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The advancement of complex social systems such as Facebook and Twitter has

led to huge volume of user generated contents, which enable detailed tracking and

characterization of human activities. Users of these systems interact with each other

to make decisions in events such as information dissemination and to learn knowl-

edge such as rating of online businesses. Quantitative analysis and comprehension

of mechanisms of users’ behaviors in these systems are both intriguing and imper-

ative in many academic fields (e.g., economics and social/political sciences) and

applications (e.g., online advertisement and management of electronic commerce).

In addition, due to the high commercial and research values of these user generated

data for many individuals and companies, various data trading platforms are emerg-

ing to facilitate data transactions and to extract remarkable profits from the data

markets, yet few methodological trading schemes are available in the literature.

Therefore, in this dissertation, we are motivated to examine users’ behaviors

during several learning and decision making processes in networked systems and to



design an efficient data trading mechanism systematically for markets with multiple

data agents. Specifically, we first propose a graphical evolutionary game theoretic

framework for information propagation over heterogeneous networks and analyti-

cally study the dynamics and stable states of the game. Theoretical results are

corroborated by numerical experiments on real-world information diffusion data.

Secondly, to incorporate users’ long-term incentives, we propose a sequential game

to model the decision-making procedures in generic popularity dynamics. Proper-

ties of the symmetric Nash equilibrium of the game are theoretically analyzed and

match well with empirical observations from real world popularity dynamics such as

information diffusion dynamics and paper citation dynamics. Thirdly, an evolution-

ary game theoretic learning algorithm is proposed for the social learning problem,

where networked agents collaborate to detect some unknown system state. Theo-

retical analysis manifests that the stable states of the proposed distributed learning

algorithm coincide with the decisions of a fictitious centralized detector. Lastly,

we investigate the data trading problem in a market with multiple data owners,

collectors and users. An efficient data trading mechanism based on iterative auc-

tions is presented and we demonstrate that the mechanism converges to the socially

optimal operation point and possesses appealing economic properties. Numerical

studies based on data prices of real-world data transaction platforms are shown to

verify the effectiveness of the proposed trading mechanisms.
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Chapter 1

Introduction

1.1 Background and Motivation

The proliferation of ubiquitous social networks and social medias such as Face-

book, Twitter and Pinterest enables convenient and intimate interactions among

humans. Unlike traditional face-to-face communications, these online interactions

are well recorded in digital formats and the pertinent user generated contents can be

collected and trimmed by exploiting techniques such as web scraping or data crawl-

ing. These large-scale user related data provide us with unprecedented opportunities

to closely investigate human users’ behaviors and more importantly, the underly-

ing complex mechanisms dominating users’ learning and decision-making processes,

which permeate lots of social phenomena. For instance, when a piece of informa-

tion is generated in a social network, the dissemination of the information over

the network is the consequence of numerous online users’ interaction and decision-

making (e.g., should I forward this piece of information?). As another example, in

recommendation systems such as Yelp and Groupon, the ratings of businesses and

products are determined by vast amount of users’ learning procedures based on both

internal feelings and external influences. Quantitative analysis and comprehension
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of the principles of social network users’ behaviors in learning and decision-making

processes are intriguing and crucial in many academic fields (e.g., economics and so-

cial/political sciences) and applications (e.g., online advertisement and management

of electronic commerce) [24].

As most users are influenced by actions and opinions of other peers, especially

their friends, the learning and decision-making procedures often involve competi-

tions and collaborations among multiple agents. Hence, game theory is an ideal

mathematical tool to examine the intricate interactions between the intelligent and

strategic users, whose goals are to maximize their own benefits. Thus, in this disser-

tation, we are motivated to invoke various game-theoretic concepts and frameworks

to study the mechanisms of users’ behaviors in several learning and decision-making

scenarios. Specifically, we address the following issues from game-theoretic perspec-

tives.

• When a piece of information is propagating over a heterogeneous social net-

work comprised of users with different hobbies and influences, every user needs

to make a decision on whether to forward/mention this information or not.

A natural question is how do users learn from each other to make decisions

related to the information diffusion processes.

• When making decisions in the formation of popularity dynamics (e.g., infor-

mation diffusion dynamics and paper citation dynamics), apart from instata-

neous costs and benefits, users may also have long-term incentives regarding

potential prospects in the future. A key challenge is how to incorporate the
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notion of long-term incentives and examine its impact on users’ behaviors in

the system.

• In social learning, networked agents collaborate to detect some unknown sys-

tem state, e.g., the quality of products and services in recommendation sys-

tems. Here, the goal is to design a distributed learning algorithm while re-

specting the strategic considerations of the agents.

Furthermore, the user generated contents, or more generally, big data collected

by any device or system, are highly valuable resources for either commercial goals

or research purposes and are desired by many individuals and companies to per-

form various data analytics. For example, a startup may need some data about

customers’ feedback on its products or services (e.g., click rates of certain websites)

to enhance the quality of the businesses. However, the startup may lack the nec-

essary capability and professions to collect and pre-process these data. Thereby,

it may resort to some professional data collectors (e.g., computer scientists or en-

gineers good at online data scraping) to help collect the data needed or directly

purchase data from some data owners (e.g., social networks like Facebook or mobile

service provides like Verizon who have enormous amount of useful data). Due to

the pressing needs of data transactions in practice, several data trading platforms

are emerging recently such as Big Data Exchange, Data Marketplace and Miscrosoft

Azure Marketplace, whereas no methodological data trading scheme exists in the re-

search literature. Therefore, in this dissertation, we endeavor to design an efficient

data trading mechanism systematically, which possesses both rigorous theoretical

3



guarantees and competitive empirical performance on data prices in real-world data

trading platforms. Through both theoretical analysis and numerical experiments,

we demonstrate that the proposed mechanism achieves socially optimal operation

point and economically incentivizes every data agent to participate.

1.2 Outline of the Dissertation

The rest of this dissertation mainly consists of three works on game-theoretic

user behavior analysis [14, 16, 17] and one work on efficient design of data trading

schemes [15]. Specifically, the remaining part of the dissertation is organized as

follows.

1.2.1 Evolutionary Information Diffusion over Heterogeneous Social

Networks (Chapter 2)

A huge amount of information, created and forwarded by millions of people

with various characteristics, is propagating through the online social networks every

day. Understanding the mechanisms of the information diffusion over the social net-

works is critical to various applications including online advertisement and website

management. Different from most of the existing works, we investigate the informa-

tion diffusion from an evolutionary game-theoretic perspective and try to reveal the

underlying principles dominating the complex information diffusion process over the

heterogeneous social networks. Modeling the interactions among the heterogeneous

users as a graphical evolutionary game, we derive the evolutionary dynamics and

4



the evolutionarily stable states (ESSs) of the diffusion. The different payoffs of the

heterogeneous users lead to different diffusion dynamics and ESSs among them, in

accordance with the heterogeneity observed in real-world datasets. The theoretical

results are confirmed by simulations. We also test the theory on Twitter hashtag

dataset. We observe that the derived evolutionary dynamics fit the data well and

can predict the future diffusion data. The results of this chapter are based on our

work in [14].

