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Our world is becoming increasingly interconnected, and the study of networks

and graphs are becoming more important than ever. Domains such as biological

and pharmaceutical networks, online social networks, the World Wide Web, recom-

mender systems, and scholarly networks are just a few examples that include explicit

or implicit network structures. Most networks are formed between different types

of nodes and contain different types of links. Leveraging these multi-relational and

heterogeneous structures is an important factor in developing better models for these

real-world networks. Another important aspect of developing models for network

data to make predictions about entities such as nodes or links, is the connections

between such entities. These connections invalidate the i.i.d. assumptions about

the data in most traditional machine learning methods. Hence, unlike models for

non-network data where predictions about entities are made independently of each

other, the inter-connectivity of the entities in networks should cause the inferred in-

formation about one entity to change the models belief about other related entities.



In this dissertation, I present models that can effectively leverage the multi-

relational nature of networks and collectively make predictions on links and nodes.

In both tasks, I empirically show the importance of considering the multi-relational

characteristics and collective predictions. In the first part, I present models to make

predictions on nodes by leveraging the graph structure, links generation sequence,

and making collective predictions. I apply the node classification methods to detect

social spammers in evolving multi-relational social networks and show their effective-

ness in identifying spammers without the need of using the textual content. In the

second part, I present a generalized augmented multi-relational bi-typed network. I

then propose a template for link inference models on these networks and show their

application in pharmaceutical discoveries and recommender systems. In the third

part, I show that my proposed collective link prediction model is an instance of a

general graph-based prediction model that relies on a neighborhood graph for pre-

dictions. I then propose a framework that can dynamically adapt the neighborhood

graph based on the state of variables from intermediate inference results, as well

as structural properties of the relations connecting them to improve the predictive

performance of the model.
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Chapter 1: Introduction

Our world is becoming increasingly connected, and the data collected from

many real world phenomena contain an explicit or implicit network structure. The

world wide web, social and communication networks, academic and research pub-

lications, biological systems and pharmaceutical networks, and healthcare systems

are a few examples of such phenomena.

The study of network and graph structures in abstract or for specific appli-

cations has been an interesting subject of research for a long time, and predictive

models that leverage the network structures have shown to be effective in several

domains [1]. However, the real-world networks have two characteristics that most

traditional predictive models focused on network domains do not fully leverage; (1)

Heterogeneous and multi-relational nature of the network, and (2) the interdepen-

dency between the nodes and links.

Most of the traditional research performed on the graph and network structures

assume the nodes and links are of a single type. In this dissertations, I present

methods to incorporated the multi-relational and heterogeneous nature of a network

in predictive models and show their effectiveness in improving their performance.
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Another important aspect of modeling networks for predictive tasks is interde-

pendence between entities (e.g., nodes or links) in the network. Predictive machine

learning or data mining models use training data to make predictions about the en-

tities with unknown labels. Even most of the network-based predictive models that

leverage the connectivity between the training data for such tasks make independent

predictions about the entities with unknown labels.

The entities with unknown labels are often not only connected to the training

data but also connected to other entities with unknown labels. Models that can

make collective predictions on multiple entities with unknown labels and leverage

their connectivity can improve their performances in contrast to those that ignore

such characteristics. In this dissertation, I show the effectiveness of accounting for

such relations between the entities with unknown labels and propose models that

can leverage them in different domains.

Many common predictive tasks in different real-world network-based domains

can be modeled as predictions about nodes and predictions about links [1]. Figure 1.1

shows an schematic view of these two general tasks. Many predictions about nodes

can be mapped to a classification task. Identifying spammers from non-spammers in

a social network is an example of node classification or labeling. In this dissertation,

I focus on node classification in Chapter 2 and provide solutions to model multi-

relational nature of the network for collective classification.

Predictions about links can be about the existence or absence of a link in the

network, or about a value assigned to a link if the link were to exist. Predictions

about links that are not already observed in the network can provide information

2



about the probability of interactions between two entities in the future (i.e., link

prediction), or the strength of their future relationship (i.e., link regression). A few

example domains of link prediction are the connection between two people on a social

network, the interaction of a user with a link or an advertisement, the interaction of

a drug with a target protein, and a citation from a researcher to another researcher.

An example of the relationship strength prediction is in recommender systems, where

the goal is to predict how much a person would like a movie or an article. I focus

on predictions about links in Chapter 3.

??

Prediction about links	 Prediction about nodes	

Figure 1.1: Schematic view of predictive tasks in multi-relational networks

The following sections formally define the concepts mentioned above.

1.1 Multi-Relational Networks

Let a multi-relational network or graph be defined as G , 〈V , E〉, where V is a

set of vertices and E is a set of directed or undirected edges. Vertices are identified

by their type and a set of features for each type, formally vi ∈ V and vi , 〈tv,xv〉

where tv ∈ tv shows the type of the vertex and xv are a set of features associated

3



with each vertex of this type. Edges are defined by their source and destination

vertices, formally ei ∈ E and e , 〈vsrc, vdst, te,xe〉 where te ∈ te shows the type

of the vertex and xe are a set of features associated with each edge of this type.

Figure 1.2 shows a simple schematic example of traditional graphs where all nodes

and edges are of a single type versus a simple example of multi-relational networks

where different colors in edges and nodes represent different types.

Heterogeneous	
Multi-Relational	

Traditional Network Models	 Real-world Networks	

Figure 1.2: Traditional network models versus real-world multi-relational networks.

1.2 Collective Prediction

Collective predictions are based on joint reasoning on a set of interlinked un-

known entities where the model’s prediction for an entity is affected by the model’s

predictions about other related entities. For example, observed or inferred informa-

tion about a persons friends’ interests could inform us about that person’s interests.
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Traditional machine learning approaches tend to make two disjoint sets of train

and test instances and assume independence between the instances within and be-

tween each set. In other words, they assume that the instances are independent and

identically distributed (i.i.d.). However, networks are inherently interconnected and

making such assumptions could cause loss of information, and potentially hurt the

performance of the model. Figure 1.3 shows an abstract example of traditional ma-

chine learning methods where the unseen instances are assumed to be independent

and the connection between them are ignored, and an example of collective predic-

tion where the unseen instances are inter-related and the connections between them

are leveraged. More formally traditional machine learning methods make predictions

via the following method:

ŷi = f(xi,yo,Xo;ω) (1.1)

where ŷi ∈ yu is the predicted label for the ith instance from the unobserved set yu,

xi ∈ X represent features of the ith instance, Xo and yo are the features and labels

of instances in the observed training set, and ω represents the model parameters.

Models that perform collective inference [2] based on both known and unknown

labels find an optimal state of all unknowns variables by optimizing an objective

function g over all unknown labels yu and jointly assigning values to all of them.

Formally:

ŷu = arg opt
yu

g(yu,yo,X;ω)

5



e.g., in a probabilistic setting:

ŷu = arg max
yu

P(yu|yo,X;ω)

where X are the features for all instances.

Traditional Predictive Models	 Collective Prediction	

?
?

?

?

Figure 1.3: Independent predictions on unseen data points versus collective predic-

tions.

1.3 Summary of Contributions

In this dissertation, I propose a set of template models to perform collective

predictions on different multi-relational networks and show the importance of both

collective predictions and consideration of multi-relational characteristics in pre-

6



dictive modeling of networks. I focus on link prediction and regression and node

classification.

First, I propose three methods for node classification in a multi-relational

network; I motivate my methods and empirically show their effectiveness in a so-

cial network with several types of time-stamped edges between users. I use the

multi-relational structure of the network and sequential properties of the network

formation to predict spammers, and show the effectiveness of collective propagation

of reputation for this task. Using these approaches I show the effectiveness of lever-

aging the multi-relational nature of the network and collective classification of the

nodes.

I then show that data from different domains can be modeled via a common

bipartite network and present a set of template models for predicting information

about the links in this common augmented bipartite network structure to support

multi-relational characteristics of the network and make collective predictions. I

show the effectiveness of the template model in pharmaceutical and recommender

systems domains and outperform the state-of-the-art methods in both domains via

my general link inference framework.

Finally, I show that the collective link prediction task is an instance of a

general graph-based prediction model that relies on a neighborhood graph for pre-

dictions, and highlight the challenges of using a common method of pre-processed

neighborhood graph selection. I propose a framework that can dynamically adapt

the neighborhood graph based on the state of variables from intermediate inference

7



results, as well as structural properties of the relations connecting them to improve

the performance of the model.
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Chapter 2: Predictions on Nodes

Many predictive tasks in networks can be modeled as node classification. Iden-

tifying the influential users in a social network, inferring the political affiliation of a

user, finding users with fraudulent or malicious behaviors, and predicting a protein’s

function are examples in this category.

In this chapter, I propose models for node classification based on a motivating

example of spammer detection in a social network. Social networks are generally

multi-relational and evolve over time. A social network can be represented as a di-

rected time-stamped multi-relational graph G , 〈V , E〉, where V is the set of vertices

of the form vi ∈ V , and vi , 〈xv〉 representing users and their demographic features

xv, and E is the set of directed edges of the form ei ∈ E and e , 〈vsrc, vdst, te, xt〉

representing their interactions, relation type te, and a time-stamp xt.

The social spammer detection task is to classify node vi with an unknown label

to spammer or not spammer, based on the given network G and a set of observed

labels for already identified spammers and not spammers. We are interested in

assigning a score (e.g., a probability) to each user, in order to rank them from the

most to the least probable spammer in the system: c : vi → [0, 1].

9



In this chapter, I propose three approaches for node classification based on

different characteristics of the network; the network static structural features, the

sequence of edge generation, and collective classification using user credibility. Us-

ing these characteristics, I empirically show the effectiveness of leveraging the multi-

relational nature of the network both in methods based on static structure of the

network and the edge generation sequence. Then, using the third approach, I em-

pirically show the effectiveness of collective classification compared to independent

predictions about the nodes.

The following sections describe the task motivation, related work in this area,

the details of the proposed methods, and the experimental validations.

2.1 Social Spammer Detection

Unsolicited or inappropriate messages sent to a large number of recipients,

known as “spam”, can be used for various malicious purposes, including phishing and

virus attacks, marketing of objectionable materials and services, and compromising

the reputation of a system. From printed advertisements to unsolicited phone calls,

spam has been a perennial problem in modern human communication. With the

emergence of the Internet, spammers have found a cost-effective medium to reach a

broader audience than was previously possible. Email spam is almost as old as the

Internet itself. The first email spam was sent in 1978 to all several hundred users of

ARPANET [3].

10



More recently, social media has given spammers a new and effective medium

to spread their content. Using social media platforms, spammers can disguise them-

selves as legitimate users and engage in realistic looking interactions. They can use

these platforms to send messages to users, leave spam comments on popular pages,

and reply to legitimate comments using spam content. Such diversity of choice has

often increased spammers’ ability to conceal their intentions from traditional spam

filters. According to a study by Nexgate [4], social spam grew by more than 355%

between January to July of 2013, one in 200 social messages contain spam, and 5%

of all social apps are spammy.

While content-based approaches have been shown to be effective in stopping

spam in email and the web, they can be manipulated by sophisticated spammers

via incorporating content randomness. Unlike in email and the web, social media

enables spammers to split their content across multiple messages in order to bypass

spam filters. Link-based approaches that leverage the connectivity of the entities,

have been combined with content-based methods to build more effective methods.

While it is easier to pass traditional content-based filters, behavioral patterns and

graph properties of the users’ interactions are harder to manipulate. Furthermore,

many social networks can not monitor all the generated content due to privacy and

resource concerns. Content-independent frameworks, such as the one proposed in

this chapter, can be applied to systems that provide maximum user privacy with

end-to-end encryption.

Perhaps the most important difference between social networks and email or

web graphs is that social networks have a multi-relational nature, where users have
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relationships of different types with other users and entities in the networks. For

example, they can send messages to each other, add each other as friends, “like”

each other’s posts, and send non-verbal signals such as “winks” or “pokes.” Fig-

ure 2.1 shows a representation of a social network as a time-stamped multi-relational

graph. The multi-relational nature provides more choices for spammers, but it also

empowers detection systems to monitor patterns across activity types, and time.

In this chapter, we propose a content-independent framework which is based on

the multi-relational graph structure of different activities between users, and their

sequences.

Our proposed framework is motivated by data from Tagged.com, a social net-

work for meeting new people which was founded in 2004 and has over 300 million

registered members. However, the framework is applicable to any multi-relational

social network. Our goal is to identify sophisticated spammers that require man-

ual or semi-automated intervention by the administrative security team. These

spammers have already passed initial classifiers and know how to manipulate their

accounts and contents to avoid being caught by automatic filters. We show that

our framework significantly reduces the need for manual administration to control

spam.

Our framework consists of three components. First, we extract graph structure

features for each of the relations and show that considering the multi-relational

nature of the graphs improves the performance. Second, we consider the activity

sequence of each user across these relations and extract k -gram features and employ

mixtures of Markov models to label spammers. Third, we propose a statistical
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Figure 2.1: A time-stamped multi-relation social network with legitimate users and

spammers. Each link 〈v1, v2〉 in the network represents an action (e.g. profile view,

message, or poke) performed by v1 towards v2 at specific time t.

relational model based on hinge-loss Markov random fields to perform collective

reasoning using signals from an abuse reporting system in the social network.

The following sections formally define the problem and our solution framework

along with an experimental validation of our approach on internet-scale data from

Tagged.com.

2.1.1 Related Work in Spam Detection

Spam detection in email [5] and the web [6] have been extensively studied,

and various methods and features have been proposed for them. Network-based

approaches are more closely related to our proposed framework. These methods

can be generally categorized based on feature construction and label propagation.

Shrivastava et al. [7] generalized the network-based spam detection to random link

attacks and showed that the problem is NP-complete. Tseng and Chen [8] used

network features to identify email spammers, and incrementally updated the SVM
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classifier to capture the changes in spam patterns. Oscar and Roychowdbury [9]

used a network representation of the emails where nodes were email addresses and

links between them indicated a sender-receiver relationship. They used clustering

properties of the network to build white and black lists of email addresses and

identify spammers. Becchetti et al. [10] proposed a link-based classification for

web spam detection, and later combined it with content-based features and used

graph topology to improve performance [11]. Since spammers tend to form clusters

on the web (unlike in social networks), the authors leveraged clustering and label

propagation, to further improve their predictions.

A group of methods are based on label propagation and influenced by PageR-

ank. TrustRank [12] for example, used reputable sites as seeds and propagated

reputations through the network. There are multiple variations which propagate

dis-trust. Similar to this work, Chirita et al. [13] proposed MailRank which ranked

the trustworthiness of a sender based on the network representation of the mail en-

vironment. Abernethy et al. [14] proposed a method based on graph regularization

and used regularizers that is based on the intuition that linked pages are somewhat

similar.

The research focus on spam detection in social networks is relatively more

recent. Heymann et al. [15] surveyed different countermeasures to address the spam

issue in social networks, and categorized them into methods based on detection,

demotion, and prevention. Hu et al. [16] combined information from email, text

messages (SMS), and web with Twitter content to detect spammers, and showed

improvements in results. Tan et al. [17] proposed an unsupervised spam detection
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method that focused on identifying a white list of non-spammers from the social

network. They argued that legitimate users show more stable patterns in social

blogs.

Stein et al. [18] described the spam filtering system in Facebook. They high-

lighted that attacks on social media use multiple channels, and an effective systems

must share feedback and feature data across channels. Gao et al. [19] studied mes-

sages between users in Facebook, and used clustering to detect spam campaigns.

They identify multiple clusters associated with several campaigns.

Markines et al. [20] studied multiple features and classifiers to detect spam

in social tagging systems. Benevenuto et al. [21] used content such as presence or

absence of a URL in the post, and user social behaviors such as number of posts to

detect spam on Twitter. Lee et al. [22] used honeypots in Twitter and MySpace to

harvest deceptive spam profiles. They then used content, posting rate, number of

friends, and user demographics such as age and gender as features in their classifier.

Zhu et al. [23] reported that unlike email and web, in social networks, spam-

mers do not form clusters with other spammers, and their neighbors are mostly

non-spammers. They use matrix factorization on user activity matrix of data ex-

tracted from Renren1 and use the latent factors as features for classification.

Evolving social networks are of high interest to researchers and have been

studied for different purposes [24]. Jin et al. [25] modeled a social network as a time-

stamped heterogeneous network and used a clustering method to identify spammers.

They also used active learning to refine their model. Zhang et al. [26] identified

1A social network in China: http://renren.com
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spam campaigns on Twitter by linking accounts with similar malicious URLs in

their posts.

Laorden et al. [27] used collective classification to filter spam messages based

on their text, to reduce the number of necessary labeled messages. They used

implementations in WEKA for collective classification in their evaluation. Geng

et al. [28] used a semi-supervised learning algorithm to reduce the labeled training

data requirement for web spam detection. Torkamani and Lowd [29] proposed a

method to robustly perform collective classification against malicious adversaries

that change their behavior in the system.

2.1.2 Our Model

In our framework, we focus on three different mechanisms to identify spammers

and malicious activities. We first create networks from the user interactions and

compute network structure features from them. As these are evolving networks,

each user generates a sequence of actions with the passage of time. Mining these

sequences can provide valuable insights into the intentions of the user. We use

two methods to study these sequences and extract features from them. We use

the output of these methods as features to classify spammers. We then employ

a collective model to identify spammer accounts only based on the signals from

the abuse reporting system (Greport) as a secondary source to reassure predictions.

Figure 2.2 shows an overview of the framework we have proposed for this problem
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and the following sections discuss our framework and extracted features in more

details.
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Figure 2.2: Social spammer detection framework: It includes graph structure fea-

tures, action sequence features and model, and a collective model to jointly identify

credible accounts and spammers.

