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Estimating the evolutionary history of organisms, phylogenetic inference, is

a critical step in many analyses involving biological sequence data such as DNA.

The likelihood calculations at the heart of the most effective methods for statisti-

cal phylogenetic analyses are extremely computationally intensive, and hence these

analyses become a bottleneck in many studies. Recent progress in computer hard-

ware, specifically the increase in pervasiveness of highly parallel, many-core pro-

cessors has created opportunities for new approaches to computationally intensive

methods, such as those in phylogenetic inference.

We have developed an open source library, BEAGLE, which uses parallel com-

puting methods to greatly accelerate statistical phylogenetic inference, for both

maximum likelihood and Bayesian approaches. BEAGLE defines a uniform appli-

cation programming interface and includes a collection of efficient implementations

that use NVIDIA CUDA, OpenCL, and C++ threading frameworks for evaluat-

ing likelihoods under a wide variety of evolutionary models, on GPUs as well as on



multi-core CPUs. BEAGLE employs a number of different parallelization techniques

for phylogenetic inference, at different granularity levels and for distinct processor

architectures. On CUDA and OpenCL devices, the library enables concurrent com-

putation of site likelihoods, data subsets, and independent subtrees. The general

design features of the library also provide a model for software development using

parallel computing frameworks that is applicable to other domains.

BEAGLE has been integrated with some of the leading programs in the field,

such as MrBayes and BEAST, and is used in a diverse range of evolutionary stud-

ies, including those of disease causing viruses. The library can provide significant

performance gains, with the exact increase in performance depending on the specific

properties of the data set, evolutionary model, and hardware. In general, nucleotide

analyses are accelerated on the order of 10-fold and codon analyses on the order of

100-fold.
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Chapter 1: Introduction

1.1 Phylogenetics

Research in evolutionary biology can generally be divided as being most closely

associated with either of two broad categories:

1. microevolution, which involves the processes affecting changes in the genetic

structure of populations; and

2. macroevolution, which involves the processes of speciation and extinction.

These evolutionary categories converge in that trees representing ancestor-

descendent relationships are central to the conceptual and analytical framework for

both micro- and macroevolution, which are embodied by population genetics and

phylogenetics respectively. Although many statistical and computational inference

methods are shared between these fields, the focus of this work is in advancing these

inference methods specifically when applied to phylogenetic analyses.

Phylogenetic inference is a critical step in many analyses involving biologi-

cal sequence data such as DNA. Modern phylogenetic analyses involve obtaining

sequence data from a set of organisms, and using model-based methods to infer a

binary tree. This tree represents the evolutionary history of the organisms going
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back to their most recent common ancestor and is, in essence, a subset of the over-

all tree of life. In addition to providing a basic understanding of the evolution of

life, these phylogenetic relationships are very important in understanding the evo-

lutionary dynamics, timing, and spread of many disease-causing organisms, such as

viruses causing AIDS, influenza, and Ebola disease, among others.

Modern phylogenetic inference approaches use sophisticated statistical mod-

els that are very computationally demanding, often taking weeks or even months to

complete. This issue has been accentuated in recent years with the increase in impor-

tance of evolutionary genomics, which involves the use of genomic, transcriptomic

(RNA-Seq), or other large data sets resulting from high-throughput sequencing tech-

nologies. Evolutionary genomics data sets are typically on the order of 105 to 106

sequence positions in length and allow researchers to expand the typical number

of characters that can be used in phylogenetic reconstruction from a few hundred

to tens of thousands. Whereas this results in reduced estimation errors and higher

confidence in inferred phylogenies [1], it also demands even more computational ca-

pacity and makes the phylogenetic inference step a significant bottleneck for many

evolutionary studies.

1.1.1 Inference Software

The most effective software packages for phylogenetic inference involve either

maximum likelihood (ML) estimation or Bayesian analysis. For ML estimation,

arguably the most efficient is the Genetic Algorithm for Rapid Likelihood Inference

2



(GARLI) package. It is an open-source phylogenetic inference program that uses

the ML criterion. Developed by Zwickl [2], it is loosely based on earlier genetic

algorithm work by Lewis [3]. GARLI uses a genetic algorithm to search for the

likelihood optimum in the joint space of tree topologies, branch lengths and model

parameter values. The program was developed with the goal of increasing both

the speed of ML inference and the size of the datasets that can be reasonably

analyzed. This is achieved primarily through algorithmic techniques that allow for

accurate discrimination between trees while performing only a small fraction of the

computation required by older methods.

For Bayesian phylogenetic analysis, MrBayes is arguably the most successful

software package. Developed primarily by Ronquist and Huelsenbeck [4], it uses

a Markov Chain Monte Carlo (MCMC) method for sampling from the posterior

probability distribution in a stepwise fashion. Each new step is either accepted or

rejected based on the change in likelihood, and the posterior probability for each

parameter value is proportional to the frequency with which that value is observed.

Another software tool for evolutionary inference that applies a Bayesian ap-

proach is the Bayesian Evolutionary Analysis Sampling Trees (BEAST) program [5].

While it is oriented towards phylogeny dating, it uses the same core statistical meth-

ods as MrBayes and has similar computational algorithms.

Although the software packages described above are very effective and efficient,

more complex analyses can take hundreds or even thousands of hours. These tools

share the same computational bottleneck, which is the calculation of the likelihood

of the sequence data given a proposed tree.

3



1.1.2 Likelihood Function

The most effective methods for phylogenetic inference, both for ML estimation

and Bayesian analyses, involve computing the probability of observed sequence data

for a set of taxa given an evolutionary model and phylogenetic tree, which is often

referred to as the (observed data) likelihood of that tree. Felsenstein demonstrated

an algorithm to calculate this probability [6], and his algorithm recursively computes

partial likelihoods via simple sums and products. These partial likelihoods track the

probability of the observed data descended from an internal node conditional on a

particular state at that internal node.

The likelihood calculations apply to a subtree comprising a parent node, k,

two child nodes, ` and m, and connecting branches of length, t` and tm (Fig. 1.1 on

the following page). It is repeated for all such subtrees within the larger tree being

considered. This partial likelihood function is as follows [6]:

L
(i)
k (z) =

(∑
x

Pr(x|z, t`)L(i)
` (x)

)
×
(∑

y

Pr(y|z, tm)L(i)
m (y)

)
(1.1)

This calculation is repeated for each character i in the data (in the form of

a multiple sequence alignment), for each state z that a character can assume (e.g.,

adenine, cytosine, guanine, or thymine, for a nucleotide model sequence), and for

each internal node in the proposed tree. The computational complexity of the

likelihood calculation for a given tree is O(p × s2 × n), where p is the number of

patterns in the sequence (typically on the order of 102 to 106), s is the number

4



.

k

ℓ

tℓ

m

tm

Figure 1.1: Likelihood subtree to which the partial likelihood calculation
applies. Solid lines depict focus subtree branches, dotted lines contextual
branches.

of states each character in the sequence can assume (typically 4 for a nucleotide

model, 20 for an amino-acid model, or 61 for a codon model), and n is the number

of operational taxonomic units (e.g., species, alleles).

Additionally, the tree search space is very large; the number of unrooted

topologies possible for n operational taxonomic units is given by the double fac-

torial function (2n − 5)!! [7]. Thus, to explore even a fraction of the total search

space, a very large number of topologies are evaluated, and hence a very great num-

ber of likelihood calculations have to be performed. This leads to analyses that

can take days, weeks or even months to run. Further compounding the issue, rapid

advances in the collection of DNA sequence data have made the limitation for bi-

ological understanding of these data an increasingly computational problem. For

phylogenetic inferences, the computational bottleneck is most often the calculation

of the likelihoods on a tree. Hence, speeding up the calculation of the likelihood

function is key to increasing the performance of these analyses.
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1.2 Parallel Computing

Recent advances in computer hardware have come primarily in the form of

increasingly parallel architectures, such as wider Central Processing Unit (CPU)

vectorization intrinsics (e.g., Advanced Vector Extensions), many-core CPUs (e.g.,

Intel Xeon Phi), and Graphics Processing Units (GPU) specifically targeting general-

purpose computing (NVIDIA Tesla). Of these parallel computing solutions, modern

GPUs may offer the highest performance potential if the algorithm in question can

be efficiently mapped to their architecture.

1.2.1 General-Purpose Computing on GPUs

GPU hardware is a significant source of computing power that is present in

nearly every modern computer. High-end GPUs can achieve over 10 TFLOPS (tril-

lions of floating point operations per second) in single precision floating-point for-

mat, which represents nearly a ten-fold increase over the latest CPUs [8]. Addition-

ally, GPU performance has sustained a significantly greater rate of growth when

compared to CPUs [8]. Traditionally GPUs have been used for graphics process-

ing, as their name implies. In the last decade however, general-purpose computing

on graphics processing units (GPGPU) has quickly become an important area of

research, and scientific computing applications have seen significant performance

improvements from adaption to this hardware.

GPU organization generally follows the SIMD (single-instruction, multiple-

data) model and is specialized for computationally intensive, highly parallel appli-

6



cations. The hardware design is such that, when compared to CPUs, many more

transistors are devoted to data processing rather than data caching and flow con-

trol [8]. More specifically, GPUs are especially adapted to address problems that

can be expressed as data parallel computations where the same instructions are ex-

ecuted on many data elements in parallel and with high arithmetic intensity (the

ratio of arithmetic operations to memory operations). Each individual sequence of

computation is called a thread and can operate on a different section of the data.

Because the same instructions are executed for each data element, there is a lower

requirement for sophisticated flow control.

In order to take full advantage of many-core hardware such as GPUs, prob-

lems must be carefully mapped to these architectures, as its programming model is

significantly different from that of traditional CPUs. This is a non-trivial problem

and one that is the basis for much of this work.

1.2.2 Concurrency

The process of adapting existing computational methods to parallel architec-

tures benefits from a broader perspective on concurrency, the simultaneous execu-

tion of independent operations. The following is the abstract from a talk, Some

Thoughts About Concurrency, given by Ivan Sutherland at the 2010 USENIX An-

nual Technical Conference, which highlights the importance and timely relevance of

this work as well as its non-trivial character.

Our industry has grown up with a sequential model of computing, evolved
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to husband the logic associated with a few vacuum tubes. Now we must

struggle to harness the vast concurrency of modern transistor circuits. Is

concurrency fundamentally hard, or does it just seem hard because of our

history of sequential programming? I believe some of each. Concurrency

is fundamentally hard for only two reasons. One is that concurrent ac-

tion requires coordination. The other is that concurrent action of many

processes can produce an exponential explosion of states. How can we

be sure that all such states are benign?

Concurrency is easy when we escape its details. Maybe instead of “pro-

gramming sequential processes” we might better “configure concurrent

communication.” A communication view of computing matches well the

cost structure of modern hardware, where logic is now essentially free but

moving data is relatively slow and expensive in time and energy. Making

communication central to computation also prepares us for the increas-

ing role geometry will play in the future of computing. New thinking

may be essential to harnessing the vast concurrency provided by modern

transistor circuits.

This idea of “configuring concurrent communication” well describes an over-

arching theme of this research and is a timely perspective, as it is often stated that,

“modern computer architectures are not getting faster, but are getting wider”. Es-

sentially by “wider” what is meant is that more concurrent operations are supported.
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1.3 Concurrent Computation in Phylogenetics

For this work, the general model for configuring concurrent communication

is identifying all independent computation in phylogenetic inference methods and

decomposing these for parallel computation in the most efficient manner possible.

This emphasis on concurrency originates from an understanding of the specific char-

acteristics of the computational problem — computing the likelihood function (Sec-

tion 1.1.2 on page 4) — and how it is used for analyses within the domain science —

phylogenetics — and recognizing the opportunities presented by trends in processor

design for increasing concurrency.

Below we identify concurrent computation opportunities in likelihood-based

phylogenetic inference methods, categorized by granularity.

1.3.1 Fine-Grained Parallelism

1.3.1.1 Character-Level Parallelism

Each character (e.g, sequence position) in a partial likelihood array can be

computed autonomously, and subsequently combined to obtain the likelihood of the

tree. In practice, the decomposition of the characters may be to the individual

level, or groups of characters, with the decision often made with consideration of

the processing and memory transfer capacity of the hardware being employed (e.g.,

number of cores available, or threads efficiently supported). Because the largest

proportion of computation in statistical phylogenetics is concentrated at this level
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via the likelihood calculation (Section 1.1.2 on page 4), parallelism at this level has

been the most common focus in pursuit of improved performance. Sequence-level

parallelism has been implemented on GPUs [9–15], Field Programmable Gate Arrays

(FPGAs) [16–19], STI Cell Broadband Engine Architecture [9,10], multi-core CPUs

using OpenMP [9,10], and CPUs using MPI [20–23].

1.3.2 Medium-Grained Parallelism

1.3.2.1 Sequence Partitions

Evolutionary analyses benefit from increases in modeling flexibility. One clear

way of improving model flexibility is to allow independent estimation of model pa-

rameters for character subsets (e.g., codon positions). This is typically referred

to as a partitioned model and is a technique available in all phylogenetic software

packages of importance. This concurrency opportunity is similar to character-level

parallelism, however it presents additional computational complexity as the likeli-

hood of different characters may be estimated under different models.

1.3.2.2 Independent Subtrees

Another opportunity for concurrent computation of phylogenetic partial like-

lihoods lies in the fact that subtrees (Fig. 1.1 on page 5) may be autonomous in

relation to shared descendants. This means they may be calculated independently

within the larger tree of which they are parts.

