follows easily from the

fact that a (4, 5)-2chain with a right dummy endpoint cannot be triggered by a call

138



to FindNewPaths(1,+, ·), and that if a (4, 5)-2chain C with a right dummy endpoint

is triggered by a call to FindNewPaths(3,−, ·), then by Lemma 4.9 its right endpoint

r(C) is in C after getting non-dummy, and hence the call to FindNewPaths(1,+, r(C))

cannot trigger any 2chain unless C ∩H 6= ∅ and BadIC happens (and from the sym-

metric observations for a (1, 2)-2chain with a dummy left endpoint).

Lemma 4.21. Consider an (i, i + 1)-query cycle in a good execution of G2, and

assume that all previous query cycles were safe. Then, if an (i, i + 1)-2chain is

complete at the beginning of the query cycle, it cannot be triggered during this query

cycle.

Proof. Let τ0 denote the beginning of the query cycle. Assume towards a contradic-

tion that there exists an (i, i+ 1)-2chain C which is complete at τ0 and is triggered

during the query cycle. Denote (i0, δ0, z0) the initiating query of the query cycle. By

Lemma 4.20, there exists a sequence (C0, . . . , Ct) of triggered (i, i+ 1)-2chains such

that Ct = C, and, at τ0, either r(C0) = z0, `(C1) = `(C0) 6= ⊥, r(C2) = r(C1) 6= ⊥,

etc., or `(C0) = z0, r(C1) = r(C0) 6= ⊥, `(C2) = `(C1) 6= ⊥, etc.

By definition of a complete 2chain, r(C) and `(C) are non-dummy and table-

defined at τ0. Hence, since C and Ct−1 have a common endpoint, Ct−1 is table-

defined and has one of its endpoints non-dummy and table-defined at τ0, which by

Lemma 4.19 and the assumption that all previous query cycles were safe implies

that Ct−1 is complete at τ0. By recursion, it follows that C0 is complete at τ0, which

implies that the initiating query was table-defined at the beginning of the query

cycle, a contradiction.

139



Lemma 4.22. Any query cycle in a good execution of G2 is safe.

Proof. Assume towards a contradiction that this is false, and consider the first query

cycle for which this does not hold (hence, all previous query cycles were safe). This

means that during this query cycle, some 2chain C was triggered such that C had a

table-defined endpoint at the beginning of the query cycle. Since by Lemma 4.5 (c),

any triggered 2chain is table-defined before the query cycle begins, this implies that

when the query cycle started, C was table-defined and one of its endpoints was

table-defined. But according to Lemma 4.19, since all previous query cycles were

safe, this implies that C was complete at the beginning of the query cycle, which

by Lemma 4.21 (and again the fact that all previous query cycles were safe) implies

that C cannot be triggered during the query cycle, a contradiction.

The main result of this section now follows easily.

Lemma 4.23. The simulator does not abort in a good execution of G2.

Proof. This is a direct consequence of Lemmas 4.13 and 4.22.

4.4.3 Efficiency of the Simulator

Now that we have established that the simulator does not abort in good exe-

cutions of G2, we prove that it also runs in polynomial time. For this, we first prove

some additional properties of good executions of G2 below.

2chain-Cycles. In this section, we establish some additional properties of good

executions in G2 which would be used to prove the efficiency of the simulator in

140



Section 4.4.3. From Lemma 4.22, we know that any query cycle in a good execution

is safe i.e. for any 2chain C triggered during the query cycle, the endpoints of the

2chain were either table-undefined or dummy at the beginning of the query cycle.

Moreover, by Lemma 4.23, we know that the simulator does not abort in a good

execution. Throughout this section, when we assume a good execution of G2, we

will use these properties (without repeatedly referring to Lemmas 4.22 or 4.23).

We start by introducing the notions of 2cycle and 4cycle.

Definition 17 (2cycle). We say that 2 table-defined 2chains

Cj = (i, i+ 1, y
(j)
i , x

(j)
i+1, k

(j)), j ∈ {1, 2},

form a 2cycle at (i, i+ 1) if they satisfy the following conditions:

1. C1 6= C2;

2. both endpoints of 2chains C1 and C2 are non-dummy and table-undefined;

3. `(C1) = `(C2), r(C2) = r(C1).

Definition 18 (4cycle). We say that 4 table-defined 2chains

Cj = (i, i+ 1, y
(j)
i , x

(j)
i+1, k

(j)), j ∈ {1, 2, 3, 4},

form a 4cycle at (i, i+ 1) if they satisfy the following conditions:

1. C1 6= C2, C2 6= C3, C3 6= C4, C4 6= C1;

2. both endpoints of all 2chains are non-dummy and table-undefined;

3. `(C1) = `(C2), r(C2) = r(C3), `(C3) = `(C4), r(C4) = r(C1).

141



In the next few lemmas, we will prove that at the end of a query cycle in a

good execution of G2, there does not exist a 2cycle or a 4cycle at (4, 5) or at (1, 2).

In order to do so, we first prove the following lemma.

Lemma 4.24. In a good execution of G2, if (k, x1, y5) was table-defined through a

cipher query made by the simulator in a query cycle, then the 2chain (5, 1, y5, x1, k)

is table-defined at the end of the query cycle.

Proof. Let us consider the various query cycles in which the cipher query (k, x1, y5)

could get table-defined.

(1, 2)-query cycle. By Lemma 4.6, a query (k, x1, y5) can get table-defined

only through a call Prev(1, x1, k) at line 28. Then, by inspection of the pseudocode

(5,−, y5) is a pending query (where Prev(1, x1, k) returned y5 by assumption) and

(1, x1, y1) is table-defined. Since the simulator does not abort in a good execution of

G2 by Lemma 4.23, the pending query is table-defined at the end of the query cycle.

Hence, the 2chain (5, 1, y5, x1, k) is table-defined at the end of the query cycle.

(2, 3)-query cycle. By Lemma 4.6, a query (k, x1, y5) can get table-defined

only through a call Prev(1, x1, k) at line 55. Since the simulator does not abort in

a good execution of G2 by Lemma 4.23, the call to Assign(5, ·, y5) leads to (5, ·, y5)

being table-defined. One can also verify from the pseudocode that Prev(1, x1, k) is

called at line 55 in a (2, 3)-query cycle only if (1, x1, y1) is table-defined through

ReadTape(1,−, y1). Hence, the 2chain (5, 1, y5, x1, k) is table-defined at the end of

the query cycle.

The cases of a (3, 4) and (4, 5)-query cycles are analogous to those of (2, 3)

142



and (1, 2)-query cycles respectively. In a (5, 1)-query cycle, by Lemma 4.6, no new

cipher queries get table-defined. This completes the proof of the lemma.

Lemma 4.25. In a good execution of G2, a 4cycle never appears at (4, 5) or at (1, 2)

due to a cipher query by the distinguisher.

Proof. Assume towards a contradiction that in a good execution of G2 table-defined

2chains (C1, C2, C3, C4) form a 4cycle where Cj = (4, 5, y
(j)
4 , x

(j)
5 , k(j)) due to a ci-

pher query made by the distinguisher i.e. the 4cycle did not appear before the

distinguisher’s cipher query.

We know that in a cipher query (δ, k, z) by the distinguisher, the only query

that can get table-defined is the cipher query itself. If (δ, k, z) was already table-

defined, then no new queries are table-defined and the 4cycle cannot be formed.

If (δ, k, z) was not table-defined, for the 4cycle to appear, the cipher query should

cause (−, k(j), y(j)5 ) to be table-defined for some j ∈ {1, . . . , 4}. Without loss of

generality assume the new cipher query defined T−1(k(1), y
(1)
5 ) to be x

(1)
1 which leads

to the 4cycle. Then, by definition of a 4cycle, r(C1) = r(C4) implying x
(1)
1 = x

(4)
1 =

T−1(k(4), y
(4)
5 ).

Let (δ, k, z) = (−, k(1), y(1)5 ). Then, x
(1)
1 ∈ C. Since the cipher query was the

only one to be defined, we have x
(4)
1 ∈ H. Hence, we have x

(1)
1 ⊕ x

(4)
1 = 0 where

x
(1)
1 ∈ C and x

(4)
1 ∈ H. On the other hand if (δ, k, z) = (+, k(1), x

(1)
1 ). Then, y

(1)
5 ∈ C.

Since C1 is table-defined, we also have y
(1)
5 ∈ H. Hence, we have x

(1)
1 ⊕ x

(4)
1 = 0

where y
(1)
5 ∈ C and y

(1)
5 ∈ H. Thus BadIC occurs regardless of the direction of the

cipher query as we have H⊕1 ∩ C⊕1 6= ∅.

143



By a similar case analysis, we can show that in a good execution of G2 a 4cycle

does not appear at (1, 2) due to a cipher query made by the distinguisher.

Lemma 4.26. If a 4cycle does not exist at (4, 5) or at (1, 2) at the beginning of a

query cycle in a good execution of G2, then a 4cycle does not exist at (4, 5) or at

(1, 2) at the end of that query cycle.

Proof. Assume towards a contradiction that at the end of a query cycle in a good

execution of G2 table-defined 2chains (C1, C2, C3, C4) form a 4cycle where Cj =

(4, 5, y
(j)
4 , x

(j)
5 , k(j)). Let r(Cj) = T−1(k(j), y

(j)
5 ) = x

(j)
1 6=⊥ since the endpoints of

the 2chains are not dummy by Definition 18. By the same definition, the endpoint

queries of the 2chains are table-undefined.

For the analysis, we consider the last assignment that was made to the tables

immediately after which the 4cycle appeared and distinguish between two cases:

(i) the last assignment was a cipher query getting table-defined and (ii) the last

assignment was due to a permutation query getting table-defined.

Let us consider case (i) first. Here, we assume that the 4cycle formed imme-

diately after a cipher query (k(j), x
(j)
1 , y

(j)
5 ) that was table-defined in the query cycle

for some j ∈ {1, . . . , 4}. (Note that in a query cycle, cipher queries are made only

by the simulator.) By Lemma 4.24, this means that the 2chain (5, 1, x
(j)
1 , y

(j)
5 , k(j)) is

table-defined. In particular, this implies that the right endpoint of Cj r(Cj) = x
(j)
1

is table-defined which contradicts our assumption.

Next we consider case (ii) i.e. the 4cycle formed immediately after a permuta-

tion query (4, x
(j)
4 , y

(j)
4 ) or (5, x

(j)
5 , y

(j)
5 ) was table-defined. Then, for j = 1, 2, 3, 4 the

144



cipher queries T (k(j), x
(j)
1 ) = y

(j)
5 are table-defined at the beginning of the query cy-

cle; this is because if they are table-defined during the query cycle, by Lemma 4.24,

the right endpoint r(Cj) gets table-defined contradicting our assumption that a 4cy-

cle is formed in the query cycle. Hence, we have k(j) ∈ H, x
(j)
1 ∈ H, y

(j)
5 ∈ H for

j ∈ {1, . . . , 4}.

(1, 2)-query cycle. Let the query cycle be a (1, 2)-query cycle. From Table 4.1,

we can see that in a (1, 2)-query cycle, calls to ReadTape(5,−, ·) occur and adapta-

tion occurs at position 4.

Let us consider the case where all permutation queries (4, x
(j)
4 , y

(j)
4 ) were table-

defined at the beginning of the query cycle. Then, for the 4cycle to form at least one

permutation query (5, x
(j)
5 , y

(j)
5 ) should get table-defined. In a (1, 2)-query cycle, this

occurs in a call to ReadTape(5,−, y(j)5 ) which implies that x
(j)
5 ∈ P . Now, for the

2chain Cj, we have x
(j)
5 = y

(j)
4 ⊕k(j). As observed above, k(j) ∈ H and by assumption

that all permutation queries at position 4 for the 2chains Cj are table-defined at

the beginning of the query cycle, we also have y
(j)
4 ∈ H. This implies that BadPerm

occurs since x
(j)
5 ∈ P and x

(j)
5 = y

(j)
4 ⊕ k(j) ∈ H⊕2. So, P ∩H⊕2 6= ∅.

Next, we consider the case that in a (1, 2)-query cycle at least one permutation

query (4, x
(j)
4 , y

(j)
4 ) was table-defined. In a (1, 2)-query cycle, this occurs in a call to

Assign(4, x
(j)
4 , y

(j)
4 ) inside AdaptPath(1, 2, y′1, x

′
2, k
′) for some triggered 2chain C ′ =

(1, 2, y′1, x
′
2, k
′) in that query cycle. We differentiate two sub-cases here: `(C ′) = y

(j)
5

or not.

If `(C ′) = y
(j)
5 , then at the end of the query cycle Cj will be such that its

145



right endpoint r(Cj) = x′1 which is table-defined. Hence, this will not form a

4cycle. If `(C ′) 6= y
(j)
5 , let `(C ′) = y′5. Then, Assign(5, x′5, y

′
5) occurs in a call

to ReadTape(5,−, y′5) leading to x′5 ∈ P . Now, we have

x′5 ⊕ k′ = y
(j)
4 = x

(j)
5 ⊕ k(j).