2.1.2.1 Graph Structure Features (XG)

We create a directed graph Gr = 〈V , Er〉 for each relation r in the social

network, where vertices V consist of users, and edges Er represent interactions of

type r between users, e.g. if user1 sends a message to user2 then Gmessage will contain

v1 and v2 representing the two users, and e1,2 representing the relation between them.
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We have ten different graphs each containing the same users as vertices but different

actions as edges.

We use six graph analytics methods (mi) to compute the features. Using each

mi we create a set of features for each relation graph Gr as following:

Xmi
Gr =

[
Xmi
Gr1

. . . Xmi
Grn

]
where mi is one of the graph analytics methods described below, ri is one of the

relationships considered in the study, and Xmi
Gr is the matrix corresponding to all

the features generated using the mi method.

We then use these features together to get a complete multi-relational graph

feature-set, as the following:

Xm
Gr =

[
Xm1
Gr . . . Xmk

Gr

]

The graph analytics methods (mi) we use to extract the features from each

relation network are described below. Each of these algorithms provieds different

perspectives on the local connectivity of the graph and neighborhood characteristics

of each user. Our goal is to capture the structural differences between spammers’

and legitimate users’ multi-relational neighborhood graph.

PageRank: PageRank [30], is a well known ranking algorithm proposed for rank-

ing websites, and computes a score for each node by considering the number and
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quality of links to a node. The algorithm is based on the underlying assumption

that important nodes receive more links from other nodes.

Degree: We compute the total degree, in-degree, and out-degree of each node for

each relation, which correspond to the total number of activities a user has been

involved in, the number of communications (or actions) a user received, and the

number of actions the user performed.

k-core: k -core [31] is a centrality measure that is based on the graph decomposi-

tion via a recursive pruning of the least connected vertices. The value each vertex

receives depends on the step in which the vertex is eliminated from the graph. e.g,

vertices removed on the third iteration receive the value three.

Graph Coloring: Graph coloring [32] is an assignment of colors to elements (here

vertices) of a graph, such that no two adjacent vertices share the same color. Using

a greedy implementation, we obtain the color identifier of each vertex as a feature.

Connected Components: A connected component [33] is a group of vertices

with a path between each vertex and all other vertices in the component. A weakly

connected component is a maximal set of vertices such that there is an undirected

path between any two vertices in the set. We compute the weakly connected compo-

nent on each graph and extract the component identifier and size of the component

that the vertex participates in as features.
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Triangle Count: The triangle count [34] of a vertex is the number of triangles (a

complete subgraph of three vertices) in the graph the vertex participates in. Such

number is an indication of the connectivity of the graph around that vertex.

2.1.2.2 Sequence-Based Features (XS)

Sequence classification is used in many domains, including biology and health-

informatics, anomaly detection, and information retrieval [35]. In dynamically evolv-

ing multi-relational social networks, each user vi generates a sequence of edges via

their actions as the following:

Svi = 〈rp, . . . , rq〉

Our hypothesis is that spammers are typically bots and follow specific actions

in the network, and it is likely that their sequence of actions diverge from the norm.

In this section we study these sequences and provide two different solutions for

classifying users based on their activity sequences. It is important to note that such

an approach would not be possible if the network were not multi-relational.

Sequential k-gram Features: The simplest way to represent a sequence with

features is to count each element in the sequence independently. However, the order

of the sequence cannot be captured with this approach. Furthermore, in our scenario

the values of these features will be the same as the out-degree for each vertex, which

we previously computed in the graph-based features. A better approach would be to
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use a short sequence segment of k consecutive actions, called a k -gram to capture the

order of events [35]. The sequence can be represented as a vector of the frequencies

of the k -grams. To keep the feature space computationally manageable we chose

bigram sequence features where k = 2. For example, the number of times a user

vi sent a message after performing a profile view, would be the value for the feature

xviprofileview-message. The bigram feature set for the sequence S will be the following:

XSB =
[

Xr1r1 . . . Xrprq . . . Xrnrn

]
where ri is one of the relationships considered in the study, Xrprq =

[
xv1rprq . . . x

vm
rprq

]ᵀ
,

and xvirprq is the total number of times user vi performed an action of type rq con-

secutively after performing rp.

Chain-augmented Naive Bayes Model: While k -gram features capture some

aspects of the order of elements in the sequence, they may miss patterns in longer

sequences. Increasing k will rapidly increase the feature space, introducing com-

putational barriers and estimation challenges due to feature sparsity. Instead, to

capture the salient information from longer sequence chains, and to study the predic-

tive power of this information, we construct a simple generative model for sequence

data. The model is equivalent to the chain-augmented naive Bayes model of [36],

a special case of the tree-augmented naive Bayes model [37] which has been shown

to be effective in language modelling. The model posits that each user’s actions are

generated via a mixture of Markov models. In more detail, each class (spammer or

not spammer) is associated with a mixture component y. Conditional on the class
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(mixture component) y for a user, that user’s sequence of actions are assumed to

be generated from a Markov chain specific to that class. The joint probability for a

user’s class y and action sequence xi, . . . , xn is given by

P (y, x) = P (y)P (x1|y)
n∏
i=2

P (xi|xi−1, y) ,

which we summarize with a directed graphical model diagram in Figure 2.3. We

place symmetric Dirichlet priors on the parameters of the discrete distributions P (y),

P (x1|y), and P (xi|xi−1, y), and compute maximum a posteriori (MAP) estimates of

them, which are readily obtained as the proportion of each outcome in the training

data, with the counts first adjusted by adding the Dirichlet smoothing parameter

α = 1. Finally, at test time we compute the posterior probability of the user’s class

label given the observed action sequence x via Bayes rule, P (y|x) ∝ P (x|y)P (y) =

P (y, x).

y

x1 x2 xn-1 xn...

Figure 2.3: Chain-augmented naive Bayes model, for one user. In the diagram, y

indicates the label (spammer or not) and xi represents the ith action performed by

the user.
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There are multiple methods to incorporate the predictions from this model

into our framework. We simply use the ratio of posterior probabilities and their

logarithmic forms as a small feature-set (XSM ) for our classifier.

2.1.2.3 Collective Classification with Reports

Most websites that enable users to publish content also provide an abuse report-

ing mechanism for other users to bring malicious behavior to the system’s attention.

However, these systems do not necessary offer clean signals. Spammers themselves

often randomly report other users (spammers and legitimate users) to increase the

noise, legitimate users often have different standards for malicious behaviors, and

users may report others for personal gains such as censorship or blocking an op-

ponent in a (social) game from accessing the system. A model that can extract

sufficient information from the relational report feature, can enhance the admin-

istrative team’s performance by focusing their attention, and can also provide an

additional feature or parallel mechanism for spam classification.

We propose a model based on Hinge-loss Markov Random Fields (HL-MRFs)

[38] to collectively classify spammers within the reported users, and assign credibility

scores to the users offering feedback via the reporting system. Using this model a

better ranking of the reported users based on their probability of being spammers

can be provided to the security administration team. The hinge-loss formulation

has the advantage of admitting highly scalable inference, regardless of the structure

of the network.
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HL-MRFs Collective Model for Reports: The goal of this model is to use

reports to identify spammers. We study three HL-MRFs models to incorporate the

reporting users’ credibility into the reporting system and improve the predictability

of the reports. We show that collective reasoning over credibility of the report-

ing user and the probability of the reported user being an spammer, increases the

classification performance of the system.

Our collective HL-MRFs model uses the report relation graph (Greport), and is

based on the intuition that the credibility of a user’s abuse reporting should increase

when they report users that are more likely to be spammers. Hence, if a user reports

other users whom there are other evidence supporting them being spammers, the

credibility of that person should increase. On the other hand, if the user reports

another user that is unlikely to be a spammer, the credibility of the reporting user

should decrease.

Credible(v1) ∧Reported(v1, v2)→ Spammer(v2)

Spammer(v2) ∧Reported(v1, v2)→ Credible(v1)

¬Spammer(v2) ∧Reported(v1, v2)→¬Credible(v1)

Prior-Credible(v)→ Credible(v)

¬Prior-Credible(v)→¬Credible(v)

¬Spammer(v)

Figure 2.4: Collective HL-MRFs model to predict spammers based on the reports

from other users.

We propose the model shown in Figure 2.4 to capture the collective intuition.

We incorporate prior credibility of the reporting users based on the past reporting

behavior into the model. The negative prior on SPAMMER is included in the model
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to complement the first rule that increases the score of users being spammers. To

study the effect of each part of the model, we experimentally compare the pro-

posed collective model with two simpler HL-MRFs models that do not contain the

collective reasoning and credibility priors in section 2.1.3.5.

2.1.3 Experimental Validation

We performed four sets of experiments to evaluate the proposed methods. First

we study the graph structure properties and compare the multi-relational approach

with only considering a single relation. We also study using one graph analytics

algorithm as a feature, comparing to having features from multiple methods. We

then study the effectiveness of sequence mining features and combine them with

graph-based methods to measure the overall performance enhancements. We then

include only three demographics features for each user to measure their influence

on the performance. Finally we perform collective reasoning over abuse reports and

measure the improvement of the predictions with this method.

For our experiments we used Graphlab CreateTM and the Java-based open-

source Probabilistic Soft Logic (PSL),2 on a single Ubuntu machine with 32GB RAM

and 3.2GHz CPU (4 cores). For classification, we used Gradient-Boosted Decision

Trees which is a collection of decision trees combined through a technique called

gradient boosting [39].

The deployment options of the framework and what actions are planned to be

taken on the identified spammer accounts determine which performance metrics are

2http://psl.umiacs.umd.edu
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more appropriate for this task. High precision lets the spam accounts be blocked

without manual intervention, and without concerns of the system harming legitimate

users. High recall allows the system to identify the legitimate users with more

confidence and clear the environment via deploying measures such as CAPTCHA

and additional account verifications for the users with suspicious status. Hence,

the appropriate metric to measure the performance of this system is the Precision-

Recall curve. The ROC curve could also be useful, however, due to the high class-

imbalance, it would not provide much insight, and unless properly adjusted, it would

result in over-optimistic estimates. We report the area under Precision-Recall curve

(AUPR) and the area under the ROC curve (AUROC) for the experiments. We used

10-fold cross-validation to estimate the performance of each method and feature-

set. Unless stated otherwise, the reported numbers represent mean and standard

deviation over 10-fold cross-validation.

2.1.3.1 Dataset

The dataset3 was collected from the Tagged.com social network website, which

is a network for meeting new people, and has multiple methods for users to make

new connections. Tagged has various methods to deal with spam. It uses several

registration and activation filters to identify and block spam accounts based on tra-

ditional methods such as content and registration information and patterns. Tagged

also employs a reporting mechanism that users can report spammers to the system.

3An anonymized sample of the multi-relational part of the dataset along with our code for the
experiments can be found here: http://github.com/shobeir/fakhraei_kdd2015.
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An administrative security team monitors the network for malicious behaviors and

manually blocks spammers, which we used as ground truth labels. Our goal in this

study is to identify sophisticated spammers that require manual intervention by the

security team. These spammers have already passed initial classifiers and know how

to manipulate their content to avoid being caught by automatic filters.

The purpose of the social network affects its susceptibility to spam. A social

network which is designed for connecting the users who already know each other,

can control spam by limiting the communications between users who are not already

connected in the network. However, a social network that promotes finding new

connections may like to impose minimum limitations on how users interact. Tagged,

which is a social network for meeting new people, has multiple venues for users to

communicate without much restriction.

Another challenge with identifying spammers in multi-purpose social networks

such as Tagged is that users join the network for different reasons. For example,

users may come to Tagged to play social games such as Pets and MeetMe, to find

romantic relationships, or simply to spend time with virtual connections. Not only

they will generate different behavioral patterns, they will use security measures such

as abuse reporting mechanism differently and introduce noise to it.

In our experiments, all the users who had at least one activity in the sampling

time frame were included in the sample dataset. More formally our initial sample
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included the following elements:

V = { v | ∃ e = 〈v, v∗, r∗, tk〉 ∈ Eall ∧ tb ≤ tk ≤ te}

E = { e = 〈vi, vj, r∗, tk〉 | ∃ vi, vj ∈ V ∧ ts ≤ tk ≤ te}

where v∗ indicates any user in the network, r∗ indicates any type of action in the

study, Eall indicates all the edges in the Tagged network, and tb and te indicate the

time of the beginning and the end of the sampling period.

To perform a retrospective study, we chose tb and te such that enough time

had passed since the sampling period by the time we accessed the data (taccess), so

that most of the spam accounts were identified and labeled. We then removed the

users who had deactivated their accounts themselves by taccess, because we could not

determine their labels. The remaining users were labeled as spam if their accounts

has been manually canceled by a security team by taccess. Although the security

team cancels accounts for multiple reasons, not just spam, most of the canceled

accounts are due to malicious activities. For simplicity, we labeled all the canceled

accounts as spammers. Ten different activities on the website were selected during

the sampling time frame. The activities included in the study are: viewing another

user’s profile, sending friend requests, sending messages, sending luv, sending winks,

buying or wishing others in the Pets game, clicking yes or no in the MeetMe game,

and reporting other users for abuse.

There are more effective ways to sample the network in order to conserve its

characteristics [40, 41, 42]. However, for practical reasons and ease of deployment, we
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have chosen the simple time-based sampling method. Further performance improve-

ments may be achieved via better sampling employments. The spammer accounts

that were selected for this study could initially bypass Tagged deployed preventa-

tive measures and successfully perform at least one action in the network. Although

they could be identified within a short period of time after their activity, their iden-

tification required a manual or semi-automated procedure by the members of the

security team. Not only are these spammers harder to identify, they are also very

rare in the dataset, causing a huge class imbalance.

Table 2.1 shows some statistics from the sample we used. These numbers do

not represent the statistics of the Tagged social network, as they have been altered

by limiting the number of action types in the study as well as eliminating users with

deactivated accounts at taccess (which is later than the sample period). Furthermore,

only the users who performed an action in the sampling period were included in the

dataset.

Table 2.1: Data Sample Statistics.

Entity Count

|V| (total users) 5,607,454
|E| (total actions) 912,280,409
max(|Er|) (number of actions that are most frequent action type) 350,724,903
min(|Er|) (number of actions that are least frequent action type) 137,550
total users labeled as spammers (%3.9) 221,305

All of our experiments are based on the relational data in the following form:

〈ti, vsrc, vdst, rj〉
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where ti is the time stamp, vsrc is the user who initiated the action, vdst is the user

the action was towards, and ri categorizes the type of action.

2.1.3.2 Graph Structure Features Performance

Table 2.2 shows the average results of classification via graph-based features.

The first row indicated the best results from using a single relation with features

from all the graph-based algorithms. The second row shows the best graph-based

feature with all the relations. Comparing the results from the two rows suggests

that combining different relations is more effective than combining features from

different algorithms on a single relation. Using all algorithms to compute features

on all relation graphs results in the best performance for graph-based methods.

Table 2.2: Classification with graph-based features.

Experiment AUPR AUROC[
Xm
Gri

]
1 Relation, k Methods 0.187±0.004 0.803±0.001[

Xmi
Gr

]
n Relations, 1 Method 0.285±0.002 0.809±0.001[

Xm
Gr

]
n Relations, k Methods 0.328±0.003 0.817±0.001

2.1.3.3 Sequence-based Features Performance

Next, we experimentally evaluated the sequence-based features. First, we

study their effectiveness independently, and then we measure their performance in

combination with the graph-based features. To compute the bigram features, we

first sorted all of the activities in our dataset based on user IDs and timestamps via
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Figure 2.5: Precision-Recall curve and ROC for models with k-gram and graph-

based features. Using both features with user demographics significantly improve

the results.

the standard external sort function in Linux. We did a single pass on the sorted file

to compute the bigram features.

Table 2.3: Classification with k -gram features.

Experiment AUPR AUROC[
XSB

]
k -gram features 0.471±0.004 0.859±0.001[

XSB Xm
Gr

]
k -gram & graph features 0.543±0.005 0.914±0.001

Table 2.3 shows the results of classification using the bigram features. The sec-

ond row suggests that a model that uses both graph-based and k -gram features out-

performs the ones that use them independently. Precision-Recall and ROC curves

from graph-based and k -gram features are shown in Figure 2.5.

We further study the sequence-based classification with the Mixture of Markov

Models (MMM) approach. We did a single pass on the sorted file we already gener-
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ated for the bigram features to compute the probabilities for this model. We then

used the probabilities generated from this model in logarithmic and ratio forms as

features for classification.

Table 2.4: Classification with mixture of Markov models.

Experiment AUPR AUROC[
XSM

]
MMM 0.246±0.009 0.821±0.003[

XSM XSB

]
MMM & k -gram 0.468±0.012 0.860±0.002[

XSM XSB Xm
Gr

]
MMM & k -gram & graph 0.550±0.005 0.914±0.002

The results from Table 2.4 shows the classification performance with these

features, which suggests minimal improvement employing longer sequence models.

This may suggest that the bigram features can incorporate enough signal to capture

spam activity in a multi-relational network. However, computing the Mixture of

Markov Models does not impose much overhead when extracting bigram features,

and can be done within the same process.

2.1.3.4 Demographic Information Performance

Many people use Tagged to find new relationships. We anticipate that in such

environment users behave differently based on their demographics. To capture this

point, we added three features (XD) to our model: age, gender, and time since

registration. Age and gender highly improved the classification results as they tend

to be most discriminative of behavioral patterns. Another feature that we included

in our model is the time past since registration. As mentioned earlier we labeled all
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the cancelled accounts for malicious activities as spammers. However, these users

have different behavioral patterns, where spammers who mainly mass advertise,

may use much newer accounts, in contrast to users who have been blocked due to

misbehaviors, and have been active in the system much longer.