The number of subtrees requiring calculation for any full tree is n− 1 where,
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Figure 1.2: Upper: Example tree with post-order traversal and node
calculations in series corresponding to node numbers, with n−1 = 7 node
calculations. Lower: Same tree with reverse level-order, or breadth-first,
traversal. Concurrent node calculations possible for independent nodes
designated with the same node numbers enclosed by dotted lines, with
dlog2 ne = 3 sets.

again, n is the number of operational taxonomic units (e.g., species, alleles), which

is the number of tips (leaves) on the tree. Most current phylogenetic algorithms

typically use a post-order traversal when calculating tree likelihood, calculating each

of the n − 1 subtrees in series (Fig. 1.2, upper). Often many of these subtrees are

autonomous and likelihoods for each can be calculated concurrently. In the case of

a fully balanced tree the number of autonomous subtrees is maximized, and reverse

level-order traversal can be done in sets of concurrent operations corresponding to

the number of levels in the tree, dlog2 ne (Fig. 1.2, lower). This exploit of tree

level-group concurrency is similar to a classic parallel reduction scheme.
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1.3.3 Coarse-Grained Parallelism

1.3.3.1 Independent Chains in Bayesian Analyses

Bayesian-inference analyses are often conducted as a series of alternating model

parameter value proposals and comparisons of likelihoods for proposed and present

states via Markov chain Monte Carlo (MCMC) using the Metropolis algorithm [24],

or Hastings (Metropolis-Hastings) algorithm [25].

One common strategy for increasing the effectiveness of characterizing the

posterior probability distribution and avoiding being entrapped in local optima is the

Metropolis-coupled Markov chain Monte Carlo (MCMCMC) [26] algorithm. With

MCMCMC multiple chains are employed, and phylogenetic applications typically

use 4. One of these is the cold chain from which parameter values are recorded,

and the others are heated to differing degrees and thus comprise the hot chains.

The heating comes by analogy to simulated annealing, and here the temperature

refers to what is in effect a rescaling of the likelihood to increase acceptance of

proposals, and hence promote mixing (i.e., more ready exploration of the posterior).

At random intervals, states of a random pair of adjacent chains (i.e., a pair of

chains of sequential temperatures) are compared using an MCMC algorithm, and

positions in the posterior (or alternatively the chain temperatures) are swapped

if the hotter chain state (functioning as the proposal) is accepted. Some of these

state swap events involve the cold chain, and hence impact the recorded values

characterizing the posterior. This MCMCMC strategy is used by several important
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programs including MrBayes. Concurrent computation of multiple chains within

MCMCMC has been implemented using message passing with MPI [20–23, 27, 28],

shared memory [27,28], and on GPUs [13,29].

1.3.3.2 Run-Level Parallelism

There are several common use cases where replicate analyses are conducted

in phylogenetics. For example, in maximum likelihood analyses independent runs

might constitute multiple search replicates for the best tree using random start-

ing points in combination with a heuristic search algorithm, or a set of bootstrap

trees to estimate uncertainty in the inference [30]. This level of parallelism is rel-

atively simple and can be done within a program, as in PAUP* [31], GARLI [2],

RAxML [32], and other programs, or externally using aggregation of individual runs

and post-processing to generate bootstrap values and other summary statistics in a

grid computing system [33].

In Bayesian programs, entire analyses are independently run starting from

random initial conditions (e.g., random starting trees). These separate analyses can

be done asynchronously to check consistency of results, as suggested when doing

analyses with BEAST, or synchronously to assess convergence, e.g., using Potential

Scale Reduction Factor [34], as done in MrBayes. Both of these situations provide

straightforward opportunities for parallel computation.
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1.4 Preliminary Work

Initial work on parallel computation of phylogenetic inference methods was fo-

cused on exploring fine-grained GPU-acceleration for the program GARLI [2]. This

effort was done using the CUDA (previously an acronym for Compute Unified Device

Architecture) toolkit, which is a software development kit and set of programming

libraries from GPU manufacturer NVIDIA [8]. As part of the work, GPU functions,

or kernels, were developed for the partial likelihood calculation algorithm in GARLI.

The GPU functions developed in this preliminary work parallelized the work

across threads. Each thread computed the likelihood for a different combination of

sequence position and character state. These kernels supported calculation using

nucleotide, amino acid, and codon models. Speedups of over 70× were achieved when

the kernels were run in isolation. However, the initial method of integration with

the program imposed severe memory transfer penalties and the speedups dropped

by several fold when running the full tree search algorithm (Fig. 1.3 on the following

page).

1.5 The BEAGLE library

Contemporaneously to our initial investigations into parallel algorithms for

phylogenetic inference with GARLI, researchers working with BEAST [5] achieved

similarly impressive results [11]. Given these initial results and in order to benefit the

phylogenetic inference community more broadly, we collaborated to further develop
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Figure 1.3: Speedups for likelihood computation with GARLI on an
NVIDIA GTX 280 GPU, relative to serial CPU version running on an
Intel Core i7 Nehalem processor, and under different sequence lengths
and evolutionary models. Black data points indicate performance with
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this work as part of a software library that could be used by any program in the

field.

The realization of this endeavour is the Broad-platform Evolutionary Analy-

sis General Likelihood Evaluator (BEAGLE) [12] (Chapter 2 on page 29), a high-

performance likelihood-calculation platform for phylogenetic applications. BEAGLE

defines a uniform application programming interface (API) and includes a collection

of efficient implementations for evaluating likelihoods under a wide range of evolu-

tionary models, on GPUs as well as on multi-core CPUs. The BEAGLE library can

be installed as a shared resource, to be used by any software aimed at phylogenetic

reconstruction that supports the library. This approach allows developers of phy-

logenetic software to share optimizations of the core calculations and for programs

that use BEAGLE to automatically benefit from the improvements to the library.

For researchers, this centralization provides a single installation to take advantage

of new hardware and parallelization techniques.

1.5.1 Parallel Computation with BEAGLE

Recognizing the different levels of concurrency available in phylogenetic infer-

ence computing (Section 1.3 on page 9), as well as the different strengths of different

parallel computing hardware architectures, BEAGLE implements parallelism in a

variety of ways.
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1.5.1.1 Fine-Grained Parallelism

BEAGLE exploits GPUs via fine-grained parallelization of functions neces-

sary for computing the likelihood on a phylogenetic tree. Phylogenetic inference

programs typically explore tree space in a sequential manner (Fig. 1.4 on the next

page, tree space) or with a small number of sampling chains, thus offering a low

upper limit for coarse-grained parallelization. In contrast, the crucial computation

of partial likelihood arrays at each node of a proposed tree presents an excellent

opportunity for fine-grained data parallelism, which GPUs are especially suited for.

The use of many lightweight execution threads incurs very low overhead on GPUs

and the presence of large numbers of positions and multiple states enables efficient

parallelism at this level (Fig. 1.4 on the following page, partial likelihood).

Furthermore, BEAGLE uses GPUs to parallelize other functions necessary for

computing the overall tree likelihood, thus minimizing data transfers between the

CPU and GPU. These additional functions include those necessary for computing

branch transition probabilities, for integrating root and edge likelihoods, and for

summing site likelihoods.

BEAGLE also provides SSE and OpenCL implementations for exploiting fine-

grained parallelism on CPUs, which vectorize likelihood calculations across charac-

ters and character states. These solutions, however, offer only a modest performance

benefit as CPU vectorization intrinsics are of limited width (128 bits are available

with SSE and up to 512 bits with AVX vectorization). Additionally, CPU archi-

tectures have lower memory bandwidth than GPUs and we have found this to be a
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Figure 1.4: Diagrammatic example of the tree sampling process and
medium and fine-grained parallel computation of phylogenetic partial
likelihoods using BEAGLE on GPUs for a nucleotide-model problem
with 5 taxa, 5 site patterns. Each entry in a partial likelihood array L
is assigned to a separate GPU thread t, and each array is assigned to
a separate GPU execution block b. In this simplified example, 40 GPU
threads are created to enable parallel evaluation of each entry of the
partial likelihood arrays L(n4) and L(n5).
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limiting factor when it comes to fine-grained parallel computation of phylogenetic

likelihoods.

1.5.1.2 Medium-Grained Parallelism

In order to calculate the overall likelihood of a proposed tree, phylogenetic

inference programs perform a tree traversal, evaluating a partial likelihood array at

each node. When using BEAGLE, the evaluation of these multi-dimensional arrays

is offloaded to the library. When partial likelihood arrays are indepedent from one

another, they are also evaluated in parallel, with BEAGLE assigning the calculation

of each array to separate execution blocks on the GPU (Fig. 1.4 on the previous

page, partial likelihood).

For partitioned analyses, BEAGLE can also exploit multi-core CPUs and

GPUs by parallelizing the computation of multiple data subsets [35,36] (Chapters 4

on page 51 and 5 on page 84). This cabapility suits the trend of increasingly large

molecular sequence data sets, which are often heavily partitioned in order to better

model the underlying evolutionary processes.

1.5.1.3 Coarse-Grained Parallelism

Phylogenetic inference programs which implement multiple Bayesian chains or

independent runs can invoke multiple BEAGLE library instances, one for each run.

For effective parallelism, this requires multiple hardware resources (e.g., multiple

GPUs) and for each library instance to be assigned to a separate device.
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Figure 1.5: Layer diagrams depicting BEAGLE library organization,
and illustration of API use. Arrows indicate direction and relative size
of data transfers between the client program and library.

1.5.2 Design

1.5.2.1 Library

The general structure of the BEAGLE library can be conceptualized as a set

of layers (Fig. 1.5, library), the uppermost of which is the application programming

interface. Underlying this API is an implementation management layer, which loads

the available implementations, makes them available to the client program, and

passes API commands to the selected implementation.

The design of BEAGLE allows for new implementations to be developed

without the need to alter the core library code or how client programs interface

with the library. This architecture also includes a plugin system, which allows
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implementation-specific code (via shared libraries) to be loaded at runtime when

the required dependencies are present. Consequently, new frameworks and hard-

ware platforms can more easily be made available to programs that use the library,

and ultimately to users performing phylogenetic analyses.

The implementations in BEAGLE derive from two general models. One is a

threaded CPU implementation model, which does not directly use external frame-

works. Under this model, there is a parallel CPU implementation, and one with

added SSE intrinsics, which uses vector processing extensions present in many CPUs

to further parallelize computation across character state values.

The other implementation model involves an explicit parallel accelerator pro-

gramming model, and uses the CUDA and the OpenCL external computing frame-

works to exploit parallel hardware [35] (Chapter 4 on page 51). It implements

fine-grained parallelism for evaluating likelihoods under arbitrary molecular evolu-

tionary models, thus harnessing the large number of processing cores to efficiently

perform calculations [11, 12]. This parallel implementation model communicates

with the CUDA and OpenCL APIs through a single internal interface.

Further significant sharing of code between CUDA and OpenCL exists at the

kernel level. There is a single set of kernels for both frameworks, with keywords

for each being defined at the pre-processor stage. Though there is a common kernel

code-base for both frameworks, functions that impart a crucial effect on performance

are differentiated for each hardware type. This allows for distinctly optimized par-

allel implementations that are shown in Figure 1.5, one for NVIDIA and OpenCL-

compatible GPUs and one for OpenCL-compatible x86 parallel resources such as
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multicore CPUs with SIMD-extensions.

1.5.2.2 Application Programming Interface

The BEAGLE API was designed to increase performance via parallelization

while reducing data transfer and memory copy overhead to an external hardware

accelerator device (e.g., GPU). Client programs, such as BEAST [5], use the API

to offload the evaluation of tree likelihoods to the BEAGLE library (Fig. 1.5 on

page 20, API ). API functions can be subdivided into two categories: those which

are only executed once per inference run and those which are repeatedly called as

part of an iterative sampling process. For the one-time initialization process, client

programs use the API to indicate analysis parameters such as tree size and sequence

length, as well as specifying the type of evolutionary model and hardware resource(s)

to be used. This allows BEAGLE to allocate the appropriate number and size of

data buffers on device memory. Also at this initialization stage, the sequence data

is specified and transferred to device memory. This costly memory operation is only

performed once, thus minimizing its impact.

During the iterative tree sampling procedure, client programs use the API to

specify changes to the evolutionary model and instruct a series of partial likelihood

operations that traverse the proposed tree in order to find its overall likelihood.

BEAGLE efficiently computes these operations and makes the overall tree likelihood

as well as per-site likelihoods available via another API call.
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1.5.3 Performance

Peak performance with BEAGLE is achieved when using a high-end GPU.

However, the relative gain over using a CPU depends on model type and problem

size as more demanding analyses allow for better utilization of GPU cores. Figure 1.6

on the next page shows speedups relative to serial CPU code when using BEAGLE

with an NVIDIA Tesla P100 GPU for the critical partial likelihood function, with

increasing unique site pattern counts and for two model types. Computing these

likelihoods typically accounts for over 90% of the total execution time for phyloge-

netic inference programs and the relationship between speedups and problem size

observed here primarily matches what would be observed for a full analysis.

Figure 1.6 on the following page includes performance results for computing

partial likelihoods under both nucleotide and codon models. The vertical axis shows

the speedup relative to the average performance of a baseline serial, single threaded

and non-vectorized, CPU implementation. This non-parallel CPU implementation

provides a consistent performance level across different problem sizes and provides

a relevant point of comparison as most phylogenetic inference software packages use

serial code as their standard.

Using a nucleotide model, relative GPU performance over the CPU strongly

scales with the number of site patterns. For very small numbers of patterns the

GPU exhibits poor performance due to greater execution overhead relative to over-

all problem size. GPU performance improves quickly as the number of unique site

patterns is increased and by 10, 000 patterns it is closer to a saturation point, con-
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and codon models and for an increasing number of unique site patterns.
Speedup factors are on a log-scale.

tinuing to increase but more slowly. At 100, 000 nucleotide patterns the GPU is

approximately 64 times faster than the serial CPU implementation.

For codon-based models, GPU performance is less sensitive to the number of

unique site patterns. This is due to the better parallelization opportunity afforded

by the 61 biologically-meaningful states that can be encoded by a codon. The

higher state count of codon data compared to nucleotide data increases the ratio of

computation to data transfer, resulting in increased GPU performance for codon-

based analyses. For a problem size with 10, 000 codon patterns the GPU is over 256

times faster than the serial CPU implementation.