In the equation above, k′, k(j) ∈ H, x′5 ∈ P . Also, x
(j)
5 ∈ P ∪ H since

(5, x
(j)
5 , y

(j)
5 ) could either be table-defined as a left endpoint of a 2chain C̃ 6= C ′

in the current query cycle or could have been table-defined at the beginning of the

query cycle itself. Then, either H⊕3∩P 6= ∅ or H⊕2∩P⊕2 6= ∅ and BadPerm occurs.

(2, 3)-query cycle. Let the query cycle be a (2, 3)-query cycle. From Table 4.1,

we can see that in a (2, 3)-query cycle, calls to ReadTape(4,+, ·) occur and adapta-

tion occurs at position 5.

Again, let us consider the case where all permutation queries (4, x
(j)
4 , y

(j)
4 ) were

table-defined at the beginning of the query cycle. Then, for the 4cycle to form at

least one permutation query (5, x
(j)
5 , y

(j)
5 ) should get table-defined. In a (2, 3)-query

cycle, this occurs in a call to Assign(5, x
(j)
5 , y

(j)
5 ) called during AdaptPath(C ′) for

some triggered chain C ′ in the query cycle. Since all query cycles in a good execution

are safe by Lemma 4.22, using Lemma 4.11, we have y
(j)
5 ∈ C. However, since all

cipher queries (k(j), x
(j)
1 , y

(j)
5 ) are table-defined at the beginning of the query cycle,

we have y
(j)
5 ∈ H. Hence, H ∩ C 6= ∅ and BadIC occurs. So for a 4cycle to form in

a (2, 3)-query cycle, all permutation queries (5, x
(j)
5 , y

(j)
5 ) need to be table-defined at

the beginning of the query cycle.

Now, let us consider the case where at least one permutation query (4, x
(j)
4 , y

(j)
4 )

146



is table-defined during the query cycle. In a (2, 3)-query cycle, this occurs in a call

to ReadTape(4,+, x
(j)
4 ) which implies that y

(j)
4 ∈ P . As mentioned above, we have

x
(j)
5 , y

(j)
5 ∈ H since for a 4cycle to form in a (2, 3)-query cycle, all permutation queries

(5, x
(j)
5 , y

(j)
5 ) need to be table-defined at the beginning of the query cycle. We also

know that k(j) ∈ H since all the cipher queries in the 4cycle are table-defined. Hence,

y
(j)
4 = x

(j)
5 ⊕ k(j) ∈ H⊕2 implying that P ∩H⊕2 6= ∅ and hence BadPerm occurs.

(3, 4)-query cycle. Let the query cycle be a (3, 4)-query cycle. From Table 4.1,

we can see that in a (3, 4)-query cycle, calls to ReadTape(5,+, ·) occur and no new

permutation query of the form (4, ·, ·) gets table-defined. So for a 4cycle to form in

a (3, 4)-query cycle, all permutation queries (4, x
(j)
4 , y

(j)
4 ) need to be table-defined at

the beginning of the query cycle. Hence, x
(j)
4 , y

(j)
4 ∈ H.

If a permutation query (5, x
(j)
5 , y

(j)
5 ) gets table-defined in a (3, 4)-query cycle,

then y
(j)
5 ∈ P . However, since all cipher queries (k(j), x

(j)
1 , y

(j)
5 ) are table-defined at

the beginning of the query cycle, we have y
(j)
5 ∈ H. Hence, H∩P 6= ∅ and BadPerm

occurs.

(4, 5)-query cycle. In a (4, 5)-query cycle, no new permutation queries of the

form (4, ·, ·) and (5, ·, ·) get table-defined. As shown before, in a good execution of

G2, all cipher queries of the 4cycle need to be table-defined at the beginning of the

query cycle. Hence, a 4cycle at (4, 5) cannot form in a (4, 5)-query cycle.

(5, 1)-query cycle. Let the query cycle be a (5, 1)-query cycle. From Table 4.1,

we can see that in a (5, 1)-query cycle, calls to ReadTape(4,−, ·) occur and no new

permutation query of the form (5, ·, ·) gets table-defined.

147



So for a 4cycle to form in a (5, 1)-query cycle, at least one permutation query

(4, x
(j)
4 , y

(j)
4 ) needs to be table-defined during the query cycle. Without loss of gen-

erality, let j = 1. Then, x
(1)
4 ∈ P . We differentiate two cases for the analysis:

(4, x
(2)
4 , y

(2)
4 ) is table-defined at the beginning of the query cycle or not.

Let us first consider the case where (4, x
(2)
4 , y

(2)
4 ) is table-defined at the be-

ginning of the query cycle. By definition of a 4cycle, `(C1) = `(C2). Hence,

x
(1)
4 ⊕ k(1) = x

(2)
4 ⊕ k(2). Here, k(1), k(2), x

(2)
4 ∈ H and x

(1)
4 ∈ P . Hence, P ∩H⊕3 6= ∅

and BadPerm occurs.

Next, we consider the case where (4, x
(2)
4 , y

(2)
4 ) is table-defined during the query

cycle. Then, x
(2)
4 ∈ P since we are considering a (5, 1)-query cycle. By definition

of a 4cycle, `(C1) = `(C2). This also means that x
(1)
4 6= x

(2)
4 as otherwise we have

x
(1)
5 = x

(2)
5 and C1 = C2 which violates the definition of a 4cycle (Definition 18).

Then, `(C1) = `(C2) implies that

x
(1)
4 ⊕ k(1) = x

(2)
4 ⊕ k(2)

where x
(1)
4 , x

(2)
4 ∈ P and k(1), k(2) ∈ H such that x

(1)
4 6= x

(2)
4 . Hence, P⊕2 ∩ H⊕2 6= ∅

and BadPerm occurs.

By a similar case analysis, we can show that in a good execution of G2 a 4cycle

does not appear at (1, 2) at the end of a query cycle.

Lemma 4.27. At the end of a query cycle in a good execution of G2, a 4cycle does

not exist at (4, 5) or at (1, 2).

Proof. This follows immediately from Lemmas 4.25 and 4.26.

148



Corollary 4.28. At the end of a query cycle in a good execution of G2, there does

not exist a 2cycle at (4, 5) or at (1, 2).

Proof. Assume towards a contradiction that at the end of a query cycle in a good

execution of G2 there exists a 2cycle at (say) (4, 5) consisting of table-defined 2chains

C = (4, 5, y4, x5, k) and C ′ = (4, 5, y4, x5, k). Then, by definition of a 2cycle C and

C ′ are such that C 6= C ′, both endpoints of C and C ′ are non-dummy and table-

undefined and `(C) = `(C ′) and r(C ′) = r(C).

Then there exists a 4cycle at (4, 5) consisting of chains Cj for j = 1, . . . , 4,

where Cj = C if j = 1, 3 and Cj = C ′ if j = 2, 4. This is because we have

Cj 6= Cj+1 (where Cj+1 = C1 when j = 4) for all j since C 6= C ′. We know

that both endpoints of C and C ′ are non-dummy and table-undefined. Finally,

`(Cj) = `(Cj+1) if j = 1, 3 since `(C) = `(C ′) and r(Cj) = r(Cj+1) if j = 2, 4 since

r(C ′) = r(C). This contradicts Lemma 4.27 which says that no 4cycle appears at

(4, 5) in a good execution of G2.

Lemma 4.29. In a good execution of G2, for i ∈ {2, 4}, there do not exist two

distinct table-defined queries (i, xi, yi) and (i, x′i, y
′
i) such that xi ⊕ yi = x′i ⊕ y′i.

Proof. Assume towards a contradiction that there exist distinct table-defined queries

(i, xi, yi) and (i, x′i, y
′
i) where i ∈ {2, 4} such that xi⊕yi = x′i⊕y′i in a good execution

of G2. We first analyze the case where i = 2. Here we distinguish between two cases:

(i) the queries were table-defined in different query cycles and (ii) the queries were

table-defined in the same query cycle.

For case (i), let us assume without loss of generality that (2, x′2, y
′
2) was table-

149



defined in an earlier query cycle. We consider the query cycle in which (2, x2, y2)

was table-defined. Then, x′2, y
′
2 ∈ H. In the query cycle, the permutation query

(2, x2, y2) can get table-defined only in one of the following ways: (a) in a call

to ReadTape(2,+, x2) or ReadTape(2,−, y2) (b) in a call to Assign(2, x2, y2) that

occurs in AdaptPath(C) for a 2chain C triggered in the query cycle.

If (2, x2, y2) was table-defined in a call to ReadTape(2,+, x2), then we have

y2 ∈ P and x2 ∈ H. The former is due to the fact that in a good execution of

G2 all query cycles are safe by Lemma 4.22. The latter is because by inspection of

the pseudocode, we can see that ReadTape(2,+, x2) is called only when (2,+, x2)

is a pending query and by Lemma 4.5(d), (2,+, x2) is pending only if it were the

initiating query or the endpoint of a triggered 2chain. Note also that an endpoint

at position 2 cannot be dummy by definition. Hence, by definition, history H

contains all non-dummy endpoints and the initiating query. Thus, x2 ∈ H. By

a similar analysis, we can show that when (2, x2, y2) is table-defined in a call to

ReadTape(2,−, y2), we have x2 ∈ P and y2 ∈ H. Thus, if (2, x2, y2) was table-

defined in a call to ReadTape(2, ·, ·) and x2 ⊕ y2 = x′2 ⊕ y′2, we have H⊕3 ∩ P 6= ∅.

This implies that BadPerm occurs which contradicts our assumption that this is a

good execution of G2.

Next, we consider the sub-case where (2, x2, y2) is table-defined in a call to

Assign(2, x2, y2) that occurs in AdaptPath(C) for a 2chain C = (i, i + 1, yi, xi+1, k)

triggered in the query cycle. From Table 4.1, we know that 2 is an adapt position

only for a (4, 5)-query cycle. Hence, from Lemma 4.11, we can deduce that x2⊕y2 ∈

P⊕2. This is because x2 ⊕ y2 = (p1(r(C)) ⊕ k) ⊕ (p−13 (`(C)) ⊕ k) ∈ P⊕2. Then, if

150



x2⊕ y2 = x′2⊕ y′2, we have P⊕2 ∩H⊕2 6= ∅. This implies that BadPerm occurs which

contradicts our assumption that this is a good execution of G2. This completes the

analysis of case (i) where we assumed that the two distinct queries were table-defined

in different query cycles.

In case (ii), the queries (2, x2, y2) and (2, x′2, y
′
2) are both table-defined in the

same query cycle. As observed before, a permutation query gets table-defined either

in a call to ReadPath(2, ·, ·) or in a call to AdaptPath(C) for a triggered 2chain

C. Since both queries are at position 2 and are table-defined in the same query

cycle, they are both table-defined through the same procedures i.e. either both

through calls to ReadPath or both through calls to AdaptPath. Hence, we consider

the following two sub-cases: (a) (2, x2, y2) and (2, x′2, y
′
2) are table-defined through

calls to ReadPath(2,+, x2) and ReadPath(2,+, x′2) respectively or through calls to

ReadPath(2,−, y2) and ReadPath(2,−, y′2) respectively. (b) (2, x2, y2) and (2, x′2, y
′
2)

are table-defined through calls to Assign(2, x2, y2) and Assign(2, x′2, y
′
2) that occurred

in calls to AdaptPath(C) and AdaptPath(C ′) respectively.

We analyse sub-case (a) first. As argued earlier, if (2, x2, y2) and (2, x′2, y
′
2)

were table-defined through calls to ReadTape(2,+, x2) and ReadTape(2,+, x′2) re-

spectively, then x2, x
′
2 ∈ H and y2, y

′
2 ∈ P . Note that y2 6= y′2 as the two queries

are distinct and the permutation tables always encode a partial permutation. So

x2 ⊕ y2 = x′2 ⊕ y′2 implies H⊕2 ∩ P⊕2 6= ∅. Hence BadPerm occurs which contra-

dicts our assumption that this is a good execution of G2. The analogous analysis

works for the case where calls to ReadTape was of the form ReadTape(2,−, y2) and

ReadTape(2,−, y′2).

151



Next, we analyse the sub-case where (2, x2, y2) and (2, x′2, y
′
2) were adapted in

the same query cycle. Say they were adapted in AdaptPath(C) and AdaptPath(C ′)

respectively where C = (4, 5, y4, x5, k) and C ′ = (4, 5, y′4, x
′
5, k
′) and C 6= C ′ since

the two queries are distinct. Again, by consulting Table 4.1, we can see that 2 is

an adapt position only in a (4, 5)-query cycle. By Lemma 4.11, x2 = p1(r(C)) ⊕ k

and y2 = p−13 (`(C))⊕ k and similarly x′2 = p1(r(C
′))⊕ k′ and y′2 = p−13 (`(C ′))⊕ k′.