1.2.2 Understanding Popularity Dynamics: Decision-Making with

Long-Term Incentives (Chapter 3)

With the explosive growth of big data, human’s attention has become a scarce

resource to be allocated to the vast amount of data. Numerous items such as online

memes, videos are generated everyday, some of which go viral, i.e., attract lots of

attention, while most diminish quickly without any influence. The recorded people’s

interactions with these items constitute a rich amount of popularity dynamics, e.g.,

hashtags’ mention count dynamics, which characterize human behaviors quantita-

tively. It is crucial to understand the underlying mechanisms of popularity dynamics

in order to utilize the valuable attention of people efficiently. In this chapter, we

propose a game-theoretic model to analyze and understand popularity dynamics.

The model takes into account both the instantaneous incentives and long-term in-

centives during people’s decision making process. We theoretically prove that the

proposed game possesses a unique symmetric Nash equilibrium (SNE), which can be

5



computed via a backward induction algorithm. We also analyze the equilibrium be-

havior of the proposed game, which is shown to match well with some observations

from real-world popularity dynamics. Finally, by using simulations as well as exper-

iments based on real-world popularity dynamics data, we validate the effectiveness

of the theory. We find that our theory can fit the real data well and also predict the

future dynamics. The results of this chapter are based on our work in [16].

1.2.3 A Graphical Evolutionary Game Approach to Social Learning

(Chapter 4)

In this chapter, we study the social learning problem, in which agents of a net-

worked system collaborate to detect the state of the nature based on their private

signals. A novel distributed graphical evolutionary game theoretic learning method

is proposed. In the proposed game-theoretic method, agents only need to communi-

cate their binary decisions rather than the real-valued beliefs with their neighbors,

which endows the method with low communication complexity. Under mean field

approximations, we theoretically analyze the steady state equilibria of the game and

show that the evolutionarily stable states (ESSs) coincide with the decisions of the

benchmark centralized detector. Numerical experiments are implemented to con-

firm the effectiveness of the proposed game-theoretic learning method. The results

of this chapter are based on our work in [17].
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1.2.4 Data Trading with Multiple Owners, Collectors and Users: An

Iterative Auction Mechanism (Chapter 5)

In the big data era, it is vital to allocate the vast amount of data to heteroge-

neous users with different interests. To clinch this goal, various agents including data

owners, collectors and users should cooperate to trade data efficiently. However, the

data agents (data owners, collectors and users) are selfish and seek to maximize

their own utilities instead of the overall system efficiency. As such, a sophisticated

mechanism is imperative to guide the agents to distribute data efficiently. In this

chapter, the data trading problem of a data market with multiple data owners,

collectors and users is formulated and an iterative auction mechanism is proposed

to coordinate the trading. The proposed mechanism guides the selfish data agents

to trade data efficiently in terms of social welfare and avoids direct access of the

agents’ private information. We theoretically prove that the proposed mechanism

can achieve the socially optimal operation point. Moreover, we demonstrate that

the mechanism satisfies appealing economic properties such as individual rationality

and weakly balanced budget. Then, we expand the mechanism to non-exclusive data

trading, in which the same data can be dispensed to multiple collectors and users.

Simulations as well as real data experiments validate the theoretical properties of

the mechanism. The results of this chapter are based on our work in [15].
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Chapter 2

Evolutionary Information Diffusion over Heterogeneous Social

Networks

2.1 Motivation

Online social networks such as Twitter, Facebook and Youtube are ubiquitous

in daily life. Billions of people with different characteristics interact on the social

networks, not only receiving a lot of information but also creating numerous amount

of information. For example, about 500 millions of tweets are sent from Twitter

every day [97] while around 300 thousand statuses are updated every minute on

Facebook [81]. Each piece of information can either go viral, i.e., become very pop-

ular, or disappear quickly with few impact. When the user-generated information

such as memes [70] and Twitter hashtags [27] propagates through the social net-

works, a variety of information diffusion dynamics are observed [114]. The diffusion

dynamics or the popularity of the information are determined by the complicated

interaction and decision-making of lots of users, which involves users’ heterogeneous

interests and influences. For instance, a football fan has a higher probability of

retweeting a tweet about football and a user tends to post a piece of news if many

of his friends have posted it. In practice, many applications are related to the infor-
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mation diffusion over social networks: online advertisements, political statements,

rumor detection and control. All these applications call for a better understanding

of the information diffusion process over the social networks composed of heteroge-

neous individuals. Consequently, great efforts have been devoted to studying how

the information diffuses in the recent decade.

Existing works on information diffusion can be mainly classified into two cate-

gories: i) using machine learning (ML) or data mining approaches to make inference

and prediction; ii) devising microscopic mechanisms to explain the information dif-

fusion from the perspective of the individual users’ interactions. Among the first

category, Pinto et al. used early diffusion data to predict future diffusion [85] while

the community structure is further exploited to improve the performance of predic-

tion of viral memes in [111]. Yang and Leskovec proposed a clustering algorithm to

identify the patterns of the diffusion dynamics of online contents [114]. Given the

information diffusion data, efficient algorithms are developed to infer the underly-

ing information diffusion network in [39,89,113]. Alternatively, the authors in [113]

estimated the global influence of individuals in the information diffusion process.

The interactions between the diffusions of multiple pieces of information are inves-

tigated in [77] while the impact of external sources on the information diffusion is

considered in [78]. Cheng et al. tried to predict the cascades of the information

diffusion [26]. Using the data from a real-world experiment, the authors in [18]

studied the impact of cluster structure of the social network on the diffusion of be-

haviors. Similarly, taking an experimental approach, Bakshy et al. investigated the

role of social ties on the information diffusion [7]. A common limitation of these
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ML or data mining based approaches is the lack of understanding of the underlying

microscopic mechanisms of the individuals’ decision making that dominate the in-

formation diffusion process, which is the focus of the papers in the second category.

In this category, authors in [41] and [101] developed game-theoretic mechanisms to

analyze the competitive contagions in networks, such as firms’ competing for users’

purchase. Under a threshold model, Granovetter studied the diffusion of the collec-

tive behaviors, which are defined to be the adoption of one of two alternatives [42].

