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The Role of Periarticular Soft Tissues in Persistent
Motion Loss in a Rat Model of Posttraumatic

Elbow Contracture
Chelsey L. Dunham, BS, Ryan M. Castile, BS, Aaron M. Chamberlain, MD, and Spencer P. Lake, PhD

Investigation performed at Washington University in St. Louis, St. Louis, Missouri

Background: Elbow injuries disrupt the surrounding periarticular soft tissues, which include the muscles, tendons,
capsule, ligaments, and cartilage. Damage to these tissues as a result of elbow trauma causes clinically significant
contracture in 50% of patients. However, it is unclear which of these tissues is primarily responsible for the decreased
range of motion. We hypothesized that all tissues would substantially contribute to elbow contracture after immobilization,
but only the capsule, ligaments, and cartilage would contribute after free mobilization, with the capsule as the primary
contributor at all time points.

Methods: Utilizing a rat model of posttraumatic elbow contracture, a unilateral soft-tissue injury was surgically induced to
replicate the damage that commonly occurs during elbow joint dislocation. After surgery, the injured limb was immobilized
for 42 days. Animals were evaluated after either 42 days of immobilization (42 IM) or 42 days of immobilization with an
additional 21 or 42 days of free mobilization (42/21 or 42/42 IM-FM). For each group of animals, elbow mechanical
testing in flexion-extension was completed post-mortemwith (1) all soft tissues intact, (2) muscles/tendons removed, and
(3) muscle/tendons and anterior capsule removed. Total extension was assessed to determine the relative contributions
of muscles/tendons, capsule, and the remaining intact tissues (i.e., ligaments and cartilage).

Results: After immobilization, the muscles/tendons and anterior capsule contributed 10% and 90% to elbow contrac-
ture, respectively. After each free mobilization period, the muscles/tendons did not significantly contribute to contracture.
The capsule and ligaments/cartilage were responsible for 47% and 52% of the motion lost at 42/21 IM-FM, respectively,
and 26% and 74% at 42/42 IM-FM, respectively.

Conclusions: Overall, data demonstrated a time-dependent response of periarticular tissue contribution to elbow con-
tracture, with the capsule, ligaments, and cartilage as the primary long-term contributors.

Clinical Relevance: The capsule, ligaments, and cartilage were primarily responsible for persistent motion loss and should
be considered during development of tissue-targeted treatment strategies to inhibit elbow contracture following injury.

P
osttraumatic contracture develops in 50% of patients
who experience elbow injury (i.e., dislocation or frac-
ture)1, in part because the congruent joint architecture

and soft-tissue constraints of the elbow are often disrupted as a
result of the injury2. Restoring elbow range of motion (ROM)
following injury and contracture is a difficult, time-consuming,
and costly challenge because it is a multi-tissue pathology. Cur-
rent treatment strategies such as physical therapy or surgical
intervention do not target all fibrotic tissues in the elbow, which
include muscles, tendons, capsule, ligaments, and cartilage3.

However, the extent to which these tissues contribute to con-
tracture over time in the elbow is unknown.

Previous studies of immobilization-induced knee con-
tracture animal models (i.e., no joint injury) showed that the
contribution of capsule/ligaments/cartilage and muscles/tendons
to contracture exhibited a time-dependent increase and decrease,
respectively, throughout the course of immobilization and sub-
sequent free mobilization (i.e., joint no longer immobilized)4-7.
However, these findings in the knee cannot be directly translated
to the elbow because of the anatomical and functional differences
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in these 2 joints. To our knowledge, no study has evaluated these
specific tissue contributions to contracture in the elbow. Despite
clinical evidence indicating the capsule is a primary contributor
to persistent elbow contracture on the basis of biological changes
observed in the tissue, no study has specifically isolated the
mechanical contribution of the capsule to loss of elbow ROM2,8-10.