1.5.4 Memory usage

When assessing the suitability of GPU acceleration via BEAGLE for a phylo-

genetic analysis, it is also important to consider if the GPU has sufficient on-board
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Figure 1.7: Contour plots depicting BEAGLE memory usage on GPUs
for BEAST nucleotide and codon-model analyses with 4 evolutionary
rate categories in double precision floating-point format, for a range
of problem sizes with different numbers of taxa and of unique site
patterns. Memory requirements shown here assume an unpartitioned
dataset. Partitioned analyses and more sophisticated models that use
multiple BEAGLE instances incur memory overhead per additional li-
brary instance.

memory for the analysis to be performed. GPUs typically have less memory than

what is available to CPUs and the high transfer cost of moving data from CPU to

GPU memory prevents direct use of CPU memory for GPU acceleration.

Figure 1.7 shows how much memory is required for problems of different sizes

when running nucleotide and codon-model analyses in BEAST [5] with BEAGLE

GPU acceleration. Note that when multiple GPUs are available, BEAST can parti-

tion a data set into separate BEAGLE instances, one for each GPU. Thus each GPU

will only require as much memory as necessary for the data subset assigned to it.

Typical PC-gaming GPUs have 8 GB of memory or less, while GPUs dedicated to

high performance computing, such as the NVIDIA Tesla series, may have as much
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as 24 GB of memory.

1.5.5 Conclusion

The BEAGLE project has been very successful in bringing hardware acceler-

ation to phylogenetics. The library has been integrated into popular phylogenetics

software including BEAST [5], MrBayes [4], PhyML [37] and GARLI [2], and has

been widely used across a diverse range of evolutionary studies, examples of which

include: viruses, including those causing diseases such as HIV, influenza, Dengue, ra-

bies, West Nile, and others [38–52]; strains of plague [53]; insects [54,55], snails [56],

birds [57–59], fishes [60, 61], lizards [62], plants [63–67]; and relationships of verte-

brate globin genes [68,69].

In addition to the hundreds of researchers directly using the BEAGLE library

with application programs, thousands of scientists use the BEAGLE library through

software services made available via the CIPRES Science Gateway [70] that run on

XSEDE resources. As is typical of users of such gateways, most are unaware that

their analyses have been accelerated via the library. Furthermore the BEAGLE

project has served as a reference point for similar research on parallel computation,

particularly using GPUs, in evolutionary and related analyses [71–77].

The BEAGLE library is free, open-source software licensed under the Lesser

GPL and available from https://beagle-dev.github.io.
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Chapter 2: BEAGLE: an Application Programming Interface and

High-Performance Computing Library for Statistical Phy-

logenetics

Most modern approaches to statistical phylogenetic inference involve comput-

ing the probability of observed character data for a set of taxa given a phylogenetic

model — often a tree and continuous-time Markov chain model of character state

evolution. Felsenstein demonstrated an efficient algorithm to calculate this prob-

ability [6], which is often refered to as the likelihood of the model. His algorithm

recursively computes partial likelihoods via simple sums and products. These partial

likelihoods track the probability of the observed data descended from an internal

node conditional on a particular state at that internal node. A library that im-

plements the calculations required by Felsenstein’s algorithm is appealing because

this procedure accounts for the majority of computing time in most likelihood-based

phylogenetic operations. Furthermore, the algorithm offers opportunities for paral-

lelization.

In typical phylogenetic models, likelihood calculation operations assume inde-

pendence at several levels. These independencies provide the opportunity to perform

operations in parallel. For example, models often assume that sites in a sequence
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alignment evolve independently, so that one can compute the likelihood for each site

separately. The product of site-likelihoods yields the likelihood for the alignment.

In models that include among-site rate variation via a finite-mixture, it is often pos-

sible to calculate conditional likelihoods given each rate category in parallel. Several

other opportunities for parallelism exist at a finer-scale.

We have developed the software library BEAGLE: Broad-platform Evolution-

ary Analysis General Likelihood Evaluator. BEAGLE provides a uniform interface

for calculating phylogenetic likelihoods under a variety of different phylogenetic

models. The library implements parallelism in the likelihood calculation on impor-

tant emerging computer hardware technology, including graphics processing units

(GPUs) and multi-core CPUs. We intend for users to install the library as a shared

resource to be used by any phylogenetic software that supports the library. This

approach allows developers of phylogenetic software to share any optimizations of

the core calculations and any package that uses BEAGLE will automatically benefit

from the improvements to the library. For researchers, this centralization provides

a single installation to take advantage of new hardware and parallelization tech-

niques. We now describe the interface to the library and some details regarding its

implementation.
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2.1 Application Programming Interface (API)

2.1.1 Key Concepts

The key to BEAGLE performance lies in delivering fine-scale parallelization

while minimizing data transfer and memory copy overhead. To accomplish this,

the library lacks the concept or data structure for a tree, in spite of the intended

use for phylogenetic analysis. Instead, BEAGLE acts directly on flexibly indexed

data storage (called buffers) for observed character states and partial likelihoods.

The client program can set the input buffers to reflect the data and can calculate

the likelihood of a particular phylogeny by invoking likelihood calculations on the

appropriate input and output buffers in the correct order. Because of this design

simplicity, the library can support many different tree inference algorithms, and

likelihood calculation on a variety of models. Arbitrary numbers of states can be

used, as can non-reversible substitution matrices via complex eigen decompositions,

and mixture models with multiple rate categories and/or multiple eigen decom-

positions. Finally, BEAGLE API calls can be asynchronous, allowing the calling

program to implement other, coarse-scale parallelization schemes such as evaluating

independent genes or running concurrent Markov chains.

2.1.2 Usage

To use the library, a client program first creates an instance of BEAGLE

by calling beagleCreateInstance (further API method names can be found in
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the documentation distributed with the library); multiple instances per client are

possible and encouraged. All additional functions are called with a reference to

this instance. The client program can optionally request that an instance run on

certain hardware (e.g. a GPU), or have particular features (e.g. double-precision

math). Next, the client program must specify the data dimensions and specify key

aspects of the phylogenetic model. Character state data is then loaded and can be in

the form of discrete observed states or partial likelihoods for ambiguous characters.

The observed data are usually unchanging and loaded only once at the start to

minimize memory copy overhead. The character data can be compressed into unique

‘site patterns’ and associated weights for each. The parameters of the substitution

process can then be specified, including the equilibrium state frequencies, the rates

for one or more substitution rate categories and their weights, and finally the eigen

decomposition for the substitution process.

In order to calculate the likelihood of a particular tree, the client program then

specifies a series of integration operations that correspond to steps in Felsenstein’s

algorithm. Finite-time transition probabilities for each edge are loaded directly

if considering a non-diagonalizable model or calculated in parallel from the eigen

decomposition and edge lengths specified. This is performed within BEAGLE’s

memory space to minimize data transfers. A single function call will then request one

or more integration operations to calculate partial likelihoods over some or all nodes.

The operations are performed in the order they are provided, typically dictated by

a post-order traversal of the tree topology. The client need only specify nodes for

which the partial likelihoods need updating but it is up to the calling software to
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keep track of these dependencies. The final step in evaluating the phylogenetic

model is done using an API call that yields a single log likelihood for the model

given the data.

Aspects of the BEAGLE API design support both maximum likelihood (ML)

and Bayesian phylogenetic tree inference. For ML inference, API calls can calculate

first and second derivatives of the likelihood with respect to the lengths of edges

(branches). In both cases, BEAGLE provides the ability to cache and reuse pre-

viously computed partial likelihood results, which can yield a tremendous speedup

over recomputing the entire likelihood every time a new phylogenetic model is eval-

uated.

2.2 Methods

The core BEAGLE library is implemented in C++ with C and Java JNI in-

terfaces. BEAGLE uses a runtime module loading system to load hardware-specific

plugins (shared libraries) when suitable hardware is available. Current plugins im-

plement BEAGLE on GPUs using CUDA and OpenCL (in development), CPUs

with vector instructions using SSE, and multi-core systems via OpenMP. BEAGLE

is available for Linux, Mac, and Windows operating systems, and is packaged with

conventional installer methods for each.
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2.2.1 GPU Implementation

The GPU implementation of BEAGLE supports both single- and double-

precision arithmetic. Single-precision requires more frequent use of a rescaling

scheme to avoid underflow, but allows BEAGLE to run on a greater variety of graph-

ics processors since initial generations of such hardware did not include support for

double-precision math. The GPU does fine-scale parallelization of the likelihood cal-

culation, primarily by parallelizing across alignment sites, rate categories and state

values. Models such as amino acid (20 states) or codon models (64 states), therefore

permit a greater degree of parallelization than nucleotide models (4 states) and also

yield the most notable speedups on GPU hardware [11]. The CUDA kernels load us-

ing the CUDA driver API, which enables them to be compiled at runtime and utilize

features specific to the particular hardware and CUDA version installed. Multiple

GPUs can be seamlessly utilized simultaneously via multiple BEAGLE instances.

2.2.2 CPU-based Implementations

In addition to a standard, serial CPU implementation, BEAGLE includes two

other CPU-based implementations that exploit parallelism in different ways. An

SSE implementation in double-precision uses vector processing extensions present

in many CPUs to parallelize computation across character state values. Single-

precision SSE-vectorization has not been a BEAGLE priority as other phyloge-

netic tools already provide this feature [31, 78] and, so, is not yet available in

BEAGLE. The OpenMP implementation uses multiple threads to parallelize com-
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putation across rate categories. Although finer-scale parallelization, equivalent to

that achieved for GPU devices, could be attempted it is unlikely to yield significant

speedups due to the thread synchronization overhead in the OpenMP model.

2.3 Example

2.3.1 Program Speedups

Currently, three popular phylogenetic software packages interface with BEAGLE:

MrBayes [78] and BEAST [79], which use Bayesian inference, and GARLI [2], which

uses a ML approach. We benchmarked each of these programs to compare the

speed of their native likelihood calculators to the BEAGLE implementations. In or-

der to better exploit the parallelism offered by the GPU implementation we used a

dataset with a large number of alignment sites and ran it under both nucleotide and

codon models. More specifically, the dataset used had 15 taxa and 18792 nucleotide

columns, 8558 of which were unique; for the codon model, 6080 of the 6264 site

patterns were unique. This dataset was a subset of a larger arthropod dataset [80].

We performed these benchmarks on a standard desktop PC with a 2.9GHz Intel

Core i7-930 CPU and 6 GB of 1.6 GHz DDR3 RAM. The PC was equipped with an

NVIDIA GTX 580 GPU, with 1.5 GB of RAM and 512 processing cores running at

1.5 GHz.

Figure 2.1 on the following page shows run-time speedups for each program

when using BEAGLE CPU, SSE, and GPU implementations under nucleotide and

codon models. For the GPU implementation, we also benchmarked in single-precision
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Figure 2.1: Performance using the BEAGLE library relative to the na-
tive, sequential CPU implementations of phylogenetic analysis programs
GARLI, MrBayes, and BEAST. Speedup factors are on a log-scale.
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mode. Reported speedups are relative to the run-time when using the native, se-

quential CPU implementation of each program. We note that the GARLI interface

with BEAGLE is not fully optimized. While we expect that further integration work

will produce positive results, in our tests only the GPU implementation achieved

effective speedups. We have thus omitted the results from the CPU-based imple-

mentations.

For the BEAGLE GPU implementation we observe significant speedups across

all programs. The speedups are largest under the codon models, as they allow for

better utilization of the GPU cores. We also observe the higher performance cost

of double-precision calculation on the GPU relative to single-precision. Overall, the

highest speedup is 71-fold, for the BEAGLE GPU single-precision implementation

when compared to the BEAST native implementation, under the codon model.

We note that not every analysis run on a GPU will achieve the same speedups

we report and, in some circumstances, using the BEAGLE GPU implementation

may result in a slower overall runtime than using a CPU implementation. Several

factors affect the relative performance. Beyond state-space size and numerical preci-

sion, the number of unique alignment columns and the hardware specifications of the

GPU, especially numbers of cores and memory bandwidth, are important factors.

We recommend that users first assess the relative performance of the GPU imple-

mentation with their setup by performing short comparative runs, which specify a

smaller chain length or fewer generations.
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2.4 Conclusion

BEAGLE is an API and library for high performance evaluation of phyloge-

netic likelihoods. The API provides a uniform interface for performing calculations

on an expanding variety of compute hardware platforms including GPUs, multi-core

CPUs and SSE vectorization. On GPUs, the library provides novel algorithms and

methods for evaluating likelihoods under arbitrary molecular evolutionary models,

harnessing the large number of processing cores to efficiently parallelize calculations.

Current results show speedups of up to 71-fold on a single GPU over CPU-based

likelihood-calculators. BEAGLE is currently integrated with three state-of-the-art

phylogenetic software packages: MrBayes, BEAST and GARLI, and compatible

with many more. Forthcoming extensions include OpenCL support, single-precision

SSE-vectorization, improved performance for highly partitioned datasets and addi-

tional high-level language wrappers, such as Python. BEAGLE is freely available

from http://beagle-lib.googlecode.com under the GNU Lesser General Public

License and new collaborators are welcome.
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Chapter 3: MrBayes 3.2: Efficient Bayesian Phylogenetic Inference

and Model Choice Across a Large Model Space

3.1 Overview

Bayesian Markov chain Monte Carlo (MCMC) methods quickly gained in pop-

ularity after they were introduced in statistical phylogenetics in the late 1990’s [81–

84]. This was due to the inherent advantages of the approach but also to the

availability of easy-to-use software packages, such as MrBayes [85]. Originally, Mr-

Bayes only supported simple phylogenetic models, but the model space expanded

considerably in version 3.0 [78]. In addition to a wide range of models on binary,

“standard” (morphology), nucleotide and amino acid data, version 3.0 also sup-

ported mixed models. The latter allow different data partitions to be combined in

the same model, with parameters linked or unlinked across partitions according to

user specifications. MrBayes 3.0 was apparently the first statistical phylogenetics

package to support such models [86].

Bayesian phylogenetic inference using MCMC has developed in leaps and

bounds since the release of MrBayes 3.0. In particular, the relative ease with which

complex models can be tackled using the MCMC machinery has led to an explosion
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in the development of probabilistic evolutionary models (for a review, see [87]). We

have also seen the appearance of better MCMC algorithms and more sophisticated

convergence diagnostics for phylogenetic models, and methods for Bayesian model

choice have improved considerably.