Assuming each user played the best response to the population’s strategies, Morris

studied the conditions for global contagion of behaviors [75]. The impact of the

network structure on virus propagation was investigated in [102]. Moreover, in [58],

algorithms for finding initial targets to maximize the future contagions over the

networks are presented. The impact of the community structure on information

diffusion was studied in a model-based approach in [79].

Recently, the authors of [54,55] proposed to use an evolutionary game-theoretic

framework to model the users’ interactions during the information diffusion process.

Evolutionary game theory, originating from the evolutionary biology [98], was used

as a promising modeling tool in various areas of signal processing such as communi-

cation networking and image processing [23,25,53,100,104]. In [54,55], it was found

that the dynamics derived under the evolutionary game framework fit the real-world

information diffusion dynamics well and could even make predictions on the future

diffusion dynamics, suggesting a suitable and tractable paradigm for analyzing the

information diffusion.

Most of the existing works treat the network users as homogeneous individ-
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uals and do not take the heterogeneity of the users into consideration. However,

real-world social networks often exhibit significant heterogeneity. For example, het-

erogeneous aspects of the Twitter network include: (a) A variety of different topics

coexist due to the heterogeneous interests of users; (b) Different users have very

different follower counts, indicating different influences [9]; (c) The distribution of

tweet counts is highly heterogeneous: the top 15% users account for the 85% of the

tweets, suggesting that the user activity strength is heterogeneous [88]. The het-

erogeneity of the users’ interests, influences and activities can have huge impact on

information diffusion. For example, when a piece of information related to football

reaches a user, whether the user is a football fan or not has huge impact on the

decision-making (forwarding or not forwarding that information) of the user.

In this chapter, we study the information diffusion over the heterogeneous

social networks using a graphical evolutionary game approach. Modeling users’

decision making as an evolutionary game, we analyze the information diffusion dy-

namics. Through the study in this chapter, we provide a microeconomic framework

by using a few utility parameters to describe the mechanisms of the users’ decision

making in the information diffusion process over the real-world heterogeneous social

networks. The main contributions of this chapter can be epitomized as follows.

• We propose two mathematically tractable evolutionary game-theoretic models

to characterize the impact of users’ heterogeneity on the information diffusion

over social networks. The two models differ in whether the user type∗ is a

private information unknown to others or a publicly known information.

∗The type of a user will be explicitly defined later in Section 2.
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• For the unknown user type model, we theoretically derive the evolutionary

dynamics as well as the evolutionarily stable states (ESSs). The relation be-

tween the heterogeneous payoff parameters and the heterogeneous information

diffusion dynamics among different types of users is observed. In contrast, the

homogeneous model in [54, 55] has to treat all types the same and can only

give a mean evolutionary dynamics averaged over all types.

• For the known user type model, the evolutionary dynamics are derived and

a relation between the dynamics is observed, which can be used to further

simplify the dynamics. When the users manage to know the types of their

neighbors through repeated interactions, the known user type model charac-

terizes the users’ decision making process more accurately than the unknown

user type model.

• Using both synthetic data based simulations and real data based experiments,

we validate the theoretical results. The good fitting and prediction perfor-

mance on real-world datasets indicate the effectiveness of the evolutionary

game modeling. In particular, our results outperform the homogeneous model

in [54, 55] when characterizing the heterogeneous behaviors of different types

of users.

The rest of this chapter is organized as follows. In Section 2.2, we formally

state the evolutionary game-theoretic model for information diffusion. In Section

2.3, we theoretically derive the evolutionary dynamics and the ESSs for the unknown

user type model. Then, the evolutionary dynamics of the known user type model
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are analyzed in Section 2.4. The experiments on synthetic data and real data are

presented in Section 2.5. We conclude this chapter in Section 2.6.

2.2 Heterogeneous System Model

In this section, we first give a brief introduction to the preliminary concepts

of evolutionary game theory. Then, we elaborate the proposed evolutionary game

theoretic formulations of the information diffusion problem over heterogeneous social

networks.

2.2.1 Basics of Evolutionary Game

The focus of traditional game theory is a game with static players and the

solution concept is static Nash equilibrium (NE). On the contrary, evolutionary

game theory [98] is concentrated on investigating the dynamics and stable states of

a large population of evolving agents who interact with each other. Evolutionary

game, as the name suggests, originates from the study of the evolution of species in

biology, where animals or plants are modeled as players interacting with each other.

Recent works [54,55] show that it is also a very suitable model to analyze the social

interactions among users of social networks.

A very important solution concept of evolutionary game theory is evolution-

arily stable state (ESS), which predicts the ultimate equilibrium of the evolutionary

dynamics in a evolutionary game. Consider an evolutionary game with a large pop-

ulation of players. Suppose we have m strategies {1, ..,m} an m by m payoff matrix
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U whose (i, j)-th entry uij is the payoff for strategy i verse strategy j (i.e., when a

player with strategy i interacts with a player with strategy j, he will get a payoff of

uij). Denote pi the proportion of players adopting strategy i and p = [p1, p2, ..., pm]T

is the system state of the evolutionary game. Thus, the payoff of any sub-population

with state q when interacting the whole population with state p is qTUp. We call a

state p∗ an ESS if for any q 6= p∗, the following two conditions hold [98]:

1. qTUp∗ ≤ p∗
T
Up∗,

2. if qTUp∗ = p∗
T
Up∗, then p∗

T
Uq > qTUq.

The first condition is an NE condition, stating that any mutant (deviation from

the ESS p∗) of any sub-population cannot make the payoff better off. The second

condition guarantees that if deviation remains the payoff unchanged, then within

the mutated sub-population (i.e., interacting with the sub-population state q), the

ESS is strictly better than the deviated state q. This further ensures the stability

of the state p∗. An important issue of evolutionary game theory is to compute the

ESSs. A prevalent approach is to find the locally stable state of the evolutionary

dynamics as a dynamical system ṗ = f(p), where f is some function.

Classical evolutionary game assumes that every two players can interact with

each other, implicitly making the hypothesis that the underlying interaction network

is a complete graph. A useful generalization of the classical evolutionary game

is the graphical evolutionary game, in which the interaction network is possibly

incomplete. In graphical evolutionary game theory [80, 94], the player strategy

update rule directly depends on the fitness of the users, which can be defined as a
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convex combination of the baseline fitness B and the payoff U , i.e.,

π = (1− α)B + αU, (2.1)

where π is the fitness. Here 0 < α < 1 is the selection strength, controlling the

impact of the payoff on the fitness. In the literature of graphical evolutionary game

theory [54, 55, 82, 83], α is generally assumed to be very small and we also make

this assumption in the rest of the paper. The reason of assuming a small α is that

we expect evolutions/adaptations to occur gradually and slowly. For instance, in

biology, the evolution of species takes place very slowly; in adaptive signal processing

(e.g., LMS algorithm), we usually adopt a small step size to inhibit abrupt intense

change or instability. A small α limits the impact of payoff differences on the values

of fitness, and thus reduces the gaps between the fitness of different players, which

slows down the evolution. In fact, later we will see that the evolution dynamics are

often proportional to α. After defining fitness, we can introduce three most prevalent

strategy update rules in the literature of graphical evolutionary game theory, namely

birth-death (BD), death-birth (DB) and imitation (IM).