We previously developed an animal model of posttrau-
matic elbow contracture that exhibited significant loss offlexion-
extension ROM11,12. In addition to the altered joint mechanics,
biological changes were histologically observed in the anterior
capsule (i.e., increased thickness, adhesions, and myofibro-
blasts) and non-opposing joint surfaces (i.e., cartilage-capsule
interactions indicative of arthrosis), consistent with clinical
observations11-13. This animal model allows evaluation of the
role of periarticular soft tissues in elbow contracture and elu-
cidation of which soft tissues primarily cause motion loss will
aid development of tissue-targeted treatment strategies to
prevent elbow contracture. The objective of this study was to
evaluate the passive contributions of muscles/tendons, capsule,

and ligaments/cartilage to loss of elbow extension caused by
contracture. We hypothesized that all tissues would substantially
contribute to elbow contracture after immobilization, but that
only the capsule, ligaments, and cartilage would contribute after
free mobilization because we previously reported that altered
muscle mechanics recovered after free mobilization14. At all time
points, we hypothesized that the capsule would be the primary
contributor to contracture on the basis of persistent biological
changes observed in human patients2,8-10 and in our rat model13.

Materials and Methods
Animal and Injury Model

On the basis of previously described criteria including simi-
larities to human anatomy and functional upper-extremity

ROM, male Long-Evans rats (250 to 350 g; 8 to 10 weeks old;
Charles River Laboratories International) were selected and ran-
domized into injury and control groups11,12. A power analysis
(power = 0.8; a = 0.05) determined that 7 rats per group were
required for joint mechanical tests to detect differences in

Fig. 1

Timeline of experimental evaluation for injured and control animals. The lightning bolt indicates the time of surgical injury and an oval indicates an analysis

time point.

Fig. 2

Schematic and images of a rat forelimb at each testing condition: full (all soft tissue intact), no muscle (muscle and tendons removed), and no muscle/

capsule (muscle/tendons and anterior capsule removed). For each condition, the left and right images are a sagittal and coronal view of the rat forelimb.
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ROM of 15� with a standard deviation of 10�; a slightly more
conservative group size was chosen (8 rats per group per time
point). The animal injury and immobilization protocol used
in the present study was previously developed by our group
and was approved by the Institutional Animal Care and Use
Committee11,12. Briefly, animals in the injury group were anes-
thetized and a unilateral surgical procedure, including an anterior
capsulotomy with lateral collateral ligament transection, was
performed to replicate the soft-tissue damage that occurs during
elbow dislocation. The injured limbs were then immobilized in
a flexed position immediately after the surgical procedure. The
contralateral limbs and the animals in the control group were
neither injured nor immobilized.

Animals were evaluated after 42 days of immobilization
(42 IM) to understand the contribution of soft tissue to con-
tracture development or after 42 days of immobilization with
either 21 or 42 days of free mobilization (42/21 or 42/42
IM-FM, respectively) to understand how the soft-tissue con-
tribution changes after joint reloading (Fig. 1). During free
mobilization, the immobilization bandage was removed and

animals were allowed unrestricted cage activity. At each time
point, animals were killed via CO2 inhalation overdose and
stored immediately in a 220�C freezer.

Mechanical Testing
Post-mortem, the forelimbs were prepared and subjected to
flexion-extension mechanical testing with use of previously
described protocols11,12. Each limb was tested a total of 3 times
to evaluate the contribution of periarticular soft tissues to
elbow contracture. Flexion-extension mechanical testing was
completed with (1) all soft tissues intact (full), (2) muscles and
tendons removed (no muscle), and (3) muscles/tendons and
anterior capsule removed (nomuscle/capsule) (Fig. 2). Because
the synovial membrane is a few cell layers thick, it was difficult
to remove it from the capsule during dissection, so both were
released for the third testing condition15. One individual per-
formed all dissections to ensure consistency within the study.