With this note, we announce the official release of version 3.2 of MrBayes.

Version 3.2 was originally intended as a relatively modest expansion of version 3.1,

which added convergence diagnostics to the original features in version 3.0. Over the

years, however, a number of significant new features were added to version 3.2, and

large parts of the program were rewritten. When we now officially release version

3.2, it is every bit as significant in the evolution of the program as the release of

version 3.0 almost a decade ago.

3.2 Description of New Features

3.2.1 Convergence

The phylogenetics community has come to accept as good practice that Bayesian

MCMC results be accompanied by a critical assessment of convergence. Arguably,

the best way of accomplishing this is to compare samples obtained from indepen-

dent MCMC analyses. It is typically the tree samples that are most divergent in

phylogenetic analyses, and we therefore introduced the average standard deviation

of split frequencies (ASDSF) in MrBayes to allow quantitative assessment of the

similarity among such samples.

ASDSF is calculated by comparing split or clade frequencies across multiple
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independent MCMC runs that ideally should be started from different randomly

chosen starting trees [88]. ASDSF should approach 0.0 as runs converge to the

same distribution. The frequencies of rare splits or clades are difficult to estimate

accurately and these groupings are usually of marginal interest. Therefore, it may

be advantageous to exclude them from the diagnostic. MrBayes allows the user to

set a cutoff frequency (default value 0.10); all splits or clades occurring minimally

at that frequency in at least one of the runs will be incorporated in the ASDSF.

To allow users to monitor MCMC progress, MrBayes can run several analyses

in parallel and report the average (ASDSF) or maximum standard deviation of split

frequencies at regular intervals. More detailed diagnostics can be obtained using

the “sump” and “sumt” commands after the run has completed. They include

ASDSF across runs for each of the sampled clades in addition to the potential scale

reduction factor (PSRF [34]) for branch lengths, node times, and substitution model

parameters. PSRF compares the variance within and between runs and should

approach 1.0 as runs converge. MrBayes 3.2 also reports the effective sample size,

widely used for single-run convergence diagnostics.

MrBayes 3.2 also introduces several new features intended to improve MCMC

convergence rates. A number of new tree proposal mechanisms have been added, in-

cluding subtree-swapping moves and extending subtree-pruning-and-regrafting moves,

and the default mix of proposals has been optimized [88]. MrBayes 3.2 further in-

cludes a completely new type of tree proposal that is guided using parsimony scores.

The details of the parsimony-biased proposals will be presented elsewhere; however,

tentative empirical results show that they can improve the speed of convergence
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by an order of magnitude on some problems (see also [89]). For nontree proposals,

MrBayes 3.2 implements auto-tuning that automatically adjusts tuning parameters

such that a target acceptance frequency is reached [90]. Since previous versions, Mr-

Bayes supports Metropolis coupling (heated chains) to accelerate convergence. To

simplify monitoring of convergence, MrBayes 3.2 prints ASDSF values, acceptance

rates of moves, and acceptance rates of swaps between Metropolis-coupled chains to

a separate file with a “.mcmc” suffix during runs.

3.2.2 Faster and More Convenient Computation

Much of the computational effort in a phylogenetic MCMC analysis is spent

calculating likelihoods. To improve speed, MrBayes 3.2 now employs streaming

single-instruction-multiple-data extensions (SSE) for all likelihood calculations. SSE

instructions are supported by most current CPUs and provide low-level paralleliza-

tion of arithmetic operations. Importantly, MrBayes 3.2 also supports the use of

the BEAGLE library for likelihood calculations [12]. With BEAGLE, the likelihood

calculations can be farmed out to one or more graphics processing units (GPUs)

on compatible hardware, resulting in significant speedups for codon and amino acid

models in particular. BEAGLE can also be used for likelihood computation on the

CPU.

MrBayes 3.2 does not support multithreading, but it does implement the mes-

sage passing interface (MPI) for efficient parallel processing across large computer

clusters [28]. On many hardware platforms, including Mac OS and Linux, it is pos-
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sible to use the MPI-enabled Unix version of MrBayes to take advantage of multiple

cores. However, MPI parallelization is across chains, which means that the max-

imum number of cores or processors that can be used by MrBayes is the same as

the total number of heated and nonheated chains across all simultaneous runs. For

instance, two runs of four chains each would be maximally accelerated on a system

with eight processors or cores. The MPI version can be combined with BEAGLE to

further expand the opportunity for computational parallelization.

Finally, to facilitate long runs, MrBayes 3.2 implements checkpointing across

all models. At a frequency determined by the user, all parameter samples are printed

to a “.ckp” file. If desired, the analysis can later be restarted from the checkpoint

file, and the final results will appear as if the run had never been stopped.

3.2.3 New Models

Many phylogenetic hypotheses concern the structure of the phylogenetic tree.

To facilitate such analyses, MrBayes 3.2 implements three types of constraints on

the tree: hard, negative, and partial. A hard constraint forces a split or clade to be

present in all trees sampled in the MCMC analysis, whereas a negative constraint

forces a split or clade to be absent. Unlike hard and negative constraints, a partial

constraint (or backbone constraint) can leave the position of some taxa indetermi-

nate. The indeterminate taxa are allowed to appear on either side of the specified

split if the tree is unrooted, or either within or outside the specified clade if the

tree is rooted. Several hard, negative, and partial constraints can be combined into
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complicated priors on the shape of the tree. However, constraints are either on or

off; they cannot be associated with probabilities in the current version.

Unlike previous versions, MrBayes 3.2 supports relaxed clock models and dat-

ing. Three different relaxed clock models are available: the Compound Poisson

Process (CPP [91]), the ThorneKishino 2002 (TK02 [92]), and the Independent

Gamma Rate (IGR [93]) models.

The CPP model is a discrete autocorrelated model, in which rate multipliers

appear on the tree according to a Poisson process. The MrBayes implementation

uses a lognormal distribution for the rate multipliers instead of the modified gamma

distribution proposed originally [91]. It also includes novel algorithms to allow

sampling across tree space since the original paper only dealt with fixed trees.

The TK02 model is a continuous autocorrelated model. In the particular

version we implemented [92], the rate of a descendant node is drawn from a lognormal

distribution, the mean of which is the same as the ancestral rate and the variance of

which is proportional to the length of the branch (measured in expected substitutions

per site at the base rate of the clock).

The IGR model is a continuous uncorrelated model. First published as the

“white noise” model [93], it is similar to the uncorrelated gamma model [94] but

is mathematically more elegant in that it truly lacks time structure. In the IGR

model, effective branch lengths are drawn from a gamma distribution, in which the

mean is the same as, and the variance proportional to, the branch length.

Dating can be achieved in MrBayes 3.2 by calibrating interior or tip nodes

in the tree; calibrated interior nodes need to be associated with hard constraints
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to be valid. Calibration points can be either fixed or associated with uncertainty.

The birthdeath prior model on clock trees has been expanded to incorporate re-

cent progress in the understanding of the linear constant birthdeath process with

complete sampling [95], with random incomplete sampling [96], or with clustered or

diversified sampling [97]. The tree moves on clock and relaxed clock trees have also

been improved considerably over those that were available in previous versions.

Bayesian phylogenetic inference of species trees from multiple gene trees was

first accomplished in the Bayesian estimation of species trees (BEST) software us-

ing a complex computational machinery, in which MrBayes was one of the compo-

nents [98, 99]. Despite later improvements to BEST, the analyses remained slow

and computationally demanding. The multispecies coalescent model has now been

fully integrated in MrBayes 3.2, and several of the original algorithms have been

rewritten to speed up the calculations.

3.2.4 Model Averaging and Model Choice

It is standard practice today to select a substitution model for Bayesian phylo-

genetic inference using a priori model selection procedures [100–103]. An alternative

is to use Bayesian model jumping during the MCMC simulation to integrate out the

uncertainty concerning the correct substitution model [104]. The latter procedure

is now implemented in MrBayes 3.2. Rather than selecting a substitution model

before the analysis, the user can now sample across all 203 possible time-reversible

rate matrices according to their posterior probability. The model-jumping approach
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is available in all models where a four-by-four nucleotide model is a component,

including doublet and codon models in addition to the ordinary nucleotide models.

Bayesian model choice using Bayes factors is rapidly gaining in popularity.

Since earlier versions, MrBayes has reported the harmonic mean of the likelihoods

from the MCMC sample, which can be used as a rough estimate of the model likeli-

hood from which the Bayes factor is calculated [105]. However, there are now consid-

erably more accurate, albeit computationally more demanding, methods [106]. Of

these, MrBayes 3.2 implements the recently proposed stepping stone method [107]

that uses MCMC to sample from a series of so-called power posterior distributions

connecting the posterior distribution with the prior distribution. The samples across

these distributions are then used to estimate the model likelihood. The stepping

stone algorithm in MrBayes 3.2 uses the full MCMC machinery, including conver-

gence diagnostics and Metropolis coupling, and can be applied to any model available

in the program. For instance, it can be used to test various topological hypotheses

or substitution models against each other.

3.2.5 More Output Options

MrBayes 3.2 provides more extensive output options than previous versions.

The user can now request sampling of site rates, site selection coefficients, site

positive selection probabilities, and ancestral states of particular nodes. A wide

range of tree statistics, including the mean and variance of split or clade frequencies,

node times, and branch rates, are now added as annotations to the consensus tree
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by the “sumt” command and can be displayed using FigTree and compatible tree

viewers.

3.3 Benchmark and Biological Examples

Benchmark data on the GPU-accelerated code are provided by [12]. A number

of example data sets are distributed with the program, and tutorials illustrating most

of the new features are included in the program manual. Many of the dating features

in MrBayes 3.2 are discussed in some detail and used in an empirical context in [108].

3.4 Availability

MrBayes 3.2 is freely available under the GNU General Public License version

3.0. The program web site (http://www.mrbayes.net) provides download links to

both source code for compilation on Unix systems and to convenient installers for

Windows and Mac OS systems. The installers include both MrBayes and the re-

quired BEAGLE libraries, but the BEAGLE libraries can also be installed separately

using the BEAGLE installer, available at http://beagle-lib.googlecode.com.

The program comes with a manual and example files. Further help is available on

the program web site, which also provides instructions for reporting bugs and sign-

ing up for the MrBayes e-mail list. Instructions for accessing the MrBayes source

code repository can be found at http://sourceforge.net/projects/mrbayes/

develop.
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Chapter 4: Heterogeneous Hardware Support in BEAGLE, a High-

Performance Computing Library for Statistical Phyloge-

netics

4.1 Introduction

Advances in computer hardware, specifically in parallel architectures, such as

multicore CPUs, manycore CPUs (e.g., Intel Xeon Phi), GPUs, and CPU intrinsics

(e.g., SSE, AVX), have created opportunities for new approaches to computation-

ally intensive analysis methods. The design and development process required to

take advantage of these parallel computing resources begins with decisions of what

hardware to support and development frameworks to use. These initial decisions

typically have implications that generally constrain applicable hardware used by the

software developed, as well as the complexity of the software itself. Here we describe

the software design and optimization approaches used to extend the range of hard-

ware devices supported in the upcoming release of BEAGLE, a high-performance

library for statistical phylogenetics [12]. We then explore the performance of the

library on a variety of modern hardware resources and platforms.

Our design harnesses parallel hardware via multiple frameworks, and includes
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a model for sharing kernels for CUDA and OpenCL frameworks. Our own moti-

vations for pursuing a development plan involving multiple frameworks comprise a

number of elements. First among these is our desire to serve a large community

of evolutionary biologists and others doing very common, but very computationally

intensive calculations. This community has access to a broad range of hardware,

and developing with multiple frameworks helps our library work across this range

of hardware. Secondly, use of multiple frameworks diversifies risk across both hard-

ware and software platforms. Market forces largely determine the composition of

the hardware-software ecosystem, and correctly choosing the more important among

the possible combinations can be difficult in the early phases of the hype cycle and

in the presence of vendor marketing. Poor choice of target hardware or development

framework can result in greatly diminished impact and a poorly served domain sci-

ence community.

Regardless of high apparent promise of any particular option, at least initially,

diversifying across processor architectures and development frameworks seems pru-

dent. As examples of risk in the hardware realm consider the history of processors

such as the Intel Itanium and STI Cell Broadband Engine, or the current status of

the Intel Xeon Phi. In the realm of frameworks illustrative examples of risk include

OpenCL for Apple macOS, for which not all features are supported, and OpenCL

for Xeon Phi (Knights Landing), which is not available at the time of this writ-

ing. In addition to risk reduction, diversifying across processor architectures and

development frameworks results in deeper understanding of hardware features and

programming approaches, which can subsequently lead to better performance across
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implementations.

We continue this paper by providing an abbreviated review of related work,

some context of the basic problem from the application domain science and compu-

tational perspectives, a general overview of the BEAGLE library, and follow with

details regarding our shared framework strategy, including various design issues,

hardware-specific optimizations, and performance results.

4.2 Related Work

We restrict our abbreviated consideration of related work involving to that

involving the CUDA and OpenCL frameworks, as these comprise the most widely

used for GPU programming, which is a special, though not exclusive, focus of the

BEAGLE library. Furthermore, it is the users of the CUDA and OpenCL frameworks

who are most likely to find some of our design decisions most applicable to their

own efforts. This related work can be generally classified as translators, where the

objective is to take code associated with one framework, most commonly CUDA

for NVIDIA GPUs, and translate to another framework or processor architecture.

These translators differ in the starting code for translation, as well as the target

framework or processor architecture.

Starting with the pseudo-assembly code Parallel Thread Execution (PTX) gen-

erated in the CUDA framework, Ocelot [109] targets x86 and STI Cell Broadband

Engine processors, whereas Caracal [110] targets the AMD Compute Abstraction

Layer (CAL), a low-level access software development layer. Source-to-source trans-
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lation from CUDA has been an approach followed by others. Among the direct

source code translation approach are MCUDA [111] targeting x86-based processors,

and CU2CL (CUDA-to-OpenCL) [112,113], which targets OpenCL. Swan [114] also

targets OpenCL, but requires the developer to replace CUDA API calls with inter-

mediary equivalent calls in a Swan-specific syntax, and these, in turn, are translated

to generate the OpenCL code.