Since we are in a safe query cycle by Lemma 4.22, p1(r(C)), p1(r(C
′)), p−13 (`(C)),

p−13 (`(C ′)) ∈ P . So, if x2 ⊕ y2 = x′2 ⊕ y′2, we have

p1(r(C))⊕ p−13 (`(C)) = p1(r(C
′))⊕ p−13 (`(C ′)). (4.7)

We consider the following sub-cases here: (a) r(C) 6= r(C ′), (b) `(C) 6= `(C ′)

and (c) r(C) = r(C ′) and `(C) = `(C ′). Consider case (a) first, if r(C) 6= r(C ′),

then in Equation (4.7), we have either 0 ∈ P⊕4 or 0 ∈ P⊕2 (where the latter occurs

if `(C) = `(C ′)). Then, either P⊕4 ∩H⊕0 6= ∅ or P⊕2 ∩H⊕0 6= ∅ and in either case,

BadPerm occurs. Considering case (b) next, if `(C) 6= `(C ′), by a similar argument

as just presented in case (a), we have either P⊕4 ∩H⊕0 6= ∅ or P⊕2 ∩H⊕0 6= ∅ and

in either case, BadPerm occurs.

Finally, considering case (c), if r(C) = r(C ′) and `(C) = `(C ′), we distinguish

between two cases here: (1) the cipher queries T−1(k, x5) and T−1(k′, x′5) are table-

defined at the beginning of the query cycle and (2) at least one of the cipher queries

is not table-defined at the beginning of the query cycle. Considering case (1), if both

cipher queries are table-defined at the beginning of the query cycle, then a 2cycle

appears at (4, 5). This is because C 6= C ′ by assumption that the two adapted

152



queries (2, x2, y2) and (2, x′2, y
′
2) are distinct, the endpoints of the 2chains are non-

dummy by assumption that the cipher queries are table-defined at the beginning

of the query cycle, the endpoints are table-undefined since query cycles in a good

execution of G2 are safe by Lemma 4.22 and finally, r(C) = r(C ′) and `(C) = `(C ′)

by assumption. This contradicts Corollary 4.28 which says that a 2cycle does not

appear at (4, 5) in a good execution of G2.

Next, we consider the case where r(C) = r(C ′) and `(C) = `(C ′) and at

least one of the cipher queries is not table-defined at the beginning of the query

cycle. If exactly one of them is not table-defined at the beginning of the query

cycle, let us assume without loss of generality that T−1(k, x5) is not table-defined

at the beginning of the query cycle and T−1(k′, x′5) is. Also, in a (4, 5)-query cycle

cipher queries are only of the form (−, ·, ·) i.e. only inverse cipher queries are made.

Then if r(C) = r(C ′), we have r(C) ∈ C and r(C ′) ∈ H. Hence BadIC occurs as

C⊕1∩H⊕1 6= ∅. On the other hand, if both cipher queries are not table-defined at the

beginning of the query cycle and if r(C) = r(C ′), we have T−1(k, x5) = T−1(k′, x′5)

where r(C) = T−1(k, x5) ∈ C and r(C ′) = T−1(k′, x′5) ∈ C. These are distinct cipher

queries since C 6= C ′. Hence, BadIC occurs as 0 ∈ C⊕2 implying that C⊕2∩H⊕0 6= ∅.

Concluding, in a good execution of G2, there do not exist two distinct queries

(i, xi, yi) and (i, x′i, y
′
i) such that xi⊕yi = x′i⊕y′i when i = 2. A similar case analysis

works for the case when i = 4.

Lemma 4.30. In a good execution of G2, for i ∈ {2, 4} there never exist four distinct

153



table-defined queries (i, x
(j)
i , y

(j)
i ) with j = 1, 2, 3, 4 such that

4∑
j=1

(x
(j)
i ⊕ y

(j)
i ) = 0. (4.8)

Proof. Assume towards a contradiction that in a good execution of G2, there exist

four distinct queries (i, x
(j)
i , y

(j)
i ) such that Eq. (4.8) holds. We analyse the case when

i = 2. The proof for the case where i = 4 proceeds similarly. Let us consider the

last assignment to the tables before the equation held. The assignment should have

table-defined (2, x
(j)
2 , y

(j)
2 ) for some j ∈ {1, . . . , 4}. Without loss of generality, let us

assume that (2, x
(1)
2 , y

(1)
2 ) (i.e. j = 1) was the last query to be table-defined. Let us

consider the various query cycles in which the query could have been table-defined.

(1, 2)-query cycle and (2, 3)-query cycle. Note that no new queries of

the form (2, ·, ·) get table-defined in such query cycles. So (2, x
(1)
2 , y

(1)
2 ) was not

table-defined in a (1, 2) or a (2, 3)-query cycle.

(3, 4)-query cycle. By referring to Table 4.1, we can see that in a (3, 4)-query

cycle, a query at position 2 gets table-defined only through calls to ReadTape(2,−, ·).

For queries (2, x
(j)
2 , y

(j)
2 ) where j = 2, . . . , 4, either (2, x

(j)
2 , y

(j)
2 ) was already table-

defined at the beginning of the query cycle or it gets table-defined in the same

query cycle (but before (2, x
(1)
2 , y

(1)
2 ) by assumption). Hence, we have y

(j)
2 ∈ H for

all j = 1, 2, 3, 4. This is because either (2, x
(j)
2 , y

(j)
2 ) is table-defined at the beginning

of the query cycle or (2,−, y(j)2 ) is a pending query and hence gets table-defined in

the current query cycle. By definition of history H, the initiating query, all (non-

dummy) endpoints of table-defined 2chains and table-defined permutation queries

exist in H. Combining this fact with Lemma 4.5 (d), we have y
(j)
2 ∈ H for all

154



j = 1, 2, 3, 4.

For the case of x
(j)
2 for j = 1, . . . , 4, we can immediately deduce that x

(1)
2 ∈

P by assumption that (2, x
(1)
2 , y

(1)
2 ) is the last query to get table-defined (and by

assumption that we are in a good execution of G2 and all query cycles are safe by

Lemma 4.22). For x
(j)
2 for j 6= 1, similar to the reasoning above, (2, x

(j)
2 , y

(j)
2 ) was

already table-defined at the beginning of the query cycle or it gets table-defined in

the same query cycle (but before (2, x
(1)
2 , y

(1)
2 ) by assumption). Then either x

(j)
2 ∈

H if (2, x
(j)
2 , y

(j)
2 ) was already table-defined at the beginning of the query cycle

or x
(j)
2 ∈ P if (2, x

(j)
2 , y

(j)
2 ) gets table-defined in the current query cycle through

ReadTape(2,−, y(j)2 ). (The reasoning for this is similar to prior reasoning for x
(1)
2 .)

Then, if Eq. (4.8) holds, let t be the number of queries (j, x
(j)
2 , y

(j)
2 ) that get

table-defined in the current query cycle (where 1 ≤ t ≤ 4). Recall that the queries

(j, x
(j)
2 , y

(j)
2 ) are distinct (and that H is a multiset). Then (a) if t = 1, we have

H⊕7∩P 6= ∅, (b) if t = 2, we haveH⊕6∩P⊕2 6= ∅, (c) if t = 3, we haveH⊕5∩P⊕3 6= ∅

and (d) if t = 4, we have H⊕4 ∩ P⊕4 6= ∅. This implies that BadPerm occurs which

contradicts our assumption that we are in a good execution of G2.

(4, 5)-query cycle. Again, by referring to Table 4.1, we can see that in a

(4, 5)-query cycle, a query at position 2 gets table-defined only through calls to

Assign(2, ·, ·) that occur in a procedure AdaptPath(C) for some triggered 2chain C.

By assumption, (2, x
(1)
2 , y

(1)
2 ) was (the last of the 4 queries to be) table-defined in

this query cycle. Say this was due to call to Assign(2, x
(1)
2 , y

(1)
2 ) that occurred in

AdaptPath(C1) for a 2chain C1 = (4, 5, y
(1)
4 , x

(1)
5 , k(1)) triggered in the current query

155



cycle. By Lemma 4.11, we have x
(1)
2 = p1(r(C1))⊕ k(1) and y

(1)
2 = p−13 (`(C1))⊕ k(1).

Here, we have p1(r(C1), p
−1
3 (`(C1)) ∈ P since all query cycles are safe in a good

execution of G2.

Then, for all queries (2, x
(j)
2 , y

(j)
2 ) j = 2, 3, 4 to be table-defined either the

queries were table-defined at the beginning of the query cycle or they were table-

defined in the current query cycle (earlier than (2, x
(1)
2 , y

(1)
2 ) by assumption). Cor-

respondingly, for j = 2, 3, 4 we either have x
(j)
2 , y

(j)
2 ∈ H (if (2, x

(j)
2 , y

(j)
2 ) was

table-defined at the beginning of the query cycle) or x
(j)
2 = p1(r(Cj)) ⊕ k(j) and

y
(j)
2 = p−13 (`(Cj))⊕k(j) with p1(r(Cj), p

−1
3 (`(Cj)) ∈ P where Cj = (4, 5, y

(j)
4 , x

(j)
5 , k(j))

is a 2chain triggered in the current query cycle (if (2, x
(j)
2 , y

(j)
2 ) gets table-defined in

the current query cycle).

Let t be the number of queries (j, x
(j)
2 , y

(j)
2 ) that get table-defined in the current

query cycle (where 1 ≤ t ≤ 4). If t = 1, then (2, x
(1)
2 , y

(1)
2 ) is the only query to be

table-defined in the query cycle. Hence, we have x
(1)
2 ⊕y

(1)
2 = p1(r(C1)⊕p−13 (`(C1)) ∈

P⊕2 and
∑4

j=2 x
(j)
2 ⊕ y

(j)
2 ∈ H⊕6. Thus, if Eq. (4.8) holds, P⊕2 ∩H⊕6 6= ∅ and hence

BadPerm occurs.

If t = 2, assume without loss of generality that (2, x
(j)
2 , y

(j)
2 ) are the queries to

get table-defined in the query cycle where j = 1, 2. Then, if Eq. (4.8) holds, we have

2∑
j=1

x
(j)
2 ⊕ y

(j)
2 =

4∑
j=3

x
(j)
2 ⊕ y

(j)
2 (4.9)

where the LHS is equal to
∑2

j=1 p1(r(Cj)⊕ p
−1
3 (`(Cj)) and RHS is in H⊕4 by

assumption. Since p1(r(Cj), p
−1
3 (`(Cj)) ∈ P for j = 1, 2, BadPerm occurs unless

r(C1) = r(C2) and `(C1) = `(C2). If r(C1) = r(C2) and `(C1) = `(C2), then the

156



LHS of Eq. (4.9) is 0. However, by Lemma 4.29, in a good execution of G2, we cannot

have two distinct queries (2, x
(1)
2 , y

(1)
2 ) and (2, x

(2)
2 , y

(2)
2 ) such that

∑2
j=1 x

(j)
2 ⊕y

(j)
2 = 0.

Hence, if Eq. (4.9) holds, BadPerm occurs since we have either P⊕4 ∩ H⊕4 6= ∅ or

P⊕2 ∩H⊕4 6= ∅.

If t = 3, we assume without loss of generality that (2, x
(j)
2 , y

(j)
2 ) are the queries

to get table-defined in the query cycle where j = 1, 2, 3. Then, if Eq. (4.8) holds,

we have
3∑
j=1

x
(j)
2 ⊕ y

(j)
2 = x

(4)
2 ⊕ y

(4)
2 (4.10)

where by assumption RHS of the equation above is in H⊕2 and the LHS is given by

the following equation:

3∑
j=1

x
(j)
2 ⊕ y

(j)
2 =

3∑
j=1

p1(r(Cj)⊕ p−13 (`(Cj)). (4.11)

Since p1(r(Cj), p
−1
3 (`(Cj)) ∈ P for j = 1, 2, 3, BadPerm occurs (since we have

either P⊕6 ∩ H⊕2 6= ∅ or P⊕4 ∩ H⊕2 6= ∅ or P⊕2 ∩ H⊕2 6= ∅). This is because even

if some of the right (resp. left) endpoints of the triggered 2chains Cj are equal, the

terms p1(r(Cj)) (resp. p−13 (`(Cj))) can cancel each other out in the sum on the RHS

of Eq. (4.11) only if there are even number of right (resp. left) endpoints.

If t = 4, all queries (2, x
(j)
2 , y

(j)
2 ) for j = 1, . . . , 4 are table-defined in the current

query cycle. Then, if Eq. (4.8) holds, we have

4∑
j=1

x
(j)
2 ⊕ y

(j)
2 =

4∑
j=1

p1(r(Cj)⊕ p−13 (`(Cj)) = 0 (4.12)

where p1(r(Cj), p
−1
3 (`(Cj)) ∈ P for j = 1, 2, 3, 4. Then, BadPerm occurs (since

H⊕0 = 0) unless the p1(·) and p−13 (·) terms in Eq. (4.12) cancel with each other. For

157



the terms in the sum in Eq. (4.12) to cancel out, we need 4 pairs (r1, r2), (r3, r4),

(`1, `2) and (`3, `4) such that r(Cr1) = r(Cr2), r(Cr3) = r(Cr4), `(C`1) = `(C`2) and

`(C`3) = `(C`4) where ri, `i ∈ {1, 2, 3, 4} and ri 6= ri′ for i 6= i′, `i 6= `i′ for i 6= i′.