Table 2.5 shows the significant improvements of the results when including

these features in different models. Figure 2.5 shows the Precision-Recall and ROC

curves of the complete framework.

Table 2.5: Classification when including user demographics information.

Experiment AUPR AUROC[
XD XSB

]
Demo. & k -gram 0.689±0.006 0.935±0.001[

XD Xm
Gr

]
Demo. & graph 0.701±0.002 0.950±0.001[

XD XSB Xm
Gr

]
Demo. & k -gram & graph 0.778±0.001 0.963±0.001[

XD XSM XSB Xm
Gr

]
Demo. & MMM & k -gram & graph 0.779±0.002 0.963±0.001

2.1.3.5 Collective Classification with Reports

The reporting system can have useful information to detect spammers. We

studied the effectiveness of our proposed collective model (in Figure 2.4) to ex-

tract useful signals from this relation. We first designed a baseline model shown in

Figure 2.6a to only use the reports to detect spammers. This model gives similar

results to assigning total count of the reports for each user as their score of being a

spammer. We then designed the model shown in Figure 2.6b to use the reports and

prior credibility of the reporting user to detect spammers. This model gives similar
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results to assigning total weighted count of the reports for each user as their score

of being a spammer, where reports are weighted by the credibility of the reporting

users.

Reported(v1, v2)→ Spammer(v2)

¬Spammer(v)

(a) HL-MRFs model that only uses the reports to detect spammers. This model would

give similar results to assigning total count of the reports for each user as their score of

being a spammer.

Credible(v1) ∧Reported(v1, v2)→ Spammer(v2)

Prior-Credible(v)→ Credible(v)

¬Prior-Credible(v)→¬Credible(v)

¬Spammer(v)

(b) HL-MRFs model that uses the reports and prior credibility of the reporting user to

detect spammers. This model would give similar results to assigning total weighted counts

of the reports for each user as their score of being a spammer.

Figure 2.6: Simple HL-MRFs models to compare with the collective model shown

in Figure 2.4.

To perform the experiments we have only used Greport, which is a sparse graph.

Our collective model is aimed to propagate information between the reported users’

likelihood of being spammer, through the credibility of the reporting users. In order

for information to propagate in the model, each reporting user should at least have

reported two other users. Hence, we removed the vertices with out-degree less than

two. We then performed 10-fold cross validation to compare the three models and

study the effectiveness of the collective model. We used the ratio of the correctly

reported spammers from the training data as a simple prior on credibility for each
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user. Potentially more effective priors could incorporate the the count and the

frequency of the reports as well.

Table 2.6 shows the results from our three experiments. Using the collective

model significantly increases the performance of the reports in detecting spammers.

These predictions can be added to the overall classification framework as a feature.

However, since the report graph was sparse relative to the other relation graphs in

our dataset, many users could not be classified with this model. Hence, we did not

include these predictions as a feature in our framework. This model can be deployed

independently to improve the signal from the reports.

Table 2.6: Classification with collective HL-MRFs model.

Experiment AUPR AUROC

Reports (Figure 2.6a) 0.674±0.008 0.611±0.007

Reports & Credibility (Figure 2.6b) 0.869±0.006 0.862±0.004

Reports & Credibility & Collective Reasoning (Fig-
ure 2.4)

0.884±0.005 0.873±0.004

2.1.4 Discussion and Conclusion

We have studied the characteristics of time-stamped multi-relational social

networks that can be leveraged to detect spammers. We showed that by considering

action or relation types and incorporating graph-based features from different re-

lations, one can improve the spammer classification performance. We then showed

two sequence mining techniques and their effectiveness to model sequences extracted
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from time-stamped multi-relational network for spam detection. We also proposed

a collective model to refine and improve the signals from the abuse report graph.

Depending on the precision of the results from the model, the security system

could either automatically flag a user as spammer and deactivate the account or

block its activities in the system, or ask for more verification. Our experimental

results show that our model can detect over 65% of the manually detected spam-

mers with higher than 85% precision. These sophisticated spammers had passed

the already deployed security measures and performed some activity in the net-

work. Inspecting some of the false positives with the highest spammer probability,

we found unlabeled and abandoned spammer accounts, which suggests the real pre-

cision of the proposed framework might actually be higher than reported. These

results can significantly reduce the manual overhead of the administrative security

team. Furthermore, our results show that the precision at 80% recall, is above

50%, suggesting this portion of users can be asked for additional verification (e.g.,

CAPTCHA) without affecting many legitimate users.

This model can be deployed as an iterative batch module to complement real-

time filters. Except for some parameters such as the user credibility prior for the

report system that should be set and adjusted globally for the user, the model has to

be re-trained from a fresh sample of the network to adjust to the adversarial changes

in patterns. Computing the parameters of the models on a relatively low-powered

single machine for our experiments suggests that the framework could be run on

very short intervals depending on the training size and computational power. The

features can also be computed in parallel. Using Graphlab CreateTM, computing
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the features is highly efficient. To provide an example, for a graph with 5.6 million

vertices and 350 million edges computing PageRank on our experiment machine took

approximately 6.25 minutes, triangle counting 17.98 minutes, k-core 14.3 minutes,

and graph coloring 143 minutes.

To optimize the model for production, it is possible to perform feature selection

and reduce the necessary features. Feature selection [43] may also improve the

performance of the model. Our method for collectively refining the signals from the

report graph can be used independently or as a feature in the framework. Improved

precision of the predictions via reports enables the system to take actions with more

confidence, and reduces the manual overhead.

Our method should be retrained with every new sample. An online learning

method that can incorporate the changes in the dynamic network can effectively

improve the usability of our framework. Another approach that could improve the

prediction results significantly could be incorporating this framework with content-

based models. Furthermore, spam accounts often do not act independently and are

part of spam campaigns. Their targets may often not be at random as well. They

may use a white list of legitimate users to target. Our initial observations show

that spammers make relations with legitimate users disproportionally to the overall

population ratios. A multi-relational model that can classify spammer accounts

based on their target accounts, and identify campaigns based on their relational

information could potentially improve the results.
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Chapter 3: Predictions on Links

Another important task in multi-relational networks is predicting information

about links. The prediction could be about the existence or absence of a link or

relation in the network. For example “will two users become connected in the

future?”, “will a user click on a link?”, “will a researcher cite the work of another

researcher?”, or “will a drug interact with a particular target? or another drug?”.

These tasks that can be designed as a binary prediction about the existence of a

link are often referred to as link prediction [44].

Another set of predictive tasks on links is predicting a value (e.g., strength)

for the links. A common example is recommender systems, where the question is,

“what is the rating a user would give to an item such as a movie or a product?”. In

this case, we mostly care about the strength or weight of the link or relation. This

task is sometimes called link regression [45].

Like any predictive task, predictions on links can be evaluated via different

metrics. The plan for using these predictions determines their evaluation methods.

Many of the predictions in multi-relational networks will be used as a basis for

recommendation for further actions. For example, recommending a product to a

user, or showing a list of related links, pages, articles, and other users to a user
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to connect to, or prioritizing which potential interactions in a biological network

look more promising for further experiments are all predictions that can be used

for further actions. Therefore, link prediction methods are often evaluated with a

ranking measure like precision, recall, and the ROC curve [46].

Many common data mining tasks can be mapped to a link prediction on a

bi-typed network structure. The following sections describes this common structure

and its applications.

3.1 General Augmented Bipartite Structure

A common multi-relational network structure that can model many applica-

tions is an augmented bipartite structure also called bi-typed networks [47]. In these

structures (shown in Figure 3.1a), we have two types of nodes and links of inter-

est that we want to make prediction about between these different types of nodes.

Examples of such structure include networks of drugs and targets and interactions

between them, networks of users and items and their interactions, networks of im-

ages and keywords and the links between them, and networks of researchers and

topics and the authorship relation between them.

Different predictive models have been proposed for the basic form of this struc-

ture, from matrix completions [48] to counting paths, generative probabilistic graph-

ical models [49], and neural networks. However, it is highly common that additional

information is available in the network that can help with the performance of the

model. The common approach to model the augmented bipartite network is to cus-
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tomize one of the general approaches, not specifically designed for multi-relational

networks, based on the type of information available [50].

Figure 3.1 shows the different types of information that can augment this

bipartite structure. Some cases are the following:

1. Additional non-relational features for each node (Figure 3.1b). Examples are

demographic features of users and content information for items in recom-

mender systems.

2. Additional relational features (links) for each node (Figure 3.1c). Examples

include similarities between two drugs based on their chemical structure, and

similarities between two targets based on their sequences in a drug-target

interaction network.

3. Additional relational features (links) for each node with external nodes (Fig-

ure 3.1d). Examples are author-institute and paper-conference relationships

for author-paper citation network.

4. Additional non-relational features for each link (Figure 3.1e). An example of

this is context features such as time in recommender systems.

5. Additional relational features for each link (Figure 3.1f). An example of this is

adding the download relationship between authors and papers to the citation

network.

These structures often can be converted to other forms to prepare them to

best fit the desired model. Specifically, most of these structures can be converted
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Figure 3.1: Augmented bipartite multi-relational network structures.
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to the form shown in Figure 3.1c. Figure 3.2 shows an example of such case where

3.1d can be converted to 3.1c by computing Jaccard or Cosine similarity, and 3.1b

to 3.1c by computing the distances (or similarities) in feature spaces.

… …
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Type 1 

 
Type 2 
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x

x

x

x

x

… …

 
Type 1 

 
Type 2 

… …

 
Type 1 

 
Type 2 

Euclidean Distance	 Jaccard/Cosine Similarity	

Figure 3.2: Converting different augmented bipartite multi-relational network struc-

tures to a single form.

We propose a general method to make predictions on the links for the aug-

mented form of the bi-types structure, using a special form of probabilistic graphical

model. We have used this method to achieve state-of-the-art performance for link

prediction in drug-target interaction networks [51] and recommender systems [52].

In this chapter, we discuss the application of our approach in drug-target interac-

tions networks and its extension to recommender systems. The following section
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describes our general solutions for link inference, and its application in different

domains.

3.2 Proposed General Link Inference Model

As we have empirically shown in Chapter 2, both modeling the multi-relational

nature of the network and collective predictions improve the predictive performance.

In our method for predictions on links, link inference for short, the aim is to lever-

age both of these findings. In addition, we want to be able to incorporate any prior

information we would have about the network and links into our models. To capture

all these, we propose a similarity-based link inference method, that we implement

via a special probabilistic graphical model described in Appendix 6. The proposed

methods can be used as a template for link inference in several domains with dif-

ferent kinds of information. Our template model is based on two main components;

similarity-based reasoning and priors. The following sections describe each of the

components in more details.

3.2.1 Similarity-based Reasoning

Our method is based on the assumptions that similar links have similar values.

One challenge is to define the similarity between links, which is not directly observed

in the data. We consider the similarity between two links to be the similarity between

the two end nodes of the links. In the common structure shown in Figure 3.1c, the

similarity between the two end nodes of the two links are captured in the network.
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Figure 3.3 shows the model to consider the similarity of two links, and the way

to model the similarity of their end nodes. As shown in the corresponding factor

graphs for each of the scenarios, we do not observe the link similarity in Figure 3.3a,

but we can observe the similarity of the nodes used in Figure 3.3b. A special case

of our method is when we only consider the similarity of the nodes on one side.

This situation resembles the common triad structure used in graph mining tasks

to capture concepts such as homophily. Figure 3.3c shows the corresponding factor

graph of the triad structure.

a b

cd

Similar(link(a,b) ,link(d,c))	

Link(a,b)	 Link(d,c)	

?	

(a) Directly modeling the

similarity between links.

a b

cd

Similar(a, d)	

Link(a,b)	 Link(d,c)	

Similar(b, c)	

(b) Modeling similarity of the

links as similarity of nodes.

a
b

c

a

d
b

Similar(a, d)	

Link(a,b)	 Link(a,c)	

Similar(b, c)	

Link(a,b)	 Link(a,c)	

(c) Special case of traid struc-

ture.

Figure 3.3: Template model for multi-relational similarity-based link inference,

where similar links should have similar values.

Our similarity-based model supports the two main characteristics of real-world

networks; multi-relational nature and collective predictions. Multi-relational nature
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is modeled via the possibility of using multiple similarities in our factor model shown

in Figure 3.4b, and the the collective predictions are supported via connecting two

instances with unknown labels in our factor model shown in Figure 3.4a.

a
b

c

Similar(b, c)	

Link(a,b)	 Link(a,c)	

(a) Performing collective predictions or

joint inference via connecting the in-

stances with unknown labels (i.e., unob-

served variables) in the factor graph.

a
b

c

Similar(b, c)	

Link(a,b)	 Link(a,c)	

Similar(b, c)	

(b) Supporting multiple similarities be-

tween nodes in the factor graph via in-

cluding an observed variables for each

type of similarity.

Figure 3.4: Leveraging multi-relational nature of the network and collective predic-

tions in our template model.

3.2.2 Priors

Often additional prior information about the links are available that we want

to include in our model. We identified three types of prior information that are

commonly available in different networks:
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Sparsity: Often we know that network is sparse and we want to incorporate that

information in the model, and enforce such prior on the model. The strength of

such prior could be set manually or learned from training data.

Distribution mean: In link regression we may know the mean value correspond-

ing to the group of links of interest. For example, in recommender systems, we may

want to incorporate the average rating that a user gives to items or the average

rating an item receives from all users in our model. We refer to such constraints the

distribution mean priors.

Predictions from other models: We can also incorporate predictions from other

methods in our model as priors and use our model as an ensemble approach. Other

methods such as factorization-based approaches may not be able to incorporate the

multi-relational nature for the graph or perform collective predictions, but they may

provide signals based on other aspects to improve the performance.

3.2.3 Implementation via HL-MRFs

The proposed template link inference model can be implemented via differ-

ent probabilistic graphical model frameworks. Due to computational efficiency and

modeling convenience of using Probabilistic Soft Logic (PSL) we chose Hinge-loss

Markov Random Fields (HL-MRFs) to implement our model. The details of HL-

MRFs are provided in Appendix 6. This section includes details to implement our
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template model with HL-MRFs, and how our modeling requirements is satisfied by

it.

Similarity-based reasoning: To implement a similarity-based link inference model

presented in Figure 3.3b we use the following logical representation with PSL:

λ : Link(A,B) ∧ Similar(B,C) ∧ Similar(A,D)→ Link(D,C) (3.1)

And to implement the special case of the similarity-based link inference tem-

plate presented in Figure 3.3c we use the following logical representation with PSL:

λ : Link(A,B) ∧ Similar(B,C)→ Link(A,C) (3.2)

As described in Appendix 6, to infer the values corresponding to the MAP

state in HL-MRFs, the following loss is minimized over all random variables.

` =
[

max{0, val(rbody)− val(rhead)}
]p

where a rule is in the form of rbody −→ rhead and p ∈ {1, 2} defines the loss to be

linear or quadratic.

For example, rule 3.2 translates to a potential function in our factor graph

that results in minimizing the following loss when (Link(a, b) +Similar(b, c) > 1):
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` =
[

max{0,Link(a, b)− (1− Similar(b, c))− Link(a, c)}
]p

where a,b,c are instances that can instantiate the rule.

Figure 3.5b shows the schematic loss for this rule in linear form where Link(a, b)

and Similar(b, c) are observed and Link(a, b) is not observed. Intuitively, the

plateau region corresponding to 1−Similar(b, c) is the uncertainty on the closeness

of the values of two links. For example, in the extreme case where Similar(b, c) = 1

any divergence between the two values of the links results in a penalty. The loss

corresponding to the general form of the rule 3.1 is shown in Figure 3.5a. Similar

intuitive arguments holds for the general form as well.

Priors: We use two types of PSL templates to model the three set of priors men-

tioned earlier; negative priors to enforce sparsity and double-sided prior to model

distribution mean and predictions from other models.

Negative priors implemented via the following rule simply state that the link

should not exist. The corresponding loss to the negative prior is shown in Fig-

ure 3.6a.

λ : ¬Link(A,B) (3.3)

The double-sided priors implemented via the following rule constrain the value

of the link to be close to the value of the prior. The corresponding loss to the double-

sided prior is shown in Figure 3.6b.
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Figure 3.5: Corresponding losses to each template. S(a, d) and L(a, b) indicate

Similar(a, d) and Link(a, b).

λ : Prior(A,B)→ Link(A,B) (3.4)

λ : ¬Prior(A,B)→ ¬Link(A,B) (3.5)

As shown in Figure 3.6, the negative prior enforces the values of the links to be

close to zero unless there is evidence to push the value higher and justify the penalty

of the negative prior. Similarly in the double-sided prior unless there is evidence to

push the value of the link to diverge from the value of the prior, the penalty will

force the two values to be similar.

49



0	 1	0	

1	

Link(a, b)

Lo
ss
	

L(a, b)

(a) The negative prior on a link results in

a penalty if the value of the link increases

from zero.

0	 1	
0	

1	

Lo
ss
	

Link(a, b)

L(a, c)P(a, b)

P
r
io

r
(a

,b
)

(b) The double-sided prior results in a

penalty if the value of the link diverges

from the values of the prior.

Figure 3.6: Corresponding losses to each prior template.

We have proposed solutions based on our link inference framework for drug-

target interaction prediction and hybrid recommender systems. The following sec-

tions describe the details of the solutions.
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3.3 Drug-Target Interaction Prediction

The cost of successful novel chemistry-based drug development often reaches

billions of dollars, and the time to introduce the drug to market often comes close

to a decade. Most new compounds fail during clinical trials or show adverse side

effects. Because of the high failure rate of drugs during this process, the trial phase

is often referred to as the “valley of death” [53].