• BD update rule: one player is chosen for reproduction with probability pro-

portional to fitness. The chosen player’s strategy replaces one of its neighbor’s

strategy with uniform probability.

• DB update rule: one player is chosen to abandon its strategy with uniform

probability. He/she will adopt one of its neighbors’ strategies with probability

proportional to their fitness.
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• IM update rule: one player is chosen to update its strategy with uniform

probability. He/she may maintain his/her current strategy or adopt one of

his/her neighors’ strategies, with probability proportional to fitness.

In this chapter, we adopt the DB update rule. The other update rules can be

similarly analyzed under our framework. In the following, we elaborate how to model

the information diffusion over heterogeneous social networks by using evolutionary

game theory.

A social network can be generally modeled as a graph, with nodes representing

users and edges representing relationships. We assume there are N nodes (users) in

the network and each node has some neighbors with whom it interacts. The number

of neighbors k exhibits certain distributions λ(k) (the fraction of nodes whose degree

is k) in real social networks, e.g. Poisson distribution in Erdos-Renyi networks [34]

and power law distribution in Barabasi-Albert scale-free networks [8]. In addition,

real-world social networks usually consist of groups of users with different interests,

influences and activities. To capture this heterogeneity, we categorize the users

into M types, whereas the proportion of type-i users is q(i), i = 1, 2, ...,M . In the

game-theoretic formulation, the N users are regarded as players. When a piece of

information (e.g., a hashtag, a status or a meme) is generated, each user has two

possible strategies: forwarding the information (Sf ) or not forwarding it (Sn). We

denote pf (i) the proportion of users adopting Sf among all the type-i users and pf

the proportion of users adopting Sf among users of all types. We shall call pf (i)

and pf population dynamics or popularity dynamics in the rest of the paper.
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2.2.2 Unknown User Type Model

In real-world social networks, users often do not know the types of their neigh-

bors/friends. For example, a user may not know whether his friend is fan of a singer

or not. In this subsection, we present a model where the user type is private infor-

mation that is unknown to others. Consider one social interaction where a type-i

user A is interacting with one of its neighbors, a type-j user B. Because A does

not know the type of B, the payoff of A should not depend on the type of B in this

social interaction. Specifically, the payoff matrix of the type-i node A is:

Sf SnSf uff (i) ufn(i)

Sn ufn(i) unn(i)

 .

When A and B both adopt Sf , the payoff of A is uff (i) regardless of the type of B.

Both ufn(i) and unn(i) are similarly defined. Here, a symmetric payoff structure is

considered as in [54, 55]. In other words, when a type-i user with strategy Sf (Sn)

meets a user with strategy Sn (Sf ), its payoff is ufn(i). The reason of this symmetric

payoff assumption is that often disagreement (one with strategy Sf while the other

with strategy Sn) leads to the same payoff to both sides. For instance, if a user

mentions a hashtag while another user does not, then when they interact none of

them can find common topic to discuss and both get the same payoff. The physical

meaning of the payoff depends on the applications: if the social network nodes

are social network users, then their payoffs may be their popularity; if the social

network nodes are websites, then their payoffs may be their hit rates. The values of
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the payoff matrix depend on both the content of the information and the types of

the users. For example, if the information is a recent hot topic (e.g., world cup in

the summer of 2014) and forwarding it can increase users’ popularity, then uff (i)

is big and unn(i) is small. And if a group of users are very interested in that hot

topic (e.g., football fans), then they may have even larger uff (i) and smaller unn(i)

compared to other groups of users. By taking the baseline fitness to be 1 in Eq.

(2.1), we can write the fitness as π = 1 − α + αU (π is the fitness and U is the

payoff). Here 0 < α < 1 is the selection strength, which is assumed very small

conventionally. We note that different from payoff, fitness represents the level of

fitting of a user in the social network. This fitting level contains not only the payoff

obtained from extrinsic interactions but also a baseline fitness which encompasses

intrinsic attributes of users, such as the satisfaction of the social network/website.

Suppose A has kf neighbors adopting Sf , then the fitness of A is:

πf (i, kf ) = 1− α + α[kfuff (i) + (k − kf )ufn(i)]. (2.2)

One can similarly obtain πn(i, kf ), the fitness of A when A adopts Sn as follows:

πn(i, kf ) = 1− α + α[kfufn(i) + (k − kf )unn(i)]. (2.3)

Furthermore, since A only knows the strategies of its neighbors but not the types of

its neighbors, it regards the type of all of its neighbors the same as itself, i.e., type

i. In other words, if one neighbor is adopting strategy Sf , A consider its fitness to

be πf (i, kf ). Otherwise, A considers its fitness to be πn(i, kf ).
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2.2.3 Known User Type Model

Sometimes, through repeated interactions, users may somehow manage to

know its neighbors’ types. For instance, when a user observes that one of his friends

frequently post news about football match, he may gradually know that this friend

is a football fan. In this subsection, we present a model where the user types are

publicly known information. Consider a social interaction where a Type-i user A

is interacting with one of its neighbors, Type-j user B. Here, different from the

unknown user type model, A knows the type of B. Hence the payoff of A should

depend on the type of B in this social interaction. Specifically, if both A and B

adopt Sf , A gets a payoff uff (i, j). If A,B adopt strategy Sf and Sn respectively,

then the payoff of A is ufn(i, j). Similarly, we can define unf (i, j) and unn(i, j).

Take the baseline fitness to be 1 in Eq. (2.1) and thus the fitness of a user

with strategy Sf or Sn is respectively given by:

πf (i) = 1− α + α
M∑
j=1

[kf (j)uff (i, j) + kn(j)ufn(i, j)], (2.4)

πn(i) = 1− α + α
M∑
j=1

[kf (j)unf (i, j) + kn(j)unn(i, j)], (2.5)

where kf (j) (kn(j)) denotes the number of type-j neighbors with strategy Sf (Sn).