Note that if we have pairs (ri, ri′), (`j, `j′) such that (ri, ri′) = (`j, `j′) this

implies that r(Cri) = r(Cri′ ) and `(Cri) = `(Cri′ ) which implies that the equation

x
(ri)
2 ⊕ y(ri)2 ⊕ x(ri′ )2 ⊕ y(ri′ )2 = p1(r(Cri))⊕ p−13 (`(Cri))⊕ p1(r(Cri′ ))⊕ p

−1
3 (`(Cri′ ))

evaluates to 0. However, this implies that in a good execution of G2 there exist two

distinct queries (2, x
(ri)
2 , y

(ri)
2 ) and (2, x

(ri′ )
2 , y

(ri′ )
2 ) such that x

(ri)
2 ⊕y

(ri)
2 ⊕x

(ri′ )
2 ⊕y(ri′ )2 =

0 which contradicts Lemma 4.29.

Then, without loss of generality, we can assume that the 4 pairs (r1, r2), (r3, r4),

(`1, `2) and (`3, `4) are respectively (2, 3), (4, 1), (1, 2) and (3, 4) i.e. `(C1) = `(C2),

r(C2) = r(C3), `(C3) = `(C4) and r(C4) = r(C1). Recall that Cj are the triggered

2chains such that (2, x
(j)
2 , y

(j)
2 ) was table-defined in Assign(2, x

(j)
2 , y

(j)
2 ) made in the

procedure AdaptPath(Cj). To analyse when Eq. (4.12) can hold, we distinguish

between three cases: (i) all cipher queries T−1(k(j), y
(j)
5 ) are table-defined at the be-

ginning of the query cycle, (ii) exactly one cipher query (say) T−1(k(1), y
(1)
5 ) is table-

defined during the query cycle and (iii) more than one cipher query T−1(k(j), y
(j)
5 )

gets table-defined in the current query cycle.

In case (i), if all cipher queries T−1(k(j), y
(j)
5 ) are table-defined at the beginning

of the query cycle, then we observe that there exists a 4cycle at (4, 5). This is

because (a) all four triggered 2chains Cj are distinct by assumption that the queries

(2, x
(j)
2 , y

(j)
2 ) are distinct, (b) the endpoints of all triggered 2chains Cj are non-dummy

158



and table-undefined since the cipher queries are table-defined at the beginning of the

query cycle and since all the query cycles are safe in a good execution by Lemma 4.22

and (c) we have `(C1) = `(C2), r(C2) = r(C3), `(C3) = `(C4) and r(C4) = r(C1)

since (r1, r2), (r3, r4), (`1, `2) and (`3, `4) are respectively (2, 3), (4, 1), (1, 2) and

(3, 4). However, by Lemma 4.27, in a good execution of G2, there does not appear

a 4cycle at (4, 5). Hence, this contradicts our assumption that we are in a good

execution of G2.

In case (ii), exactly one cipher query (say) T−1(k(1), y
(1)
5 ) is table-defined during

the query cycle. By assumption, r(C1) = r(C4) and T−1(k(4), x
(4)
5 ) is table-defined

at the beginning of the query cycle. Also, in a (4, 5)-query cycle cipher queries are

only of the form (−, ·, ·) i.e. only inverse cipher queries are made. Then, we have

r(C1) ∈ C and r(C4) ∈ H. Hence BadIC occurs as C⊕1 ∩H⊕1 6= ∅.

In case (iii), more than one cipher query T−1(k(j), y
(j)
5 ) gets table-defined in the

current query cycle. Since we have r(C2) = r(C3) and r(C4) = r(C1), without loss

of generality, it is sufficient to analyse the sub-case where both r(C4) and r(C1) get

table-defined in the current query cycle. The analysis for this sub-case plus case (ii)

above sufficiently captures all cases where more than one cipher query T−1(k(j), y
(j)
5 )

gets table-defined in the current query cycle. So, let us consider the case where both

T−1(k(1), y
(1)
5 ) and T−1(k(4), x

(4)
5 ) get table-defined in the current query cycle. Since

r(C1) = r(C4), we have T−1(k, x5) = T−1(k′, x′5) where r(C1) = T−1(k(1), x
(1)
5 ) ∈ C

and r(C4) = T−1(k(4), x
(4)
5 ) ∈ C. These are distinct cipher queries since C1 6= C4.

Hence, BadIC occurs as 0 ∈ C⊕2 implying that C⊕2 ∩H⊕0 6= ∅.

159



(5, 1)-query cycle. By referring to Table 4.1, we can see that in a (5, 1)-query

cycle, a query at position 2 gets table-defined only through calls to ReadTape(2,+, ·).

For queries (2, x
(j)
2 , y

(j)
2 ) where j = 2, . . . , 4, either (2, x

(j)
2 , y

(j)
2 ) was already table-

defined at the beginning of the query cycle or it gets table-defined in the same

query cycle. Hence, we have x
(j)
2 ∈ H for all j = 1, 2, 3, 4. This is because either

(2, x
(j)
2 , y

(j)
2 ) is table-defined at the beginning of the query cycle or (2,+, x

(j)
2 ) is a

pending query and hence gets table-defined in the current query cycle. By defini-

tion of history H, the initiating query, all (non-dummy) endpoints of table-defined

2chains and table-defined permutation queries exist in H. Combining this fact with

Lemma 4.5 (d), we have x
(j)
2 ∈ H for all j = 1, 2, 3, 4. The rest of the analysis for

the case of a (5, 1)-query cycle proceeds analogous to that of a (3, 4)-query cycle.

Concluding, in a good execution of G2, there do not exist four distinct queries

(i, x
(j)
i , y

(j)
i ) such that

∑4
j=1 x

(j)
i ⊕y

(j)
i = 0 when i = 2. A similar case analysis works

for the case when i = 4.

The core of the termination argument is presented below.

Termination Proof

We now analyze the running time of the simulator in a good execution of

G2. A large part of this analysis consists in upper bounding the size of tables

T, T−1, Pi, P
−1
i . Since one always has |T | = |T−1| and |Pi| = |P−1i |, we will only

state the results for T and Pi.

Note that, during a query cycle, any triggered 2chain C can be associated

160



with the query that became pending just before C was triggered and, reciprocally,

any pending query (i, δ, z), except the initiating query, can be associated with the

2chain C that was triggered just before (i, δ, z) became pending. We make these

observations formal through the following definitions.

Definition 19. During a query cycle, we say that a 2chain C is triggered by query

(i, δ, z) if it is added to Triggered during a call to FindNewPaths(i, δ, z). We say C

is an (i, δ)-triggered 2chain if it is triggered by a query of type (i, δ).

By Lemma 4.5 (b), a triggered (i, i+1)-2chain is either (i−1,−)- or (i+2,+)-

triggered. For brevity, we group four special types of triggered 2chains under a

common name.

Definition 20. A (triggered) wrapping 2chain is either

• a (4, 5)-2chain that was (1,+)-triggered,

• a (1, 2)-2chain that was (5,−)-triggered,

• a (5, 1)-2chain that was either (2,+)- or (4,−)-triggered.

Note that wrapping 2chains are exactly those for which the simulator makes

a call to procedure Check to decide whether to trigger the 2chain or not.

Definition 21. Consider a query cycle with initiating query (i0, δ0, z0) and a per-

mutation query (i, δ, z) 6= (i0, δ0, z0) which becomes pending. We call the (unique)

2chain that was triggered just before (i, δ, z) became pending the 2chain associated

with (i, δ, z).

161



Note that uniqueness of the 2chain associated with a non-initiating pending

query follows easily from the checks at lines 29 and 47.

The following two lemmas will be useful in the rest of the proof.

Lemma 4.31. Consider a good execution of G2, and assume that a complete path

exists at the end of the execution. Then at most one of the five 2chains belonging to

the complete path has been triggered during the execution.

Proof. Consider a complete path Π existing at the end of the execution, and consider

the first 2chain C belonging to Π which was triggered (if any) at some point in the

execution. Since the simulator does not abort in a good execution, by Lemma 4.5 (e),

at the end of the query cycle where C is triggered, C belongs to a complete path

which must be Π by Lemma 4.4. By Lemma 4.21, this implies that neither C nor

any other 2chain belonging to Π will ever be triggered in any subsequent query

cycle.

Lemma 4.32. For i ∈ {1, . . . , 5}, the number of table-defined permutation queries

(i, xi, yi) during an execution of G2 can never exceed the sum of

• the number of distinguisher’s calls to Query(i, ·, ·),

• the number of (i+ 1, i+ 2)-2chains that were (i+ 3,+)-triggered,

• the number of (i− 2, i− 1)-2chains that were (i− 3,−)-triggered,

• the number of (i + 2, i + 3)-2chains that were either (i + 1,−)- or (i + 4,+)-

triggered.

162



Proof. Entries are added to Pi/P
−1
i either by a call to ReadTape during an (i+1, i+

2)- or an (i− 2, i− 1)-query cycle or by a call to AdaptPath during an (i+ 2, i+ 3)-

query cycle (see Table 4.1).

Consider first entries that were added by a call to ReadTape during an (i +

1, i + 2)- or an (i− 2, i− 1)-query cycle. Clearly, the number of such table-defined

queries cannot exceed the sum of the total number Ni,+ of queries of type (i,+)

that became pending during an (i− 2, i− 1)-query cycle and the total number Ni,−

of queries of type (i,−) that became pending during an (i + 1, i + 2)-query cycle.

Now, Ni,+ cannot exceed the sum of the total number of initiating and non-initiating

pending queries of type (i,+) over all (i−2, i−1)-query cycles. The total number of

initiating queries of type (i,+) is clearly at most the number of distinguisher’s calls

to Query(i,+, ·), while the total number of non-initiating pending queries of type

(i,+) over all (i−2, i−1)-query cycles cannot exceed the total number of (i−3,−)-

triggered 2chains (since clearly a non-initiating pending query of type (i,+) cannot

be associated with an (i,+)-triggered (i − 2, i − 1)-2chain). Similarly, Ni,− cannot

exceed the sum of the total number of distinguisher’s call to Query(i,−, ·) and the

total number of (i − 3,−)-triggered (i + 1, i + 2)-2chains. All in all, we see that

the total number of triples (i, xi, yi) that became table-defined because of a call to

ReadTape cannot exceed the sum of

• the number of distinguisher’s calls to Query(i, ·, ·),

• the number of (i+ 1, i+ 2)-2chains that were (i+ 3,+)-triggered,

• the number of (i− 2, i− 1)-2chains that were (i− 3,−)-triggered.

163



Consider now a triple (i, xi, yi) which became table-defined during a call to

AdaptPath in an (i+ 2, i+ 3)-query cycle. Clearly, the total number of such triples

cannot exceed the total number of (i + 2, i + 3)-2chains that are triggered over all

(i+ 2, i+ 3)-query cycles (irrespectively of whether they are (i+ 1,−)- or (i+ 4,+)-

triggered). The result follows.

The following lemma contains the standard “bootstrapping” argument intro-

duced in [18] that has been used to prove termination of all simulators for the Feistel

and the IEM constructions since then.

Lemma 4.33. In a good execution of G2, at most q wrapping 2chains get triggered

in total.

Proof. We show that there is a one-to-one mapping from the set of triggered wrap-

ping 2chains to the set of distinguisher’s call to Enc/Dec. The lemma will follow

from the assumption that the distinguisher makes at most q cipher queries.

By inspection of the pseudocode, we see that for each triggered wrapping

2chain C, there is a triple (k, x1, y5) such that Check(k, x1, y5) was true, i.e., (k, x1, y5)

was table-defined when C was triggered. We show that this mapping is one-to-one,

i.e., no two distinct wrapping 2chains can be triggered by the same triple (k, x1, y5).

For this, note that there is exactly one 2chain of each type in {(1, 2), (4, 5), (5, 1)}

which can be triggered by a specific call Check(k, x1, y5). Hence, this is clear for two

2chains of the same type, while for two 2chains of distinct type this follows from the

fact that once a chain C of a specific type was triggered by a call to Check(k, x1, y5),

this 2chain will be complete (unless the simulator aborts) and the two other 2chains

164



of remaining types which could be triggered by the same call to Check(k, x1, y5)

belong to the same complete path as C, hence cannot be triggered by Lemma 4.21.

Hence, each triggered wrapping 2chain can be mapped to a distinct table-

defined cipher query (k, x1, y5). This cipher query became table-defined because of

call to Enc/Dec made either by the distinguisher or the simulator. It remains to

show that the corresponding call cannot have been made by the simulator. But

this follows easily from Lemma 4.6 since when the simulator makes a cipher query

which modifies T/T−1, the corresponding 2chain has already been triggered. Hence

it will be complete at the end of the query cycle and cannot be triggered again by

Lemma 4.31.

Lemma 4.34. In a good execution of G2, one always has |P3| ≤ 2q.

Proof. By Lemma 4.32, the number of table-defined permutation queries (3, x3, y3)

(and hence the size of P3) cannot exceed the sum of

• the number of distinguisher’s calls to Query(3, ·, ·),

• the number of (4, 5)-2chains that were (1,+)-triggered,

• the number of (1, 2)-2chains that were (5,−)-triggered,

• the number of (5, 1)-2chains that were either (2,+)- or (4,−)-triggered.