Most drugs1 affect multiple targets, and Polypharmacology, the study of such

interactions, is an area of growing interest [54]. These multi-target interactions po-

tentially result in both unintentional therapeutic and adverse side effects. Predicting

side effects during the drug developmental phase can reduce the high cost of clinical

trials and is crucial for the commercial success of new drugs. Moreover, due to the

high cost and low success rate of novel drug development, pharmaceutical compa-

nies are particularly interested in drug repositioning or repurposing, which involves

finding new therapeutic effects of pre-approved drugs.

Sildenafil—originally developed for pulmonary arterial hypertension treatment—

is a famous drug repurposing example. In clinical trials, it was discovered by chance

to have a side effect of treating erectile dysfunction in men, and it was eventually

re-branded as Viagra [55].

Drug-target interaction identification is an essential step of drug repurposing

and drug adverse effect prediction. In vitro identification of drug-target associations

1Organic molecules that bind to bio-molecular targets and inhibit or activate their functions.
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is a labor-intensive and costly procedure. Hence, in silico prediction methods are

promising approaches for focusing in vitro investigations [56].

There are several methods to model the drug-target interaction prediction task

[57], many of which use a network representation [58]. We can construct a bipartite

interaction network where nodes represent drugs and targets, and edges denote

interactions. Drug-drug and target-target similarities can augment this network on

each side. Data from multiple publicly accessible datasets can be integrated toward

building these networks [59]. The similarities between drugs and between targets

have different semantics. For example, targets can have similarity measures based

on their sequences and their ontology annotations [60]. Figure 3.7 shows a schematic

overview of a drug-target interaction network.

… ……

Drugs TargetsInteraction T-T SimilaritiesD-D Similarities

Figure 3.7: A schematic overview of a drug-target interaction network. Edges be-

tween drugs and between targets represent different similarities.
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A link prediction method can predict new potential drug-target interactions

in this setting [1, 61]. However, traditional link prediction methods often ignore the

multi-relational characteristics of this drug-target interaction network (i.e., nodes

and edges with different semantics) or make oversimplifying assumptions that ne-

glect key, interdependent phenomena during prediction.

The structure of the network and the multi-relational aspects make it chal-

lenging to convert such knowledge into the (flat) data formats that are typically

used with standard prediction algorithms. Attempts to make such conversions often

rely on potentially ad-hoc feature engineering approaches [60, 62]. Such methods

may sometimes yield good prediction performance, but they suffer from low inter-

pretability and loss of information. Our approach is based on the premise that

links depend on the similarities between their endpoints and on other interactions.

Hence, a collective approach is more appropriate than standard machine learning

models that make simplifying independence assumptions. As described in Section

3.3.4, in a collective setting, the presence or absence of interactions are studied

interdependently.

In this section we present a drug target prediction framework based on prob-

abilistic soft logic (PSL) [63]. We reason collectively over the unknown interactions

using a structured representation that captures the multi-relational nature of the

network. We design a PSL model for drug-target interaction prediction that rea-

sons over structured rules. We consider two types of structured rules, triad rules and

tetrad rules, and consider a variety of similarity metrics. We propose a similarity

selection method to manage the large computational cost of inference in this task
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and perform experimental studies on different aspects of link prediction in the drug-

target interaction domain with this model. We compare the relative improvement

provided by each type of structural rule and find that triad-based rules enable more

accurate predictions. We also experiment with the effect of using different similar-

ity metrics and show that combining all similarity metrics in a single probabilistic

model produces the most effective model. We additionally test the importance of

collective inference in such models by comparing against an analogous model that

makes independent predictions. Our PSL based solution outperforms the state-of-

the-art drug-target interaction prediction method proposed by Perlman et al. [60].

We further validate that our PSL models can outperform Perlman et al. [60] on a set

of new interactions that were not considered in the original evaluation of Perlman

et al. [60].

3.3.1 Related Work in Drug-Target Interaction Prediction

In the similarity ensemble approach (SEA), Keiser et al. [56] use ligands to

predict interaction. They use ligands for target representation and chemical similar-

ities between drugs and ligand sets as potential interaction indicators. In CMap, by

Lamb et al. [64, 65], mRNA expressions are used to represent diseases, genes, and

drugs. They compare up- and down-regulations of the gene-expression profiles from

cultured human cells treated with bioactive molecules and provide cross-platform

comparisons. They predict new potential interactions based on opposite-expression

profiles of drugs and diseases. Chang et al. [66, 67] proposed a method for predict-
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ing drug targets for a given phenotype predicting phenotypes given specific genetic

perturbations.

A number of methods reason about network structures to predict interactions.

Cockell et al. [55] describe how to integrate drugs, targets, genes, proteins, and

pathways into a network for different tasks. They present a hypothesis that similar

targets interact with the same drugs, and similar drugs tend to interact with the

same targets. Lee et al. [59] describe drug repurposing, multi-agent drug devel-

opment, and estimation of drug effects on target perturbations via network-based

solutions.

Yildirim et al. [58] explain trends in the drug-discovery industry over time

using a network-based analysis and show the effect of sequencing the genome on

drug development. They also discuss different structural aspects of this network

including preferential attachment and cluster formation.

Network-based approaches integrate drug-drug and target-target similarities

extracted via different methods (e.g. SEA and CMap) with the drug-target inter-

actions network. The following methods use a single similarity measure for drugs

and targets to predict interactions: Cheng et al. [68] predict potential interactions

using drug-drug and target-target similarities and a bipartite interaction graph. Us-

ing SIMCOMP [69], they compute the 2D chemical drug similarities and sequence

similarities for targets via the Smith-Waterman score. They use the following three

link-prediction methods: drug-based similarity inference (DBSI)—only considering

similarities between drugs; target-based similarity inference (TBSI)—only consider-

ing target similarities; network-based inference (NBI)—combining both similarities.
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Alaimo et al. [70] extend this approach by proposing a DT-hybrid method that

integrates prior domain-dependent knowledge.

Yamanishi et al. [62] propose the following three methods for interaction pre-

diction: a nearest neighbor approach; weighted k -nearest neighbors; and space in-

tegration. For the space integration method, they describe a genomic space, using

the Smith-Waterman score for targets, and the SIMCOMP score for drugs. They

propose a method to integrate drugs and targets in a unified latent pharmacolog-

ical space, and they predict interactions in that space based on the proximity of

drugs and targets. They separate out four categories of targets, namely enzymes,

ion channels, GPCR, and nuclear receptors for their experiments. They also report

that similar drugs tend to interact with similar targets and vise versa.

Bleakley and Yamanishi [71] extend this method and construct local models

for graph inference. They classify each interaction twice and combine the results to

provide a prediction. First, they build a classifier based on drugs and then based

on targets. They use the similarities as the support vector machine (SVM) kernels.

Extending this method, Mei et al. [72] propose to infer training data from neighbors’

interaction profiles to make predictions for new drug or target candidate that do

not have any interactions in the network. Wang and Zeng [73] propose a method

based on restricted Boltzmann machines for drug-target interaction prediction.

More advanced methods predict interactions based on multiple similarities.

Chen et al. [74] reason about the possibility of a drug-target interaction in relation

with other linked objects. They use distance, shortest paths, and other topological
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properties in the network to assess the strength of a relation. They assign scores to

paths between drugs and targets and combine path scores for each drug-target pair.

Perlman et al. [60] propose a feature-engineering method based on combina-

tions of drug-drug and target-target similarities and use classification to predict

interactions. They build their method based on five drug-drug and three target-

target similarities. They evaluate their model using cross validation over three online

datasets and validate their predication on a fourth dataset. They show significant

performance improvement over Bleakley and Yamanishi [71] and Yamanishi et al.

[62] that only use one type of drug-drug and target-target similarities for predic-

tion. To the best of our knowledge Perlman et al. [60] method is the state-of-the-art

mutli-similarity based approach for drug-target interaction prediction.

Gottlieb et al. [75] extend their method in [60] to drug-disease domain and

propose a personalized medicine approach, representing diseases via their genetic

signatures. This method can predict the most effective compound for a genetic

signature of an unknown disease.

3.3.2 Our Model

Our proposed drug-target prediction framework uses probabilistic soft logic

(PSL) [63]. We provided more details about hinge-loss Markov random fields (HL-

MRF) and probabilistic soft logic (PSL) in appendix 6. Here we present the models

that we use for drug-target interaction prediction based on our general link inference

template with HL-MRF.
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We design a PSL program using rules that capture domain knowledge about

the drug-target interaction problem. Our rules model the idea that similarity among

drugs may imply similar interactions with targets, and similarity among targets may

imply similar interactions with drugs. We incorporate many types of similarities

into a single joint probabilistic model, simultaneously reasoning about the various

possible interactions.

Triad-based rules For drug-target interaction prediction, many established meth-

ods are based on triangles or triads between drugs and targets. These triads occur

between two similar targets and a drug that interacts with both of them, or two

similar drugs and a target that both drugs interacts with. The hypothesis is that

similar targets tend to interact with the same drug and that similar drugs tend

to interact with the same target [55, 62, 68]. Figure 3.8 depicts the triad-based

prediction of interactions for drugs and targets.
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Figure 3.8: Similar targets tend to interact with the same drug (a), and similar

drugs tend to interact with the same target (b).

The following rule captures the triad shown in Figure 3.8(a) for targets:

SimilarTargetβ(T1, T2) ∧ Interacts(D,T2)→ Interacts(D,T1) (3.6)
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And the following rule captures the triad in Figure 3.8(b) for drugs:

SimilarDrugα(D1, D2) ∧ Interacts(D2, T )→ Interacts(D1, T ) (3.7)

where T denotes a target, D indicates a drug, predicate SimilarTargetβ repre-

sents a specific target-target similarity metric.

For each similarity metric, we add an instance of rule (3.6) to the PSL model.

Our model is capable of integrating any set of similarities with these rules. As de-

scribed in Section 3.3.5, we include three instances of this rule, where β is sequence-

based, PPI-network-based, or gene ontology-based. Predicate SimilarDrugα rep-

resents a specific drug-drug similarity measure. We consider five instances of rule

(3.7), where α is chemical-based, ligand-based, expression-based, side-effect-based, or

annotation-based.

Tetrad-based rules In addition to triads, we also consider more general tem-

plates for reasoning about both drug and target similarities to predict interactions.

Specifically, when a drug interacts with a target, we may expect another similar

drug to interact with another similar target. Figure 3.9 illustrates this hypothesis.

We encode this hypothesis using the following tetrad rules :

SimilarDrugα(D1, D2) ∧ SimilarTargetβ(T1, T2) ∧ Interacts(D2, T2)

→ Interacts(D1, T1)

(3.8)
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where α and β are drug-drug or target-target similarity measures as discussed

earlier. We include multiple instances of triad and tetrad rules corresponding to the

three drug-drug and five target-target similarity measures.

To further enhance our model, we also experiment with an extension of the

tetrad-based rules which we call exclusive tetrad rules. The idea behind this exten-

sion is to exclusively ground rules for the tetrad structures that do not include any

triads inside them:

¬Interacts(D1, T2) ∧ ¬Interacts(D2, T1) ∧ SimilarDrugα(D1, D2)

∧SimilarTargetβ(T1, T2) ∧ Interacts(D2, T2)

→ Interacts(D1, T1)

(3.9)
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Figure 3.9: If one of the drugs interacts with one of the targets, the other drug may

interact with the other target as well.

Negative prior We also include a negative prior indicating that the Interacts

predicate is most likely false, accounting for the natural sparsity in the drug-interaction
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network. The negative prior rule is as follows:

¬Interacts(D,T ). (3.10)

The similarity predicates SimilarDrugα and SimilarTargetβ represent

observed values, and the interaction predicate Interacts represents values that

are partially observed. These rules all combine to form a complex, structured model

that captures a large number of dependencies between unknown Interacts values

that we aim to predict. In the next section, we discuss techniques to manage the

high complexity of this model.

3.3.3 Similarity Selection

Because PSL inference considers all possible substitutions for the rules, the

number of ground rules can be extremely large. Let |D| denote the number of drugs,

|α| the number of different similarities between them, |T | the number of targets, and

|β| the number of different similarities between targets. Then each potential link

can be involved in O(|D| × |α|) instances of rule (3.7), O(|T | × |β|) instances of

rule (3.6). For tetrad-based rules, the situation is even worse because the number

of possible substitutions is even greater. In addition, since there are O(|D| × |T |)

potential interactions, the total number of ground rules is O(|D||T |(|D||α|+|T ||β|)).

Running inference on such a massive number of ground rules is too computationally

expensive for many practical settings.
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To limit the number of ground rules, we prevent some of the rules from being

grounded by reducing the number of triads and tetrads that are considered for

each potential link. To reduce this number, we essentially ignore some of the less

similar drugs and targets pairs. This strategy is reminiscent of blocking [76, 77, 78],

which is a term that refers to the process of limiting the number of links considered.

Typically, blocking decisions are done to avoid the quadratic costs inherent in link

prediction settings.

There are several ways to approach blocking in our problem; the most basic

strategy simply uses a fixed threshold for all similarities and sets the values below

that threshold to zero. However, although the similarities are normalized to [0, 1],

the distribution of the values tends to be highly varied such that a fixed-threshold

approach can ignore most of the values in some similarity measures or include most

of the values from another. Figure 3.10 plots the distribution of similarities in

our dataset, illustrating the diversity in the shapes of distributions these similarity

measures generate.

Another method is to choose a different threshold for each similarity measure.

While potentially better than the previous approach, similar issues occur due to

variability in individual target and drug similarity distributions. Similarities for

each target or for each drug can have highly variable values, and choosing a fixed

threshold will include too many similarities for some particular drugs or targets and

very few for others. Figure 3.11 shows the annotation-based similarity for drugs and

demonstrates an instance of this situation.
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Figure 3.10: Distribution variation of different similarity values between drugs and

between targets. Similarities with values of zero or one are omitted in this plot.
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Figure 3.11: Distribution of annotation-based similarity values for 315 drugs, where

dots indicate mean similarity value between each drug and all others, and lines

demonstrate standard deviation of the values. Similarities with values of zero or

one are omitted in this plot. e.g., the mean of all annotation-based drug similarities

with drug #200 is about 0.2 with standard deviation of 0.15.
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Instead, our approach uses k-nearest-neighbors to ensure that every drug and

every target considers at least a few values from each similarity. In this approach,

we preserve the k-highest values in each similarity for each drug and each target

and set the others to zero. However, depending on the method used for calculating

the similarities, there are many cases that similarity values between multiple drugs

or targets are the same. Hence, the k-th nearest neighbor of a drug or target can

have the same similarity as a large set of other drugs or targets. To address the

possibility of ties, we consider the drugs or targets with similarities greater than

the k-th nearest neighbor. In other words, we only include the similarities from k-1

drugs or targets. Formally, the selected set of similarity predicates are as follows:

Similarselected
λ =

Similarλ(xi, xj) if Similarλ(xi, xj) > Similarλ(xi, xk);

0 otherwise.

(3.11)

where λ is any drug-drug or target-target similarity and xk is the k -th nearest

neighbor of xi.

3.3.4 Insights into Collective Link Inference

Traditional machine learning approaches often predict outputs independently,

separating examples into distinct, unrelated instances. For example, in the drug-

target interaction prediction setting, the presence or absence of each interaction
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is determined based on the evidence and independent of the other interactions.

However, actual interactions may be interdependent.

Classification problems that consider interdependencies are known as collective

classification [79]. Algorithms that perform collective classification exploit global

information propagation through networks defined over the data. Since PSL per-

forms MPE inference on the interpretation I over the whole network, interaction

predictions propagate and influence the prediction of other interactions. Thus, PSL

models perform collective classification and can reason about new interactions using

other predicated interactions.
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Figure 3.12: Predicted interactions can be used for other inferences using target (a)

or drug similarities (b), or both.

Specifically, rules (3.6) and (3.7) adopt a collective inference approach, using

inferred links to imply the existence of other links, that results in global information

propagation through the network. Figure 3.12 shows a situation where a predicted

interaction is used in predicting other interactions.
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We designed a model to experiment with the potential detrimental effect of

making independent predictions. We use rules analogous to (3.6) and (3.7) that do

not allow collective inference:

SimilarTargetβ(T1, T2) ∧ObservedInteracts(D,T2)→ Interacts(D,T1)

(3.12)

SimilarDrugα(D1, D2) ∧ObservedInteracts(D2, T )→ Interacts(D1, T )

(3.13)

We ground ObservedInteracts with the observed interactions from the

dataset and use predicate Interacts for predictions. In contrast to rules (3.6)

and (3.7), here only observed interactions imply the presence of new interactions,

whereas in our full joint model, inferred interactions can imply other interactions.

Hence, predictions using these new rules are only made based on observed evidence.

We report the comparative results of the collective and non-collective models in the

experimental analysis section.
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3.3.5 Experimental Validation

We perform an extensive evaluation of our PSL based method on a dataset

that was obtained from Perlman et al. [60]. We first report on the behavior of the

PSL based method2 for different configurations as follows:

• Rule structure: We first compare the effectiveness of triad-based (3.6 & 3.7)

and tetrad-based rules (3.8). This study serves as an example to test different

domain assumptions for this task.

• Similarity Selection: We show the effectiveness of our proposed similarity

selection strategy by showing the speedup and performance stability of our

method.

• Weight learning: We measure the effect of weight learning on performance

by comparing models with and without weight learning.

• Collective inference: We show the strength of models with collective infer-

ence, by comparing our collective model versus the non-collective version of

our model.

• Combining similarities: Finally, we measure the effectiveness of combining

information from different similarities. In this study, we compare models with

all similarities against models using a single similarity.

