
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2019

Evidence of causal effect of major depression on
alcohol dependence: Findings from the Psychiatric
Genomics Consortium
Arpana Agrawal

et al

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

https://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F7815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F7815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F7815&utm_medium=PDF&utm_campaign=PDFCoverPages


Psychological Medicine

cambridge.org/psm

Original Article

*Joint first authors

†Full list of Major Depressive Disorder Working
Group members appears in Acknowledgments
and Supplemental Material

‡Full list of Substance Use Disorder Working
Group members appears in Acknowledgments
and Supplemental Material

Cite this article: Polimanti R et al (2019).
Evidence of causal effect of major depression
on alcohol dependence: findings from the
psychiatric genomics consortium.
Psychological Medicine 49, 1218–1226. https://
doi.org/10.1017/S0033291719000667

Received: 26 February 2019
Revised: 6 March 2019
Accepted: 7 March 2019
First published online: 1 April 2019

Key words:
Alcohol consumption; alcohol dependence;
genetic correlation; genome-wide association;
major depression; Mendelian randomization

Author for correspondence:
Renato Polimanti,
E-mail: renato.polimanti@yale.edu

© Cambridge University Press 2019

Evidence of causal effect of major depression
on alcohol dependence: findings from the
psychiatric genomics consortium

Renato Polimanti1,*, Roseann E. Peterson2,*, Jue-Sheng Ong3,

Stuart MacGregor3, Alexis C. Edwards2, Toni-Kim Clarke4, Josef Frank5,

Zachary Gerring6, Nathan A. Gillespie2, Penelope A. Lind8, Hermine H. Maes2,7,

Nicholas G. Martin9, Hamdi Mbarek10, Sarah E. Medland8, Fabian Streit5,

Major Depressive Disorder Working Group of the Psychiatric Genomics

Consortium†, Substance Use Disorder Working Group of the Psychiatric

Genomics Consortium‡, 23andMe Research Team11, Arpana Agrawal12,

Howard J. Edenberg13, Kenneth S. Kendler2, Cathryn M. Lewis14,

Patrick F. Sullivan15,16,17, Naomi R. Wray18,19, Joel Gelernter1,20

and Eske M. Derks6

1Department of Psychiatry, Yale University School of Medicine and VA CT Healthcare Center, West Haven,
Connecticut, USA; 2Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia
Commonwealth University, Richmond, Virginia, USA; 3Statistical Genetics, QIMR Berghofer, Brisbane, Australia;
4Division of Psychiatry, University of Edinburgh, Edinburgh, UK; 5Department of Genetic Epidemiology in
Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim,
Baden-Württemberg, Germany; 6Translational Neurogenomics, QIMR Berghofer, Brisbane, Australia; 7Department
of Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia,
USA; 8Psychiatric Genetics, QIMR Berghofer, Brisbane, Australia; 9Genetic Epidemiology, QIMR Berghofer, Brisbane,
Australia; 10Department of Biological Psychology & EMGO + Institute for Health and Care Research, Vrije
Universiteit Amsterdam, Amsterdam, the Netherlands; 1123andMe, Inc., Mountain View, California, USA;
12Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, USA; 13Department
of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; 14Social,
Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College
London, UK; 15Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden;
16Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
17Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 18Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Australia; 19Queensland Brain Institute, The
University of Queensland, Brisbane, Australia and 20Departments of Genetics and Neuroscience, Yale University
School of Medicine, New Haven, Connecticut, USA

Abstract

Background. Despite established clinical associations among major depression (MD), alcohol
dependence (AD), and alcohol consumption (AC), the nature of the causal relationship
between them is not completely understood. We leveraged genome-wide data from the
Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared
genetic mechanisms and causal relationships among MD, AD, and AC.
Methods. Linkage disequilibrium score regression and Mendelian randomization (MR) were
performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls;
AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals;
AC-quantity: 307 098 individuals).
Results. Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47,
P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC
quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while
there was negative correlation of AC-frequency with MD (rgMD−AC frequency =−0.17,
P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence
of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-
pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28,
P = 1.29 × 10−6). There was no evidence for reverse causation.
Conclusion. This study supports a causal role for genetic liability of MD on AD based on gen-
etic datasets including thousands of individuals. Understanding mechanisms underlying MD-
AD comorbidity addresses important public health concerns and has the potential to facilitate
prevention and intervention efforts.
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Introduction