The number of entries of the first type is at most q by the assumption that the

distinguisher makes at most q oracle queries to each permutation. On the other

hand, note that any 2chain mentioned for the three other types are wrapping 2chains.

165



Hence, by Lemma 4.33, there are at most q such entries in total, so that |P3| ≤

2q.

Lemma 4.35. In a good execution of G2, the sum of the total numbers of (3,−)-

and (5,+)-triggered 2chains, resp. of (1,−)- and (3,+)-triggered 2chains, is at most

6q2 − 2q.

Proof. Let C be a 2chain which is either (3,−)- or (5,+)-triggered during the exe-

cution. (The case of (1,−)- or (3,+)-triggered 2chains is similar by symmetry.) By

Lemma 4.5 (e), C belongs to a complete path ((1, x1, y1), . . . , (5, x5, y5)) at the end

of the execution (since the simulator does not abort), and C = (3, 4, y3, x4, k) if it

was (5,+)-triggered, whereas C = (4, 5, y4, x5, k) if it was (3,−)-triggered.

Note that when C was triggered, (5,+, x5) was necessarily table-defined or

pending. This is clear if C = (4, 5, y4, x5, k) was (3,−)-triggered since a triggered

2chain must be table-defined. If C = (3, 4, y3, x4, k) was (5,−)-triggered, then it

was necessarily during the call to FindNewPaths(5,+, x5) which implies that x5 was

pending.

We now distinguish two cases depending on how (5,+, x5) became table-

defined or pending. Assume first that this was because of a distinguisher’s call

to Query(5, ·, ·). There are at most q such calls, hence there are at most q possi-

bilities for x5. There are at most 2q possibilities for y3 by Lemma 4.34. Moreover,

for each possible pair (y3, x5), there is at most one possibility for the table-defined

query (4, x4, y4) since otherwise this would contradict Lemma 4.29 (note that one

must have x4⊕ y4 = y3⊕ x5). Hence there are at most 2q2 possibilities in that case.

166



Assume now that this (5,+, x5) was a non-initiating pending query in the same

query cycle where C was triggered, or became table-defined during a previous query

cycle than the one where C was triggered and for which (5,+, x5) was neither the

initiating query nor became table-defined during the ReadTape call for the initiating

query. In all cases there exists a table-defined (3, 4)-2chain C ′ = (3, 4, y′3, x
′
4, k
′)

distinct from (3, 4, y3, x4, k) such that x5 = r(C ′) = y′4⊕ x′4⊕ y′3. Since we also have

x5 = y4⊕ x4⊕ y3, we obtain x4⊕ y4⊕ x′4⊕ y′4 = y3⊕ y′3. If y3 = y′3, by Lemma 4.29

we have x4 = x′4 and C ′ = (3, 4, y3, x4, k), which cannot be. On the other hand, for

a fixed (orderless) pair of y3 6= y′3, the (orderless) pair of (4, x4, y4) and (4, x′4, y
′
4) is

unique by Lemmas 4.29 and 4.30 (otherwise, one of the lemmas must be violated by

the two pairs). There are at most
(
2q
2

)
= q(2q−1) choices of y3 and y′3; for each pair

there is at most one (orderless) pair of (4, x4, y4) and (4, x′4, y
′
4), so there are 2 ways

to combine the queries to form two 2chains. Moreover, C ′ must either have been

completed during a previous query cycle than the one where C is triggered, or must

have been triggered before C in the same query cycle and have made x5 pending

(in which case C was triggered by (5,+, x5)). Thus each way to combine y3, y
′
3,

(4, x4, y4) and (4, x′4, y
′
4) to form two 2chains corresponds to at most one (3,+)- or

(5,−)-triggered 2chain, so at most 4q2 − 2q such 2chains are triggered this way.

Combining the two cases, the number of (3,−)- or (5,+)-triggered 2chains is

at most 6q2 − 2q.

Lemma 4.36. In a good execution of G2, one always has |P2| ≤ 6q2 and |P4| ≤ 6q2.

Proof. By Lemma 4.32, the number of table-defined queries (2, x2, y2) (and hence

167



the size of P2) cannot exceed the sum of

• the number of distinguisher’s calls to Query(2, ·, ·),

• the number of (3, 4)-2chains that were (5,+)-triggered,

• the number of (5, 1)-2chains that were (4,−)-triggered,

• the number of (4, 5)-2chains that were either (3,−)- or (1,+)-triggered.

There are at most q entries of the first type by the assumption that the distinguisher

makes at most q oracle queries. Note that any 2chain mentioned for the other

cases are either wrapping, (3,−)-triggered, or (5,+)-triggered 2chains. Hence, by

Lemmas 4.33 and 4.35, there are at most q+6q2−2q entries of the three other types

in total. Thus, we have |P2| ≤ q+q+6q2−2q = 6q2. Symmetrically, |P4| ≤ 6q2.

Lemma 4.37. In a good execution of G2, at most 12q3 2chains are triggered in total.

Proof. Since the simulator does not abort in good executions by Lemma 4.23, any

triggered 2chain belongs to a complete path at the end of the execution. Moreover,

by Lemma 4.31, at most one of the five 2chains belonging to a complete path is

triggered in a good execution. Hence, there is a bijective mapping from the set of

triggered 2chains to the set of complete paths existing at the end of the execution.

Consider all (3, 4)-2chains which are table-defined at the end of the execution. Each

such 2chain belongs to at most one complete path by Lemma 4.4. Hence, the number

of complete paths at the end of the execution cannot exceed the number of table-

defined (3, 4)-2chains, which by Lemmas 4.34 and 4.36 is at most 2q ·6q2 = 12q3.

168



Lemma 4.38. In a good execution of G2, we have |T | ≤ 12q3 + q.

Proof. Recall that the table T is used to maintain the cipher queries that have been

issued. In G2, no new cipher query is issued in Check called in procedure Trigger.

So the simulator issues a table-undefined cipher query only if the path containing

the cipher query has been triggered. The number of triggered paths is at most

12q3, while the distinguisher issues at most q cipher queries. Thus the number of

table-defined cipher queries is at most 12q3 + q.

Lemma 4.39. In a good execution of G2, one always has |P1| ≤ 12q3 + q and

|P5| ≤ 12q3 + q.

Proof. By Lemma 4.32, the number of table-defined queries (1, x1, y1) (and hence

the size of P1) cannot exceed the sum of the number of distinguisher’s call to

Query(1, ·, ·), which is at most q, and the total number of triggered 2chains, which

is at most 12q3 by Lemma 4.37. Therefore, the size of |P1| is at most 12q3 + q. The

same reasoning applies to |P5|.

Lemma 4.40. In good executions of G2, the simulator runs in time O(q8) and uses

O(q3) space.

Proof. By Lemmas 4.34, 4.36 and 4.39, the total number of queries that are defined

during an execution is O(q3). In a non-aborting execution, every time Assign is

called an undefined query becomes defined. Therefore, Assign is called O(q3) times,

which implies ReadTape and AdaptPath are called O(q3) times. The aforementioned

procedures run in constant time, so the total running time of them is O(q3).

169



The procedure FindNewPaths is called once for each pending query. In a non-

aborting execution, pending queries become distinct defined queries at the end of the

execution, which implies the total number of pending queries in position i is upper

bounded by |Pi| at the end of the proof. In a call to FindNewPaths(i, δ, z), each

iteration runs in constant time; the running time of the call is either |Pi−2| · |Pi−1|

or |Pi+1| · |Pi+2|13. Take the sum over the positions, the total running time of

FindNewPaths is at most 2
∑

i |Pi| · |Pi+1| · |Pi+2|, which is O(q8) by Lemmas 4.34,

4.36 and 4.39.

The tables Pi, P
−1
i , Pending and Paths have size at most O(q3), and the local

variables use constant space. Thus the simulator uses O(q3) space in total.

Theorem 4.41. An execution of G2 is good with probability at least 1− 1022q38/2n.

Proof. If 13q3 ≥ 2n−1, the lemma trivially holds. Thus we can assume 13q3 < 2n−1

in this proof.

By Lemmas 4.34, 4.36, 4.39 and 4.38 and by Definition 5, the number of table-

defined (5, 1)-2chains is upper bounded by 12q2 + q ≤ 13q3 (since each cipher query

in T uniquely determines a (5, 1)-2chain), and the total number of table-defined

(i, i+1)-2chains for i = 1, 2, 3, 4 is at most 2((12q3 +q) ·6q2 +6q2 ·2q) ≤ 180q5 (since

each pair of table-defined queries uniquely determine an (i, i + 1)-2chain). There

are at most 40q3 table-defined permutation queries and 13q3 table-defined cipher

13Here Pi−2, Pi−1, Pi+1 and Pi+2 refer to the states of the tables when FindNewPaths is called,

which is different from the previous Pi referring to the state at the end of the execution. In this

proof we will not distinguish between the states at different time points, since they are all subject

to Lemmas 4.34, 4.36 and 4.39.

170



queries. By Definition 9, the size of H can be upper bounded by

3 · (13q3 + 180q5) + 2 · 40q3 + 3 · 13q3 ≤ 698q5.

Now we consider the entries of pi/p
−1
i and ic/ic−1 that have been read, in the

same order as they are read in the execution, and compute the probability that

BadPerm or BadIC occurs when each entry is read. More precisely, we want to upper

bound the probability that:

• (cf. Definition 12) an entry read from pi/p
−1
i is in P⊕j ⊕H⊕` for some j, ` ≥ 0

such that j+ ` ≤ 7, where P refers to the random values that has already been

sampled from permutation tapes in the current query cycle;

• (cf. Definition 13) an entry read from ic/ic−1 is in H or in C, where C refers to

the random values that has already been sampled from the cipher tape in the

current query cycle.

We note that the bounds in Lemmas 4.34, 4.36, 4.39 and 4.38 hold as long

as no bad event has occurred in the execution (indeed, the only property of good

executions used in the proof is that “the bad events never occur”). Therefore, unless

a bad event occurs, the execution terminates before the numbers of entries read from

pi/p
−1
i (resp. ic/ic−1) exceeds 40q3 (resp. 13q3), and the bounds on H, P and C for

good executions also hold.

Assume no bad event has occurred in the execution, and consider a call to

ReadTape in which pi(xi) is read (the case of p−1i is symmetric). At this point,

less than 13q3 entries of pi/p
−1
i has been read, so the value of pi(xi) is uniformly

171



distributed among at least 2n − 13q3 ≥ 2n−1 values, where the inequality is due to

the assumption that 13q3 ≤ 2n−1. The total size of the sets P⊕j ⊕H⊕` for j+ ` ≤ 7

is at most (700q5)7,14 so the probability that BadPerm occurs is (700q5)7/2n−1.

Similarly, we can show the probability that BadIC occurs on a call to Enc/Dec

is at most 700q5/2n−1.

With a union bound on the at most 40q3 calls to ReadTape and 13q3 calls to

Enc/Dec, the probability that bad events occur in an execution is at most

40q3 · 7007q35

2n−1
+ 13q3 · 700q5

2n−1
≤ 1022 · q

38

2n
.

4.4.4 Indistinguishability of the First and Second Experiments

Recall that the only difference between G1 and G2 is in procedure Check

(line 68): in G2, it does not call Enc and hence does not modify tables T/T−1.

We say two executions of G1 and G2 are identical if every procedure call returns the

same value in the two executions. In particular, the view of the distinguisher D is

the same in the two executions, so D outputs the same value in identical executions.

Lemma 4.42. For randomly chosen tapes T = (p1, . . . , p5, ic), the probability that

the execution of G2 with T is good and that the executions of G1 and G2 with the

same tapes T are identical is at least 1− (1022q38/2n + 2704q8/2n).

Proof. The bound trivially holds if q3 > 2n−2, so we assume q3 ≤ 2n−2.

14Note that since the entries of P will be added to H after the query cycle, the total size of P

and H at this point of execution is also upper bounded by the upper bound on |H|, 698q5. It is

easy to see
∑7

i=0(698q5)i ≤ (700q5)7.

172



Recall that the only difference between G1 and G2 is in Check. The only side

effect of Check is that the call to Enc may add a new entry to the tables T/T−1.

The tables T/T−1 are only used in Enc, Dec and the G2-version of Check; moreover,

the answers of Enc and Dec are always consistent with the cipher encoded by ic

regardless of the state of T/T−1. Therefore, if every call to Check returns the same

value in the two executions, the two executions can never “diverge” and are identical.

Observe that a call to Check(k, x1, y5) returns different value in the two exe-

cutions only if ic(k, x1) = y5 and (k, x1) /∈ T in the execution of G2. Since the event

can be characterized in G2 only, we will compute its probability by considering a

G2-execution with random tapes. We will assume the execution of G2 is good when

computing the probability of divergence.