To start each test, limbs were placed at 90� of flexion and
then cyclically loaded to ±0.75 N (±11.25 N-mm of torque) for 5
cycles at 0.3 mm/sec. Force-displacement data from the fifth cycle

Fig. 3

Fig. 3-A Graph showing torque-angle loading curve in flexion-extension with parameters identified for a representative data set (light gray circles) and

corresponding average curve (black line). Figs. 3-B, 3-C, and 3-D Average curves are shown in blue for 42 IM (Fig. 3-B), light green for 42/21 IM-FM

(Fig. 3-C), and dark green for 42/42 IM-FM (Fig. 3-D) to qualitatively illustrate extension contracture for each testing condition. NM= nomuscle and NMC=

no muscle/capsule. For each time point, the control group is represented by gray lines.
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were converted to torque-angular position and analyzed with use
of a custom MATLAB program (MathWorks). Measurements
included start position, total extension, and extension neutral
zone length (Fig. 3-A). The extension neutral zone length is the
linear region between the start position and the loading/unload-
ing curves of maximum extension. Clinically, extension neutral
zone length represents the amount of motion possible in elbow
extension before a larger external force is applied to move the
joint further. Analysis was focused on extension because data
from our previous studies showed no significant change in flexion
with contracture11,12. Total extension and extension neutral zone
length data are presented as a percentage of the control, where a
value of 100% represents no difference between the injured or
contralateral limb and the control limb. The average point of
maximum extension and both end points of the extension
neutral zone were calculated to present a qualitative repre-
sentation of joint motion. Group-average values were utilized
to plot average curves for each testing condition at each time
point. Extension lost is the difference in total extension
between injured and control limbs in the full condition.

Statistical Analysis
At each time point, repeated-measures 1-way analysis of variance
(ANOVA) was used to compare mechanical test parameters for
each group for the 3 test conditions: (1) full, (2) no muscle, and
(3) no muscle/capsule. When ANOVA analysis showed signifi-
cant results, post-hoc Bonferroni corrections were used to
compare each test condition. No statistical analyses were com-
pleted across different time points. Significance was set at p <
0.05 and trending at 0.05 < p < 0.1. All statistical analysis was
performed in GraphPad Prism (GraphPad Software).

Results

The starting position was evaluated to determine if joints
were consistently placed in the same orientation in the

mechanical testing system across the 3 testing conditions. There
were no significant differences in the starting positions for the full,
no-muscle, and no-muscle/capsule conditions among the control,
injured, or contralateral limbs at any time point (Figs. 4-A, 4-B,
and 4-C), demonstrating consistent and repeatable testing before
and after sequential dissections within a given group.

Fig. 5

Quantitative results for the injured limb total extension (Fig. 5-A) and extension neutral zone length (Fig. 5-B), presented as a percentage of the

control at each time point for each testing condition. Data are presented as the average ± standard deviation. The dashed line indicates the control

(100%), an asterisk indicates significance (p < 0.05), and a diamond indicates a trend toward significance (0.05 < p < 0.1). NM = no muscle and

NMC = no muscle/capsule.

Fig. 4

Quantitative results for the starting position of the control (Fig. 4-A), injured (Fig. 4-B), and contralateral (Fig. 4-C) limbs for each condition at each time point,

demonstrating consistent orientation across dissection states in the setup of each test. Data are presented as the average ± standard deviation. There were no

significant differences between the full, no-muscle (NM), andno-muscle/capsule (NMC) conditions at each timepoint for the control, injured, or contralateral limbs.
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At 42 IM, the full condition for the injured limb had a very
short extension neutral zone length, the curve of which shifted
away from the control (Fig. 3-B). Although the no-muscle con-
dition qualitatively resulted in a small shift toward the control (Fig.
3-B), it represented a 9% increase in total extension comparedwith
the full condition (p= 0.017) (Fig. 5-A).With subsequent removal
of the anterior capsule, the average curve of the no-muscle/capsule
condition nearly overlapped with the control (Fig. 3-B), repre-
senting a 71% and 80% increase in total extension compared with
the no-muscle and full conditions, respectively (p = 0.006 and
0.003, respectively) (Fig. 5-A). For neutral zone length, the no-
muscle condition showed no change compared with the full
condition; however, the value for the no-muscle/capsule condition
exhibited a 78% increase compared with those of both the no-
muscle and full conditions at 42 IM (p = 0.005) (Fig. 5-B).