Major depression (MD) and alcohol dependence (AD) are
common psychiatric disorders, contribute substantially to global
morbidity, and often co-occur (Ferrari et al., 2013; Shield et al.,
2013). Epidemiological studies report that individuals with MD
are at increased risk for AD and vice versa (Kessler et al., 1997;
Swendsen and Merikangas, 2000; Boden and Fergusson, 2011).
Leading hypotheses suggest these associations may be due to
shared risk factors (genetic and environmental) or causal
processes of one disorder leading to the other, such as the
self-medication hypothesis of MD (Khantzian, 1997). However,
the mechanisms underlying MD-AD dual diagnosis remain
unclear.

Twin studies show genetic factors influence susceptibility to
MD, AD, and alcohol consumption (AC) (Sullivan et al., 2000;
Vrieze et al., 2013; Verhulst et al., 2015). Large-scale genome-
wide association studies (GWAS) have identified risk variants
for these disorders and have revealed polygenic architectures
with multiple common variants (CONVERGE consortium,
2015; Schumann et al., 2016; Clarke et al., 2017; Walters et al.,
2018; Wray et al., 2018). Twin studies report moderate shared
genetic liability between MD and AD, estimating the genetic cor-
relation from 0.3 to 0.6 (Kendler et al., 1993; Prescott et al., 2000).
Although emerging molecular genetic studies have reported
shared genetic risk between these disorders, they have not yet
illuminated mechanisms of association underlying genetic corre-
lations (Almeida et al., 2014; Bulik-Sullivan et al., 2015a;
Wium-Andersen et al., 2015; Clarke et al., 2017; Walters et al.,
2018; Wray et al., 2018). That is, questions remain whether
these traits show genetic correlation because of shared genetic
effects independently on each trait (i.e. horizontal pleiotropy)
(Hemani et al., 2018a) or because of causal processes
(e.g. mediated pleiotropy).

GWAS data can be used to assess causal mechanisms by
applying Mendelian randomization (MR). MR is an instrumental
variables technique that uses genetic variants to index if an obser-
vational association between a risk factor (e.g. MD) and an out-
come (e.g. AD) is consistent with a causal effect (e.g. MD
causes AD). MR relies on random assortment of genetic variants
during meiosis which are typically unassociated with confounders
since they are randomly distributed in the population at birth. The
differences in outcome between those who carry genetic risk var-
iants and those who do not can be attributed to the difference in
the risk factor. The validity of the genetic instrument is dependent
on meeting three core assumptions: (i) the genetic variant is asso-
ciated with the risk factor/exposure; (ii) the genetic variant is not
associated with confounders; and (iii) the genetic variant influ-
ences the outcome only through the risk factor. Although random
controlled trials (RCTs) are considered the gold standard for
establishing causality, MR is a viable alternative to provide sup-
port for causal mechanisms, especially when RCTs are not pos-
sible or ethical.

Two studies have previously evaluated the causal effect of AC
on depression using MR. Almeida et al., investigated the impact of
ADH1B rs1229984 in a sample of 3873 men and did not find evi-
dence of a causal influence on depression (Almeida et al., 2014).
In another study, the causal influence of two alcohol dehydrogen-
ase (ADH) genes, ADH1B (rs1229984) and ADH1C (rs698) on
depression was assessed in a sample of 68 486 participants from
the general population and reported a lack of evidence for a causal
influence on depression (Wium-Andersen et al., 2015). However,

these studies did not investigate the causal influence of MD on AC
or on AD risk. Furthermore, explorations of the causal nature
were based on ADH candidate genetic variants only, which does
not model the polygenic nature of these disorders.

Here, we leverage GWAS summary statistics generated by large
datasets from the Psychiatric Genomics Consortium (PGC) and
the UK Biobank to estimate genetic correlations between MD,
AD, and two measures of AC (AC-quantity, AC-frequency) via
linkage disequilibrium (LD) score regression (Bulik-Sullivan
et al., 2015a, 2015b). Further, we investigated support for causal
mechanisms linking these psychiatric disorders and AC via two-
sample MR analyses, which use genetic variants to assess whether
an exposure has a causal effect on an outcome in a non-
experimental setting (Burgess et al., 2015).