As discussed above, divergence would not occur if (k, x1) ∈ T at the moment

Check(k, x1, y5) is called. This implies that the cipher tape entry ic(k, x1) hasn’t

been read in the execution, since the tape ic is only read in Enc and Dec, where a

corresponding entry is immediately added to T . Therefore, the value of ic(k, x1) is

uniformly distributed over {0, 1}n \ {y | y = T (k, x) for some x}. By Lemma 4.38,

the size of T is at most 12q3 + q ≤ 13q3, so the probability that ic(k, x1) = y5 is

at most 1/(2n − 13q3). Moreover, if Check(k, x1, y5) is called multiple times and

divergence doesn’t occur in the first call, then divergence wouldn’t occur in the

subsequent calls to Check(k, x1, y5). To upper bound the probability of divergence,

we only need to consider the first call to Check with each argument.

The procedure Check is only called in FindNewPaths. It is easy to see from

Fig. 4.1 that if Check(k, x1, y5) is called, we either have k = y4 ⊕ x5 and the three

173



queries (4,−, y4), (5, x5, y5) and (1,+, x1) are pending or defined, or have k = y1⊕x2

and the three queries (5,−, y5), (1, x1, y1) and (2,+, x2) are pending or defined.

Since good executions don’t abort, the pending queries are defined at the end of the

execution. By Lemmas 4.36 and 4.39, there are

(12q3 + q)2 · 6q2 + (12q3 + q)2 · 6q2 ≤ 2028q8

ways to choose three defined queries in positions (4, 5, 1) or (5, 1, 2).

With a union bound over all distinct arguments, the probability that diver-

gence occurs in the first call to Check with some argument is at most 2028q8/(2n −

13q3) ≤ 2704q8/2n, where the inequality is due to the assumption that q3 ≤ 2n−2.

With a union bound, the probability that either the execution of G2 is bad or

the executions of G1 and G2 diverge is at most

1022q38/2n + 2704q8/2n.

Lemma 4.43. We have

∆D(G1,G2) ≤ 1022q38/2n + 2704q8/2n.

Proof. Since D outputs the same value in identical executions of G1 and G2, this is

a direct corollary of Lemma 4.42.

Theorem 4.44. With an optimized implementation, the simulator runs in time

O(q5) and makes at most O(q5) queries to the cipher oracle in the simulated world

G1.

Proof. By Lemma 4.40, the simulator runs in time O(q8) and uses O(q3) space

in good executions of G2. The simulator has the same running time in identical

174



executions of G1 and G2, so by Lemma 4.42, the simulator runs in time O(q8) with

high probability in G1.

Using a similar trick as [23], we can trade off more space for a better running

time. In particular, the simulator can be implemented to run in O(q5) time and

O(q5) space. In the following proof, we consider the running time of a G1-execution

that is identical to a good execution of G2, so we can use the bounds proved in good

executions of G2.
15 Note that the optimized simulator always has the same behavior

as the one described in the pseudocode, even in “bad” executions.

In the proof of Lemma 4.40, the running time is dominated by FindNewPaths.

We observe that it is unnecessary to check every pair of table-defined queries in

FindNewPaths. Indeed, the simulator only needs to go through defined queries in the

adjacent position, and the query in the next position is fixed and can be computed.

E.g., in a call to FindNewPaths(2,+, x2), instead of iterating through every pair in

P1×P−15 , the simulator can iterate through x1 ∈ P1, compute y5 := Enc(y1⊕x2, x1),

and check if y5 ∈ P−15 .

However, the trick doesn’t apply to calls of the form (1,+, ∗) or (5,−, ∗), since

the simulator doesn’t know if Enc(k, x1) = y5 for some key k. To handle these

calls, the simulator maintains a hash table that maps each (table-undefined) query

(1,+, x1) or (5,−, y5) to the 2chains it should trigger. Specifically, a query (1,+, x1)

is mapped to a set of pairs (y4, x5) ∈ P−14 × P5 such that Dec(y4⊕ x5, y5) = x1, and

(5,−, y5) is mapped to a set of (x1, x2) ∈ P1 × P2 such that Enc(y1 ⊕ x2, x1) = y5.

15Most of the bounds hold in G1, except for the bound on the size of T since the simulator issues

more queries to the cipher oracle in G1.

175



Then in a call to FindNewPaths(1,+, ∗) or FindNewPaths(5,−, ∗), it only takes a

table lookup to find all triggered 2chains.

The table should be updated every time a query at position 1, 2, 4 or 5

becomes table-defined. For example, when a query (1, x1, y1) is defined, for each

table-defined query (2, x2, y2) the set mapped from (5,−, y5) should be updated,

where y5 := Enc(y1 ⊕ x2, x1). By Lemmas 4.36 and 4.39, there are O(q5) pairs of

defined queries in positions (1, 2) or (4, 5), thus the size of the table is O(q5) and it

takes O(q5) time to update.

The new implementation of FindNewPaths now only takes O(q5) time: There

are O(q3) calls of form (1,−, ∗) or (5,+, ∗), in which P2 or P4 is traversed and each

takes O(q2) running time. The O(q3) calls of form (1,+, ∗) or (5,−, ∗) take O(1)

time to find triggered 2chains; there are at most O(q3) triggered 2chains throughout

the execution (cf. Lemma 4.37), so handling the triggered 2chains uses O(q3) running

time. There are O(q2) calls at positions 2, 3 or 4, and each call uses O(q3) time to

traverse a table.

Recall in the proof of Lemma 4.40 that the other procedures runs in O(q3)

time. Therefore, the total running time of the optimized implementation is still

dominated by FindNewPaths but has been improved to O(q5). Since each cipher

query takes constant time, the upper bound on the running time implies that at

most O(q5) cipher queries are issued by the simulator.

Finally, note that the above bound is only proved for the case when the G1-

execution is identical to a good G2-execution. However, since this holds except with

negligible probability (cf. Lemma 4.42) and since the simulator knows the value

176



of q (cf. Definition 17), we can let the simulator abort when the running time or

the number of queries exceeds the corresponding bound. Then the simulator is

efficient with probability 1 and the change affects an execution only with negligible

probability.

4.4.5 Indistinguishability of the Second and Fourth Experiments

In this section, we will use a randomness mapping argument to prove the

indistinguishability of G2 and G4.

We start with a standard randomness mapping from G2 to G3, which has a

similar structure to the randomness mapping in [23].

Additional Assumption on D. Some of the lemmas in this section only hold

when the distinguisher completes all paths, as defined below:

Definition 22. A distinguisher D completes all paths if at the end of every non-

aborting execution, D has made queries Query(i,+, xi) = yi or Query(i,−, yi) = xi

for i = 1, 2, 3, 4, 5 where xi = yi−1 ⊕ k for i = 2, 3, 4, 5, for every pair of k and x1

such that D has queried Enc(k, x1) = y′5 or Dec(k, y′5) = x1.
16

Note that for an arbitrary distinguisher D, it is easy to construct an equivalent

distinguisher D′ that completes all paths and that always outputs the same value

as D: Let D′ run D until D outputs a value b. For each cipher query that has

been made by D, D′ issues the permutation queries Query(i,+, xi) to “complete the

path” as in Definition 22. Finally D′ outputs b, ignoring the answers of the extra

16Note that y′5 isn’t necessarily equal to y5; but in a good execution we always have y5 = y′5.

177



queries. The distinguisher D′ issues at most q extra queries in each position.

In the rest of this section (except for Lemma 4.53), we will assume without

loss of generality that the distinguisher D completes all paths (the assumption is

without loss of generality with the cost of a multiplicative factor in the final bound).

The definitions and lemmas that only hold under this assumption will be marked

with (*).

Footprints. The random permutation tapes are used in both G2 and G3, while

the IC tapes ic is only used in G2. In this section, we will rename the random

permutation tapes in G3 as t = (t1, t
−1
1 , . . . , t5, t

−1
5 ), in order to distinguish them

from p = (p1, p
−1
1 , . . . , p5, p

−1
5 ) in G2.

Similar to previous works, we will characterize an execution with its footprint,

which is basically the subsets of random tapes that have been read.

Definition 23. A partial random permutation tape is a pair of tables p̃, p̃−1 :

{0, 1}n → {0, 1}n ∪ {⊥}, such that p̃−1(p̃(x)) = x for all x satisfying p̃(x) 6= ⊥,

and such that p̃(p̃−1(y)) = y for all y satisfying p̃−1(y) 6= ⊥.

A partial ideal cipher tape is a pair of tables pic, pic−1 : {0, 1}2n → {0, 1}n ∪

{⊥}, such that pic−1(k, pic(k, u)) = u for all k, u such that pic(k, u) 6= ⊥, and such

that pic(k, pic−1(k, v)) = v for all k, v such that pic−1(k, v) 6= ⊥.

We will use partial tape to refer to either a partial random permutation tape or

a partial ideal cipher tape. We note that p̃ determines p̃−1 and vice-versa, therefore

we may use either p̃ or p̃−1 to designate the pair p̃, p̃−1. Similarly for the partial

ideal cipher tape ic, ic−1.

178



Definition 24. We say a random permutation tape p is compatible with a partial

random permutation tape p̃ if p(x) = p̃(x) for all x such that p̃(x) 6= ⊥. Similarly,

an ideal cipher tape ic is compatible with a partial ideal cipher tape pic if ic(k, u) =

pic(k, u) for all k, u such that pic(k, u) 6= ⊥.

Definition 25. Consider an execution of G2 with random tapes p1, p2, . . . , p5, ic.

The footprint of the execution is the set of partial random tapes p̃1, p̃2, . . . , p̃5, pic

consisting of entries of the corresponding tapes that are accessed17 at some point

during the execution.

Similarly, the footprint of an execution of G3 with random tapes t1, t2, . . . , t5 is

the set of partial random tapes t̃1, t̃2, . . . , t̃5 consisting of entries of the corresponding

tapes that are accessed.

We note that with the fixed deterministic distinguisher D, the footprint of an

execution is determined by its random tapes. Among all possible footprints, only a

small portion of them are actually obtainable in some execution of D. We let FP2

and FP3 denote the set of obtainable footprints in G2 and G3 respectively.

We say the random tapes of an execution are compatible with a footprint ω if

each tape is compatible with the corresponding partial random tape in ω.

Lemma 4.45. For i = 2, 3 and for an obtainable footprint ω ∈ FPi, an execution

of Gi has footprint ω if and only if the random tapes are compatible with ω.

Proof. The “only if” direction is trivial by the definition of footprints, so we only

17Recall that p̃i is actually a pair p̃i, p̃
−1
i ; an entry p̃i(xi) = yi can be accessed by reading either

p̃i(xi) or p̃−1i (yi). Similarly for pic.

179



need to prove the “if” direction.

Let T denote the set of random tapes of the execution. Since ω is obtainable,

there exists a set of random tapes T ′ such that the execution of Gi with tapes T ′

has footprint ω. By the definition of footprints, only entries in ω are read during the

execution with T ′. If T is compatible with ω, the executions with T and with T ′

can never diverge (recall that the distinguisher D is deterministic by assumption)

and thus are identical. In particular, they should have the same footprint ω.

The above proof shows that an execution can be recovered given its footprint.

We let PrGi
[ω] denote the probability that the footprint of an execution of Gi

is ω. For a set of footprints S, let PrGi
[S] denote the probability that the footprint

of an execution of Gi is in S. Since each execution has exactly one footprint, the

events of obtaining different footprints are mutually exclusive and we have

Pr
Gi

[S] =
∑
ω∈S

Pr
Gi

[ω].

For an obtainable footprint ω ∈ FPi, PrGi
[ω] equals the probability that the

random tapes are compatible with ω by Lemma 4.45. Let |p̃i| (resp. |pic|) denote

the number of non-⊥ entries in p̃i (resp. pic), and let |pic(k)| denote the number of

non-⊥ entries of the form (k, ∗) in pic. For ω = (p̃1, p̃2, . . . , p̃5, pic) ∈ FP2, we have

Pr
G2

[ω] =
( 5∏
i=1

|p̃i|−1∏
`=0

1

2n − `

)( ∏
k∈{0,1}n

|pic(k)|−1∏
`=0

1

2n − `

)
, (4.13)

and for ω = (t̃1, t̃2, . . . , t̃5) ∈ FP3, we have

Pr
G3

[ω] =
5∏
i=1

|t̃i|−1∏
`=0

1

2n − `
. (4.14)

180



Randomness Mapping. Let FP∗2 ⊆ FP2 denote the set of footprints that can be

obtained by good executions of G2, and let FP∗3 ⊆ FP3 denote the set of footprints

that can be obtained by non-aborting executions of G3. Note that an execution can

be recovered from the footprint, so an execution of G2 (resp. G3) with footprint in

FP∗2 (resp. FP∗3) must be good (resp. non-aborting).

We will define an injective mapping ζ that maps each footprint ω ∈ FP∗2 to

ζ(ω) ∈ FP∗3, such that the executions with footprints ω and ζ(ω) are “identical”

and such that ω and ζ(ω) are obtained with similar probability (in G2 and G3

respectively).

Definition 26. (*) We define the injection ζ : FP∗2 → FP∗3 as follows: for ω =

(p̃1, p̃2, . . . , p̃5, pic) ∈ FP∗2, let ζ(ω) = (t̃1, t̃2, . . . , t̃5) where

t̃i = {(x, y) ∈ {0, 1}n × {0, 1}n : Pi(x) = y}

and where Pi refers to the state of the table at the end of the execution of G2 with

footprint ω.