The update rule is still the death-birth (DB), as described previously for the un-

known type model. The difference is that now the player knows the types of his

neighbors, hence can learn strategies only from those neighbors with the same type

as his. The notations of this chapter are summarized in Table 2.1, in which some of

the notations will be introduced in Section 2.4.
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Table 2.1: Notations

N Number of nodes in the network

k Degree of a given node

M Number of user types in the network

q(i) The proportion of Type-i users in the network

pf (i) Proportion of users adopting Sf among all the type-i users

pf Proportion of users adopting Sf among users of all types

uff (i), ufn(i),

unn(i)

Payoffs of Type-i users in the unknown user type model.

For details, see Subsection 2.2-B.

πf (i), πn(i) Fitness of a Type-i user with strategy Sf or Sn, respectively

kf Number of neighbors (of a given user) adopting strategy Sf

πf (i, kf ),

πn(i, kf )

Fitness of a Type-i with kf neighbors adopting strategy Sf

while itself adopts strategy Sf or Sn, respectively.

pff (i, j), pfn(i, j),

pnn(i, j)

Relationship states of Type-i users in the known user type model.

For details, see Section 2.4.

pf |f (i, j), pf |n(i, j),

pn|f (i, j), pn|n(i, j)

Influence states of Type-i users in the known user type model.

For details, see Section 2.4.

uff (i, j), ufn(i, j),

unf (i, j), unn(i, j)

Payoffs of Type-i users in the known user type model.

For details, see Subsection 2.2-C.

kf (j) Number of neighbors (of a given Type-j user) adopting strategy Sf
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2.3 Theoretical Analysis for the Unknown User Type Model

In this section, we derive the evolutionary dynamics of the network states

pf (i), pf and the corresponding evolutionarily stable states (ESSs) for the unknown

user type model. The derived dynamics and ESSs connect the information diffusion

process and the final steady states with the heterogeneous users’ payoff matrices

explicitly. We are able to give simple explanations on the ESSs of the information

diffusion from the perspective of the payoff matrix.

Let’s consider a type-i user with strategy Sf (in the following, we will call this

user as the center user). Suppose among its k neighbors, there are kf users adopting

strategy Sf and (k − kf ) users adopting strategy Sn. The fitness πf (i, kf ) of the

center user is given in Eq. (4.11). If the center user changes its strategy to Sn,

its fitness πn(i, kf ) becomes Eq. (4.12). From the perspective of the center user, a

neighbor adopting strategy Sf (or Sn) has fitness πf (i, kf ) (or πn(i, kf ), respectively).

According to the DB update rule, the center user will adopt one of its neighbors’

strategy with probability proportional to their fitness. Hence, the probability that

the center user changes its strategy from Sf to Sn is given by:

Pf→n(i, kf ) =
(k − kf )πn(i, kf )

kfπf (i, kf ) + (k − kf )πn(i, kf )
. (2.6)

Substituting the expressions of πf (i, kf ) and πn(i, kf ) in Eq. (4.11) and Eq. (4.12)

into Eq. (2.6) yields:

Pf→n(i, kf ) (2.7)

=
k − kf
k

1 + α[kfufn(i) + (k − kf )unn(i)− 1]

1 + α
[
kf
k (kfuff (i) + (k − kf )ufn(i)− 1) + (1− kf

k )(kfuff (i) + (k − kf )ufn(i)− 1)
] (2.8)

=
k − kf
k

+ α(k − kf )

[
k2f
k2

∆(i) +
kf
k

∆n(i)

]
+O(α2), (2.9)
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where ∆(i) := 2ufn(i) − uff (i) − unn(i), ∆n(i) := unn(i) − ufn(i) and in the last

equation we invoke the fact that 1+ax
1+bx

= 1+(a−b)x+O(x2) for small x. Because α is

a small quantity, we will omit the O(α2) term in the following. Since the proportion

of users with strategy Sf is pf over the entire network, each neighbor has probability

pf of adopting strategy Sf . Thus kf is binomially distributed random variable with

probability mass function:

θ(k, kf ) =

k
kf

 p
kf
f (1− pf )k−kf . (2.10)

Hence, taking expectation of Eq. (2.9) (note that k is also a r.v. and we need to

take expectation of it further) gives:

E[Pf→n(i, kf )] =1− pf + α∆(i)
[(
−k + 3− 2k−1

)
p3f +

(
k − 4 + 3k−1

)
p2f +

(
1− k−1

)
pf

]
+ α∆n(i)

[
−
(
k − 1

)
p2f + (k − 1)pf

]
,

(2.11)

where k and k−1 denote the expectation of k and k−1, respectively. In the derivation

of Eq. (2.11), we utilize the moments of binomial distribution: E[kf |k] = kpf ,

E[k2
f |k] = k2p2

f −kp2
f +kpf , E[k3

f |k] = k(k−1)(k−2)p3
f + 2(k−1)kp2

f +kpf . In each

round of the DB update, one of the N users will be selected to update its strategy

randomly. The proportion of type-i users with strategy Sf among all the users is

pf (i)q(i). According to DB update rule, in order to have one Type-i user changes

its strategy from Sf to Sn, i.e., for pf (i) to decrease by 1
Nq(i)

, the chosen user in

the death process should be a Type-i user with strategy Sf , which happens with

probability q(i)pf (i). After that, the user needs to change its strategy from Sf to

Sn, which happens with probability E[Pf→n(i, kf )], where the expectation is with
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respect to the node degree k. Thus, we have:

P
(
δpf (i) = − 1

Nq(i)

)
= pf (i)q(i)E[Pf→n(i, kf )], (2.12)

where δ denotes increment. With a similar argument as above, one can compute the

probability that a type-i user changes its strategy from Sn to Sf . We thus obtain:

P
(
δpf (i) =

1

Nq(i)

)
= pn(i)q(i)(1− E[Pf→n(i, kf )]). (2.13)

Combining Eq. (2.11), Eq. (2.12) and Eq. (2.13), we deduce the expected change

of pf (i):

ṗf (i) = − 1

Nq(i)
P
(
δpf (i) = − 1

Nq(i)

)
+

1

Nq(i)
P
(
δpf (i) =

1

Nq(i)

)
=

1

N
pf −

1

N
pf (i) +

α

N
pf (pf − 1)

[
∆(i)

((
k − 3 + 2k−1

)
pf + 1− k−1

)
+ ∆n(i)(k − 1)

]
,

(2.14)

which is the dynamic of pf (i). Hence, from Eq. (2.14), the dynamic of pf can be

written as:

ṗf =
M∑
i=1

q(i)ṗf (i)

=
α

N
pf (pf − 1)

[
∆
((
k − 3 + 2k−1

)
pf + 1− k−1

)
+ ∆n(k − 1)

]
,

(2.15)

where ∆ :=
∑M

i=1 q(i)∆(i) and ∆n :=
∑M

i=1 q(i)∆n(i). We summarize the theoretical

evolutionary dynamics results as the following theorem, Theorem 2.1.