Materials and methods

Samples

1. Major depression (Wray et al., 2018)
MD summary association data were obtained from the latest

GWAS meta-analysis including 135 458 MD cases and 344 901
controls from the MD working group of the PGC (PGC-
MDD2), which included seven cohorts. A detailed description
of the cohorts is reported in the main GWAS analysis and a sum-
mary appears in the Supplemental Methods.
2. Alcohol Dependence (Walters et al., 2018)

AD summary association data from unrelated subjects of
European descent (10 206 cases; 28 480 controls) were obtained
from GWAS meta-analysis of 14 cohorts conducted by the PGC
Substance Use Disorder Workgroup. Detailed descriptions of
the AD samples have been previously reported and a summary
appears in the Supplemental Methods.
3. UK Biobank – AC

The UK Biobank cohort consists of 502 000 middle-aged (40–
69 years) individuals recruited from the UK. Information on
alcohol intake was obtained through various self-report question-
naires. Frequency of consumption (AC-frequency) was assessed in
501 718 participants (UK Biobank field IDs: 1558) with the item
‘About how often do you drink alcohol?’. Frequency was origin-
ally assessed at a scale ranging from 1 (daily or almost daily) to
6 (never), but was reverse coded so that a lower score represented
less frequent drinking. Online Supplemental Figure S1 shows the
distribution in the UK Biobank population. In those who drink at
least once or twice a week, information on the quantity of con-
sumption (AC-quantity) was assessed (n = 348 039). Details can
be found in the online Supplemental Methods.

Approximately 488 000 participants were genotyped and
imputed using Haplotype Reference Consortium (HRC) and
UK10 K haplotype resources (The UK10K Consortium et al.,
2015; McCarthy et al., 2016; Bycroft et al., 2018). Due to the
UK Biobank’s reported QC issues with non-HRC single nucleo-
tide polymorphisms (SNPs), we retained only the ∼40 M HRC
SNPs for analysis. In light of a large number of related individuals
in the UK Biobank cohort, the GWAS was performed using
BOLT-LMM (Loh et al., 2015). Using the criteria reported in
the supplemental methods, we identified 438 870 individuals for
this study who are genetically similar to those of white-British
ancestry. After exclusion of ethnic outliers, we included 438 308
participants in the AC-frequency and 307 098 participants in
the AC-quantity GWAS.
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SNP-based heritability analysis
The proportion of variance in phenotypic liability that could be
explained by the aggregated effect of all SNPs (h2-SNP) was esti-
mated using LD-Score Regression analysis (online Supplemental
Methods) (Bulik-Sullivan et al., 2015b). For this analysis, we
included in the regression 1 217 311 SNPs that were present in
the HapMap 3 reference panel. Analyses were performed using
pre-computed LD scores based on 1000 Genomes Project refer-
ence data on individuals of European ancestry. The h2-SNP esti-
mates for the two binary traits were converted to the liability scale,
using sample prevalence of 0.159 for AD and 0.15 for MD.

Genetic correlations between MD, AD, AC-quantity, and
AC-frequency
We used cross-trait LD-Score regression to estimate the bivariate
genetic correlations between MD, AD, and AC using GWA
summary statistics (Bulik-Sullivan et al., 2015a). For each pair
of traits, the genetic covariance is estimated using the slope
from the regression of the product of z-scores from two GWA
studies on the LD score. The estimate represents the genetic
covariation between the two traits based on all polygenic effects
captured by SNPs. To correct for multiple testing, we adopted
a Bonferroni corrected P-value threshold of significance of 0.05/
6 = 0.0083.