Our own work described in this paper differs fundamentally from the work

mentioned above. First, our approach is to design and develop kernels that are

shared between CUDA and OpenCL, rather than to create or employ a tool for after-

the-fact translation to a different framework or architecture. From our perspective

and objectives this fundamental difference has several advantages over translation

particularly in the areas of efficiency and simplicity: i) ready sharing of core algo-

rithms; ii) easier accommodation of new analytical models; iii) no dependence on

translators, which may or may not be up-to-date with respect to the latest framework

versions, thus eliminating another potential development risk; iv) reduces duplicated

code; and v) adroitly facilitates hardware-specific optimizations.

4.3 Evolutionary Biology, the Scientific Domain

Research in evolutionary biology can generally be divided as being most closely

associated with either of two broad categories: i) macroevolution, which involves the

processes of speciation and extinction; and ii) microevolution, which involves the pro-

cesses affecting changes in the genetic structure of populations. These evolutionary
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categories converge in that trees representing ancestor-descendent relationships are

central to the conceptual and analytical framework for both macro- and microevo-

lution, which are embodied by phylogenetics and population genetics respectively.

In a broad sense phylogenetics is the study of evolutionary relationships. Typ-

ically, modern phylogenetic analyses involve obtaining DNA sequence data from a

set of organisms, and using model-based methods to infer a binary tree. This tree

represents the evolutionary history of the organisms going back to their most recent

common ancestor and is, in essence, a subset of the overall tree of life.

4.3.1 Likelihood Function

The most effective methods for inferring both phylogenetic trees and gene ge-

nealogies are based on either maximum likelihood estimation or Bayesian analysis,

which share the same computational bottleneck: calculation of the likelihood of

trees [6]. When profiling GARLI [2], a leading phylogenetic inference program, we

have observed that, for DNA models, likelihood related calculations typically consti-

tute over 94% of the overall runtime. For more complex models (e.g., amino-acid or

codon-based), likelihood calculation will typically incur an even greater proportion

of the analysis time. Speeding the calculation of the likelihood function is key to

increasing the performance of statistical inference-based phylogenetic analyses.

The core likelihood calculations apply to a subtree comprising a node (x0) and

its two descendant nodes (x1 and x2), and the connecting branches (of length t1 and

t2), and is repeated for all such subtrees of the larger tree being considered. This
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partial-likelihoods function [6] is as follows.

L(x0) =

(∑
x1

Pr(x1|x0, t1)L(x1)

)
×
(∑

x2

Pr(x2|x0, t2)L(x2)

)
(4.1)

This calculation is repeated for each site (i.e., sequence position), and for each

possible character a site can assume (e.g., a, c, g, and t, for a nucleotide model

sequence). The computational complexity of the likelihood calculation for a given

tree is O(p× s2 × n), where p is the number of positions in the sequence (typically

on the order of 102 to 106), s is the number of states each character in the sequence

can assume (typically 4 for a DNA model, 20 for an amino-acid model, or 61 for

a codon model), and n is the number of operational taxonomic units (e.g., species,

alleles).

Thus, to explore even a fraction of the total search space, a very large number

of topologies are evaluated, and hence a very great number of likelihood calculations

have to be performed. This leads to analyses that can take days, weeks or even

months to run. Further compounding the issue, rapid advances in the collection of

DNA sequence data have made the limitation for biological understanding of these

data an increasingly computational problem.

The structure of the likelihood calculation, involving large numbers of posi-

tions and multiple states, as well as other characteristics, makes it a very appealing

computational fit to modern parallel microarchitectures such as multi and manycore

CPUs, and especially, GPUs.
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4.4 BEAGLE

BEAGLE [12] is a high-performance likelihood-calculation platform for phylo-

genetic applications. BEAGLE defines a uniform application programming interface

(API) and includes a collection of efficient implementations for calculating a variety

of phylogenetic models on different hardware devices, such as graphics processing

units (GPUs), Intel Xeon Phi devices, and multicore CPUs.

The BEAGLE project has been very successful in bringing hardware accel-

erators to phylogenetics. The library was the first to focus on high-performance

computation of the phylogenetic likelihood calculation via fine-scale parallelization.

It is the most widely adopted library for this purpose and has been integrated into

popular phylogenetics software including BEAST [5], MrBayes [4], and PhyML [37],

and has been widely used for phylogenetic analyses. Recent work on the BEAGLE li-

brary identifying independent likelihood estimates in analyses of partitioned datasets

and in proposed tree topologies, and configuring concurrent computation of these

likelihoods via CUDA and OpenCL frameworks results in substantially increased

performance [36].

Other proposals have been made to bring hardware acceleration to statistical

phylogenetics, however these have typically focused only on MrBayes and have only

applied to a subset of models the program supports [13], or have not made the source

code or binaries available [77].
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BEAGLE
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implementation manager
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hardware-specific implementations

CPU SSECPU

C API

CUDA GPU

implementation base-code

CUDA modelCPU serial model

Figure 4.1: Layer diagram depicting the overall structure of the
BEAGLE library version 1.

4.4.1 Overall Design

The general structure of the BEAGLE library version 1 can be conceptualized

as layers (Fig. 4.1), the upper most of which is a C API. Alternatively, Java programs

can use a Java Native Interface (JNI) wrapper, which is provided with the source

code.

Underlying the API is an implementation management layer, which loads the

available implementations, makes them available to the client program, and passes

API commands to the selected implementation. Internally, the implementations

in BEAGLE derive from two general models. One is a serial CPU implementa-

tion model that does not directly use external frameworks, and which comprises a

standard CPU implementation, and one with added SSE intrinsics.
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The other implementation model involves an explicit parallel accelerator pro-

gramming model, which uses the CUDA external computing framework. This par-

allel implementation model communicates directly with the GPU via CUDA APIs.

4.4.2 Application Programming Interface

The BEAGLE API was designed to increase performance via fine-scale par-

allelization while reducing data transfer and memory copy overhead to an external

hardware accelerator device. To accomplish this, the library lacks the concept or

data structure for a tree, which provides for a more simplified implementation in ap-

plication programs. Instead, BEAGLE acts directly on flexibly indexed data storage

which stores the partial-likelihoods.

4.4.3 Implementation Overview

The design of BEAGLE allows for new implementations to be developed

without the need to alter the core library code or how client programs interface

with the library. This architecture also includes a plugin system, which allows

implementation-specific code (via shared libraries) to be loaded at runtime when

the required dependencies are present. Consequently new frameworks and hardware

platforms can more easily be made available to programs that use the library, and

ultimately to users performing phylogenetic analyses.
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4.4.4 CPU Implementations

BEAGLE version 1 includes a serial CPU implementation, as well as an SSE

implementation for nucleotide models in double-precision, which uses vector process-

ing extensions present in many CPUs to parallelize computation across character

state values.

4.4.5 CUDA Implementation

The initial version of BEAGLE exclusively used the CUDA platform to exploit

NVIDIA GPUs. It implemented novel computational methods for evaluating likeli-

hoods under arbitrary molecular evolutionary models, harnessing the large number

of processing cores to efficiently parallelize calculations [11,12]. We originally chose

to develop with the CUDA Driver API rather than the Runtime API due to its

greater flexibility. This also facilitated sharing code with the subsequently devel-

oped OpenCL solution.

4.4.6 Parallel Computation

BEAGLE exploits GPUs via fine-grained parallelization of functions necessary

for computing the likelihood on a phylogenetic tree. Phylogenetic inference programs

typically explore tree space in a sequential manner (Fig. 4.2 on page 62, tree space)

or with only a small number of sampling chains, offering limited opportunity for

task-level parallelization. In contrast, the crucial computation of partial likelihood

arrays at each node of a proposed tree presents an excellent opportunity for fine-
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grained data parallelism, for which GPUs are especially suited.

In order to calculate the overall likelihood of a proposed tree, phylogenetic

inference programs perform a post-order traversal, evaluating a partial likelihood ar-

ray at each node. When using BEAGLE, the evaluation of these multi-dimensional

arrays is offloaded to the library. Though each partial likelihood array is still eval-

uated in series, BEAGLE assigns the calculation of the array entries to separate

GPU threads, for computation in parallel (Fig. 4.2 on the next page, partial like-

lihood). Further, BEAGLE uses GPUs to parallelize other functions necessary for

computing the overall tree likelihood, thus minimizing data transfers between the

CPU and GPU. These additional functions include those necessary for computing

branch transition probabilities, for integrating root and edge likelihoods, and for

summing site likelihoods.

For exploiting CPU parallelism, BEAGLE provides an SSE implementation

that vectorizes likelihood calculations. Additionally, in order to exploit multiple

CPU cores, application programs running partitioned analyses can invoke multiple

library instances, one for each data subset (or partition). This approach suits the

trend of increasingly large molecular sequence data sets, which are often heavily

partitioned in order to better model the underlying evolutionary processes.
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Figure 4.2: Diagrammatic example of the tree sampling process and
fine-grained parallel computation of phylogenetic partial likelihoods us-
ing BEAGLE on GPUs for a nucleotide-model problem with 5 taxa and
9 site patterns. Each entry in a partial likelihood array L is assigned to a
separate GPU thread t. In this simplified example, 36 GPU threads are
created to enable parallel evaluation of each entry of the partial likeli-
hood array L(x0) Calculations for real datasets would typically generate
thousands of threads.
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4.5 Extending Supported Hardware in BEAGLE

4.5.1 Benchmarking and Testing Methods

As we extended BEAGLE with new implementations, we further developed

our test program (genomictest) to support a wider range of analysis types and more

detailed output. This program generates random synthetic datasets of arbitrary

sizes and is used to evaluate performance and assure correct functioning of the

library.

For benchmarking we generate a measure of throughput in terms of the effec-

tive number of floating point operations per second for computation of the partial-

likelihoods function (see equation 4.1 on page 56). In contrast to a direct timing

benchmark, throughput allows us to more easily compare performance across dif-

ferent problem sizes and floating point precision formats. This measure also allows

comparison to an upper performance bound and generally informs whether compu-

tations are compute or memory bound.

For assessing result correctness, we developed a set of testing scripts which

evaluate different analyses types by varying input parameters to our genomictest

program. These testing scripts are publicly available in the project repository and

we have verified correct functioning of all new implementations described below.

Table 4.1 on the next page shows relevant hardware and software specifications

for the two main systems used to perform the benchmarks results reported in this

paper. Table 4.2 on the following page summarizes the hardware features of the
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Table 4.1: System Specifications

system 1 system 2

CPU (Intel) Core i7-930 Xeon E5-2680v4 (x2)
GPU 1 (NVIDIA) Quadro P5000 —
GPU 2 (AMD) Radeon R9 Nano FirePro S9170
Linux kernel 4.8.13 3.10.0
GCC version 6.2.1 6.2.0
CUDA release 8.0 —
OpenCL driver 1 NVIDIA 375.26 Intel 1.2.0
OpenCL driver 2 AMD 1912.5 AMD 1800.8

Table 4.2: GPU Specifications

Quadro P5000 Radeon R9 Nano FirePro S9170

Cores 2560 4096 2816
Memory 16 GB 4 GB 32 GB
Bandwidth 288 GB/s 512 GB/s 320 GB/s
SP compute 8900 GFLOPS 8192 GFLOPS 5240 GFLOPS

three GPUs used, with Bandwidth denoting device global memory bandwidth and

SP compute indicating theoretical single-precision peak throughput.

4.5.2 Design Modifications

In order to support additional hardware devices, we have modified the BEAGLE

library at different levels (Fig. 4.3 on the next page). At the implementation base-

code layer we have changed the serial CPU solution to a threaded model one, using

C++ threads, and throughout this paper C++ refers implicitly to the 2011 ver-

sion of the standard [115]. We have also modified what was the CUDA base-code

to a framework independent accelerator model with support for both CUDA and

OpenCL external computing frameworks. This parallel implementation model com-

municates with the CUDA and OpenCL APIs through a single internal interface,
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which, in turn, has an implementation available for each framework.

Further significant sharing of code between CUDA and OpenCL exists at the

kernel level. There is a single set of kernels for both frameworks, with keywords

for each being defined at the pre-processor stage. Though there is a common kernel

code-base for both frameworks, functions that impart a crucial effect on performance

are differentiated for each hardware type. This allows for distinctly optimized par-

allel implementations that are shown on the figure, one for CUDA GPUs, one for

OpenCL GPUs, and one for parallel x86 devices such as multicore CPUs with SIMD-

extensions.

hardware-specific implementations

CPU SSECPU

hardware interface

CUDA OpenCL-GPU OpenCL-x86

CUDA / OpenCL interface

implementation base-code

accelerator modelthreaded model

Figure 4.3: Layer diagram depicting the modified portions of the
BEAGLE library necessary to extend hardware support.

4.5.3 Library Availability

The BEAGLE project is open source under the GPL v3.0 license. The work de-

scribed here will be part of an upcoming release and is available under a development

branch of the library located at https://github.com/beagle-dev/beagle-lib/

65

https://github.com/beagle-dev/beagle-lib/tree/kernel-concurrency
https://github.com/beagle-dev/beagle-lib/tree/kernel-concurrency


tree/kernel-concurrency.

The library includes compilation workflows for all major platforms (Linux,

macOS, Windows). For Linux and macOS it uses an autoconf/automake build

system. For Windows we use a Visual Studio build system. One unique aspect of the

compilation system is the use of scripts to generate OpenCL/CUDA kernel source

code for different inference types (e.g., amino-acid or codon-based) and floating

point formats, allowing for better performance at runtime.

4.6 CPU Threaded Implementation

To harness the increasingly parallel nature of modern CPUs, and recognizing

that external frameworks such as CUDA and OpenCL are not always available to

users of BEAGLE, we developed a more portable parallel implementation.

In the process of developing our solution, we briefly assessed a variety of CPU

threading frameworks such as POSIX threads and OpenMP. Ultimately, we felt the

best solution when balancing portability, development cost, and performance was

to use the C++ threading model. This approach also allowed us to more easily

combine the added parallelism with the existing, low-level, SSE vectorization of

character states.