Theorem 2.1 (Evolutionary Dynamics) In the unknown user type model, the evo-

lutionary dynamics for the network states pf (i) and pf are given in Eq. (2.14) and

Eq. (2.15), respectively.

From Theorem 2.1, we observe that the population dynamics pf (i) in Eq.

(2.14) depend on both the global population dynamics pf and the type-specific
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utility-related parameters ∆(i),∆n(i). Consequently, a connection between the het-

erogeneous type-specific payoff matrix and the heterogeneous information diffusion

dynamics of each time is established explicitly. Additionally, comparing Eq. (2.15)

with the evolutionary population dynamics of a homogeneous social network given

in [55] and [54], we note that the global population dynamics pf evolve as if the net-

work is homogeneous with corresponding payoff matrix being the weighted average

(with weights q(i)) of those among all the types.

Given the dynamical system described in Theorem 2.1, we want to identify its

ESSs. This is accomplished by the following theorem, Theorem 2.2.

Theorem 2.2 (ESSs) In the unknown user type model, the ESSs of the network are

as follows:

p∗f =



0, if unn > ufn,

1, if uff > ufn,

∆n(1− k) + ∆(k−1 − 1)

∆(k − 3 + 2k−1)
, if max{uff , unn} < ufn,

(2.16)

p∗f (i) = p∗f + αp∗f (p
∗
f − 1)

[
∆(i)

((
k − 3 + 2k−1

)
p∗f + 1− k−1

)
+ ∆n(i)(k − 1)

]
,(2.17)

where uff =
∑M

i=1 q(i)uff (i) and ufn, unn are similarly defined. Recall that

∆(i) = 2ufn(i) − uff (i) − unn(i),∆n(i) = unn(i) − ufn(i) and ∆ =
∑M

i=1 q(i)∆(i),

∆n =
∑M

i=1 q(i)∆n(i). Note that it is possible that the system has more than one

ESS.
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Proof: Letting the R.H.S. of Eq. (2.14) be zero, we obtain the three equilibrium

points for the dynamic of pf :

p∗f = 0, 1,
∆n(1− k) + ∆(k−1 − 1)

∆(k − 3 + 2k−1)
. (2.18)

Given p∗f , the equilibrium state of pf (i) can be derived from Eq. (2.14) as stated in

Eq. (2.17).

For an equilibrium point to be an ESS, it needs to be locally asymptotically

stable for the underlying dynamical system. Note that for each i, pf (i) and pf can be

regarded as a dynamical system consisting of two states as indicated by Eq. (2.14)

and Eq. (2.15). The Jacobian matrix of the system is given by:

J =


∂ṗf (i)

∂pf (i)

∂ṗf (i)

∂pf

∂ṗf
∂pf (i)

∂ṗf
∂pf

 , (2.19)

where

∂ṗf (i)

∂pf (i)
= − 1

N
,

∂ṗf (i)

∂pf
=

1

N
+
α

N
(2pf − 1)

[
∆(i)

(
k − 3 + 2k−1

)
pf + ∆(i)(1− k−1) + ∆n(i)(k − 1)

]
+
α∆(i)

N
(p2
f − pf )(k − 3 + 2k−1),

∂ṗf
∂pf (i)

= 0,

∂ṗf
∂pf

=
α

N
(2pf − 1)

[
∆
(
k − 3 + 2k−1

)
pf + ∆(1− k−1) + ∆n(k − 1)

]
+
α∆

N

(
p2
f − pf

) (
k − 3 + 2k−1

)
.

(2.20)

Since J is an upper triangular matrix and
∂ṗf (i)

∂pf (i)
is always negative, the condition for

stability is simply
∂ṗf
∂pf

< 0. Substituting the three equilibrium points in Eq. (2.18)
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(c) Parameter setup 3

Fig. 2.1: Evolutionary dynamics under different parameter setups. Parameter setup 1:

uff (1) = 0.4, uff (2) = 0.2, ufn = 0.6, ufn(2) = 0.4, unn(1) = 0.3, unn(2) = 0.5; Parameter

setup 2: uff (1) = 0.4, uff (2) = 0.2, ufn = 0.3, ufn(2) = 0.5, unn(1) = 0.6, unn(2) = 0.4;

uff (1) = 0.6, uff (2) = 0.4, ufn = 0.3, ufn(2) = 0.5, unn(1) = 0.4, unn(2) = 0.2. In every

setup, we have q(1) = q(2) = 0.5, N = 1000, k = 20. The ESSs match the assertions in

Theorem 2.2: some dynamics decrease to 0 (subfigure b) or increase to 1 (subfigure c)

while some will stay at some stable state between 0 and 1 (subfigure a).

into it yields the conditions for the three possible ESSs given in Eq. (2.16), where

we make use of the fact that the node degree k is generally much larger than 1 in

practice.

The ESS results Eq. (2.16) in Theorem 2.2 can be interpreted easily as follows.

If uff is large enough (larger than ufn), i.e., on average the players favor forwarding

the information, then p∗f = 1 is an ESS of the network. The ESS p∗f = 0 can be

similarly interpreted. On the contrary, if neither uff nor unn is not large enough

(both smaller than ufn), an ESS between 0 and 1 is in presence. As shown in Fig.

2.1, for different parameter setups, we have different evolutionary dynamics. Some
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dynamics decrease to 0 (Fig. 2.1-b) or increase to 1 (Fig. 2.1-c) while some will

stay at some stable state between 0 and 1 (Fig. 2.1-a). The corresponding ESSs are

correctly predicted by Theorem 2.2. We observe that the population dynamics pf (i)

always vary quickly at first and gradually slow down the varying speed until finally

converge to a stable state. This can be explained by Eq. (2.15). As pf gets closer

and closer to the ESS (be it 0, 1, or some number between 0 and 1), the absolute

value of R.H.S. of Eq. (2.15) gets smaller and hence the varying speed of pf slows

down until it finally equals to the ESS. Meanwhile, when pf is stable, according to

Eq. (2.14), all the type specific population dynamics pf (i) will also converge to their

respective ESSs.

2.4 Theoretical Analysis for Known User Type Model

In this section, the evolutionary dynamics for the known user type model are

derived. It is observed that the influence states (which we will define later) always

keep track of the corresponding population states, which can be exploited to further

simplify the dynamics.