Mendelian randomization
To assess causality among MD, AD, AC-quantity, and AC-
frequency, we used GWAS summary association data to conduct
two-sample MR analyses (Davey Smith and Hemani, 2014;
Burgess et al., 2015). Since different MR methods have sensitiv-
ities to different potential issues, accommodate different scen-
arios, and vary in their statistical efficiency (Polimanti et al.,
2017, 2018; Ravera et al., 2018; Wendt et al., 2018), we considered
multiple MR methods (online Supplemental Table S1). These
include methods based on median (Bowden et al., 2017), mean
(Bowden et al., 2016), and mode (Hartwig et al., 2017), and vari-
ous adjustments, such as fixed v. random effects (Bowden et al.,
2017), Rucker framework (Rucker et al., 2011), and Steiger filter-
ing (Hemani et al., 2017). We verified the stability of the results,
comparing the effect directions across the different MR-variant
filtering methods (online Supplemental Table S1). MR-Egger
regression intercept was considered to verify the presence of pleio-
tropic effects of the SNPs on the outcome (i.e. to verify whether
the instrumental variable is associated with the outcome inde-
pendently from its association with the exposure) (Bowden
et al., 2015). In total we performed 17 MR tests (online
Supplemental Table S2). This number is due to the fact we were
not able to test AD using a genetic instrument based on genome-
wide significant (GWS) loci and, since we are conducting a two-
sample MR analysis, we did not test causal relationship between
AC-quantity and AC-frequency because they are based on UK
Biobank cohort. For the variants included in the instrumental
variable, we performed LD clumping by excluding alleles that
have R2⩾ 0.01 with another variant with a smaller association
P-value considering a 1Mb window. Additionally, during the har-
monization of exposure and outcome data, palindromic variants
with an ambiguous allele frequency (i.e. minor allele frequency
close to 50%) were removed from the analysis to avoid possible
issues (Bowden et al., 2015; Hartwig et al., 2016). The variants
included in each genetic instrument used in the present analysis
are listed in online Supplemental Table S3. For each exposure,
two instrumental variables were built considering GWS loci

(P < 5 × 10−8) and suggestive loci (P < 5 × 10−5). We verified
these MR estimates using the MR-RAPS approach, which is a
method designed to identify and estimate confounded causal
effects using weak genetic instrumental variables (Zhang et al.,
2018). To ensure the reliability of the significant findings, we per-
formed heterogeneity tests based on three different methods:
inverse-variance weighted, MR-Egger regression, and maximum
likelihood (online Supplemental Table S4). To further confirm
the absence of possible distortions due to heterogeneity and plei-
otropy, we tested the presence of horizontal pleiotropy among the
variants included in the genetic instrument using MR-PRESSO
(Verbanck et al., 2018). Finally, the funnel plot and leave-one-out
analysis were conducted to identify potential outliers among the
variants included in the genetic instruments tested. The MR ana-
lyses were conducted using the TwoSampleMR R package
(Hemani et al., 2018b).

Data availability
MD GWAS: The PGC’s policy is to make genome-wide summary
results public. Summary statistics for a combined meta-analysis
of PGC29 with five of the six expanded samples (deCODE,
Generation Scotland, GERA, iPSYCH, and UK Biobank) are
available on the PGC web site (https://www.med.unc.edu/pgc/
results-and-downloads). Results for 10 000 SNPs for all seven
cohorts are also available on the PGC web site. GWA summary
statistics for the Hyde et al., cohort (23andMe, Inc.) must be
obtained separately. These can be obtained by qualified research-
ers under an agreement with 23andMe that protects the privacy of
the 23andMe participants. Contact David Hinds (dhinds@
23andme.com) to apply for access to the data. Researchers who
have the 23andMe summary statistics can readily recreate our
results by meta-analyzing the six-cohort results file with the
Hyde et al., results file from 23andMe.

AD GWAS: The PGC’s policy is to make genome-wide
summary results public. Summary statistics are available on
the PGC web site is (https://www.med.unc.edu/pgc/results-and-
downloads).

AC quantity and frequency GWAS: Summary statistics will be
made publicly available through LD hub http://ldsc.broadinstitute.
org/ldhub/ before publication of this paper or can be obtained
upon request from the corresponding author.