The mapping ζ is well-defined because the execution of G2 can be recovered

from its footprint ω and, in particular, the states of the tables at the end of the

execution can be recovered from ω. We still need to prove that ζ(ω) is in FP∗3 and

that ζ is injective.

Lemma 4.46. (*) At the end of a good execution of G2, for each table entry

T (k, x1) = y5 the 2chain (5, 1, y5, x1, k) belongs to a complete path which has been

triggered during the execution.

181



Proof. By Lemma 4.5 (e), since good executions don’t abort, a triggered 2chain

must belong to a complete path. Therefore, we only need to prove that for each

T (k, x1) = y5, (5, 1, y5, x1, k) is equivalent to a triggered 2chain.

We assume without loss of generality that T (k, x1) = y5 is defined in a call to

Enc(k, x1); the proof is symmetric if it is defined in a call to Dec(k, y5).

If Enc(k, x1) is called by the distinguisher: since the distinguisher completes

all paths (cf. Definition 22), the simulator has issued permutation queries (i, xi, yi)

for i = 1, 2, 3 with x2 = y1 ⊕ k and x3 = y2 ⊕ k. We consider the first query

cycle at the end of which the three queries are all table-defined, i.e., the 2chain

C = (1, 2, y1, x2, k) is table-defined and its right endpoint is table-defined. By

Lemma 4.18 and since query cycles in good executions must be safe (cf. Lemma 4.22),

C belongs to a complete path which was triggered during the query cycle. The

lemma follows by the fact that C is equivalent to (5, 1, y5, x1, k).

If Enc(k, x1) is called by the simulator, note that the simulator only makes

cipher queries in FindNewPaths and AdaptPath; we can see from the pseudocode

that (5, 1, y5, x1, k) is equivalent to a 2chain being triggered.

The only difference between G2 and G3 is in the procedures Enc and Dec:

in G3, the cipher queries are answered by the 5-round IEM construction of the

permutations encoded by tapes t, while in G2 they are answered by the ideal cipher

encoded by ic.

The distinguisher and the simulator are identical in the two worlds, so we

can say an execution of G2 is identical to an execution of G3 if the views of the

182



distinguisher and the simulator are identical in the two executions. In particular,

we have the following useful observations:

• the distinguisher outputs the same value in identical executions;

• an execution of G3 is non-aborting if it is identical to a non-aborting execution

of G2.

Lemma 4.47. (*) For ω ∈ FP∗2, the footprint ζ(ω) is obtainable in G3. Moreover,

the execution of G2 with footprint ω ∈ FP∗2 is identical to the execution of G3 with

footprint ζ(ω).

Proof. Let ω = (p̃1, . . . , p̃5, pic) and ζ(ω) = (t̃1, . . . , t̃5). Let T = (t1, . . . , t5) be

an arbitrary set of random permutation tapes compatible with ζ(ω) (which can be

obtained by arbitrarily expanding the partial tapes in ζ(ω)). We will prove that the

execution of G3 with T is identical to the execution of G2 with footprint ω, and that

the execution has footprint ζ(ω).

We prove the two executions are identical by running them in parallel and

prove by induction that they never diverge. The executions can diverge only when

the distinguisher or the simulator accesses the tapes or the cipher oracle. By sym-

metry, we only consider the forward queries (i.e., when tape entry pi(xi) is read or

when Enc is called).

A tape entry pi(xi) = yi is read only in the procedure ReadTape. In G2, the

simulator adds a corresponding table entry Pi(xi) = yi immediately after reading

the tape, which is never overwritten and exists at the end of the execution. By

the definition of the mapping, ζ(ω) contains the same entry t̃(xi) = yi and, as T is

183



compatible with ζ(ω), T also contains t(xi) = yi. Thus the tape entry being read

in G3 is the same as the one in G2.

If the distinguisher or the simulator calls Enc, the value of T (k, x1) = y5 is

returned. In G2, the table T is a subset of the cipher encoded by ic and its entries

are never overwritten, so we have T (k, x1) = y5 at the end of the execution. The

execution of G2 with footprint ω is good; by Lemma 4.46, the 2chain (5, 1, y5, x1, k)

is complete, i.e., P contains queries (i, xi, yi) for i = 1, 2, 3, 4, 5 satisfying (4.3).

Similarly to the discussion in the last case, we have ti(xi) = yi for i = 1, 2, 3, 4, 5.

It is easy to check that these entries are used in a call to EM(k, x1) or EM−1(k, y5),

so in G3 we also have T (k, x1) = y5 and the two executions don’t diverge on cipher

queries. Hence, the two executions never diverge and are identical.

Now we prove the G3-execution with T has footprint ζ(ω). As discussed before,

all tape entries read by the simulator or by the cipher oracle (in EM and EM−1) are

in ζ(ω). On the other hand, each entry t̃(xi) = yi in ζ(ω) corresponds to an entry

Pi(xi) = yi at the end of the execution (this is true for both executions since they

are identical), which is assigned in a call to ReadTape or AdaptPath.

If Pi(xi) = yi is assigned in ReadTape, then the simulator should have read

ti(xi) or t−1i (yi) in the same procedure call. If Pi(xi) = yi is assigned in AdaptPath,

then there exist defined queries (j, xj, yj) for j ∈ {1, 2, 3, 4, 5} \ {i} and a cipher

query T (k, x1) = y5 such that xj+1 = yj ⊕ k for j = 1, 2, 3, 4. When T (k, x1) = y5 is

assigned, the entries tj(xj) = yj for j = 1, 2, 3, 4, 5 are read in the call to EM(k, x1)

or EM−1(k, y5), which includes the entry ti(xi) = yi. In both cases, t(xi) = yi is read

and the footprint should contain t̃(xi) = yi.

184



Lemma 4.48. (*) The mapping ζ is an injection from FP∗2 to FP∗3.

Proof. Since the simulator doesn’t abort in good executions of G2 (cf. Lemma 4.23),

Lemma 4.47 implies that the execution of G3 with footprint ζ(ω) is non-aborting

and hence ζ(ω) ∈ FP∗3.

Lemma 4.47 also implies that the ζ is injective: For a fixed ζ(ω), the G2-

execution with footprint ω is identical to the G3-execution with footprint ζ(ω),

which can be recovered from ζ(ω). Let ω = (p̃1, . . . , p̃5, pic), and it can be uniquely

reconstructed as follows: the partial permutation tapes p̃i contain entries that are

read by the simulator during the execution; the partial tape pic contains cipher

queries that are issued by the distinguisher or the simulator.

Lemma 4.49. (*) For ω = (p̃1, . . . , p̃5, pic) ∈ FP∗2 and ζ(ω) = (t̃1, . . . , t̃5), we have

5∑
i=1

|t̃i| =
5∑
i=1

|p̃i|+ |pic|. (4.15)

Proof. Consider the good G2-execution with footprint ω: The state of Pi at the end

of the execution is the same as the partial tape t̃i (cf. Definition 26). On the other

hand, p̃i contains an entry p̃i(xi) = yi if and only if Pi(xi) = yi is assigned in a call

to ReadTape. Thus the difference between the sizes of t̃i and p̃i equals the number

of adapted queries assigned in AdaptPath. From the pseudocode, we observe that

AdaptPath is called for each triggered 2chain, in which exactly one query is assigned.

We only need to prove the number of triggered 2chains equals the size of pic.

Note that pic contains the same queries as the table T at the end of the execution. By

Lemma 4.46, for each T (k, x1) = y5, a 2chain equivalent to (5, 1, y5, x1, k) has been

triggered. On the other hand, each triggered 2chain is completed at the end of the

185



good execution, and by Lemma 4.31 the triggered 2chains are not equivalent. Thus

the triggered 2chains belong to distinct complete paths, each containing a distinct

table-defined (5, 1)-2chain that corresponds to a distinct query in T . Thus there

is a one-one correspondence between triggered 2chains and entries in T , implying

|T | = |pic| equals the number of triggered 2chains.

Lemma 4.50. (*) For ω ∈ FP∗2, we have

Pr
G3

[ζ(ω)] ≥ Pr
G2

[ω] · (1− 169q6/2n)

Proof. The lemma trivially holds if 169q6 ≥ 2n. In the following proof we will

assume 169q6 < 2n, which implies 2n − 13q3 > 0.

Let ω = (p̃1, . . . , p̃5, pic) and ζ(ω) = (t̃1, . . . , t̃5). By Lemma 4.38, we have

|T | ≤ 12q3 + q ≤ 13q3. Since pic contains the same entries as T at the end of the

execution and pic(k) is a subset of pic, for any key k ∈ {0, 1}n we have

|pic(k)| ≤ |pic| ≤ 13q3. (4.16)

Pi contains every entry of p̃i because they are read in ReadTape, so at the end of

the execution we have |p̃i| ≤ |Pi| = |t̃i|. By (4.13) and (4.14), we have

PrG3 [ζ(ω)]

PrG2 [ω]
=

( 5∏
i=1

|t̃i|−1∏
`=|p̃i|

1

2n − `

)(∏
k

|pic(k)|−1∏
`=0

(2n − `)
)

≥
(

1

2n

)∑5
i=1(|t̃i|−|p̃i|)

(2n − 13q3)
∑

k |pic(k)|

=

(
2n − 13q3

2n

)|pic|
≥
(

2n − 13q3

2n

)13q3

≥ 1− 169q6

2n
.

186



where the first and the second-to-last inequalities use (4.16), and where the second

equality uses (4.15) and the fact that
∑

k |pic(k)| = |pic| with the sum taken over

all possible keys.

Lemma 4.51. (*) If the footprint of a G3-execution is ζ(ω) for some ω ∈ FP∗2,

then the view of the distinguisher in this execution is identical to its view in the

G4-execution with the same random tapes. In particular, D outputs the same value

in the two executions.

Proof. Let ζ(ω) = (t̃1, . . . , t̃5), and consider a G3-execution with tapes T = (t1, . . . , t5)

that has footprint ζ(ω). By Lemma 4.47, the G3-execution with footprint ζ(ω) is

identical to the G2-execution with footprint ω; in particular, the tables Pi/P
−1
i in

the two executions are identical. Thus at the end of the G3-execution, the table Pi

is the same as t̃i by Definition 26. The tape ti is compatible with t̃i, so if Pi(xi) = yi

we have ti(xi) = yi.

Now we prove that executions of G3 and G4 with the same tapes T are identical

to the distinguisher. The cipher oracle Enc and Dec are the same in the two games.

Consider a distinguisher call to Query(i,+, xi) (Query(i,−, yi) is symmetric): In

G3, SimQuery is called which returns the value of Pi(xi) = yi. The table Pi is

never overwritten, so we have ti(xi) = yi as discussed before. In G4, Query returns

ti(xi) = yi, which is the same as in G3. Therefore, the two executions behave

identically in the view of the distinguisher.

Lemma 4.52. (*) If the distinguisher D completes all paths, we have

∆D(G2,G4) ≤ 1022q38/2n + 169q6/2n

187



Proof. Let FP∗2(1) ⊆ FP∗2 be the set of footprints of good G2-executions in which

D outputs 1, and let FP∗3(1) ⊆ FP∗3 be the set of footprints of non-aborting G3-

executions in which D outputs 1.

By Lemma 4.47, for ω ∈ FP∗2(1) we have ζ(ω) ∈ FP∗3(1). Moreover, by

Lemma 4.51, if a G3-execution has footprint ζ(ω) ∈ FP∗3(1), D outputs 1 in the

G4-execution with the same random tapes. Since ζ is injective, the probability that

D outputs 1 in G4 is at least

∑
ω∈FP∗2(1)

Pr
G3

[ζ(ω)] ≥
∑

ω∈FP∗2(1)

Pr
G2

[ω] ·
(

1− 169q6

2n

)
≥ Pr

G2

[FP∗2(1)]− 169q6

2n
(4.17)

where the first inequality uses Lemma 4.50 and where the second inequality is due

to PrG2 [FP∗2(1)] ≤ 1.

The probability that D outputs 1 in G2 is the sum of two parts: the probability

that the execution is good and D outputs 1, which equals PrG2 [FP∗2(1)], and the

probability that the execution is not good and D outputs 1, which is no larger than

the probability that the execution is not good. Combined with (4.17)

∆D(G2,G4) ≤ Pr
G2

[FP∗2(1)] + 1− Pr
G2

[FP∗2]−
(

Pr
G2

[FP∗2(1)]− 169q6

2n
)

= 1− Pr
G2

[FP∗2] + 169q6/2n

≤ 1022q38/2n + 169q6/2n

where the last inequality uses Theorem 4.41.

Lemma 4.53. For an arbitrary distinguisher D, we have

∆D(G2,G4) ≤ 3× 1033q38/2n.

188



Proof. As discussed after Definition 22, an arbitrary distinguisher D with q queries

can be converted to an equivalent distinguisher D′ that completes all paths and that

makes at most q extra queries in each position. D′ makes at most 2q queries in each

position and is subject to Lemma 4.52, so we have

∆D(G2,G4) = ∆D′(G2,G4) ≤ 1022(2q)38/2n + 169(2q)6/2n

≤ 3× 1033q38/2n.