2Our code and data we used for our experiments along with our implementation of the ap-
proach from Perlman et al. [60] can be obtained from: https://github.com/shobeir/fakhraei_
tcbb2014
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We then compare the (best) performance of our method against the method of

Perlman et al. [60].

3.3.5.1 Dataset
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Figure 3.13: Network of drug-target interactions in the dataset. Drugs are shown

with blue squares and targets with red circles, where size of the node represent their

degree. Similarities are not shown to simplify the graph.

We obtained our dataset from Perlman et al. [60]. The interactions between

drugs and targets are obtained from DrugBank [80], KEGG Drug [81], DCDB (Drug

Combination database) [82], and Matador [83]. We also use the same five drug-drug

and three target-target similarities used by Perlman et al. [60].
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We filtered the dataset to remove the drugs and targets that do not have any

computed similarities. The final dataset includes 315 drugs, 250 targets, and 1,306

interactions.

Using NodeXL [84], we calculated graph statistics and visualize the graph.

The graph contains 16 connected components, and the largest component includes

518 vertices and 1280 edges. The average geodesic distance3 in the graph is 5.31

with a maximum of 15. The vertices’ degrees range from 1 to 37, with average of

4.6. Figure 3.13 shows an overall visualization of the drug-target interactions in the

dataset, where drugs are drawn as blue squares and targets as red circles.

This section includes a brief description of the methods used for similarity cal-

culation and how they were computed by Perlman et al. [60]. Drug-drug similarities

include the following:

Chemical-based Using the chemical development kit (CDK) [85], Perlman et al.

[60] computed the hashed fingerprint of each drug based on the canonical SMILES4

obtained from Drugbank. Considering each fingerprint as a set of elements, they

computed the Jaccard similarity of the fingerprints. The Jaccard similarity score

between two sets X and Y is

Jaccard(X, Y ) =
|X ∩ Y |
|X ∪ Y |

3The number of edges in a shortest path between two vertices.
4Simplified Molecular Input Line Entry Specification
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Ligand-based Drugs’ canonical SMILES obtained from Drugbank are compared

against a collection of ligand5 sets using the similarity ensemble approach

(SEA) search tool [56]. A list of relevant protein-

receptor families are obtained for each drug, and they computed Jaccard similarity

between the corresponding sets of receptor families for each drug pair.

Expression-based The Spearman rank correlation coefficient of gene expression

responses to drugs retrieved from the Connectivity Map Project [64, 65] are used

as a similarity measure between drugs. The Spearman rank correlation coefficient

between two sets X and Y is calculated as

Spearman(X, Y ) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2

where xi and yi are ranked elements of X and Y .

Side-effect-based Similarities between drugs are calculated using the Jaccard

score between their common side-effects obtained from SIDER [86].

Annotation-based Drugs’ ATC codes are obtained from DrugBank and matched

against the World Health Organization ATC classification system [87], where drugs

are categorized based on different characteristics. They calculated the similarities

using the semantic similarity algorithm of Resnik [88].

Target-target similarities include the following:

5A substance that binds with a biomolecule to serve a biological purpose.
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Sequence-based Perlman et al. [60] compute sequence-based similarities using

the Smith-Waterman sequence alignment scores, normalized via the method sug-

gested in [71]—which divides the pairwise score by the geometric mean of the align-

ment scores of each sequence against itself.

Protein-protein interaction network-based Using an all-pairs shortest path

algorithm, they calculated the distance between pairs of genes using their corre-

sponding proteins in the human protein-protein interactions network.

Gene Ontology-based Using the method of Resnik [88], they calculated the

semantic similarity measure between Gene Ontology annotations, downloaded from

UniProt [89].

3.3.5.2 Evaluation Criteria

We use ten-fold cross validation, where each fold randomly leaves out 10% of

the positive and negative (unknown) interactions for testing. We infer interactions

and compare against the held-out interactions, measuring performance using the

area under the ROC curve (AUC ), area under the precision-recall curve (AUPR) of

the positive class, and the precision of the top n predictions (P@n) where n = 130

(i.e., the number of positive links held out in each fold) for our evaluations.

AUC is the most commonly reported measure in our related publications and

it allows us to compare against the published results of other methods [60, 62, 71]
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on the same dataset. Lichtnwalter and Chawla [46] discuss different link prediction

evaluation methods.

ROC curves are created by plotting the true positive rate versus the false

positive rate at various thresholds [90]. Precision-recall (PR) curves are created by

plotting the precision (or positive predictive value) versus the recall (or true positive

rate) at various thresholds. ROC and PR curves are visually different but they are

highly correlated [91], and PR curves are more informative in settings with heavy

class imbalance, such as link prediction [46].

Due to this high class imbalance (130 positive to 7,744 negative examples),

AUC changes are subtle. We also report AUPR performance and precision of the

top 130 predictions which can highlight the importance of each model modification

more clearly. This metric is of importance in practice as well, since only the top

portion of the predicted interactions are typically actionable for domain experts to

further evaluate.

To evaluate our model’s performance with cross-validation we used the com-

mon method of random sampling of the interactions for hold-outs in each fold.

However, we have to assign a value to all the possible grounding to perform weight

learning on our PSL model. In order to avoid assigning an arbitrary value to the

held-out interactions in each fold we add a dummy predicate (IgnoredInteracts)

to the rules only for weight learning. We can avoid grounding of the rules for the
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held-out interactions using this predicate. For example, we change rule (3.6) to the

following form:

¬IgnoredInteracts(D,T2) ∧ ¬IgnoredInteracts(D,T1)

∧SimilarTargetβ(T1, T2) ∧ Interacts(D,T2)

→ Interacts(D,T1).

(3.14)

Although this change negatively affects the performance of our model in the

cross-validation setting, we believe it provides an unbiased evaluation and avoids an

arbitrary assignment to the held-out variables. This is only an artifact of the cross

validation evaluation setting.

3.3.5.3 Analysis Results

We report the results of our five experimental analysis in this section.

Rule Structure We first study the effectiveness of each assumption for predic-

tions. We compare the rules based on triads (3.6 & 3.7) and the rules based on

tetrads (3.8). We compare four different settings: the model with only the triad-

based rules, the model with only the tetrad-based rules, model with both set of rules,

and model with triads and exclusive tetrads. We set the selection parameter (k) to

5 in all models to control the growth of tetrad-based rules, and we learn the weights

using separate held-out set of interactions (equal to the size of cross-validation hold-

outs) in each fold.
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As Table 3.1 shows, the rules inspired by triads are more predictive of the

interactions compared to the rules that are based on tetrads. It may be the case

that, in a collective setting, triad-based rules capture the effect of tetrad-based rules

and perform the best. This experiment not only provides insight into the behavior

of prediction using triads and tetrads in this domain, but it also demonstrates how

we can easily test such assumptions using PSL’s flexibility. One can easily generalize

this to quickly evaluate different hypothesis about interactions.

Table 3.1: Comparison of triad-based and tetrad-based rules with k = 5

Rules AUC AUPR P@130

Triad-based only 0.920±0.016 0.617±0.048 0.616±0.035

Tetrad-based only 0.775±0.023 0.188±0.029 0.250±0.033

Triad & tetrad 0.909±0.015 0.416±0.047 0.443±0.025

Triad & excl. tetrad 0.924±0.013 0.560±0.048 0.588±0.036

Similarity Selection Next, we study the effect of similarity selection on perfor-

mance by varying the number of neighbors (k) and measuring the effect on the PSL

model based on the triad rules (3.6 & 3.7). We measure the completion time in

two settings: first, a setup where we only perform inference, and second, a setting

where we run weight learning and inference. Table 3.2 lists the average computation

time of ten-fold cross-validation experiments on computers with a (2× 4) 2.66 GHz

Intel processor and 48GB of RAM.6 The results show that similarity selection causes

significant improvement in processing time.

6We used machines with slightly different specifications and under different loads, so the re-
ported times are approximate.
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Our similarity selection achieves this speed-up with no significant performance

loss. The columns of Table 3.3 lists the performance as we change the selection

parameters. The insignificant performance change as we select more restrictively

suggests that, even with limited number of similarities (i.e., k = 5), our model can

produce accurate predictions. AUPR results in Table 3.3 (Inference + W. learning)

show that similarity selection sometimes even helps performance and suggests that

the similarities with higher values are most predictive of interactions. These results

suggest that, in the drug-target interaction domain, models that rely on sparse sim-

ilarities with high value are often more predictive than the ones that include many

similarities with low values. Perlman et al. [60] report relatively similar findings

with their own model.

Table 3.2: Speedup with triad-based rules

Condition
Time to Complete
k=5 k=15 k=30

Inference only 14mins 3h 9.5h

Inference + Weight learning 30mins 6h 22h

Weight learning We study the effect of weight learning by running experiments

under two conditions: with all weights set to 5 (arbitrarily hand-tuned) and with

weights being learned from a set of observed interactions. Table 3.3 lists the perfor-

mance improvement of the models with weight learning with different k values for

similarity selection.
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Table 3.3: Performance variations under the effect of weight learning with triad-
based rules

Condition
AUC

k=5 k=15 k=30

Inference only 0.917±0.017 0.933±0.014 0.928±0.016

Inference +
W. learning

0.920±0.016 0.931±0.016 0.924±0.019

Condition
AUPR

k=5 k=15 k=30

Inference only 0.563±0.047 0.578±0.067 0.504±0.061

Inference +
W. learning

0.617±0.048 0.579±0.062 0.486±0.063

Condition
P@130

k=5 k=15 k=30

Inference only 0.580±0.042 0.585±0.045 0.532±0.051

Inference +
W. learning

0.616±0.035 0.594±0.039 0.515±0.037

It is also notable that the performance improvement caused by weight learn-

ing is more significant than increasing the number of similarities used as evidence.

Although weight learning improves the results, AUC changes are subtle and AUPR

and the precision at the top predictions show the improvement more clearly.

Weight learning performance improvement in AUPR and AUC (for k = 5)

is statistically significant (p < 0.005).7 Figure 3.14 plots the average precision of

the top 130 interaction predictions (i.e., P@n) over all ten folds with and without

weight learning. It demonstrates how weight learning improves the precision of the

predictions, providing steady improvement for the top 130 predictions.

7We performed paired one-tailed t-test on the corresponding values of the ten folds.
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Figure 3.14: Average precision of the top 130 interaction predictions for all 10 folds

with k = 5.

Figure 3.15 illustrates the average relative weights assigned by PSL to triad-

based rules for each similarity. We normalize the weights by dividing their value by

the learned prior weight, so the resulting quantity represents how much more heavily

the rule is weighted than the prior. It is important to note that neither the absolute

nor the relative value of the weights provide precise insight into the predictive power

of the rules, since the features and predictions are dependent. Nevertheless, they

provide some hints as to how the PSL model makes its joint prediction.

An example of low rule weight and high prediction performance is PPI-network-

based similarity (Figure 3.15 and Table 3.4), which produces high accuracy for a

single-similarity-based model, but has a low normalized weight. A more accurate

method of measuring the effectiveness of each rule (and similarity) for prediction

is building models with single rules (as described in the next section) and directly

measuring their prediction performance. Even in models with single similarities,
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rule weight does not correlate with prediction power. Figure 3.15 also shows the

rule weights of models with single similarities, which follows the previous trend.
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Figure 3.15: Relative triad-based rule weights in models with all similarities included

and models with only one similarity.

Combining similarities We study the effect of incorporating multiple heteroge-

neous drug-drug and target-target similarities in PSL models. Different similarities

can replace SimilarTargetβ and SimilarDrugα in rules (3.6) and (3.7) as de-

scribed in previous sections. For each similarity metric, we add an instance of the

rule (3.6) and (3.7) to the PSL model correspondingly. We study the situation where

PSL models predict new interactions using only one drug-drug or target-target sim-

ilarity versus when they are all combined and the results are shown in Table 3.4.

Ligand-based drug-drug similarity and Sequence-based target-target similar-

ity generate the best performance among models using a single similarity. Never-

theless, there is a significant difference between the best single similarity setting

(AUC=0.811 ± 0.026 and AUPR=0.516 ± 0.062) and the all-similarities-combined
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Table 3.4: Prediction based on one similarity and all similarities combined.

Similarity AUC AUPR P@130

D
ru

gs
Annotation-based 0.660±0.017 0.224±0.026 0.319±0.026

Chemical-based 0.670±0.023 0.234±0.042 0.289±0.032

Ligand-based 0.713±0.023 0.270±0.035 0.337±0.037

Expression-based 0.540±0.025 0.031±0.009 0.069±0.026

Side-effect-based 0.631±0.016 0.209±0.032 0.271±0.023

T
ar

ge
ts PPI-network-based 0.781±0.021 0.389±0.047 0.480±0.041

GO-based 0.611±0.023 0.103±0.027 0.213±0.039

Sequence-based 0.811±0.026 0.516±0.062 0.574±0.055

All Similarities 0.920±0.016 0.617±0.048 0.616±0.035

setting (AUC=0.920 ± 0.016 and AUPR=0.617 ± 0.048). This study clearly shows

that considering multiple similarities is critical for optimal prediction accuracy and

that PSL can efficiently consider the multi-similarity nature of the problem.

Collective inference We list the results from comparing the collective versus

non-collective PSL models in Table 3.5. Due to high class-imbalance, AUC does not

reflect the change in performance as well as the other measures.

Table 3.5: Effect of collective inference

Condition AUC AUPR P@130

Non-collective inference 0.916±0.016 0.556±0.039 0.577±0.039

Collective inference 0.920±0.016 0.617±0.048 0.616±0.035

Collective inference performance improvement in AUPR and AUC is statisti-

cally significant (p < 0.005).8 Figure 3.16(a) highlights the effect of collective model

8We performed paired one-tailed t-test on the corresponding values of the ten folds.
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by showing the average (over ten folds) precision of the top 130 predictions. Col-

lective modeling improves the performance in this setting, as it generates a higher

overall precision in the top 130 predictions. It is notable that non-collective model

is only more effective for the first few predictions. This may be the results of those

interactions being predicted based on direct observed evidence. However, collective

inference outperforms non-collective setting for higher number of predictions. In

addition, collective setting may be more effective when there are more missing links

to predict. The significance of collective inference improvement is more clear in Fig-

ure 3.16(b) which shows the same experiment with three-fold cross validation and

450 top prediction.
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(a) Top 130 prediction via ten-fold cross

validation.
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(b) Top 450 prediction via three-fold cross

validation.

Figure 3.16: Collective vs. non-collective average precision of the top predictions.

3.3.5.4 Predictions Evaluation

Finally, we can compare our results with the reported results of other state-

of-the-art methods. Perlman et al. [60] report experimental evaluation on the same
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dataset. They report state-of-the-art performance and show that their method sig-

nificantly outperforms those of Yamanishi et al. [62] and Bleakley and Yamanishi

[71].

Thus, we compare our model’s performance with Perlman et al. [60]9 using the

same experimental setting. We report the results based on our folds that contain

130 positives and 7,744 negative links.10 Table 3.6 lists the results of different PSL

models comparing to the Perlman et al. [60].

Table 3.6: Comparison with Perlman’s method using ten-fold cross validation

Methods AUC AUPR P@130

Perlman et al. [60] 0.937±0.018 0.564±0.050 0.594±0.040

PSL triads k = 5 0.920±0.016 0.617±0.048 0.616±0.035

PSL triads k = 15 & excl. tetrads k = 5 0.937±0.012 0.585±0.056 0.616±0.039

PSL models with triads and selection parameter k = 5 score a higher AUPR

and P@n. This shows that our predictions have higher precision. Although we argue

that AUC in such highly imbalanced settings is not as important, we can match the

AUC of the previous state-of-the-art by using a more complicated PSL model with

triads and exclusive tetrads and using two different selection parameters of k for

each set of rules. Since tetrads generate more groundings, we set k to 5 for tetrads

and set k to 15 for triads. Figure 3.17 plots the precision of the top 130 predictions

of the PSL model with triad rules and k set to 5 in comparison the predictions of

9We implemented the method of Perlman et al. [60] in correspondence with the authors and
reproduced their results. Our implementation of their method is also available for download.

10The difference between our AUPR results and the ones reported in [60] is due to the down-
sampling of the unobserved interactions for testing in their paper. We choose our testing folds
based on the real ratio of positives to negatives
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Perlman et al. [60]. The results show that the PSL model with simple, triad-based

rules improves the AUPR and P@n prediction performance of the state-of-the-art

methods. We achieve statistically significant improvements in AUPR using the PSL

triad model with k = 5 over the Perlman’s method (p < 0.005), and we match the

AUC performance of their method using our second PSL model with no significant

difference (p > 0.49).11
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Figure 3.17: Comparing Perlman’s method with PSL’s top 130 predictions using

ten-fold cross validation.

New interaction predictions Additionally, we aimed to evaluate our new inter-

action predictions by comparing them with new interactions that were not in our

initial dataset. Using NodeXL’s [84] motif clustering tool, we find targets (or drugs)

that share several drugs (or targets). One example is PTGS1 and PTGS2, which is

shown on the right side of Figure 3.13.

11We performed paired one-tailed t-test on the corresponding values of the ten folds.

82



Three unobserved interactions in this structure are Minoxidil-PTGS2, Tiapro-

fenic acid-PTGS1, and Oxaprozin-PTGS1. Our model ranks Oxaprozin-PTGS1 and

Tiaprofenic acid-PTGS1 as the 46th and 158th most probable interactions out of

the 77,444 total interactions, placing them in the top 0.2 percentile of all possible

interactions. Since the time the original dataset was collected by Perlman et al. [60],

the online databases have been updated. Examining the latest version of Drugbank,

the database now contains these two interactions.1213 Our model ranked Minoxidil-

PTGS2 significantly lower than the other two at 1,807, and we could not find any

indication in the drug-target interaction dataset that this interaction exists.14

The two targets are shared between all three drugs in this structure, hence,

only the target-target similarities were discriminative. The results show that PSL

effectively uses different similarities between Oxaprozin and Tiaprofenic acid, and

the other targets in the structure to rank their interactions higher than the one

involving Minoxidil.