At 42/21 and 42/42 IM-FM, there was a qualitative
increase in extension for the full condition compared with that
of the same group at 42 IM (Figs. 3-C and 3-D). Interestingly,
after muscles/tendons were released at 42/21 IM-FM, there was
neither a change in the average curve nor a significant differ-
ence in either parameter evaluated (Figs. 3-C and 5). A small
shift in the average curve occurred only after release of the
capsule (Fig. 3-C), representing a 22% significant increase in
extension neutral zone length compared with the no-muscle
condition (p = 0.042) (Fig. 5-B). At 42/21 IM-FM, total
extension for the no-muscle/capsule condition trended toward
significantly larger values compared with the no-muscle and
full conditions (Fig. 5-A), and extension neutral zone length
values for the no-muscle/capsule condition showed a trend
toward significant increases compared with the full condition
(Fig. 5-B). The average curves at 42/42 IM-FM exhibited
similar changes: the no-muscle condition did not alter the
curve and there was only a slight shift toward the control after
removal of the capsule (Fig. 3-D). However, at 42/42 IM-FM
neither total extension nor extension neutral zone length ex-
hibited any significant differences among the full, no-muscle,
and no-muscle/capsule conditions (Fig. 5). Because removal of
the muscles/tendons and capsule at both time points in free
mobilization did not cause a return to the control level, it appears

that other remaining, full tissues (i.e., ligaments and cartilage)
must contribute to contracture at these time points.

In the contralateral limbs, there were no significant dif-
ferences in total extension or extension neutral zone length
across any test conditions at any time points (Figs. 6-A and
6-B). Contralateral data were also not different compared with
the control, with average total extension and extension neutral
zone length values at 97% of the control.

The amount of extension lost in the injured limbs was 55�
at 42 IM, with the muscles/tendons and capsule contributing

Fig. 6

Quantitative results for contralateral limb total extension (Fig. 6-A) and extension neutral zone length (Fig. 6-B), presented as a percentage of the control at

each time point for each testing condition. Data are presented as the average ± standard deviation. The dashed line indicates the control (100%). There

were no significant differences for either parameter among the full and no-muscle conditions, the full and no-muscle/capsule conditions, or the no-muscle

and no-muscle/capsule conditions at each time point.

Fig. 7

Plot of extension lost during immobilization (white circle) and free mobili-

zation (gray circles) (shown as the average± standard deviation) alongwith

a table showing the percentagecontributionof the periarticular soft tissues

to elbow contracture at each time point.
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10% and 90% to elbow contracture, respectively (Fig. 7). Twenty-
one days of free mobilization reduced extension loss to 25�, with
the contributions of the muscles/tendons and capsule decreased
to 1% and 47%, respectively; the ligaments/cartilage contributed
52% to contracture at this time point. Surprisingly, at 42/42 IM-
FM, the contributions of the muscles/tendons and capsule to
contracture decreased to 0% and 26%, respectively, whereas the
contribution of the ligaments/cartilage increased to 74%.

Discussion

The contribution of periarticular soft tissues to posttrau-
matic elbow contracture is dependent on time and the

relative amount of joint mobility. Immediately following
immobilization, the anterior capsule was the primary con-
tributor to elbow contracture. However, reloading the joint
during free mobilization shifted the soft-tissue response to be
increasingly dominated by the remaining, intact tissues (i.e.,
ligaments and cartilage). Surprisingly, as the duration of free
mobilization increased, so did the contribution of the liga-
ments/cartilage to elbow contracture.

Muscles/tendons were responsible for 10% of elbow con-
tracture at 42 IM (Fig. 7). This limited yet significant contribution
after immobilization was consistent with the findings of our
previous study, which showed that active and passive muscle
mechanics were significantly altered at 42 IM (Figs. 3-B and 5)14.
Thus, muscle contributes to early elbow contracture. However,
during free mobilization, the contribution of muscles/tendons
decreased, demonstrating that prior alterations to these tissues
recovered with joint reloading (Figs. 5 and 7). These results
were also consistent with previous data that showed active and
passive muscle mechanics were not significantly different
compared with control at 42/42 IM-FM14. Similarly, studies
of immobilization-induced knee contracture animal models
have demonstrated that the contribution of muscles/tendons
after immobilization decreased with time4-6.