Since a user’s type and strategy affect its neighbors’ payoffs, they may also

influence the neighbors’ strategies. Thus, the edge information is also required to

fully characterize the network state. Specifically, we define network edge states as

pff (i, j), pfn(i, j), pnn(i, j), where pff (i, j) (pnn(i, j)) denotes the proportion of edges

connecting a type-i user with strategy Sf (Sn) and a type-j user with strategy Sf

(Sn), and pfn(i, j) denotes the proportion of edges connecting a type-i user with
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strategy Sf and a type-j user with strategy Sn. Moreover, we denote pf |f (i, j) the

percentage of type-i neighbors adopting strategy Sf , given a center type-j user using

strategy Sf . Similarly, we can define pf |n(i, j), pn|f (i, j), pn|n(i, j). In summary, we

have population states (e.g. pf (i)), relationship states (e.g. pff (i, j)) and influence

states (e.g. pf |f (i, j)) as the network states. Because these states are related to each

other, we only need a subset of them to characterize the entire network state. For

example, we can use pf (i), 1 ≤ i ≤ M and pff (i, j), 1 ≤ i ≤ j ≤ M to compute all

the other states.

Consider a type-i user using strategy Sf . Rigorously speaking, kf (j) and kn(j)

are random variables with expectation kq(j)pf |f (j, i) and kq(j)pn|f (j, i) respectively.

Since in real world social networks, k is relatively large (more than 100 for typical

online social networks such as Facebook) and a small number of types (i.e., M)

is enough to capture the user behaviors, we approximate kf (j), kn(j) with their

expectations for ease of analysis in the following. This approximation can be justified

as follows. Recall the Chernoff bound: Suppose X1, X2, ..., Xn are independent

random variables taking values in [0, 1], X =
∑n

i=1Xi and µ = E(X). Then, for

any 0 < δ < 1, we have: (i) P(X ≥ (1 + δ)µ) ≤ exp
(
− δ2µ

3

)
; (ii) P(X ≤ (1− δ)µ) ≤

exp
(
− δ2µ

2

)
. In our case, for a Type-i user with strategy Sf and k neighbors, each

one of its neighbors is a Type-j user with strategy Sf with probability q(j)pf |f (j, i)

independently. Let the random variable Xl (l = 1, ..., k) be 1 if the l-th neighbor

is a Type-j with strategy Sf and be 0 otherwise. Thus, Xl’s are i.i.d. random

variables. Denote X =
∑k

l=1Xi the total number of Type-j neighbors with strategy

Sf , which is kf (j) in our context. Because M is small, usually each q(j), j =
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1, 2...,M (altogether sum to 1) is not too small. Furthermore k is large and pf |f (j, i)

is generally not too small. Hence, µ = E(X) = kq(j)pf |f (j, i) is large. Applying

the multiplicative form of Chernoff bound, we can assert that X is close to its

expectation with high probability. Thus, it is reasonable to replace kf (j) with its

expectation. Similar arguments hold for kn(j). With this approximation, Eq. (2.4)

becomes

πf (i) = 1− α + αk
M∑
j=1

q(j)[pf |f (j, i)uff (i, j) + pn|f (j, i)ufn(i, j)]. (2.21)

Similarly, if a type-i user is adopting strategy Sn, its fitness Eq. (2.5) can be

approximated as:

πn(i) = 1− α + αk
M∑
j=1

q(j)[pf |n(j, i)unf (i, j) + pn|n(j, i)unn(i, j)]. (2.22)

Now, consider a type-i center user using strategy Sf , who is selected to update its

strategy. On average, there are kpf |f (i, i) type-i neighbors using strategy Sf and

kpn|f (i, i) type-i neighbors using strategy Sn. Thereby, according to the DB update

rule, the probability that the center user will update its strategy to be Sn is:

Pf→n(i) =
πn(i)pn|f (i, i)

πf (i)pf |f (i, i) + πn(i)pn|f (i, i)
. (2.23)

The probability that a type-i user with strategy Sf is chosen to update its strategy

is q(i)pf (i). Hence, we have:

P
(
δpf (i) = − 1

Nq(i)

)
= q(i)pf (i)E[Pf→n(i)]. (2.24)

Similarly, we can analyze the situation where a type-i user with strategy Sn is

selected to update its strategy. And we obtain:

Pn→f (i) =
πf (i)pf |n(i, i)

pf |n(i, i)πf (i) + pn|n(i, i)πn(i)
. (2.25)
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P
(
δpf (i) =

1

Nq(i)

)
= q(i)pn(i)E[Pn→f (i)]. (2.26)

We know that:

ṗf (i) = − 1

Nq(i)
P
(
δpf (i) = − 1

Nq(i)

)
+

1

Nq(i)
P
(
δpf (i) =

1

Nq(i)

)
. (2.27)

For ease of notation, we temporarily denote that a = k
∑M

j=1 q(j)[pf |n(j, i)unf (i, j)+

pn|n(j, i)unn(i, j)] and b = k
∑M

j=1 q(j)[pf |f (j, i)uff (i, j) + pn|f (j, i)ufn(i, j)]. Thus,

the first term in Eq. (2.27) can be rewritten as:

− 1

Nq(i)
P
(
δpf (i) = − 1

Nq(i)

)
(2.28)

= −
pf (i)pn|f (i, i)

N
E
{

1 + α(a− 1)

1 + α[(b− 1)pf |f (i, i) + (a− 1)pn|f (i, i)]

}
(2.29)

= −
pf (i)pn|f (i, i)

N
E[1 + pf |f (i, i)(a− b)α] +O(α2), (2.30)

where we make use of the fact that pf |f (i, i)+pn|f (i, i) = 1, which can be easily seen

from the definition. The expectation is taken over k. Similarly, we can derive the

second term in Eq. (2.27) as:

1

Nq(i)
P
(
δpf (i) =

1

Nq(i)

)
=
pn(i)pf |n(i, i)

N
E[1 +αpn|n(i, i)(b− a)] +O(α2). (2.31)

Noticing the fact that pf (i)pn|f (i, i) = pn(i)pf |n(i, i), we obtain:

ṗf (i) ≈ αk

N
pf (i)pn|f (i, i)(pn|n(i, i) + pf |f (i, i))

×
M∑
j=1

q(j)[pf |f (j, i)uff (i, j) + pn|f (j, i)ufn(i, j)− pf |n(j, i)unf (i, j)− pn|n(j, i)unn(i, j)],

(2.32)

where k denotes the average degree of the network and we omit the O(α2) terms.

Next, we compute the dynamics of pff (i, l) (or equivalently, pf |f (i, l)). To change

the value of pff (i, l), either a type-i user or a type-l user changes its strategy. If

i 6= l, there are totally four situations: i) a type-i user changes its strategy from Sf
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to Sn; ii) a type-i user changes its strategy from Sn to Sf ; iii) a type-l user changes

its strategy from Sf to Sn; iv) a type-l user changes its strategy from Sn to Sf .