Furthermore, there are 197 interactions that were added to the Drugbank

database since the dataset was collected. We used these newly reported interactions

to further evaluate the performance of our models. We generate ten folds consist-

ing of these new interactions and samples of the unobserved interactions, to rank

these new interactions against all the other possible predictions. Table 3.7 lists the

performance scores of our models and Perlman et al. [60] on the newly reported

interactions.

12http://www.drugbank.ca/drugs/DB00991
13http://www.drugbank.ca/drugs/DB01600
14http://www.drugbank.ca/drugs/DB00350
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Table 3.7: Comparison with Perlman’s method using new interactions

Methods AUC AUPR P@130

Perlman et al. [60] 0.921±0.016 0.309±0.014 0.393±0.018

PSL triads k = 5 0.881±0.001 0.324±0.008 0.456±0.017

PSL triads k = 15 & excl. tetrads k = 5 0.926±0.001 0.344±0.018 0.460±0.010

Although our more complex model demonstrates superior numbers on all per-

formance measures, the predictions made by the PSL model with triads and k = 5

are more actionable due to higher precision at the top of the predictions list. That

portion of the predictions are the most critical for domain experts to further evalu-

ate. Our more complex PSL model with triads and tetrads achieves higher AUPR

due to better recall. Figure 3.18 plots the precision of the top 150 prediction of the

PSL model with triads with k = 5, the PSL model with triads with k = 15 and

exclusive tetrads with k = 5, and Perlman et al. [60]. The simpler PSL model with

triads and k = 5 ranks the newly reported interactions higher and performs sig-

nificantly better than Perlman’s method, especially beyond the top 40 predictions.

Since there is potential bias in which interactions have been explored in vitro, these

results, while encouraging, should be interpreted with discretion.

3.3.6 Discussion and Conclusion

In this section, we proposed a model for drug target interaction prediction

based on link inference template model described in section 3.2. We used a knn-

based similarity selection method and demonstrated how we could combine different

similarities and perform collective inference to produce state-of-the-art prediction
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Figure 3.18: Comparing Perlman’s method with PSL’s top 150 predictions using

new interactions.

accuracy for this task. In our experimental evaluation, we studied the effects of

collective inference, similarity selection, the combination of similarities, and weight

learning in drug target interaction prediction performance prediction. Our results

indicate that each of these components plays a positive role, and contribute to

improving the performance and efficiency of our model.
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3.4 Hybrid Recommender Systems Model

Recommender systems is another examples that we can model as the aug-

mented bipartite structure, where we have users and items as nodes and links be-

tween them represent the ratings. Figure 3.19 shows an example of this structure,

similarities between the items and between the users can be extracted from different

sources. This section describes our proposed hybrid recommender systems frame-

work based on our link inference template model. We show that our link inference

template model can use different sources of information in recommender systems.

…
 

…
 

…
 

?	

Figure 3.19: Recommender systems as an augmented bipartite structured multi-

relational graph.

Our model can encode dependencies between users and items, and ratings,

additional information on content and social relations. The model also provides the

flexibility to incorporate prior predictions, such as mean-centering priors and the
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results of other recommender algorithms. The following rules define the model for

our hybrid recommender systems framework.

3.4.1 Similarity-based Triad Rules

We use the triad-based structure for our link inference model, due to its su-

perior performance over the general tetrad form. Below are the correspondence of

these rules to different methods and intuitions in recommender systems.

User-based Collaborative Filtering: Using the triad structure for similarities

in the user side, we can define PSL rules of the following form:

SimilarUserssim(u1, u2) ∧Rating(u1, i)⇒ Rating(u2, i) (3.15)

This rule captures the intuition that similar users give similar ratings to the same

items. The similarities can be calculated with any similarity measure sim.

Item-based Collaborative Filtering: Likewise, we can define PSL rules to cap-

ture the intuition of item-based collaborative filtering methods, namely that similar

items should have similar ratings from the same users:

SimilarItemssim(i1, i2) ∧Rating(u, i1)⇒ Rating(u, i2) (3.16)

The predicate SimilarItemssim(i1, i2) is binary, with value 1 iff i1 is one of the k-

nearest neighbors of i2 (using similarity measure sim), while Rating(u, i) represents
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the normalized value of the rating of user u to item i. Several methods are available

to compute similarities between entities for user-based and item-based methods, and

they capture different notions of similarity. We use Pearson’s correlation and cosine

similarity to calculate similarities between users and items. To improve robustness

of the similarities, inspired by Hoff et al. [92], we compute similar users and items

in the low-dimensional latent space generated via matrix-factorization using cosine

and Euclidean measures. The user similarities are captured in the following rules:

SimilarUserscosine(u1, u2) ∧Rating(u1, i)⇒ Rating(u2, i)

SimilarUserspearson(u1, u2) ∧Rating(u1, i)⇒ Rating(u2, i)

SimilarUserslatent
cosine

(u1, u2) ∧Rating(u1, i)⇒ Rating(u2, i)

SimilarUsers latent
euclidean

(u1, u2) ∧Rating(u1, i)⇒ Rating(u2, i)

(3.17)

Using Additional Sources of Information: Incorporating other sources of in-

formation about the items, the users, or the respective ratings to our framework is

straightforward using the similarity-based template model.

SimilarItemsContent(i1, i2) ∧Rating(u, i1)⇒ Rating(u, i2) (3.18)

In this rule, the predicate SimilarItemsContent(i1, i2) represents items that have

similar content-based features (e.g. in the movie recommendation domain such fea-

tures are the genre, actor, director, etc.), instead of similar ratings. The framework

can also incorporate social information when available, and use them as indicators
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of similarity between users. For instance, we use social network friendship links in

the following form:

Friends(u1, u2) ∧Rating(u1, i)⇒ Rating(u2, i) (3.19)

We can also compute similarities based on demographic information and use the

following rule:

SimilarUsersDemo(u1, u2) ∧Rating(u1, i)⇒ Rating(u2, i) (3.20)

3.4.2 Ratings Priors

We include two types of priors; mean-centering ratings, and predictions from

other methods.

Mean-Centering Priors: We include rules that penalize the divergence of the

value of the ratings from the corresponding averages, for each user and each item:

AverageUserRating(u)⇒ Rating(u, i)

¬AverageUserRating(u)⇒ ¬Rating(u, i)

AverageItemRating(i)⇒ Rating(u, i)

¬AverageItemRating(i)⇒ ¬Rating(u, i)

(3.21)

where AverageUserRating(u) represents the average of the ratings for the set of

items that user u provided in the training set. Similarly, AverageUserRating(i)
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represents the average of the user ratings an item i has received. In order to capture

cases where we have no information about a user or an item, we use a general prior

on ratings centered at the mean value of all of the ratings in the system (i.e. the

average over all items rated by all users) with the following rules:

PriorRating⇒ Rating(u, i)

¬PriorRating⇒ ¬Rating(u, i)

(3.22)

were the predicate PriorRating represents the average of all ratings.

Prections From Other Methods: We can also use predictions from other meth-

ods as priors for our model. Therefore, instead of selecting a single recommendation

algorithm, we can incorporate the predictions from different methods into our uni-

fied model. For example, the predictions from matrix factorization (optimizing

regularized squared error via stochastic gradient descent) (MF), Bayesian proba-

bilistic matrix factorization (BPMF) [93], and item-based collaborative filtering can

be incorporated in the model via the following rules:

RatingMF (u, i)⇒ Rating(u, i)

¬RatingMF (u, i)⇒¬Rating(u, i)

RatingBPMF (u, i)⇒ Rating(u, i)

¬RatingBPMF (u, i)⇒¬Rating(u, i)

Rating item
based

(u, i)⇒ Rating(u, i)

¬Rating item
based

(u, i)⇒¬Rating(u, i)

(3.23)
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3.4.3 Experimental Validation

We compared our model with the state-of-the-art recommender systems on

two standard datasets. We used a subset of the Yelp academic dataset15 and the

Last.fm dataset16. Our goal in the Yelp dataset is to recommend local businesses to

users by predicting the missing (held out) ratings of businesses based on previous

ratings. For the Last.fm dataset, our goal is to recommend artists to users. As

Last.fm does not provide explicit user-artist ratings we use the number of times

a user has listened to an artist to construct implicit ratings. Table 3.8 provides

detailed information about the dataset.

Table 3.8: Dataset Description

Dataset Yelp Last.fm

No. of users 34,454 1,892
No. of items 3,605 17,632
No. of ratings 99,049 92,834
Content 514 business categories 9,719 artist tags
Social 81,512 friendships 12,717 friendships
Sparsity 99.92% 99.72%

We evaluate the performance of different models with 5-fold cross-validation

and report the average cross-validated error.

We study the performance of our model in comparison to several state-of-the-

art models. We considered the following baselines:

15https://www.yelp.com/academic_dataset
16http://grouplens.org/datasets/hetrec-2011/
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Table 3.9: Overall Performance of Different Recommender Systems on Yelp and
Last.fm.

Yelp Last.fm

Model RMSE
(SD)

MAE (SD) RMSE
(SD)

MAE (SD)

B
a
se

m
o
d
e
ls Item-based 1.216 (0.004) 0.932 (0.001) 1.408 (0.010) 1.096 (0.008)

MF 1.251 (0.006) 0.944 (0.005) 1.178 (0.003) 0.939 (0.003)

BPMF 1.191 (0.003) 0.954 (0.003) 1.008 (0.005) 0.839 (0.004)

H
y
b
ri
d

m
o
d
e
ls Average 1.179 (0.003) 0.925 (0.002) 1.067 (0.004) 0.857 (0.004)

BPMF-SRIC 1.191 (0.004) 0.957 (0.004) 1.015 (0.004) 0.842 (0.004)

Our model 1.173 (0.003) 0.917 (0.002) 1.001 (0.004) 0.833 (0.004)

• Item-based [94] collaborative filtering, using Pearson’s correlation with a mean-

centering correction, implemented in Graphlab Create.17

• Matrix factorization (MF) using stochastic gradient descent [48], implemented

in Graphlab Create.

• Bayesian probabilistic matrix factorization (BPMF): The Bayesian variant of

probabilistic matrix factorization, trained using Gibbs sampling [93].

• A Naive hybrid method where the predictions of the models are simply aver-

aged.

• BPMF with social relations and items’ content (BPMF-SRIC), which is a

hybrid model that extends BPMF with social and content information [95].

The performance of our model is statistically significantly better than the

baselines at α = 0.05 for both datasets and evaluation metrics when using paired

17http://www.dato.com
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t-test. We denote the numbers that are statistically significantly better with a bold

font. Table 3.9 shows the performance of different methods on the two datasets.
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Chapter 4: Dynamic Similarity Selection for Link Inference

As discussed in section 3.3.3 the number of grounded rules in the triad-based

rules with HL-MRFs and PSL for link prediction and recommender systems, in-

creases rapidly with the number of similarities. In section 3.3.5 I showed that select-

ing the right number of similarities to include in the model is essential in improving

the performance of the model and reducing the inference and learning time. I already

discussed the limitations of using a simple threshold in section 3.3.3, and used the

k -highest similarities in the drug-target interaction prediction model and the recom-

mender systems setting. This approach is used in traditional neighborhood-based

link prediction and collaborative filtering.

However, in the collective setting, similarities play a significant role in infor-

mation propagation in the network between the links, even through the different

kinds of similarities. In sparse networks, this role becomes more important because

most links are not connected to observed evidence, and predictions about them are

mostly based on inferred information for other links. Selecting which similarities to

include in the model for each node is not a trivial task. In this chapter I provide

a generalization of our link inference template based on neighborhood graphs and

propose a dynamic similarity selection framework for it.
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4.1 Neighborhood Graph-based Methods

Many predictive models use the dependencies between instances to perform

inference. The simplest model of this form is the k-nearest neighbors classifier which

uses similarity as a simple form of dependency between instances, and assigns a la-

bel to an unknown instance based on the most similar instances with known labels.

Graph-based semi-supervised learning methods extend this approach to propagate

predictions using the similarities between the instances with unknown labels as well.

More complex multi-relational models can incorporate different types of dependen-

cies between all instances and perform joint inference on their unknown labels.

? ?	 ?	?	 ?	 ?	

K-Nearest Neighbors 	 Graph-based  
Semi-Supervised Learning	

Multi-Relational Model	

Figure 4.1: Schematic view of neighborhood graph-based methods.

These types of models are used in several domains such as collaborative fil-

tering, link prediction, and image classification. For example, when determining

characteristics of individuals, the characteristics of the people who are most similar

to them, their friends, family, and co-workers, can all influence a model’s predic-

tion. Neighborhood graphs which capture interdependencies between instances, are
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the underlying structure of reasoning in many of these predictive models. In these

models the data is represented as a neighborhood graph, where nodes are instances

and weighted edges represent relations (e.g., similarities) between them.

Most methods that make predictions based on a neighborhood graph follow

three basic operations [96]: Graph Generation, Selection and Inference. The first

step, is the candidate graph generation, which often includes defining the relations

or similarities between instances. The process of constructing the candidate graph is

generally problem-specific. If the original input data is relational, or in the form of a

graph (which we call data graph), some of the explicit relations such as relationships

in a social network, or adjacencies in an image may be used as an approximation

of the affinity or dependency of instances. When the original input data includes

feature vector representation of instances, a similarity or kernel function is defined

to estimate their pairwise affinities.

Similar to k-nearest neighbors classifiers where only the k most similar in-

stances are useful in the model, not all of the dependencies generated in the can-

didate graph are helpful. The abundance of pairwise similarities or relations often

hinders a model’s scalability as well as its predictive performance [97] and makes

the candidate graph generally unsuitable for modeling approaches. Hence, the next

step is selection, reducing the candidate graph by pruning similarities or relations

to a more manageable neighborhood graph. Examples of these methods that are

often considered a pre-processing step to inference include k-nearest neighbors, ε-

neighborhood selection, and b-matching [96].
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The third step is performing inference using the neighborhood graph. Methods

such as Mincut, graph random walk, Gaussian random fields, local and global con-

sistency, spectral graph transducer, manifold regularization, and label propagation

are examples that perform inference on the neighborhood graph [98].
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Figure 4.2: Neighborhood graph construction from candidate graph with several

relations. For simplicity of notation, items are represented only with their labels y.

Observed labels yo are shown as black circles and instances with unobserved labels

yu are shown with white circles and annotated accordingly. Relations rxi,xj are noted

as ri,j. The neighborhood graph shown on the right has a subset of selected relations

with different types and also the inferred values (ŷ) for the unobserved labels.

4.2 Neighborhood Graph Construction

There are several challenges in this sequential process for constructing the

neighborhood graph especially for multi-relational models and data:

• Most methods are designed to handle a single similarity, dependency, or re-

lation type when constructing the neighborhood graph. However, there are

often multiple relations than each can serve as a noisy approximation for the

affinity that is important for the predictive task at hand. Constructing a multi-
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relational neighborhood graph that can effectively combine different affinity

signals from multiple sources is highly important.

• The static nature of the pruning methods is blind to the state of instances

with unknown labels. However, the interdependencies between these unknown

variables are the essence of the semi-supervised and multi-relational models.

Hence, the static neighborhood graphs can not adequately capture the simi-

larities between the most important unknown variables.

• The pruning process often solely relies on the value assigned the similarity or

relation and does not consider the characteristics of instances that are being

connected in the neighborhood graph. For example a slightly lower similarity

to an instance with a rare label can be more informative than a high similarity

to an instance of a majority class.

In this chapter, we address these challenge by developing a framework to dy-

namically construct a neighborhood graph. Our framework interleaves inference

and neighborhood graph construction, efficiently using multi-relational data while

maintaining scalable performance. We have developed the LINA framework, which

consists of four parts; Learning the relative importance of each relation in multi-

relational settings, Inferring labels for interrelated instances, Nominating instances

that can benefit from additional relations in the neighborhood graph, and Activating

new relations between instances in the neighborhood graph to improve the inference

results. The main contribution in this chapter include:
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• We propose a general unified framework to actively learn multi-relational

neighborhood graphs and demonstrate its use for collective link prediction.

• We outline a general multi-relation model used for link prediction and regres-

sion [52, 97, 99] as an inference problem on a neighborhood graph.

In Section 4.3 we formally define the problem statement, and in Section 4.4

we describe our proposed framework. Section 4.6 includes discussion on modeling

the link prediction task with neighborhood graph. We then present our nomination,

activation, and learning method in Section 4.5 and provide experimental results to

validate our approach in Section 4.7. Finally, we discuss related methods to our

approach in different domains in Section 4.8.

4.3 General Problem Statement

Let candidate graph be represented via Gc , 〈X,R〉, where vertices X is a

set of n data points xi =
[
x1
i , . . . , x

p−1
i , yi

]
, and y represent the set of all labels

(y = {y1, . . . , yn}) where a subset is observed (yo) and others are unobserved (yu),

and edges R are a set of relations rxi,xj (e.g., pairwise similarities, or connections

in social network) connecting pairs of data points xi and xj, based on some notion

of affinity. Graph-based methods generally make the assumption that for two data

points xi and xj that are connected in this candidate graph Gc, their labels yi and

yj are close to each other, where the strength of this assumption depends on the

value or weight associated with the relation rxi,xj .
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Models that perform collective inference [2] based on both known and unknown

labels find an optimal state of all unknowns variables by optimizing an objective

function f over all target variables yu and jointly assigning values to all of them.