Results

SNP-based heritabilities and genetic correlations

We confirmed previously reported heritability estimates of MD
(h2-SNP = 8.5%, S.E. = 0.003, K = 0.15) and AD (h2-SNP = 9.0%,
S.E. = 0.019, K = 0.16), with K defined as the disease prevalence
in the population (Walters et al., 2018; Wray et al., 2018).
The h2-SNP of AC-frequency, which has not been previously
reported, was estimated at 8.0% (S.E. = 0.003). The h2-SNP of
AC-quantity using LD-score regression was estimated at 6.9%
(S.E. = 0.004), which is lower than the GCTA-estimate reported
by Clarke et al. (13%) who analyzed a smaller subset (n = 112
117) (Clarke et al., 2017) from the current data (n = 307 098).
The lower estimate may be explained by differential methodology
(i.e. LD-score regression v. GCTA) and by the fact that the first
release of UK Biobank included a subset of individuals that was
selected based on smoking and may be less representative of the
general population than the current sample (Wain et al., 2015).
These h2-SNP estimates are capturing 17–23% of heritabilities
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reported by twin studies (Sullivan et al., 2000; Verhulst et al.,
2015).

The high genetic correlation between AD and AC-quantity
(rgAD−AC quantity = + 0.75, 95%CI = (0.56, 0.94), P = 1.8 × 10−14)
(Fig. 1) suggests that these phenotypes capture overlapping con-
structs and that quantity of consumption is an indicator of prob-
lematic alcohol use. Of note, the genetic correlation between AD
and AC-frequency is not significantly different from zero, indicat-
ing that it is not a reliable indicator of genetic risk for AD.

Consistent with twin studies, MD and AD show moderate
overlap of genetic factors [rgMD−AD = + 0.47, 95% CI = (0.32,
0.62), P = 6.6 × 10−10] (Kendler et al., 1993; Prescott et al.,
2000). A significant genetic correlation between AC-quantity
and AC-frequency was observed [rgAC quantity−AC frequency =
+ 0.52, 95% CI = (0.48, 0.56), P = 1.3 × 10−149], but MD showed
significant correlations with these traits in opposite directions
[rgMD−AC quantity = + 0.14, 95% CI = (0.09, 0.20), P = 2.9 × 10−7;
rgMD−AC frequency =−0.17, 95% CI = (−0.22, −0.11), P = 1.5 × 10−10].

Mendelian randomization
We investigated the presence of mediated pleiotropy via two-
sample MR as this allows us to test for causative mechanisms link-
ing MD, AD, AC-frequency, and AC-quantity. This is a strategy to
investigate causal relationships in which evidence on the associa-
tions of genetic variants (i.e. instrumental variable) with the risk
factor (i.e. exposure) and with the outcome are derived from two
samples (Davey Smith and Hemani, 2014; Burgess et al., 2015).
The instrumental variables were built considering GWS loci
(P < 5 × 10−8) and suggestive loci (P < 5 × 10−5). Since different
MR methods have sensitivities to different potential issues,
we considered 28 MR/variant-filtering approaches (online
Supplemental Table S1). A Bonferroni correction (P < 1.05 ×
10−4) was applied to correct for the number of MR tests per-
formed (n = 17; online Supplemental Table S2) and the number
of methods/variant-filtering considered for each test (n = 28;
online Supplemental Table S1). Of the 17 MR tests conducted,
we observed that 14 survived multiple testing correction
(Table 1). This outcome was expected due to the strong genetic
correlations observed among the traits investigated. To verify
that the significant results were not due to the presence of biases
in the genetic instruments, we conducted three main sensitivity
analyses: (i) inspected consistency of direction of effects across
MR methods (online Supplemental Table S5); (ii) tests of hori-
zontal pleiotropy between the exposure and the outcome
(MR-Egger regression intercept P > 0.1; online Supplemental
Table S6); (iii) assessed heterogeneity of effect sizes among the
variants included in the genetic instrument (heterogeneity test
P > 0.05; online Supplemental Table S3). Of 14 MR tests surviving
Bonferroni multiple testing correction, only the causal relation-
ship of MD on AD passed all three sensitivity analyses. We
observed that the MD instrumental variable based on suggestive
variants (259 SNPs) was associated with AD (fixed-effect inverse-
variance weighted method: β = 0.28, P = 1.3 × 10−6; Fig. 2). Since
this causal estimate was generated from a genetic instrument
including suggestive variants, we confirmed this result using the
MR-RAPS method: β = 0.28, P = 5.6 × 10−5. A similar effect size
was also observed for the MD instrumental variable based on
GWS loci (40 SNPs; fixed-effect inverse-variance weighted
method: β = 0.27, P = 0.054). Results indicated that MD is asso-
ciated with a 32% increase in the odds for AD risk per unit
increase in the log(OR) for MD (95% CI 18–48%) and were con-
sistent across multiple MR approaches (online Supplemental