Given the decision to use C++ threads, we then iterated through a variety of

approaches to concurrent computation of the phylogenetic likelihood function which

we will briefly describe and compare below.
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4.6.1 Futures

Our initial approach involved modifying the default CPU implementation in

BEAGLE such that for each partial-likelihoods operation to be computed, a C++

standard library asynchronous future was created. Thus, this approach only con-

currently computed partial-likelihood operations that were independent in the tree

topology being assessed, and did not take advantage of the independent nature of

each sequence pattern in the likelihood computation.

4.6.2 Thread-create

Our next approach involved the on-demand creation and joining of a set of

threads with each partial-likelihoods call to BEAGLE. These C++ standard library

threads were used for concurrent computation of the partial-likelihood functions

across independent site patterns. We used a load-balancing approach wherein the

sequence of independent patterns is broken up into equal sizes, according to the

number of CPU hardware threads available. To prevent small problem sizes from

being slower than the previous serial implementation, we set a minimum sequence

length of 512 patterns for threading to be used.

4.6.3 Thread-pool

This final iteration of our CPU threading solution involved modifying the

thread-create approach to use a pool of C++ standard library threads. For this

approach we also used the threads for concurrent computation of the root likelihood
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Table 4.3: CPU threading optimizations

throughput (GFLOPS) speedup

tips serial futures thread-create thread-pool (× serial)

8 35.82 37.92 39.07 193.10 5.39
16 35.47 59.70 78.26 258.99 7.30
64 14.95 78.67 87.91 217.24 14.53

128 13.62 61.61 60.19 126.95 9.31

across independent site patterns, in addition to the partial-likelihoods function.

Table 4.3 compares the relative performance of the core partial-likelihoods

function for each of the threading approaches we assessed. The throughput measure

in GFLOPS is for the single-precision floating point format and is computed as

described in Section 4.5.1 on page 63.

For this comparison we used a fixed sequence length of 10,000 patterns across

tree sizes of 8, 16, 64, and 128 sequences at the tips, running on the two CPUs on

system 2 (Table 4.1 on page 64). The column labeled serial shows throughput for

the original single-threaded CPU implementation in BEAGLE, with some degree of

vectorization provided by GCC.

The results show the increases in performance for each iteration of our CPU

threading solution and that the thread-pool approach performs best across all four

problem sizes assessed. We also note the relative increase in performance from the

original serial implementation to the final thread-pool solution.
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4.7 OpenCL Implementation

In order to exploit a broader range of hardware resources, including AMD

and Intel GPUs, we extended BEAGLE so it can use the OpenCL programming

framework, an open standard for parallel computing devices. With OpenCL we

have also been able to better utilize the parallel computing capability of modern

CPUs, both via multiple cores and vectorization extensions such as Intel SSE and

Advanced Vector Extensions (AVX).

4.7.1 OpenCL and CUDA Code Sharing

The OpenCL work is based on our previous implementation for the CUDA

platform. Taking advantage of the many similarities between these parallel-computing

frameworks we developed a shared code design that includes a single internal inter-

face to the hardware resource and a single set of kernels. This design allows future

work on the library to more easily benefit users of either framework.

A single set of kernels for OpenCL and CUDA is achieved by using preprocessor

definitions for framework specific keywords. The internal hardware interface is also

shared, and only the implementation itself differs between OpenCL and CUDA. The

hardware interface deals with loading the different kernels and compiling the correct

one for the given analysis parameters (such as the number of states the model can

assume, and floating point precision), as well as all the hardware accelerator related

functions such as executing kernels, copying data, querying device characteristics,

and other auxiliary functions. Few further distinctions had to be overcome for both
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frameworks to share code. Most notably, subpointer addressing within kernels was

done by using the clCreateSubBuffer function in OpenCL and by pointer arithmetic

in CUDA.

4.7.2 Hardware-Specific Optimizations

The use of OpenCL provides a common, vendor-neutral, platform for current

and future parallel hardware architectures and allows BEAGLE to exploit a vari-

ety of resources from a single code base. Nonetheless, recognizing that important

distinctions exist between what practices work best for each hardware architecture,

we have adapted performance-critical code for different runtime scenarios. These

hardware-specific optimizations can be categorized into two variants of our OpenCL

solution, one that targets GPU architectures and another that addresses x86 pro-

cessors.

4.7.2.1 OpenCL-GPU

With our OpenCL-GPU solution we focused on high-end NVIDIA and AMD

GPUs, though our implementation is also compatible with Intel GPUs.

Our initial work on OpenCL consisted of a direct translation of the CUDA

implementation running on the same NVIDIA hardware. Although we expect

NVIDIA GPUs to exhibit best performance under CUDA, having them working

under OpenCL served as an important comparison point and validation of our ap-

proach. The effect of framework-choice on NVIDIA devices is further explored in

70



Table 4.4: OpenCL-GPU optimizations

throughput (GFLOPS)

precision patterns without FMA with FMA % gain

single 10,000 213.02 216.87 1.81
double 10,000 124.14 136.88 10.26
single 100,000 408.63 411.43 0.69
double 100,000 178.04 199.23 11.90

Section 4.8 on page 74.

For AMD GPUs, we found that few changes were required, as these are ulti-

mately similar in architecture to NVIDIA CUDA devices. For codon-based inference

models and others with higher-count state spaces, we had to reduce the number of

sequence patterns computed per work-group in our likelihood calculation kernel.

This was in order to reduce memory usage in the local address space, as we found

AMD devices to have less of this memory than NVIDIA devices.

Another optimization we implemented for AMD GPUs was the use of the

OpenCL precompiler definitions FP FAST FMAF and FP FAST FMA, for single

and double-precision floating-point operations respectively. These macros achieved

non-trivial performance gains without loss of precision, and indicate whether fast

fused-multiply-add (FMA) operations, which perform multiply and add operations

in a single action, are supported by the hardware. For a problem size of 105 sequence

patterns on a modern GPU (AMD Radeon R9 Nano on system 1 ), we noticed up to

an 11.9% performance improvement in double-precision mode for our core partial-

likelihoods kernel (Table 4.4).
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4.7.2.2 OpenCL-x86

For our OpenCL-x86 solution we collaborated with Intel to develop an opti-

mized implementation for Xeon CPUs and first generation Xeon Phi (Knights Cor-

ner) accelerators. Since this work started Intel has dropped support for OpenCL

on Xeon Phi, however Intel has continued developing drivers for Xeon CPUs and

we have observed strong performance on these multicore processors with our x86

solution (further detailed in Section 4.8 on page 74).

In the process of finding the best solution for Intel x86 processors, we tested

several variations of our core partial-likelihoods kernel. This included explicit OpenCL

vector usage and reorganization of execution threads from two to three-dimensional

work-groups. Ultimately we found that the key optimization was to have each

thread of execution do more work in comparison to our GPU approach. This was

especially important when computing the partial-likelihoods function for nucleotide

models where only 4 states are possible and each thread has a lighter workload. To

achieve this heavier workload per thread, our OpenCL-x86 for DNA-based infer-

ences, loops over the state space in each work-item instead of computing all states

concurrently, as is done with the GPU approach. We also found that it was advan-

tageous to avoid the explicit use of the local memory address space and allow the

OpenCL compiler to manage memory caching.

Given these x86-specific changes to our nucleotide-model likelihood compu-

tation kernel, we proceeded to optimize for work-group size, which determines the

number of sequence patterns computed per work-group. Table 4.5 explores perfor-
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Table 4.5: OpenCL-x86 optimizations

work-group size throughput speedup
solution (patterns) (GFLOPS) (× OpenCL-GPU)

OpenCL-GPU 64 15.75

64 79.65 5.06
128 85.51 5.43

OpenCL-x86 256 98.36 6.25
512 98.09 6.23

1024 96.51 6.13

mance with the dual CPUs on system 2 for work-groups of increasing size. The

table also shows throughput for our original OpenCL-GPU solution running on the

Xeon CPUs and the relative speedup achieved due to our architecture-specific opti-

mizations. We observe that peak performance is achieved with a work-group size of

at least 256 patterns. We opted to use this size as we prefer the smallest work-group

size with peak or near-peak performance to reduce pattern padding when the total

number of patterns is not divisible by the work-group size.

4.7.2.3 OpenCL Driver Implementations

BEAGLE makes use of the OpenCL Installable Client Driver loader to make

all implementations on a system available, which allows the selection of different

drivers for the same hardware resource.

On Linux and Windows operating systems we have found that vendor-specific

OpenCL driver implementations offer the best performance. On macOS vendor-

specific drivers are not available and we observed reduced performance compared to

other platforms.
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4.8 Results

Here we explore the performance of the new implementations for the BEAGLE

library on a variety of modern parallel hardware resources. System specifications are

as described in Table 4.1 on page 64. We also evaluated performance on a machine

with an Intel Xeon Phi 7210 CPU (not an accelerator), Linux kernel version 3.10.0,

and GCC version 6.2.0.

4.8.1 Partial-likelihoods Kernel Performance

We have used our genomictest program to benchmark the core likelihood func-

tion of BEAGLE on a variety of hardware platforms and for a range of problem sizes.

Again, this function is the main bottleneck for phylogenetic inferences, typically ac-

counting for over 90% of the total execution time. We have found the relative

performance gains observed here correlate strongly with those of a full inference

run.

Figure 4.4 on the next page shows throughput in effective GFLOPS (billions of

floating-point operations per second) for our partial- likelihoods calculation kernel

for analyses with increasing unique site pattern counts, across a number of par-

allel computing devices and implementations. We evaluated our C++ threading,

OpenCL-x86, OpenCL-GPU, and CUDA implementations. The hardware devices

represent a sample of the range of consumer-level and high-performance computing

resources available to domain scientists who are the ultimate users of the BEAGLE

library, and included AMD Radeon R9 Nano, AMD FirePro S9170, and NVIDIA
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Figure 4.4: Plots showing throughput performance in GFLOPS for the
core likelihood function of the BEAGLE library, for nucleotide and
codon-based models with a range of problem sizes running on a vari-
ety hardware platforms and implementations. Speedup factors (which
are relative to unvectorized single-core performance), throughput, and
number of unique site patterns are on a log-scale.
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Quadro P5000 GPUs, Intel Xeon Phi 7210 manycore CPU, and dual Intel Xeon

E5-2680v4 multicore CPUs. The figure includes performance results for comput-

ing partial-likelihoods for both nucleotide and codon-model analyses. The left-side

vertical axis labels show the speedup relative to the average performance of a base-

line serial, single threaded and non-vectorized, CPU implementation. We chose to

use this non-parallel CPU implementation as a comparison baseline as it provides

a consistent performance level across different problem sizes. It is also relevant as

it has been the default implementation in BEAGLE in previous releases and many

phylogenetic inference softwares use serial code as their standard. We note that

performance results reported here are in all cases far from theoretical peak compute

throughput for each platform as the calculation of phylogenetic sequence likelihoods

is substantially memory-bound, especially for nucleotide models.

4.8.1.1 Nucleotide Model

For nucleotide-based likelihood, we observe that throughput strongly scales

with the number of site patterns for all parallel hardware resources using our accel-

erator model. For a small number of patterns the parallel OpenCL implementations

exhibit poor performance relative to others due to greater execution overhead. By

105 patterns the performance across these devices has reached a saturation point,

with the exception of the AMD Radeon R9 Nano GPU, which continues to slightly

scale up in performance. Overall, best performance is achieved by the AMD Radeon

R9 Nano GPU, with 444.92 GFLOPS of throughput for a problem with 475,081
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unique site patterns. This represents a ∼58-fold speedup over the baseline serial,

non-vectorized, CPU implementation, and a ∼5.1-fold speedup over our fastest CPU

solution at this problem size, which is the OpenCL-x86 implementation running on

two Intel Xeon E5-2680v4 processors.

For CPUs using our threaded model, we observe that performance does not

monotonically increase with the number of patterns and we require further investi-

gation to understand this aspect of the result. We observe very strong performance

for the dual Intel Xeon E5-2680v4 CPUs between approximately 3,000 and 50,000

patterns, with a peak performance of 328.78 GFLOPS at 20,092 unique patterns,

also being the overall fastest implementation at this problem size. We observe weak

performance from the Xeon Phi 7210 CPU for problems under 104 patterns, though

we have not done optimization work specific to this platform. Further, we note

that we did not use SSE vectorization for these benchmarks as it is not available in

single-precision in BEAGLE.

4.8.1.2 Codon Model

For codon-based analyses, we observe that throughput performance is less sen-

sitive to the number of unique site patterns. This is due to the better parallelization

opportunity afforded by the 61 biologically-meaningful states that can be encoded

by a codon. This higher state count of codon data compared to nucleotide data

increases the ratio of computation to data transfer resulting in increased relative

performance for codon-based analyses (Fig. 4.4 on page 75). We also observe sim-

77



ilar performance from all GPU devices and less overhead effect from use of the

OpenCL framework. Overall, highest throughput is achieved by the AMD Radeon

R9 Nano GPU, with 1324.19 GFLOPS for 28,419 patterns, equivalent to a ∼253-fold

speedup over the baseline serial, non-vectorized, CPU implementation and ∼2-fold

speedup over the OpenCL-x86 implementation running on two Intel Xeon E5-2680v4

processors. Our threaded model for CPUs does not perform as well for codon-based

inferences as it only parallelizes the computation of independent site patterns.

4.8.2 Multicore Performance Scaling

Figure 4.5 on the next page shows CPU performance results of the core likeli-

hood function for nucleotide-model analyses with 104 unique patterns when utilizing

an increasing number of hardware threads on system 2. The two processors on this

system have 14-cores each for a total of 56 hardware threads running at 2.40 GHz.

This benchmark was achieved using the taskset utility in Linux for our threaded

model implementation, and the OpenCL device-fission feature for our OpenCL-x86

solution.