Thus, collective methods propagate inferred values of the labels based on the rela-

tions on the candidate graph. Formally:

ŷu = arg opt
yu

f(yu,yo,Gc;ω)

e.g., in a probabilistic setting:

ŷu = arg max
yu

P(yu|yo,Gc;ω) (4.1)

where, yu and yo represent the unobserved and observed labels, ŷu indicates the

inferred value for the unobserved labels, and ω = {ω1, . . . , ωm} represents the model

parameters.

Furthermore, we are interested in settings where R can be of different types

(i.e., R= {R1, . . . ,Rn}), for example we can have pairwise similarities computed

based on different methods or features, or observed relations in a social network

with different semantic (friendship, follow, etc.).

The task of interest in this section is given an activation quota qτ ≥ 1 to

dynamically select a subset Rs (such that |Rs| ≤ q) from all known relations R to

improve the performance of inference. We call the reduced candidate graph with less
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relations a neighborhood graph (Gn). We select some of the relations rxi,xj from each

relation type Rk form candidate graph (Gc) to include in the neighborhood graph

(Gn = 〈X,Rs〉) and discard the rest of relations. Figure 4.2 shows an overview of

our main task.

More formally we aim to find an activation methods τ (i.e., inclusion function

or map) such that

Rs = τ(R,y, qτ ,ω) (4.2)

and |Rs| ≤ qτ , so that using a graph Gn , 〈X,Rs〉 with Rs instead of R improves

the inference’s result, i.e.,

ŷu = arg max
yu,Rs

P(yu|yo, 〈X,Rs〉;ω) (4.3)

Note that we replaced Gc in (4.1) with Gn. Next, we describe our proposed

methods to maximize the objective in (4.3).

4.4 Proposed General Framework

Maximizing the objective in (4.3) is a non-convex combinatorial optimization

problem. Hence, we break this objective into three parts and iteratively perform

each part; one part to nominate instance (Xn) with unknown labels that require
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more evidence, other part to activate or select more relations for those nominated

instances (Rs), and the third part to jointly infer all unknown labels for instances

given the results from the two previous steps. To achieve this we introduce a nom-

ination method η such that Xn = η(X, ŷu, qη) and |Xn| ≤ qη where qη indicates

the nomination quota. We introduce the nomination quota to control the num-

ber of unknown variables that the selected similarities in each iteration focus on.

For simplicity we assume that the activation quota is related to the nomination

quota by a constant κ (i.e. qτ = κ× qη), which means for each nominated instance

we can activate up to a maximum of κ relations r. We then update the activa-

tion method in (4.2) to select relations only for the nominated instances such that

Rs = τ(〈Xn,R〉,y, qτ ,ω)

Then (4.3) will be approximated via three components of nomination, activa-

tion, and inference as follows:

Xn = η(X, ŷu, qη)

Rs = τ(〈Xn,R〉,y, qτ ,ω)

ŷu = arg max
yu

P(yu|yo, 〈X,Rs〉;ω)

(4.4)

Due to obvious dependencies between Xn,Rs, and ŷu, we developed an iter-

ative algorithm to preform these steps and update the assignments. Algorithm 1

shows the overall code performing each step.
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Algorithm 1 LINA Framework

1: Rs ← Rinit

2: ω ← Learn the model parameters based on Rinit

3: Rs ← ∅
4: for i ∈ 0 . . . total iterations do
5: yu ← arg max P(yu|yo, 〈X,Rs〉;ω)
6: Xn ← η(X,yu, qη)
7: Rs ← τ(〈Xn,R〉,y, qτ ,ω)

8: return yu

We discuss the nomination method τ and the activation method η in Sec-

tion 4.5. To learn the importance (ω) of each relation type Rk and perform infer-

ence we use Probabilistic Soft Logic (PSL) and Hinge-loss Markov Random Fields

(HL-MRFs) [38] learning and inference methods.

4.5 Methods

The methods introduced in this chapter generally apply to multi-relational

probabilistic models that perform joint inference on all unknown variables. We

use PSL and HL-MRFs for inference and parameter learning of our framework.

Our choice of HL-MRFs comes from technical considerations: MPE inference in

HL-MRFs is provably and empirically efficient, in theory growing O(N3) with the

number of potentials, N , but in practice often converging in O(N) time [38]. Mod-

els built using HL-MRFs have achieves state-of-the-art performance in a variety of

applications [52, 97, 99, 100]. The MPE inference in HL-MRFs is a convex opti-

mization problem solved efficiently with Alternating Direction Method of Multiples

algorithm. We use the PSL templating language to built a simple model capturing
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dependencies between instance labels as following:

ωk1 : Label(xi) ∧Relationk(xi,xj)⇒ Label(xj) (4.5)

ωk2 : ¬Label(xi) ∧Relationk(xi,xj)⇒ ¬Label(xj) (4.6)

The HL-MRFs model built using the above rules assigns values to Label(xi)

and Label(xj) that are close to each other both in boolean and continuous forms.

We use one set of rules for each Relationk in the dataset to support multi-relational

data. PSL support different methods to learn the rule weight ωk including via maxi-

mum likelihood estimation [38]. As we discuss in Section 4.5.2.4, we use the learned

PSL rule weight ωk as an approximation of the importance of the Relationk. In

this section we discuss our approach for nomination and activation method and ex-

plain how we leverage the optimization terms and model parameters in our proposed

methods.

4.5.1 Nominating Instances

The nomination phase of our framework selects instances that may benefit from

additional evidence. The process of nominating instances is similar to the problem

of active learning [101], where instances are labeled based on a utility function.

However, in contrast to active learning, nomination does not acquire labels, but

selects those instances for which we introduce new relations in the neighborhood

graph.
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Our general framework is compatible with arbitrary nomination techniques,

allowing us to leverage the diverse active learning strategies developed over the past

decades. Furthermore, our choice of HL-MRFs for modeling inference problems pro-

vides the opportunity to use unique nomination strategies that incorporate partial

inference outputs and the variable state. We present a nomination strategy that

uses inference context and model features to choose instances.

4.5.1.1 Disagreement-based Uncertainty

A useful signal of uncertainty for an instance label can be when existing re-

lations selected for the instance cause disagreements on the inferred values. For

example, an inferred binary label of 0.5 that is the result of two conflicting evidence

suggesting the value should be 0 and 1 is much more uncertain than if both evidence

suggest it should be 0.5. For a simple k-nearest neighbors classifiers this uncertainty

can be measured based on the variance of the evidence.

For HL-MRFs we build on a method from Pujara et al. [102] for online in-

ference, which derives features for variable selection from the optimization process

underlying inference. This method identifies features from the underlying consensus

optimization algorithm for HL-MRFs inference, the alternating direction method of

multipliers (ADMM) [38]. ADMM decomposes the optimization objective into in-

dependent subproblems, optimizes each subproblem independently, and introduces

a constraint that the all subproblems agree on the optimal value of each inferred

variable. This optimization is often expressed using the augmented Lagrangian seen
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in (4.7). Here, ωr and φr are the parameter and potential associated with a given

relation r, ỹr is the local optimizer of a subproblem and yr is the consensus estimate.

Consensus between subproblems is enforced by introducing a Lagrange multiplier,

αr, associated with the constraint, and increasing the optimization penalty, ρ, asso-

ciated with violating this constraint to guarantee eventual convergence.

min
ỹr

ωr φr(x, ỹr) +
ρ

2

∥∥∥ỹr − yr +
1

ρ
αr

∥∥∥2

(4.7)

The disagreement between evidence can be expressed in terms of the Lagrange

multipliers associated with each optimization term. At convergence, the value of this

Lagrange multiplier captures the disagreement of a given optimization term with the

consensus estimate. We use the average weighted Lagrange multiplier (AWL) [102],

that measures the overall discrepancy between the local and consensus copies of the

label as a measure of uncertainty for the inferred labels:

1

|R|
∑
r∈R

ωrαr(i) (4.8)

where R indicates all the local copies of a consensus variable.

4.5.2 Activating Relations

In the relation activation step, we select a subset of relations Rs from the can-

didate graph Gc to include in the neighborhood graph Gn. In addition to considering

the weight, or value, of each relation edge rkxi,xj , we consider structural properties of
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the neighborhood graph. Intuitively, these structural properties measure the infor-

mativeness of a relation for inferring multiple unknown instances, and their abilities

to effectively propagate the information through Gn. In many applications relations

are shared between multiple instances. For example, in drug-target networks, a sim-

ilarity between two targets can be used to predict interactions for several drugs. We

introduce features that considers the number of instances with known and unknown

labels incident on a relation. First we introduce and define two additional structural

features along with the relation value feature. Then, we combine these features and

select the top qτ relations from multiple relation types.

4.5.2.1 Value Feature

We use strength or value associated with a relation edge rkxi,xj as a basic

feature. Relations of higher value convey a greater dependence between assignments

to labels of instances xi and xj. If xi or xj is an instance with known label, then a

high valued rkxi,xj effectively propagates that label to the unknown instance.

4.5.2.2 Nominated Instance Count Feature

For each rkxi,xj in Gn, we compute the number of nominated unknown instances

that are incident upon rkxi,xj . We introduce an incident operator I(xα, rβ) that

returns 1 if xα is an endpoint of rkxi,xj and 0 otherwise. Formally, the nominated

instance count score for rkxi,xj is:
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∑
xα∈Xn

I
(
xα, r

k
xi,xj

)

where Xn are the nominated instances incident on rkxi,xj . Intuitively, if many

xα ∈ Xn have endpoints in rkxi,xj , then the relation will be informative for many

predictions and introduce multiple useful dependencies in the inference step.

4.5.2.3 Observed Instance Count Feature

For each relation rkxi,xj , we also compute the number of instances with observed

labels (i.e., yo) that are incident on rkxi,xj . Connecting more instances with observed

labels are important because they can propagate evidence to instances with unknown

labels through these activated relations. Formally, the observed feature score for

rkxi,xj is:

∑
xα,yα | yα∈yo

I
(
xα, r

k
xi,xj

)

For this score we only count the instances with observed labels incident on

rkxi,xj . Hence, relations with higher scores increase connectivity of instances with

known labels.
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4.5.2.4 Combining Features and Selecting Relations

Each of the proposed features above assigns a score to each relation. In our

framework, first for each nominated instance xi ∈ Xn we consider the set of relations

Rn = {rβ|I(xi, rβ)} to which the nominated instance xi is incident on. Then for

each rkxj ,xl ∈ Rn, we compute the score for each feature and use their products

for combination, which we denote as skxj ,xl . We rank the relations in Rn by their

weighted combined scores ωk × skxj ,xl where ωk is the parameter, or importance, of

relation type k learned via the HL-MRFs framework. For each nominated instance

xi, we select the top κ relations from Rn. And since qτ = κ × qη, where qη is the

number of nominated instances, the total activation quota is never exceeded.

4.6 Neighborhood Graph-based Link Prediction

While the framework proposed in this chapter is generally applicable to all

neighborhood graph-based models, we focus our arguments on the link prediction

task.

To apply a neighborhood graph-based learning method for a link prediction-

task, links should be represented as instances (i.e., nodes) in the candidate graph

Gc and similarities between the links should be captured as relations (i.e., edges)

between them. In other words, we convert the links of the original data to nodes

in the candidate graphs. More formally, let Gd , 〈V , E〉 be the original data graph

where V is the set of vertices, and E is the set of edges or links. In a multi-relational

network, vertices and edges can be of different types. For example in a drug-target
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interaction network, V is the set of all drugs and protein targets and E is the set of all

the drug-target interactions as well as similarities with different semantics between

drugs and between targets. Similarities can be extracted from different sources, for

example, based on chemical structures of the drugs, or nucleotide sequence of the

targets [97].

In such setting, the candidate graph Gc , 〈X,R〉 consists of instances X which

are a subset of links E , and similarities R which are derived from Gd based on a

modeling decision. For example, Kashima et al. [103] use the Kronecker sum and

product to derive similarity between links, and we defined the similarities between

links based on the similarities between their end nodes in our link inference template

via the rules:

Similar(v2, v3) ∧ Link(v1, v2)⇒ Link(v1, v3) (4.9)

Similar(v2, v3) ∧ ¬Link(v1, v2)⇒ ¬Link(v1, v3)

Figure 4.3 shows an example of creating a candidate graph for links based on

the data graph using our method. In this example, the original data graph has three

types of edges (ei, ej, ek) and we are interested to infer the values of ei1,2 and ei1,4

based on the observed values of other edges. Note that in this setting a similarity

is shared between several links. e.g., xp = ei1,2, xq = ei1,4 and rjxp,xq = rj
ei1,2,e

i
1,4

= ej2,4.
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For Gn in this link prediction setting, the incident operator I(xα, rβ) that we

use for activation functions will be the following:

I
(
xα = eis,t, r

j
β = eju,v

)
=


1 if {s, t} ∩ {u, v} 6= ∅

0 otherwise

Link instance xα is incident on rjβ (i.e.,eju,v) if it has an end point of either u

or v. Intuitively, links are incident on a relations if the share a node.

v1 v2

v3 v4
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3,4

ei
1,4 ei

2,3 ej
2,4ej

1,3
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Figure 4.3: candidate graph construction based on the data graph. Using the logic

shown in (4.9), the similarity between two links that share a node are based on the

similarity between their other end nodes. For example, similarity between xp = ei1,2
and xq = ei2,3 that share v2 is based on the similarities of v1 and v3 which are ej1,3
and ek1,2.

4.7 Experimental Validation

In this section we evaluate the main components of our framework, activation

and nomination methods, on the link prediction setting. The task is to predict

the held out set of interactions in the network, based on the partially observed
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interactions and the similarities between nodes. We use 10-fold cross validation for

our experiments where we hold out 10% of the observed links (i.e., positive class) and

use the rest as observed instance to predict their values. We also sample 10% of the

absent or missing links (i.e., negative class) and include them in each held out fold.

We use the link prediction model presented at Chapter 3 for drug-target interaction

prediction. The underlying neighborhood graph was build using a sequential process

with a predefined k-nearest neighbors approach. The following sections describes

the dataset and present our experimental results.

4.7.1 Dataset

We perform our experiments to predict new interactions between drug com-

pounds and target proteins using the setting of Chapter 3. We follow the link

prediction modeling approach described in Section 4.6. We use known interactions

and biologically relevant similarity relations to predict held-out interactions. We de-

scribe the interactions and similarities used for our experimental evaluation below.

The interactions between drugs and target are gathered from Drugbank, KEGG

Drug, Drug Combination Database (DCB) and Matador. The dataset includes 1,306

known interactions between 315 drugs and 250 targets. We use five types of similar-

ity between each pair of drugs and three types of similarity for each pair of targets.

We describe each briefly below. For full details, refer to Chapter 3. In this dataset

the ratio of positive class (i.e., links presence y = 1) to negative class (i.e., link

absence y = 0) is 1.6%.
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Between drug similarities for this dataset include Chemical-based using chem-

ical structure of the drug molecules, Ligand-based using the closeness between

protein-receptor families for each drug, Expression-based comparing the gene ex-

pression levels in response to the administration of each drug, Side-effect-based via

comparing the reported side-effects for each drug, and Annotation-based via com-

paring the ontological characterizations of drugs.

Between target similarities for this dataset include Sequence-based via mea-

suring the goodness of alignment between the genetic codes of each target, Protein-

protein interaction network-based using the graph distance between proteins encoded

by each target gene on protein-protein interaction network, Gene Ontology-based via

comparing the semantic similarity between genes based on their ontological classifi-

cation.

4.7.2 Results

We use the baseline of selecting k relations or similarities for all instances that

we used in Chapter 3 to achieve state-of-the-art performance, and increasing the k

at each step. It is important to note that this baseline does not have a nomination

quota and basically nominates all instance to receive more relations at each step.

Our nomination method in contrast is limited by a quota and can not explore the

space as freely as the selected baseline.

Figure 4.4a depicts the performance of the AWL nomination method with

quota of 10% in comparison with the baseline on the drug-target interaction dataset.
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In this setting, limitations imposed on the search space by AWL nomination method

improves the link prediction performance. It is also notable that number of selected

similarities at each step by using the nomination method is less than the baseline.

Figure 4.4b shows the performance of the activation method in comparison

to the baseline method. In this setting although all instance were nominated to

get more relations, the relations with higher activation score were prioritized to be

included in the neighborhood graph, the performance achieved via this method is

even higher than the nomination method. It is also notable that the number of

similarities selected in this experiment is less the number of experiments in Fig-

ure 4.4a, which can suggest limiting the search space based on the relation can be

more restrictive.

The nomination method limits the search space by prioritizing the instance to

get more relations, while the activation method limit the search space by prioritizing

which relations to be selected for the neighborhood graph. Figure 4.4c shows using

combination of nomination and activation methods could be overly restrictive, This

finding is consistent with exploration and exploitation balance principle [104], and

suggests some degree of random search in the relation space may be helpful.

4.8 Related Work

As mentioned earlier, the general problem of constructing a neighborhood

graph from a candidate graph of relation is related to multiple areas of interest in

the research community. We briefly discuss these perspectives in this section. To
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Figure 4.4: Drug-Target interaction prediction experiments. Horizontal axis show

mean and standard deviation (std) of the number of similarities included in the

neighborhood graph at each iteration and vertical axis shows the mean and std of

the AUPR at each step over ten folds.

improve scalability of the k-nearest neighbors (kNN) classifier, Ougiaroglou et al.

[105] propose three early break heuristics for enhancing the neighborhood-graph-

based kNN classifier by using an adaptive k-value based on the instance of interest.

The first method is based on having a percentage of neighbors voting for one class,

the second one is based on the difference in the number of votes for the winning

class and others, and the final method is based on finding a set of consecutive
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neighbors that vote for a class. Their approach reduces the number of neighbors

needed for classification, thus decreasing the computational cost associated with

higher numbers of k. In our method, we dynamically prune the neighborhood graph

by leveraging the state of the inference as well as the structural features of the

similarities (i.e., their incidence scores).