Table S5.17). As mentioned above, the MD genetic instrument
did not show evidence of horizontal pleiotropic effects as demon-
strated by MR-Egger regression intercept (P = 0.297, online
Supplemental Table S6), confirming that the causal effect of
MD on AD does not appear to be biased by horizontal pleiotropy.
The heterogeneity tests indicated no evidence of heterogeneity in
the MD-AD result (P > 0.13; online Supplemental Table S3). The
MR-PRESSO global test (Verbanck et al., 2018) also supported
the absence of horizontal pleiotropy (RSSobs = 285.6, P = 0.143).
The MR-RAPS overdispersion test did not observe significant
horizontal pleiotropy (estimated pleiotropy variance = 1 × 10−4;
P = 0.249). Finally, the funnel plot and leave-one-out analyses
provided additional support that the MD-AD result was not
biased by outliers included in the genetic instrument (online
Supplemental Figure S2). The same MD genetic instrument also
showed significant effects on AC-quantity and AC-frequency
(Table 1), but, in contrast to the AD outcome, these causal effects
showed evidence of non-consistency across MR methods, hetero-
geneity, and horizontal pleiotropy (online Supplemental Table S3,
S5, S6). No reverse causal effect was observed between AD genetic
instrument and MD (fixed-effect inverse-variance weighted
method: β = 0.01, P = 0.1), which also showed non-concordant
direction of effects across MR methods (online Supplemental
Figure S3). Conversely, the AD genetic instrument showed signifi-
cant effects on AC-quantity and AC-frequency but was affected by
heterogeneity and horizontal pleiotropy (Table 1; online
Supplemental Table S3, S6).

Discussion

Data from large-scale GWAS are redefining the boundaries of
psychiatric disorders, identifying the contribution of common

Fig. 1. Genetic correlations of major depression (MD), alcohol dependence (AD), and
alcohol consumption quantity (ACQ), and alcohol consumption frequency (ACF).
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risk alleles and pervasive genetic correlations. Here, leveraging the
polygenic architecture of these complex traits and the large sam-
ple size of GWAS results from the PGC and UK Biobank, we
observed genetic overlap between MD and AD and provide sup-
port for a causal effect of MD on AD, which does not appear to be
affected by horizontal pleiotropy or other detectable biases. To
our knowledge, this is the first report of causality between MD
and AD based on molecular genetic information. Consistent
with the two previously published MR studies (Almeida et al.,
2014; Wium-Andersen et al., 2015), we did not find a robust cau-
sal influence of AC on depression.

We detected significant genetic correlations between all pairs
of phenotypes, except for AD and AC-frequency, suggesting
that frequency of AC is not a good proxy for AD. In contrast,
the genetic correlation between AD and AC-quantity is high at
rg = 0.75. Of note, our estimate is higher than previously reported
by Walters et al. (rg = 0.37) who used the same GWAS results for
AD (Walters et al., 2018) but the earlier, smaller subset of the UK
Biobank data on consumption (Clarke et al., 2017). However, our
estimate is comparable to the estimate reported by Walters et al.
(rgAD−AC quantity = + 0.70) who calculated the genetic correlation
between AD and AC from the Alcohol Genome-wide
Association and Cohorts for Aging and Research in Genomic
Epidemiology Plus consortium (Schumann et al., 2016), suggest-
ing that the genetic correlation between these traits is indeed high
(Walters et al., 2018).