Parallelization on multicore systems remains an important topic as researchers

increasingly invest in multicore hardware, where core counts on high-end systems

regularly reach 40 or greater. The results here show that throughput for both imple-

mentations starts to saturate at around 27 threads, suggesting memory bandwidth

limitations.
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4.8.3 Application-Level Results

We ran MrBayes 3.2.6 on system 2 to benchmark application-level perfor-

mance for our new C++ threaded, OpenCL-x86, and OpenCL-GPU implementa-

tions for BEAGLE. MrBayes uses MPI to concurrently compute separate Markov

chain Monte Carlo chains across processors [28]. This is an additional level of con-

currency and is complimentary to that provided by the BEAGLE library, which

parallelizes computation across site patterns with our threaded model implementa-

tion, and across site patterns, states, and rate categories with our accelerator model

solutions. Additionally, MrBayes uses SSE vectorization in single-precision floating

point format.

For evaluating performance with the nucleotide model we used a dataset from

an RNA-Seq study of advanced moths and butterflies [116] with 16 taxa and 742,668

site patterns, of which 306,780 were unique. For the codon model benchmark we

used a 15 taxa dataset with 6,080 unique codon patterns, which was a subset of a

larger arthropod dataset [80]. Both analyses were run with four Metropolis-coupled,

Markov chain Monte Carlo chains.

We also assessed each dataset under single and double-precision floating point

formats. MrBayes supports both modes and certain analyses with larger number

of taxa benefit from more precise computation. All reported speedups compare the

total execution time relative to that of MrBayes-MPI in double-precision mode.

Generally we observe that speedups are largest under the codon models, as

they allow for greater parallelism. For the OpenCL-GPU implementation we note
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significant speedups across all benchmark scenarios. Relative to the fastest single-

precision format implementation in MrBayes, speedups are 7.6 and 13.8-fold for the

nucleotide and codon model analyses, respectively. For the CPU-based implemen-

tations, we observe that for a nucleotide analysis of this problem size both imple-

mentations are closely matched, although for codon inferences, the OpenCL-x86 has

a significant advantage. We also observe relatively modest performance from the

Xeon Phi CPU across all scenarios.

4.9 Conclusion

The BEAGLE project addresses a common bottleneck across phylogenetic

inference programs by accelerating likelihood computation. The library now in-

cludes additional parallel computing implementations, and combines both CUDA

and OpenCL frameworks in a single codebase to address a wider-range of hardware

resources. These advancements are of immediate benefit to users of phylogenetic pro-

grams that exploit the library. Additionally, developers of other phylogenetic soft-

ware packages can reference these results to assess the suitability of using BEAGLE

with their program, or for developing similar parallel solutions.

Although the improvements described in this paper also allow users to execute

in parallel on multiple devices within a system, this requires the client program to

partition the problem across site patterns and create a separate library instance

for each hardware device. Further, selecting the best performing implementation

depends not only on the hardware available but on problem size and type. We plan
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to further develop BEAGLE so that computation can be dynamically load balanced

across multiple devices from within a single library instance. The library would also

select the best implementation for each data subset and hardware pair. This will

allow for greater memory efficiency and performance gains which will be especially

relevant in heterogeneous systems.
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Chapter 5: Configuring Concurrent Computation of Phylogenetic Par-

tial Likelihoods: Accelerating Analyses using the BEAGLE

Library

5.1 Introduction

The most effective methods for inferring phylogenetic trees are based on ei-

ther maximum likelihood estimation or Bayesian analysis, which share the same

computational bottleneck: calculation of the likelihood of trees [6]. When profiling

GARLI [2], a leading phylogenetic inference program, we have observed that, for

nucleotide models, likelihood related calculations typically constitute over 94% of

the overall run time. For more complex models (e.g., amino-acid or codon-based),

likelihood calculation will typically incur an even greater proportion of the analysis

time. Speeding the calculation of the likelihood function is key to increasing the

performance of statistical inference-based phylogenetic analyses.

The core likelihood calculations apply to a subtree comprising a parent node,

k, two child nodes, ` and m, and connecting branches of length, t` and tm, and is

repeated for all such subtrees within the larger tree being considered. This partial
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likelihood function is as follows [6]:

L
(i)
k (z) =

(∑
x

Pr(x|z, t`)L(i)
` (x)

)
×
(∑

y

Pr(y|z, tm)L(i)
m (y)

)
(5.1)

This calculation is repeated for each character i in the data (i.e., sequence site

pattern), for each state z that a character can assume, and for each internal node

in the proposed tree. The computational complexity of the likelihood calculation

for a given tree is O(p× s2 × n), where p is the number of patterns in the sequence

(typically on the order of 102 to 106), s is the number of states each character in

the sequence can assume (typically 4 for a nucleotide model, 20 for an amino-acid

model, or 61 for a codon model), and n is the number of operational taxonomic

units (e.g., species, alleles). Additionally the tree search space is very large; the

number of unrooted topologies possible for n operational taxonomic units is given

by the double factorial function (2n − 5)!! [7]. Thus, to explore even a fraction of

the total search space, a very large number of topologies are evaluated, and hence

a very great number of likelihood calculations have to be performed. This leads to

analyses that can take days, weeks or even months to run. Further compounding

the issue, rapid advances in the collection of DNA sequence data have made the

limitation for biological understanding of these data an increasingly computational

problem.
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5.1.1 The BEAGLE Library and API

The BEAGLE library and API [12] is a high-performance likelihood-calculation

platform for evolutionary models. It defines a uniform application programming in-

terface (API) and includes a collection of efficient implementations for calculating

a variety of likelihood-based models on different hardware devices, such as graphics

processing units (GPUs) and multicore central processing units (CPUs).

The BEAGLE library was designed to support a variety of hardware-specific

implementations, each optimized for a different processor type. The library includes

a set of parallel computing implementations that use the CUDA and OpenCL ex-

ternal computing frameworks.

The BEAGLE library has been very successful in accelerating evolutionary

analyses. The library has been integrated into the most recent versions of popular

phylogenetics software including BEAST [5], MrBayes [4], and PhyML [37], and has

been widely used across a diverse range of evolutionary studies.

Previously, given the fine-scale parallelization of the phylogenetic likelihood

function in the BEAGLE library, the problem with few sequence patterns, or one

broken into small data subsets, was always small, and thus generally not amenable

to speedups, as patterns (for a given model type and category rate count, e.g.,

nucleotide with four distinct rates) were the only dimension being parallelized.

In this paper we describe our recent work to configure concurrent compu-

tation of phylogenetic likelihoods by exploiting additional independent calculation

opportunities. The result is that a wider variety of analyses benefit from parallel
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computing performance gains.

5.1.2 Concurrent Computation: Independent Likelihood Estimates

We have focused on the following opportunities for concurrent computation of

phylogenetic likelihoods that were previously unrealized in BEAGLE.

5.1.2.1 Pattern Partitions

Evolutionary analyses benefit from increases in modeling flexibility. One clear

way of improving model flexibility is to allow independent estimation of model pa-

rameters for different character data subsets (e.g., genes, codon positions). This

is typically referred to as a partitioned model and is a technique available in all

phylogenetic software packages that support BEAGLE. Until now partitioned anal-

yses with BEAGLE have required the client program to create multiple instances

of the library, one for each data subset defined by the partitioning scheme. When

BEAGLE instances share a hardware resource they are executed in sequence, thus

incurring significant performance and memory inefficiencies, specially for problems

with a large number of small data subsets.

5.1.2.2 Independent Subtrees

The number of subtrees requiring calculation for any full tree is n− 1, where

n is the number of operational taxonomic units (e.g., species, alleles), which is the

number of tips (leaves) on the tree. Phylogenetic algorithms typically use a post-
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Figure 5.1: Example pectinate tree (left), and example of a fully
balanced tree (middle); with sequential calculation both trees require
n − 1 = 7 partial likelihood operations in series, corresponding to the
order of the node numbers. Balanced tree (right) with concurrent com-
putation requiring dlog2 ne = 3 sets of independent partial likelihood
operations in the order of the shared node numbers.

order traversal when calculating tree likelihood, calculating each of the n−1 subtrees

in series. In the case of a fully pectinate tree no subtrees are independent (Fig. 5.1,

left). However, in the case of more balanced topologies there are independent sub-

trees (Fig. 5.1, middle). The likelihoods for sets of these independent subtrees can

be calculated concurrently. In order to more easily realize potential concurrency re-

lated to independent subtrees present in a given topology, partial likelihood arrays

need to be processed according to a reverse level-order, or breadth-first, traversal of

the tree being evaluated. In the case of a fully balanced tree the number of indepen-

dent subtrees is maximized, and partial likelihood calculations can be done in sets

of concurrent operations corresponding to the number of levels in the tree, dlog2 ne

(Fig. 5.1, right). This exploit of tree level-group concurrency is somewhat similar

to a classic parallel reduction scheme.
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5.2 Methods

5.2.1 Benchmarking and Testing

Our approach to increase concurrency in BEAGLE has been focused on the

partial likelihoods kernel that is the computational bottleneck for phylogenetic anal-

yses. To evaluate the performance of this function we used our test program (ge-

nomictest), which generates random synthetic datasets of arbitrary sizes. This test

program is included with the BEAGLE source code and the results shown through-

out this paper can be reproduced by using the default random seed, 1.

We report a measure of throughput in terms of the effective number of floating

point operations per second (GFLOPS) for computation of the partial likelihoods

function (see equation 5.1 on page 85). In contrast to a direct timing benchmark,

throughput allows us to more easily compare performance across different problem

sizes. We report benchmark results for two system configurations (Table 5.1 on

the following page). For conciseness, many results are shown only for the two best

performing platforms we had available, the NVIDIA Quadro P5000 GPU under

CUDA and the AMD Radeon R9 Nano GPU under OpenCL. Further comparisons

across hardware platforms and frameworks are reported elsewhere [35].
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Table 5.1: System specifications

system 1 system 2

CPU(s) Intel Core i7-930 dual Intel Xeon E5-2680v4

GPU(s)
AMD Radeon R9 Nano

AMD FirePro S9170
NVIDIA Quadro P5000

Linux kernel 4.8.13 3.10.0
GCC version 6.2.1 6.2.0
CUDA release 8.0 —

OpenCL drivers
AMD 1912.5 AMD 1800.8

NVIDIA 375.26 Intel 1.2.0

5.2.2 Pattern Partition Concurrency

5.2.2.1 Multiple versus Single Library Instances

An initial design goal for the BEAGLE library was to make a library instance

relatively light-weight, and to leave it up to the client program to manage these

instances. This design objective was fitting for processors at the time, because it

was easier to achieve good saturation as the number of cores and supported threads

for CPUs and GPUs were modest compared to recent processors. However, we have

found that this light-weight model is limited, as the client program does not have

direct access to the parallel devices and cannot configure concurrent communica-

tion efficiently. Furthermore, this model of separate instances also limits us to the

concurrency afforded to asynchronous kernel executions by the parallel computing

framework used (i.e., CUDA or OpenCL).

Given our desire to improve concurrency for partitioned analyses, our first

decision was to move away from one library instance per data subset. This gave
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us greater potential for concurrency, such as via single kernel launches, and more

control over how computation is combined into concurrent executions. Using a single

library instance also results in significant memory savings given many overhead costs

become shared for all partitions.

5.2.2.2 API Changes

In order to support partitioning in a single library instance we have modified

the BEAGLE API to support data subset assignment and per-subset operations.

Partition assignment can be done via a pattern-count length array of integers, with

support for noncontiguous assignments. These changes were done as additions to

the existing BEAGLE v1 API, and the interface remains backwards compatible.

5.2.2.3 CUDA First

Our work to increase concurrency, and thus efficiency, for partitioned analyses

initially focused on our parallel implementation for the CUDA framework. We have

found this framework to be generally more mature than OpenCL, and to support

more features. We identified two solutions to allow independent data subsets to

be concurrently computed: a) using CUDA streams, which would allow separate

likelihood kernel launches to run concurrently; and b) developing a multi-operation

likelihood kernel, which would compute multiple likelihood arrays within a single

kernel launch. Below we describe each approach.
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5.2.2.4 Streams

This feature of the CUDA framework is described by NVIDIA as follows:

“The CUDA programming model provides streams as a mechanism for

programs to indicate dependence and independence among kernel launches.

Kernels launched into the same stream are guaranteed to execute consec-

utively, while kernels launched into different streams are permitted to ex-

ecute concurrently. Streams describe independence between work items

and hence allow potentially greater efficiency through concurrency.”

To achieve partition concurrency we launch our likelihood kernels on separate

streams according to the data subset of the likelihood array operation. We do so

in a breadth-first manner, that is, the kernel launch for the first partial likelihood

array operation for data subset 1 is followed by the launch for the first operation

for subset 2, and so on. This is to compensate for signal delay in each stream. We

use this multi-stream approach for both partial likelihood and likelihood integration

kernels. For all other kernel launches in BEAGLE we use the null stream which

synchronizes with all streams.

5.2.2.5 Multi-Operation Kernel

Our second solution for data subset concurrency involved modifying our partial

likelihood CUDA kernel to compute multiple likelihood arrays in a single execution

launch. We used pointer arithmetic to allow different input and output arrays for
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different execution blocks.

Figure 5.2 contrasts available data arrays (nodes, branches) and likelihood

array index (pattern) for our single and multi-operation partial likelihood kernels.

The first implementation is restricted to a single set of input likelihood arrays (for

nodes c1 and c2), input branch length arrays (t1 and t2), and output array (d0), for

all execution blocks. Additionally the pattern computed by each execution thread

is directly determined by block index n, block size blockSize, and thread index

threadId.

multi-operation kernel

block n 
                      

nodes      c1[n], c2[n], d0[n] 

branches  t1[n], t2[n] 

pattern    p[n] + threadId  

single-operation kernel

block n 

nodes      c1, c2, d0 

branches  t1, t2 

pattern    n × blockSize + threadId

Figure 5.2: Organization of data arrays and indexing for single and multi-
operation kernel execution blocks for partial likelihoods computation in
BEAGLE.

With the multi-operation approach, input and output arrays are determined

based on the block index. Further, the pattern computed by each thread is only

indirectly determined by n, which allows padding of data subsets when these do not

fall along block-sized boundaries.