Theorem 4.54. Any distinguisher with q queries cannot distinguish G1 from G4

with advantage more than 1034q38/2n.

Proof. For any distinguisher D we have

∆D(G1,G4) = ∆D(G1,G2) + ∆D(G2,G4)

≤ 1022q38/2n + 2704q8/2n + 3× 1033q38/2n

≤ 1034q38/2n

where the first inequality uses Lemmas 4.43 and 4.53.

189



Chapter 5: Conclusion

In this thesis, we present two significant advancements to the theory under-

lying designs of modern block ciphers. We study two classical paradigms for block

cipher designs: the Feistel network and the iterated Even-Mansour construction. In

Chapter 3, we showed that ten rounds of the Feistel network suffice to produce an

ideal cipher, an ideal version of a block cipher, assuming that the underlying func-

tions of the Feistel network are independent, random functions. In Chapter 4, we

showed that five rounds of the iterated Even-Mansour construction suffice to pro-

duce an ideal cipher assuming that the round keys are identical and the underlying

permutations of the iterated Even-Mansour construction are independent, random

permutations.

The main open questions that remain from this work are establishing the exact

round complexity required in the contexts of the Feistel network and the iterated

Even-Mansour construction to build an ideal cipher. There has been subsequent

progress since the results presented in Chapters 3 and 4. For Feistel networks, Dai

and Steinberger [23] show that eight rounds suffice to produce an ideal cipher when

the keyed round functions are constructed from a random oracle. This result leaves

only the question of whether six or seven rounds are sufficient. (Coron et al. [17]

190



have shown that at least six rounds are necessary.) We believe that the results in

Chapter 4 combined with the techniques of Dai and Steinberger [23] can be used

to prove that seven rounds of the Feistel network produce an ideal cipher when

the underlying functions are independent, random functions. However, the case of

the six-round Feistel network seems much more complicated, requiring completely

different proof techniques. (See Coron et al. [17] for a discussion of why this is the

case.)

In the context of the exact round complexity of the iterated Even-Mansour

construction, recent results have established this answer. In a recent work accepted

for publication that I was involved jointly with Dai, Steinberger, and Seurin [21],

we show that five rounds of the iterated Even-Mansour construction is necessary

to produce an ideal cipher when the round keys are identical and the underlying

permutations are independent, random permutations. Thus, combining this with

the result in Chapter 4 which proves that five rounds are sufficient, we obtain an

exact answer for the round complexity of the iterated Even-Mansour construction

with the trivial key-schedule, i.e., when the round keys are identical. In the case

where the round keys of the iterated Even-Mansour construction are derived in an

idealized manner, i.e., the attacker holding a “master” key can derive the round

keys only by querying an ideal oracle, a recent pre-print [36] claims that three

rounds of the iterated Even-Mansour construction suffice to produce an ideal cipher

when assuming that the idealized oracle for key derivation is a random function

and the underlying permutations of the iterated Even-Mansour construction are

independent, random functions.

191



In conclusion, we believe that the results of this thesis significantly advances

the state-of-the-art in our understanding of the classical paradigms for design of

modern block ciphers.

192



Bibliography

[1] Technical Specification Group Services 3rd Generation Partnership Project and
3G Security System Aspects. Specification of the 3gpp confidentiality and
integrity algorithms; document 2: Kasumi specification, v.3.1.1, 2001.

[2] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and
John P. Steinberger. On the indifferentiability of key-alternating ciphers. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 531–550. Springer, Heidelberg, August 2013.

[3] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards understanding
the known-key security of block ciphers. In Shiho Moriai, editor, FSE 2013,
volume 8424 of LNCS, pages 348–366. Springer, Heidelberg, March 2014.

[4] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. In 38th FOCS, pages 394–403.
IEEE Computer Society Press, October 1997.

[5] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key
attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EU-
ROCRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, Heidelberg,
May 2003.

[6] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 139–155. Springer, Heidelberg,
May 2000.

[7] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006.

[8] Eli Biham. New types of cryptanalytic attacks using related keys. Journal of
Cryptology, 7(4):229–246, 1994.

193



[9] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A new block
cipher proposal. In Serge Vaudenay, editor, FSE’98, volume 1372 of LNCS,
pages 222–238. Springer, Heidelberg, March 1998.

[10] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
related-key attack on the full AES-256. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 231–249. Springer, Heidelberg, August 2009.

[11] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-
based hash function. In Matthew J. B. Robshaw, editor, FSE 2006, volume
4047 of LNCS, pages 328–340. Springer, Heidelberg, March 2006.

[12] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of
the block-cipher-based hash-function constructions from PGV. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 320–335. Springer, Hei-
delberg, August 2002.

[13] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466. Springer,
Heidelberg, September 2007.

[14] Benoit Cogliati and Yannick Seurin. On the provable security of the iterated
Even-Mansour cipher against related-key and chosen-key attacks. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056
of LNCS, pages 584–613. Springer, Heidelberg, April 2015.

[15] Benôıt Cogliati and Yannick Seurin. Strengthening the known-key security
notion for block ciphers. In Thomas Peyrin, editor, FSE 2016, volume 9783 of
LNCS, pages 494–513. Springer, Heidelberg, March 2016.

[16] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damg̊ard revisited: How to construct a hash function. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–448. Springer, Hei-
delberg, August 2005.

[17] Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin,
Yannick Seurin, and Stefano Tessaro. How to build an ideal cipher: The indif-
ferentiability of the Feistel construction. Journal of Cryptology, 29(1):61–114,
January 2016.

[18] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random ora-
cle model and the ideal cipher model are equivalent. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 1–20. Springer, Heidelberg, Au-
gust 2008.

194



[19] Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 10-
round feistel is indifferentiable from an ideal cipher. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 649–678. Springer, Heidelberg, May 2016.

[20] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag,
2002.

[21] Yuanxi Dai, Yannick Seurin, John Steinberger, and Aishwarya Thiruvengadam.
Indifferentiability of iterated even-mansour ciphers with non-idealized key-
schedules: Five rounds are necessary and sufficient. Cryptology ePrint Archive,
Report 2017/042, 2017. http://eprint.iacr.org/2017/042.

[22] Yuanxi Dai and John P. Steinberger. Feistel networks: Indifferentiability at 10
rounds, 2015. Manuscript.

[23] Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-round feistel net-
works. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 95–120. Springer, Heidelberg, August
2016.

[24] Gregory Demay, Peter Gaži, Martin Hirt, and Ueli Maurer. Resource-restricted
indifferentiability. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 664–683. Springer, Heidelberg,
May 2013.

[25] Anand Desai. The security of all-or-nothing encryption: Protecting against
exhaustive key search. In Mihir Bellare, editor, CRYPTO 2000, volume 1880
of LNCS, pages 359–375. Springer, Heidelberg, August 2000.

[26] Yevgeniy Dodis and Prashant Puniya. On the relation between the ideal ci-
pher and the random oracle models. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 184–206. Springer, Heidelberg, March
2006.

[27] Yevgeniy Dodis and Prashant Puniya. Feistel networks made public, and ap-
plications. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS,
pages 534–554. Springer, Heidelberg, May 2007.

[28] Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu. Indiffer-
entiability of confusion-diffusion networks. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 679–
704. Springer, Heidelberg, May 2016.

[29] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu
Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS, pages 210–224.
Springer, Heidelberg, November 1993.

195

http://eprint.iacr.org/2017/042


[30] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. Journal of Cryptology, 10(3):151–162, 1997.

[31] Pooya Farshim and Gordon Procter. The related-key security of iterated Even-
Mansour ciphers. In Gregor Leander, editor, FSE 2015, volume 9054 of LNCS,
pages 342–363. Springer, Heidelberg, March 2015.

[32] Horst Feistel. Cryptography and computer privacy. Scientific American,
228(5):15–23, 1973.

[33] Craig Gentry and Zulfikar Ramzan. Eliminating random permutation oracles in
the Even-Mansour cipher. In Pil Joong Lee, editor, ASIACRYPT 2004, volume
3329 of LNCS, pages 32–47. Springer, Heidelberg, December 2004.

[34] Louis Granboulan. Short signatures in the random oracle model. In Yu-
liang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 364–378.
Springer, Heidelberg, December 2002.

[35] Chun Guo and Dongdai Lin. Separating invertible key derivations from non-
invertible ones: sequential indifferentiability of 3-round Even-Mansour. De-
signs, Codes and Cryptography, pages 1–21, 2015. Available at http://dx.

doi.org/10.1007/s10623-015-0132-0.

[36] Chun Guo and Dongdai Lin. Indifferentiability of 3-round even-mansour with
random oracle key derivation. Cryptology ePrint Archive, Report 2016/894,
2016. http://eprint.iacr.org/2016/894.

[37] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence
of the random oracle model and the ideal cipher model, revisited. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 89–98. ACM
Press, June 2011.

[38] Tetsu Iwata and Tadayoshi Kohno. New security proofs for the 3GPP confi-
dentiality and integrity algorithms. In Bimal K. Roy and Willi Meier, editors,
FSE 2004, volume 3017 of LNCS, pages 427–445. Springer, Heidelberg, Febru-
ary 2004.

[39] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[40] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key
search. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
252–267. Springer, Heidelberg, August 1996.

[41] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block
ciphers. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS,
pages 315–324. Springer, Heidelberg, December 2007.

196

http://dx.doi.org/10.1007/s10623-015-0132-0
http://dx.doi.org/10.1007/s10623-015-0132-0
http://eprint.iacr.org/2016/894


[42] Xuejia Lai and James L. Massey. Hash function based on block ciphers. In
Rainer A. Rueppel, editor, EUROCRYPT’92, volume 658 of LNCS, pages 55–
70. Springer, Heidelberg, May 1993.

[43] Rodolphe Lampe and Yannick Seurin. How to construct an ideal cipher from
a small set of public permutations. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 444–463. Springer,
Heidelberg, December 2013.

[44] Michael Luby and Charles Rackoff. How to construct pseudorandom permu-
tations from pseudorandom functions. SIAM Journal on Computing, 17(2),
1988.

[45] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the public indif-
ferentiability and correlation intractability of the 6-round Feistel construction.
In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 285–302.
Springer, Heidelberg, March 2012.

[46] Mitsuru Matsui. New block encryption algorithm MISTY. In Eli Biham, editor,
FSE’97, volume 1267 of LNCS, pages 54–68. Springer, Heidelberg, January
1997.

[47] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiabil-
ity, impossibility results on reductions, and applications to the random oracle
methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Heidelberg, February 2004.

[48] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, edi-
tor, CRYPTO’89, volume 435 of LNCS, pages 428–446. Springer, Heidelberg,
August 1990.

[49] National Bureau of Standards. Data encryption standard. U.S. Department of
Commerce, FIPS pub. 46, January 1977.

[50] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 368–378. Springer, Heidelberg, Au-
gust 1994.

[51] Zulfikar Ramzan and Leonid Reyzin. On the round security of symmetric-key
cryptographic primitives. In Mihir Bellare, editor, CRYPTO 2000, volume 1880
of LNCS, pages 376–393. Springer, Heidelberg, August 2000.

[52] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with
composition: Limitations of the indifferentiability framework. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506.
Springer, Heidelberg, May 2011.

197



[53] Yannick Seurin. Primitives et Protocoles Cryptographiques à Sécurité Prouvée.
PhD thesis, Versailles University, 2009.

[54] Yannick Seurin. A note on the indifferentiability of the 10-round feistel con-
struction. http://eprint.iacr.org/2015/903, 2011.

[55] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656–715, 1949.

[56] Akihiro Shimizu and Shoji Miyaguchi. Fast data encipherment algorithm
FEAL. In David Chaum and Wyn L. Price, editors, EUROCRYPT’87, vol-
ume 304 of LNCS, pages 267–278. Springer, Heidelberg, April 1988.

[57] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES. In
IEEE Symposium on Security and Privacy, pages 88–90, 1984.

[58] Kazuki Yoneyama, Satoshi Miyagawa, and Kazuo Ohta. Leaky random oracle
(extended abstract). In Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia
Lai, editors, ProvSec 2008, volume 5324 of LNCS, pages 226–240. Springer,
Heidelberg, October / November 2008.

198


	Dedication
	Acknowledgements
	List of Figures
	List of Abbreviations
	Introduction
	Contributions

	Preliminaries
	Indifferentiability of the 10-Round Feistel Network
	Overview
	The Techniques of Coron et al.
	Our Techniques
	Related Work

	Preliminaries
	Our Simulator
	Informal Description
	Formal Description

	Proof of Indifferentiability
	Proof Overview
	Indistinguishability of the First and Second Experiments
	Properties of the Second Experiment
	Indistinguishability of the Second and Third Experiments
	Indistinguishability of the Third and Fourth Experiments


	Indifferentiability of 5-Round Iterated Even-Mansour
	Overview
	Our Techniques
	Related Work

	Preliminaries
	Our Simulator
	Informal Description
	Formal Description

	Proof of Indifferentiability
	Proof Overview
	Properties of the Second Experiment
	Efficiency of the Simulator
	Indistinguishability of the First and Second Experiments
	Indistinguishability of the Second and Fourth Experiments


	Conclusion
	Bibliography