The finding of a negative correlation between AC-frequency
and MD may seem counterintuitive, but is supported by earlier
studies that report opposing effects of quantity and frequency
on health. For example, high drinking quantity is associated
with increased all-cause mortality risk while the frequency of
drinking does not show such an association (Breslow and
Graubard, 2008). Additionally, in line with our findings, it was
recently shown that MD is associated in opposite directions
with two aspects of problematic drinking as assessed by the

AUDIT: AUDIT-consumption (i.e. assessing frequency of con-
sumption) (rg = −0.23) and AUDIT-problematic consequences
(rg = + 0.26) (Sanchez-Roige et al., 2018). Our findings support
the notion that MD is genetically positively correlated with mea-
sures of problematic drinking (i.e. AD and AC-quantity), but is
negatively correlated with the frequency of consumption.

In contrast to some epidemiological reports (Boden and
Fergusson, 2011), our results do not support evidence of reverse
causation, that is, AD causing MD. One could posit that this is
due to the relative power of the AD instrumental variable com-
pared to those for MD and AC given the greater number of
GWS variants detected for those traits. However, we would like
to bring forward three arguments that support the notion that
the null AD→MD result is due to the absence of a causal effect
of AD on MD rather than a lack of power. First, our findings
are in line with the results of an earlier MR study that explored
the causal effect of ADH1B rs1229984 on depression and reported
no significant association (Almeida et al., 2014). Since this variant
is significantly associated with AD risk (Walters et al., 2018), this
supports our premise that AD does not have a causal influence on
MD. Second, the AD genetic instrument showed different associa-
tions between the traits tested: significant causal effect with
respect to AC scales, while no effect on MD. Third, the genetic-
correlation results indicated that AD is informative of the plei-
otropy (mediated or horizontal) with ACQ and MD. Therefore,
although the AD GWAS has a smaller sample size than the
other GWAS used in the present analysis, it is informative of
AD polygenic architecture as indicated by quantifiable and statis-
tically significant SNP-based heritability and genetic correlation
results. In particular, MD showed a much stronger genetic correl-
ation with AD than that observed with AC scales. However, we
note that larger AD and MD datasets will be required to confirm
the current findings using genetic instruments based on genetic
variants that reached the more conservative genome-wide signifi-
cance threshold.

Table 1. Results of the most significant MR approach among those surviving Bonferroni multiple testing correction for each of the MR tests conducted

Test Method SNP n Estimate P Concordance
Het.

(P > 0.05)
MR-Egger intercept

(P > 0.1)

ACF→AD Egger 92 −1.97 2.51×10−11 pass violated violated

ACF×10−5→AD Egger 773 −0.75 3.24×10−06 pass violated violated

ACF×10−5→MD IVW 795 0.07 6.50×10−20 violated violated violated

ACQ→AD IVW 31 0.12 3.81×10−11 pass violated violated

ACQ→MD IVW 30 0.01 8.06×10−05 violated violated pass

ACQ×10−5→AD IVW 385 0.06 7.34×10−20 pass violated violated

ACQ×10−5→MD IVW 405 0.01 2.43×10−17 violated violated violated

AD×10−5→ACF Egger 96 −0.05 9.11×10−48 pass violated violated

AD×10−5→ACQ IVW 95 0.26 3.26×10−36 pass violated pass

MD→ACF IVW 36 0.05 4.06×10−08 pass violated pass

MD→ACQ Egger 36 −4.77 1.93×10−10 pass violated violated

MD×10−5→ACF IVW 252 0.02 1.27×10−08 violated violated pass

MD×10−5→ACQ IVW 251 0.31 1.46×10−06 violated violated violated

MD×10−5→AD IVW 259 0.28 1.29×10−06 pass pass pass

ACF, alcohol consumption frequency; ACQ, alcohol consumption quantity; AD, alcohol dependence; MD, major depression; Het., heterogeneity test; suggestive loci (P < 5 × 10−5).
All top-results reported in the table were obtained using fixed effects and tophits adjustments (see online Supplemental Table S2)
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Conclusions

These results support the utility of using genetic approaches to
advance the understanding of complex trait comorbidities.
Given the significant morbidity and mortality associated with
the comorbid conditions, AD and MD, understanding mechan-
isms underlying these associations not only address important
public health concerns but also has the potential to facilitate pre-
vention and intervention efforts. As discovery GWAS increase in
sample size, future research will have the power to examine pat-
terns of genetic correlation and causal mechanisms by important
stratifications such as across diverse ancestries and sex.
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