In our previous study utilizing the same ratmodel of elbow
contracture, total ROM in flexion-extension only increased after
21 days of free mobilization13. This initial gain in motion was
likely the result of increased muscular forces across the
elbow16. A longer period of free mobilization did not increase
elbow ROM in these previous studies because the active/
dynamic muscles/tendons had already recovered (Fig. 7)13.
Thus, in this animal model, muscles/tendons are not per-
manent contributors to posttraumatic elbow contracture and
should not be the focus of tissue-targeted treatment strategies.

After immobilization, the capsule was responsible for 90%
of the motion lost as a result of contracture (Fig. 7). In an
immobilization-induced knee contracture model, Chimoto et al.
similarly reported that the capsule substantially contributed to
reduced extension following immobilization15. During free
mobilization, the percentage of contribution and the amount of
extension lost because of the capsule decreased with time, dem-
onstrating that the capsule was not the only periarticular soft
tissue responsible for motion loss during this time period (Figs. 5
and 7). Clinically, the contribution of non-capsular tissues to
elbow contracture has been shown by the persistence or recur-

rence of joint-motion loss following either open or arthroscopic
anterior capsule release3,17,18. In such patients, full ROM is
rarely restored and secondary operations are even indicated in
12% to 15% of cases to further extract fibrotic joint tissues19.

Although the ligaments/cartilage did not contribute to
contracture after immobilization, these tissues were responsi-
ble for 52% and 74% of the motion lost at 42/21 and 42/42 IM-
FM, respectively (Fig. 7). Interestingly, although the percentage
of contribution of these structures to elbow contracture
increased over time during free mobilization, the amount of
extension lost remained the same (Fig. 7). Ligament thickening
was visually observed during dissections of limbs at both free
mobilization time points, suggesting that ligament scarring/
hypertrophy led to the increasing contribution to contracture.
The increasing contribution of ligaments/cartilage could also
be a result of mechanical and biochemical interactions of the
pathological capsule with the surrounding ligaments and car-
tilage in the joint following trauma. Previous histological
evaluation in this animal model found more damage and
degeneration in the non-opposing joint surface (i.e., cartilage-
capsule) compared with the opposing joint surface (i.e., car-
tilage-cartilage)13. Thus, the cartilage in the non-opposing joint
surface could be interacting with the pathological capsule and
responding to the altered mechanical and biological environ-
ment, resulting in secondary degeneration after contracture17,20.
An immobilization-induced knee contracture model also ex-
hibited evidence of cartilage-capsule interaction, showing
proliferation and adhesion of connective tissue during free
mobilization21. Reloading the joint during free mobilization
could also cause micro-damage to both the capsule and liga-
ments/cartilage, which could alter tissue mechanical load and
biological signaling to ultimately affect the tissue contribution
to elbow contracture7.

Lindenhovius and Jupiter stated that the timing of
treatment is associated with the outcome of motion improve-
ment in the elbow, and that the longer intervention is delayed,
the larger the contribution of muscles, tendons, and cartilage3.
Although the present study demonstrates that muscles/tendons
were not permanent contributors to elbow contracture, the
results did support a time-dependent response of the capsule
and ligaments/cartilage. In conclusion, it appears that the
capsule, ligaments, and cartilage were all persistent contribu-
tors to permanent contracture in our rat model of elbow
contracture and should be considered during development of
tissue-targeted treatment strategies. Ongoing evaluation of
various treatment strategies in this rat model will elucidate
concepts that may be clinically translatable.

There are limitations and additional aspects of this study to
consider. First, rats are quadruped animals, hence their forearms
experience different loads than humans. However, in our animal
model, the injured forelimb is immobilized to prevent weight-
bearing by using an external bandage which more closely mimics
the human condition following trauma. Second, the evaluation of
the periarticular soft-tissue contribution to elbow contracture
only isolated themuscles/tendons and anterior capsule. However,
the results showed that the remaining, intact tissues (i.e.,
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ligaments and cartilage) dominated contracture during free
mobilization. Future work will evaluate ligament mechanics
to understand the way they contribute to contracture. Third,
although our previous work evaluated morphological changes
in muscle, capsule, and cartilage11-13, future work will also
study biological changes in the capsule, including evaluation
of protein content and matrix organization. n
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