Additionally, to maximize device global memory throughput we rearrange site

patterns on device memory so that data subsets are contiguous. This is done when
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sequence partition assignment is made by the client program and enables each exe-

cution block to operate on a single data subset more efficiently.

5.2.3 Independent Subtree Concurrency

As we developed the above approaches to partition concurrency, we noted we

could also leverage those methods to concurrently compute partial likelihood arrays

for independent subtrees. This would be specially beneficial for large trees with

short sequences when running on manycore processors such as GPUs. This combi-

nation of problem size and hardware resource previously left many processing cores

underutilized. Below we describe implementation details for independent subtree

operations via both our streams and multi-operation solutions.

5.2.3.1 Streams

We further leveraged the use of CUDA streams to concurrently compute par-

tial likelihood arrays of independent subtrees by assigning them as described by

Algorithm 1 on the following page. This algorithm shows how we assign a likelihood

array kernel launch (pLikelihoods) to a stream based on an inherited index from

either of the child nodes (child1 or child2). Additionally, we may wait on a CUDA

event that has been recorded for the other child node before launching the kernel.
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Algorithm 1: Streams and partial likelihood array operations

Data: a sequence of likelihood operations in reverse level-order traversal
Result: computation of partial likelihood arrays in concurrent streams

streamIndex ← 0
foreach operation in the operations sequence do

node ← operation.parent
if node.child1.streamIndex is not null then

node.streamIndex ← node.child1.streamIndex
node.waitIndex ← node.child2.streamIndex

else if node.child2.streamIndex is not null then
node.streamIndex ← node.child2.streamIndex
node.waitIndex ← node.child1.streamIndex

else
node.streamIndex ← streamIndex + 1
streamIndex ← streamIndex + 1

end

if node.waitIndex is not null then
cudaStreamWaitEvent(event node.waitIndex, stream
node.streamIndex)

end
cudaLaunchKernel(kernel pLikelihoods, stream node.streamIndex)
cudaEventRecord(event node.streamIndex, stream node.streamIndex)

end
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5.2.3.2 Multi-Operation Kernel

To implement subtree concurrency with this kernel, we process partial likeli-

hood subtree operations according to a reverse level-order traversal of the proposed

tree. We add each consecutive operation to a set until we find an operation that

is dependent on the result of a previous operation in the set. We then start a new

operation set, repeating the same process. Once we have processed all operations in

this manner, we successively launch each operation set for concurrent computation

using our multi-operation partial likelihoods kernel.

5.2.4 Extending Concurrency Gains to OpenCL

Our next step was to extend the above work, using the CUDA framework, to

our OpenCL implementation.

5.2.4.1 Queues

The OpenCL equivalent to CUDA streams are concurrent execution queues.

We implemented our approach in an analogous manner but found the use of con-

current queues only offered at best minimal gains in performance for the OpenCL

devices we had access to (AMD Radeon R9 Nano and FirePro S9170 GPUs, and

Intel Xeon E5-2680v4 CPU).
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5.2.4.2 Multi-Operation Kernel

For this approach, in a comparable manner to CUDA blocks, we launch

OpenCL work-groups such that multiple partial likelihood operations can be per-

formed concurrently. In contrast to CUDA, we found that the OpenCL solution was

generally more performance sensitive to implementation details such as operation

order and synchronization points. This was ultimately beneficial, as we iteratively

refined of our likelihood kernel to optimize performance, and could then translate

back some of the gains to the CUDA solution.

5.2.5 Memory Transfer Optimizations

For the multi-operation approach under either CUDA or OpenCL, we neces-

sitate an explicit memory transfer from host to device for each tree likelihood esti-

mation. Such memory transfers can be costly for GPU devices as they may have to

go over the PCI bus. BEAGLE was designed to minimize this type of transfer and

previously explicit host to device transfers only occurred at the initialization phase

of an inference run.

This additional memory transfer for our multi-operation kernel is used to copy

the address offsets for the input and output arrays each block in device memory

will operate on. In order to minimize costs for this additional memory transfer, we

process all subtree operations in a partial likelihoods call to the library, and perform

a single transfer for multiple launches of our multi-operation kernel.

Further, we use faster methods than we had done before for host to device
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Table 5.2: GPU memory transfer optimizations; throughput in GFLOPS

framework GPU solution tree A tree B

CUDA NVIDIA P5000
write 328.27 188.76

pinned 328.57 203.47

OpenCL
NVIDIA P5000

write 320.10 183.78
map/unmap 321.24 199.58

AMD R9 Nano
write 397.92 178.04

map/unmap 403.72 210.30

transfer: pinned host memory allocations under CUDA; and map and unmap ap-

proach with OpenCL. Table 5.2 shows kernel throughput performance with these

approaches when compared to the performance when using the regular memory

write transfer method under each framework. This comparison was done for two

tree sizes: tree A has 16 tips and 100,032 sequence patterns; and tree B has 256

tips and 1024 patterns. We observe that the pinned and map/unmap approaches

have a positive impact on overall throughput, especially for tree B, which has many

more tips, and thus more partial likelihood operations with an ensuing larger data

transfer size.

5.2.6 Combining Pattern Partition and Independent Subtree Con-

currency

We have found that the most efficient approach (i.e., stream/queues, or multi-

operation) to concurrent partial likelihood array operations depends on the number

of patterns being processed per operation. In order to determine which approach
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Table 5.3: Concurrency solutions and partition sizes; throughput in GFLOPS with
bold text indicating which concurrency approach within a parallel solution offers
best performance at each problem size.

partition CUDA OpenCL–GPU OpenCL–X86
count size streams multi-op queues multi-op queues multi-op

1 100,032 321.82 272.61 346.26 335.62 79.97 79.43
2 50,016 330.08 228.21 354.79 341.02 79.85 77.85

16 6,252 316.72 225.64 226.77 330.68 70.60 76.10
24 4,168 227.63 223.40 182.71 318.97 65.92 75.21
32 3,126 164.06 217.59 141.50 317.28 54.65 73.00
64 1,563 87.75 212.71 87.98 326.49 24.92 73.61

to use for different problem sizes, we have benchmarked the throughput for our

partial likelihood kernel when evaluating a tree with 16 tips and 100,032 patterns

for an increasing number of equal-sized data subsets (Table 5.3) across our different

parallel solutions. The CUDA implementation was tested on an NVIDIA Quadro

P5000 GPU, the OpenCL-GPU implementation on an AMD Radeon R9 Nano, and

the OpenCL-X86 implementation on dual Intel Xeon E5-2680v4 CPUs. Systems

were as specified in Table 4.1 on page 64.

With the CUDA implementation, we observe that for larger numbers of pat-

terns (above 4,168) the Quadro P5000 GPU is near saturation, and the one-time

overhead of the multi-operation approach makes it relatively inefficient (Table 5.3).

However, for smaller problem sizes there is less work per stream, and the overhead

cost for each stream makes that approach the less efficient alternative. For the

OpenCL implementations we observe that the multi-operation approach is the most

efficient or close to most efficient for any partitioned problem.
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Based on these findings, and on further intermediate analyses not shown in

Table 5.3 on the previous page, we set a fixed crossover point for each solution

which determines which approach is used. For the CUDA implementation we have

set this at 4,168 patterns, for the OpenCL-GPU it is set at 8,192 patterns, and

for the OpenCL-x86 implementation the multi-operation approach is always used.

Additionally, client programs can also explicitly request either the streams or multi-

operation implementation via the library API.

5.2.7 Other Aspects

Although BEAGLE supports inferences with models of arbitrary state counts,

the work described here has thus far only been implemented for nucleotide model

inferences.

It is also worth mentioning that our implementation allows partitions to be

reassigned at any point. With each new partition assignment we rearrange patterns

in device memory to maintain efficient throughput. This functionality may be used

by client programs in the future to enable efficient inference of partition assignments

in conjunction with currently inferred parameters.

Finally, we use the --default-stream per-thread NVIDIA CUDA compiler

(NVCC) option so that each BEAGLE instance runs on a separate default stream.

This allows further concurrency gains for other independent work in addition to

partitioning, such as Metropolis-coupled, Markov chain Monte Carlo chains or run

replicates.
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5.2.8 Modifications to MrBayes

In order to fully evaluate the efficacy of the concurrency improvements to

the library, we have adapted MrBayes version 3.2.6 to use the new BEAGLE API

partitioning extensions. This enabled MrBayes to use a single BEAGLE library

instance for computing the likelihood of multiple data subsets. This modified version

of MrBbayes is open-source under GPL version 3.0, and is available at https:

//github.com/ayresdl/mrbayes-beagle3.

5.2.9 Library Availability

The BEAGLE project is open source under the GPL v3.0 license. The work de-

scribed here will be part of an upcoming release, and is available under a development

branch of the library located at https://github.com/beagle-dev/beagle-lib/

tree/kernel-concurrency.

5.3 Results

Here we explore the performance effect of the concurrency gains on various

parallel hardware resources. System specifications are as shown in Table 4.1 on

page 64.
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Figure 5.3: Plots showing throughput for the partial likelihood kernel
with data subset concurrency (black dots) and with no data subset con-
currency (open triangles) for a problem with 100,032 total sequence pat-
terns and increasing number of equal-sized data subsets for two GPU de-
vice/framework pairs. Left-axis slowdown factor indicates performance
loss relative to the unpartitioned case. Slowdown factors and throughput
in GFLOPS are on a log-scale.

5.3.1 Pattern Partition Concurrency Gains

We observe that for both the Quadro P5000 and Radeon R9 Nano GPUs the

previous approach of sequential computation of data subsets produces a sharp drop-

off in throughput as we increase the number of subsets (Fig. 5.3). This is because

as we increase the partition count the data subsets have decreasing numbers of

patterns, resulting in increasingly underutilized GPU capacity.

For concurrent computation with the CUDA device, throughput is higher than

with the sequential approach at all subset sizes. When there are fewer than 24 sub-

sets we use the streams approach. Throughput with this approach starts to drop

quickly after 17 subsets (corresponding to a subset size of approximately 6,000 pat-
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terns). We then note the crossover point at 24 subsets (subset size of 4,168 patterns,

and indicated by a dark grey dashed line) where we switch to our multi-operation

kernel approach. This approach exhibits consistent throughput independent of sub-

set size.

With the OpenCL solution we use the multi-operation approach for all parti-

tioned cases and note consistent and near best-case throughput, independent of the

number of data subsets.

5.3.2 Independent Subtree Concurrency Gains

Figure 5.4 on the following page shows the performance improvement associ-

ated with concurrent computation of independent subtrees for a problem with 512

patterns. The pectinate case (open triangle) also represents performance for any

tree topology with our previous solution of serial computation of subtree partial

likelihood arrays.

For both GPUs, we observe increasing speedups with tree size for the average

random tree or for fully balanced trees. We also note that for larger trees the

throughput distribution for a random tree is skewed towards the fully balanced case,

which is associated with GPU saturation at these problem sizes. Finally, we note

that pectinate-case performance is approximately twice as fast with the P5000 GPU

under CUDA as compared to the R9 Nano GPU using our OpenCL implementation.

Effective performance towards the pectinate end of the tree symmetry scale remains

highly relevant as phylogenetic inference programs are optimized such that only a
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Figure 5.4: Plots showing throughput for the partial likelihood kernel
with subtree concurrency for fully balanced trees (black dots), for 1,000
random topology trees (distribution characterized by box plot), and for
pectinate trees (open triangles) for a problem with 512 site patterns and
increasing number of tips for two GPU device/framework pairs. Left-
axis speedup factor indicates performance gain relative to the average
pectinate tree throughput. Speedup factors, throughput, and number of
tips are on a log-scale.

subtree representing the modified portion of the overall tree is recomputed for each

topology change. These subtrees are often much less balanced than the full tree.

5.3.3 Application-Level Results

We used our adapted version of MrBayes 3.2.6 to assess application-level per-

formance gains for our concurrency work across a variety of parallel computing

devices. For these benchmarks we used a dataset with 500 taxa and 759 unique site

patterns of rbcL, the chloroplast gene encoding the large subunit of ribulose-1,5-

bisphosphate carboxylase/oxygenase, which is derived from a study of angiosperm

relationships [117]. We partitioned the sequence data based on codon position, re-
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sulting in 3 subsets with 253 unique site patterns each, and inferences were run

using the MrBayes default single-precision floating point format.

We chose a dataset with a high number of sequences and with few patterns,

further broken into independent subsets, to best showcase the gains in concurrency

described in this paper. Previously problems with these characteristics have been

the most challenging for effective parallelization. BEAGLE-enabled MrBayes peak

performance for datasets with many more patterns and using higher state-count

models are reported elsewhere [12,35].

Speedups for this challenging MrBayes analysis improve as we enable par-

tition and subtree concurrency, across all hardware resources and corresponding

frameworks (Fig. 5.5 on the next page). We observe an average speedup gain of

1.5-fold for subtree concurrency and 1.4-fold for partition concurrency across all

hardware devices. For the best performing resource (NVIDIA Quadro P5000 GPU

with CUDA) we observe a 1.7-fold gain in speedup when using both concurrency

improvements, ultimately resulting in a 10-fold speedup over the native MrBayes

SSE run time.

We have attempted but were unable to compare our work to the most recent

proposals from other authors for parallel MrBayes acceleration. For aMC3 [13],

which proposes an adaptive multi-GPU approach, we were unable to perform any

analyses with the publicly available code due to execution errors. Additionally,

aMC3 is based on MrBayes 3.1.2 which lacks several features and converges more

slowly than version 3.2 [4], making it unsuitable for a direct comparison to our work.

For sMC3 [77], which proposes more efficient CPU + GPU parallelism and reports
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speedups over previous versions of BEAGLE, neither the source code nor a binary

file appear to be readily available.

5.4 Conclusion

Enabling further concurrency of computation in BEAGLE as described here

allows a wider range of phylogenetic inferences to benefit from parallel computing

hardware. Analyses with many small data subsets or with large trees but few site
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patterns, now benefit from increased throughput on multi and manycore resources.

This work represents an important step in combining the capabilities of increasingly

parallel hardware, and the demands of progressively more sophisticated phylogenetic

inference analyses.
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