Zeng et al. [106] propose a method based on matrix conversion and instance

selection to deal with sparsity and scalability problems in collaborative filtering.

Their idea for instance selection is that rarely rated items are not very informative

and hence can be discarded. In our work, we select relations based on multiple

structural properties of the candidate graph.

Olvera-López et al. [107] survey instance selection methods, and similar to

feature selection approaches, generally categorize them into two main groups of Fil-

ter and Wrapper -based methods. According to their categorization most wrapper

instance selection methods, perform based on misclassification information, and ex-

plore the neighborhood of those instances that are misclassified. Some methods

are also based on sequential search and evolutionary algorithms. Many filter-based

methods in their categorization use a variant of clustering. In contrast to wrapper

methods, we nominate unknown instances based on methods capturing the uncer-

tainty in inference instead of local misclassifications.

Brighton and Mellish [108] review instance selection methods and define two

schemes of competence enhancement and preservation to categorize them. They

argue that in competence enhancement, the aim is to improve the performance by

removing noisy instances, and in competence preservation the aim to maintain the
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level of performance and eliminate the instances with redundant information. In

our work, we can trade-off these perspectives with our dynamic nomination and

activation.

Yu et al. [109] propose an information-theoretic approach to feature and in-

stance selection for collaborative filtering. To find relevant instances, they define

and use a notion of rationality for instances based on uncertainty reduction. Our

approach can have different nomination features including the uncertainty-based

nomination and also structural activation features to iteratively searches the space

of neighborhood graphs.

Baltrunas and Ricci [110] propose a locally adaptive method called best item

per overlap to compute similarities between users for collaborative filtering consider-

ing the target user and item. They relate their work to feature selection. They first

assign weights to items and select the items with highest weights to compute user

similarity for predict ratings for each target item. Their method results in a smaller

set of items being selected for the user–user similarity computation and improved

performance. However computing a distinct similarity for each user–item pair in the

test set is computationally very expensive. In contrast, our nomination step reduces

the number of unknown instances that require activation of relations, focusing the

search on relevant parts of the space.

Liang et al. [111] define two item sets of common items and similar preference

for two users and argue that not all items rated by both users are indicative of

their similar preference. Their method is based on the recursive assumption that

if an item is indicative of similar preference its neighbors should also be in the
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similar preference set, and operates by removing each item from the common set

and measuring its effect on the computed similarity. They show improvements in

performance, but their method is computationally expensive.

For link prediction multiple methods have been proposed in different domains

[44, 61] such as unsupervised topological methods [112], factorization models [113],

latent membership models [49], and neighborhood-based methods [114]. Graph-

based semi-supervised methods and collective models extend neighborhood-based

methods by taking advantage of the structure between all instances with known

and unknown labels and jointly predicting links for all unknown instances. Link

propagation method by Kashima et al. [103] which extends label propagation to

infer information about links is an example in this category.

Our work published in [52, 97, 99] uses a Markov random field to achieve state-

of-the-art performance in drug-target interaction prediction, drug-drug interaction

prediction, and hybrid recommender systems for rating predictions with a graph-

based collective model. We construct a probabilistic graphical model (e.g., Markov

random field) based on observed relations (e.g., similarities) between all known and

unknown instances (i.e., links), and find the values of unknown labels that maximize

the probability a an exponential family distribution given the observed labels of

instances and relations between unknown and known labels, as well as relations

between all unknown labels.
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4.9 Discussion and Conclusion

In this chapter, we highlight the limitations of sequential neighborhood graph

construction and introduce a framework to dynamically construct multi-relational

neighborhood graphs during inference. We base our dynamic neighborhood graph

construction on the states of variables from intermediate inference results, the struc-

tural properties of the relations connecting them, and weight parameters learned by

the model. We then lay out the formulation of the general link prediction task as

inference on neighborhood graphs, and present our results on drug-target interaction

networks showing effectiveness of our methods.
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Chapter 5: Discussion and Conclusion

I proposed a set of template models to perform collective predictions on differ-

ent multi-relational networks and showed the importance of both collective predic-

tions and consideration of multi-relational characteristics in predictive modeling of

networks. I focused on two main tasks in predictive models of real-world networks;

inferring information about nodes, and inferring information about links.

First, I proposed three methods for node classification in a multi-relational net-

work motivated by a real-world social network with several types of time-stamped

edges between users. I used the multi-relational structure of the network, sequen-

tial properties of the network formation, and collective propagation of reputation

for social spammer detection. Using these approaches I show the effectiveness of

leveraging the multi-relational nature of the network and collective classification of

the nodes.

I then showed that data from many domains can be modeled via a common

bipartite network structure and presented a probabilistic template model for pre-

dicting information about the links in this common augmented bipartite network

structure to support multi-relational characteristics of the network and make collec-

tive predictions. I showed the effectiveness of the template model in pharmaceutical
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and recommender systems domains and outperformed the state-of-the-art methods

in both domains via my general link inference framework.

Finally, I showed that the collective link prediction task is an instance of

a general graph-based prediction model that relies on a neighborhood graph for

predictions and highlighted the challenges of pre-selecting a neighborhood graph. I

proposed a framework that can dynamically adapt the neighborhood graph based

on the state of variables from intermediate inference results, as well as structural

properties of the relations connecting them to improve the performance of the model.

5.1 Future Directions

Building on the findings of this dissertation that shows the importance of

modeling the multi-relational nature of the network as well as performing collective

predictions, an interesting area of consideration would be to study the connections

between models that could implicitly or explicitly leverage joint inference and the

multi-relational characteristics of the data.

Joint inference relies on the basic assumption that the instances that are re-

lated to each other influence each others’ properties. A range of models use this

assumption in different ways; k-nearest neighbors classifiers that simply consider

the relations between the labeled instance and unlabeled instances are the most ba-

sic method in this category. More sophisticated approaches such as the graph-based

semi-supervised learning, also include the relations between unlabeled instances to

propagate the information. Statistical relational learning methods extend these ca-
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pabilities in various ways that include the ability to model several types of relations,

heterogeneous types of information, and more complex relations.

Often the time complexity of the models in each category increases with their

ability to model more complex relations and dependencies. By studying the con-

nection between methods in related disciplines that could support multi-relational

nature of the network and collective predictions, one may find models that could

benefit from different aspects of each discipline, and are both scalable and capable

of representing common forms of multi-relational dependencies.
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Appendix 6: Hinge-loss Markov Random Fields

Hinge-loss Markov random fields (HL-MRFs) are a general class of conditional,

continuous probabilistic models [38]. HL-MRFs are log-linear models whose features

are hinge-loss functions of the variable states. Through constructions based on soft

logic, hinge-loss potentials can be used to model generalizations of logical conjunc-

tion and implication. A hinge-loss Markov random field P over random variables

Y and conditioned on random variables X defines a conditional probability density

function as the following:

P (Y|X) =
1

Z(λ)
exp

[
−

m∑
j=1

λjφj(Y,X)

]
,

where Z is the normalization constant of the form

Z =

∫
Y

exp

[
−

m∑
j=1

λjφj(Y,X)

]
.

In the above, φ is a set of m continuous potential of the form

φj(Y,X) =
[

max {`j(Y,X), 0}
]pj ,
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where ` is a linear function of Y, and X and pj ∈ {1, 2}.

6.1 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) [38] uses a first-order logical syntax as a tem-

plating language for HL-MRFs. A typical example of a PSL rule is

λ : P (a, b) ∧Q(a)→ R(b),

where P , Q, and R are predicates, a and b are variables, and λ is the weight asso-

ciated with the rule, indicating its importance. For instance, P (a, b) can represent

a relational edge in the graph such as Reported(a, b), and Q(a) could represent

a value for a vertex such as Credible(b). Each grounding forms a ground atom,

or logical fact, that has a soft-truth value in the range [0, 1]. The rules can encode

domain knowledge about dependencies between these predicates. PSL uses the

Lukasiewicz t-norm and co-norm to provide relaxations of the logical connectives

AND (∧), OR (∨), and NOT (¬) as following:

p ∧ q = max(0, p+ q − 1),

p ∨ q = min(1, p+ q),

¬ p = 1− p.

A ground instance of a rule r (rbody −→ rhead) is satisfied when the value of

rbody is not greater than the value of rhead. ` is defined to capture the distance to
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satisfaction for rules:

` = max{0, val(rbody)− val(rhead)} .

A full assignment of soft-truth values to a set of ground atoms is also called an

interpretation (I) of that set. Using the above relaxations and the logical identity

p→ q ≡ ¬ p∨q, a ground instance of a rule rbody −→ rhead is satisfied (i.e., I(r) = 1)

when I(rbody) ≤ I(rhead).

6.2 Inference

In HL-MRFs, inference of a maximum a posteriori probability (MAP), which

finds the most probable interpretation given evidence (i.e., a given partial inter-

pretation) is computed by maximizing the density function P (Y|X), subject to

both the evidence and the equality and inequality constraints. For example, given

a drug-target interaction network and interactions between some drugs and some

targets, the goal of MAP inference is to output the most likely interactions between

all other drugs and targets. Finding the most probable interpretation given a set of

weighted rules reduces to solving a convex optimization problem and can be solved

very efficiently [38].
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6.3 Weight Learning

The PSL rule weights indicate how much an assignment is penalized if a rule

is not satisfied. They are measures of importance for each rule. We can set the

weights based on prior domain knowledge or, if we have training data, we can learn

the weights using a number of different training objective and learning algorithms

[38]. In particular, the primary methods for weight learning are voted-perceptron

approximate maximum likelihood, maximum pseudo-likelihood, and large-margin

estimation.

We mainly used approximate maximum likelihood in our models. We seek to

maximize the log-likelihood of the full data, including both the observed data and

the training labels. We can do so using gradient ascent, where the gradient of the

log-likelihood with respect to a weight λj is:

∂

∂λj
logP (Y|X) = Eλ [φj(Y,X)]− φj(Y,X),

This gradient is intractable to compute exactly because the expectation term enu-

merates all possible interpretations, so we approximate the expectation by the values

at the MAP solution.
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Bringas. Collective classification for spam filtering. Logic Journal of IGPL,
2012.

[28] Guang-Gang Geng, Qiudan Li, and Xinchang Zhang. Link based small sample
learning for web spam detection. In Proceedings of the 18th international
conference on World wide web, pages 1185–1186. ACM, 2009.

[29] Mohamadali Torkamani and Daniel Lowd. Convex adversarial collective clas-
sification. In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 642–650, 2013.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical Report 1999-
66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-
0120.

[31] J Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro
Vespignani. Large scale networks fingerprinting and visualization using the
k-core decomposition. In Advances in neural information processing systems
(NIPS), 2005.

[32] Tommy R Jensen and Bjarne Toft. Graph coloring problems. John Wiley &
Sons, 2011.

[33] S Pemmaraju and S Skiena. Implementing discrete mathematics: Combina-
torics and graph theory with mathematica, 2003.

129



[34] Thomas Schank. Algorithmic aspects of triangle-based network analysis. Phd
in computer science, University Karlsruhe, 2007.

[35] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence
classification. ACM SIGKDD Explorations Newsletter, 2010.

[36] Fuchun Peng, Dale Schuurmans, and Shaojun Wang. Augmenting naive Bayes
classifiers with statistical language models. Information Retrieval, 2004.

[37] Fei Zheng and Geoffrey I Webb. Tree augmented naive Bayes. In Encyclopedia
of Machine Learning, pages 990–991. Springer, 2010.

[38] Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-
loss markov random fields and probabilistic soft logic. arXiv preprint
arXiv:1505.04406, 2015.

[39] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[40] Nesreen K. Ahmed, Jennifer Neville, and Ramana Kompella. Network sam-
pling: From static to streaming graphs. ACM Trans. Knowl. Discov. Data,
2013.

[41] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2006.

[42] Mohammad Al Hasan and Mohammed J. Zaki. Output space sampling for
graph patterns. PVLDB, 2009.

[43] Shobeir Fakhraei, Hamid Soltanian-Zadeh, and Farshad Fotouhi. Bias and
stability of single variable classifiers for feature ranking and selection. Expert
Systems with Applications, 41(15):6945 – 6958, 2014.

[44] Mohammad Al Hasan and Mohammed J Zaki. A survey of link prediction
in social networks. In Social network data analytics, pages 243–275. Springer,
2011.

[45] Ajit P Singh and Geoffrey J Gordon. Relational learning via collective ma-
trix factorization. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 650–658. ACM,
2008.

[46] Ryan Lichtnwalter and Nitesh V Chawla. Link prediction: fair and effective
evaluation. In Advances in Social Networks Analysis and Mining (ASONAM),
2012 IEEE/ACM International Conference on, pages 376–383. IEEE, 2012.

[47] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks:
principles and methodologies. Synthesis Lectures on Data Mining and Knowl-
edge Discovery, 3(2):1–159, 2012.

130



[48] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for rec-
ommender systems. IEEE Computer, 42(8), 2009.

[49] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing.
Mixed membership stochastic blockmodels. Journal of Machine Learning Re-
search, 9(Sep):1981–2014, 2008.

[50] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with
social regularization. In WSDM, 2011.

[51] Shobeir Fakhraei, Louiqa Raschid, and Lise Getoor. Drug-target interaction
prediction for drug repurposing with probabilistic similarity logic. In ACM
SIGKDD 12th International Workshop on Data Mining in Bioinformatics
(BIOKDD). ACM, 2013.

[52] Pigi Kouki, Shobeir Fakhraei, James Foulds, Magdalini Eirinaki, and Lise
Getoor. Hyper: A flexible and extensible probabilistic framework for hybrid
recommender systems. In Proceedings of the 9th ACM Conference on Recom-
mender Systems, pages 99–106. ACM, 2015.

[53] David J. Adams. The valley of death in anticancer drug development a re-
assessment. Trends in Pharmacological Sciences, 33(4):173 – 180, 2012.

[54] Aislyn D.W. Boran and Ravi Iyengar. Systems approaches to polypharmacol-
ogy and drug discovery. Current opinion in drug discovery & development, 13
(3):297, 2010.

[55] S. J. Cockell, J. Weile, P. Lord, C. Wipat, D. Andriychenko, M. Pocock,
D. Wilkinson, M. Young, and A. Wipat. An integrated dataset for in silico
drug discovery. J Integr Bioinform, 7(3):116, 2010.

[56] Michael J. Keiser, Vincent Setola, John J. Irwin, Christian Laggner, Atheir I.
Abbas, Sandra J. Hufeisen, Niels H. Jensen, Michael B. Kuijer, Roberto C.
Matos, Thuy B. Tran, Ryan Whaley, Richard A. Glennon, Jérôme Hert, Kelan
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[107] J Arturo Olvera-López, J Ariel Carrasco-Ochoa, J Francisco Mart́ınez-
Trinidad, and Josef Kittler. A review of instance selection methods. Artificial
Intelligence Review, 34(2):133–143, 2010.

[108] Henry Brighton and Chris Mellish. Advances in instance selection for instance-
based learning algorithms. Data mining and knowledge discovery, 6(2):153–
172, 2002.

[109] Kai Yu, Xiaowei Xu, Martin Ester, and Hans-Peter Kriegel. Feature weight-
ing and instance selection for collaborative filtering: An information-theoretic
approach*. Knowledge and Information Systems, 5(2):201–224, 2003.

[110] Linas Baltrunas and Francesco Ricci. Locally Adaptive Neighborhood Selec-
tion for Collaborative Filtering Recommendations. In Wolfgang Nejdl, Judy
Kay, Pearl Pu, and Eelco Herder, editors, Adaptive Hypermedia and Adaptive
Web-Based Systems, volume 5149, pages 22–31. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[111] Zhang Liang, Xiao Bo, and Guo Jun. An approach of selecting right neighbors
for collaborative filtering. In Innovative Computing, Information and Control
(ICICIC), 2009 Fourth International Conference on, pages 1057–1060. IEEE,
2009.

[112] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for so-
cial networks. Journal of the American society for information science and
technology, 58(7):1019–1031, 2007.

[113] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factor-
ization. In Machine Learning and Knowledge Discovery in Databases, pages
437–452. Springer, 2011.

[114] Charu C Aggarwal. Neighborhood-based collaborative filtering. In Recom-
mender Systems, pages 29–70. Springer, 2016.

136


	Preface
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	Introduction
	Multi-Relational Networks
	Collective Prediction
	Summary of Contributions

	Predictions on Nodes
	Social Spammer Detection
	Related Work in Spam Detection
	Our Model
	Experimental Validation
	Discussion and Conclusion


	Predictions on Links
	General Augmented Bipartite Structure
	Proposed General Link Inference Model
	Similarity-based Reasoning
	Priors
	Implementation via HL-MRFs

	Drug-Target Interaction Prediction
	Related Work in Drug-Target Interaction Prediction
	Our Model
	Similarity Selection
	Insights into Collective Link Inference
	Experimental Validation
	Discussion and Conclusion

	Hybrid Recommender Systems Model
	Similarity-based Triad Rules
	Ratings Priors
	Experimental Validation


	Dynamic Similarity Selection for Link Inference
	Neighborhood Graph-based Methods
	Neighborhood Graph Construction
	General Problem Statement
	Proposed General Framework
	Methods
	Nominating Instances
	Activating Relations

	Neighborhood Graph-based Link Prediction
	Experimental Validation
	Dataset
	Results

	Related Work
	Discussion and Conclusion

	Discussion and Conclusion
	Future Directions

	Hinge-loss Markov Random Fields
	Probabilistic Soft Logic
	Inference
	Weight Learning

	Bibliography