They correspond to the following four equations:

P
(
δpff (i, l) = − 2

N
q(l)pf |f (l, i)

)
= q(i)pf (i)Pf→n(i) ≈ q(i)pf (i)pn|f (i, i),

P
(
δpff (i, l) = − 2

N
q(i)pf |f (i, l)

)
= q(l)pf (l)Pf→n(l) ≈ q(l)pf (l)pn|f (l, l),

P
(
δpff (i, l) =

2

N
q(l)pf |n(l, i)

)
= q(i)pn(i)Pn→f (i) ≈ q(i)pn(i)pf |n(i, i),

P
(
δpff (i, l) =

2

N
q(i)pf |n(i, l)

)
= q(l)pn(l)Pn→f (l) ≈ q(l)pn(l)pf |n(l, l),

(2.33)

where in the last step we omit O(α) terms, i.e., treating α as 0. The reason that

we omit O(α) terms instead of O(α2) terms as before is that we have nonzero O(1)

terms here. Combining the four equations in Eq. (2.33), we get (for i 6= l):

ṗff (i, l) = − 2

N
q(l)pf |f (l, i)P

(
δpff (i, l) = − 2

N
q(l)pf |f (l, i)

)
− 2

N
q(i)pf |f (i, l)P

(
δpff (i, l) = − 2

N
q(i)pf |f (i, l)

)
+

2

N
q(l)pf |n(l, i)P

(
δpff (i, l) =

2

N
q(l)pf |n(l, i)

)
+

2

N
q(i)pf |n(i, l)P

(
δpff (i, l) =

2

N
q(i)pf |n(i, l)

)
=

2

N
q(i)q(l)pf (i)pn|f (i, i)(pf |n(l, i)− pf |f (l, i))

+
2

N
q(i)q(l)pf (l)pn|f (l, l)(pf |n(i, l)− pf |f (i, l))

=
2

N
q(i)q(l)pf (i)(1− pf |f (i, i))

[
pf (l)

pn(i)
(1− pf |f (i, l))− pf |f (l, i)

]
+

2

N
q(i)q(l)pf (l)(1− pf |f (l, l))

[
pf (i)

pn(l)
(1− pf |f (l, i))− pf |f (i, l)

]
,

(2.34)

where we have used the equalities pn|f (i, i) = 1− pf |f (i, i) and pf |n(l, i) =
pf (l)

pn(i)
(1−

pf |f (i, l)) in the last step so as to substitute all the influence states by pf |f (·, ·).
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Similarly we can derive the dynamics of pff (i, i) as follows:

ṗff (i, i) =
2

Npn(i)
q2(i)pf (i)(1− pf |f (i, i))(pf (i)− pf |f (i, i)). (2.35)

Recall Eq. (2.32), where we note that the population dynamics pf (·) evolves

at the speed of O(α). From Eq. (2.34) and Eq. (2.35), we observe that the relation-

ship dynamics pff (·, ·) (hence the influence dynamics pf |f (·, ·)) evolve at the speed

of O(1). Due to the assumption that α is very small, the relationship dynamics and

influence dynamics change at a much faster speed than population dynamics do.

This implies that we can select a time window with an appropriate length such that

the population dynamics pf (·) basically remain unchanged while the relationship

dynamics pff (·, ·) and influence dynamics pf |f (·, ·) vary a lot. In the following, we

focus on such a time period in which the population dynamics pf (·) remains a con-

stant and only relationship dynamics and influence dynamics vary with time. Taking

derivative w.r.t time on both sides of the equation pff (i, l) = 2q(i)q(l)pf (i)pf |f (l, i),

i 6= l, we obtain:

ṗff (i, l) = 2q(i)q(l)pf (i)ṗf |f (l, i). (2.36)

Combining Eq. (2.34) and Eq. (2.36) yields the dynamics of pf |f (l, i), l 6= i:

ṗf |f (l, i) =
1

N
(1− pf |f (i, i))

[
pf (l)

pn(i)
(1− pf |f (i, l))− pf |f (l, i)

]
+

1

N
(1− pf |f (l, l))

[
pf (l)

pn(l)
(1− pf |f (l, i))−

pf (l)

pf (i)
pf |f (i, l)

]
.

(2.37)

Leveraging the equation pf (i)pf |f (l, i) = pf (l)pf |f (i, l), we can further simplify Eq.

(2.37) as follows:

ṗf |f (l, i) =
1

N
(pf (l)− pf |f (l, i))

[
1− pf |f (i, i)

pn(i)
+

1− pf |f (l, l)
pn(l)

]
,∀l 6= i. (2.38)
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On the other hand, if l = i, then ṗff (i, i) = q2(i)pf (i)ṗf |f (i, i). Thus, from Eq.

(2.35), we obtain:

ṗf |f (i, i) =
2

Npn(i)
(1− pf |f (i, i))(pf (i)− pf |f (i, i)), ∀i. (2.39)

Since Eq. (2.39) is equivalent to letting i = l in Eq. (2.38), we know that Eq. (2.38)

applies to any i, l (not necessarily unequal). Recall that in Eq. (2.38), we treat the

population dynamics pf (i), pn(i) as constants. In other words, we are considering

a small time period where the population dynamics do not vary with time while

the influence dynamics pf |f (·, ·) vary according to the deduced dynamics Eq. (2.38).

Next, we show that in this small time period, the influence dynamics pf |f (·, ·) will

converge to the corresponding population dynamics pf (·).

We first solve the ODE Eq. (2.39) with single variable pf |f (i, i). Without loss

of generality, we assume the initial value of pf |f (i, i) is less than pf (i). Thus, by

solving Eq. (2.39), we have:

pf |f (i, i) = pf (i)−
pn(i)

e
4t
N

+Ci − 1
, (2.40)

where Ci := ln
(
1− pf |f (i, i)

∣∣
t=0

)
− ln

(
pf (i)− pf |f (i, i)

∣∣
t=0

)
is a constant. From

Eq. (2.40), we see that limt→+∞ pf |f (i, i) = pf (i). Substituting Eq. (2.40) into Eq.

(2.38), we obtain:

ṗf |f (l, i) =
1

N
(pf (l)− pf |f (l, i))

[
e

4t
N

+Ci

e
4t
N

+Ci − 1
+

e
4t
N

+Cl

e
4t
N

+Cl − 1

]
. (2.41)

Hence, by solving for pf |f (l, i), we have:

ln

∣∣∣∣pf (l)− pf |f (l, i)

∣∣∣∣− ln

∣∣∣∣pf (l)− pf |f (l, i)
∣∣
t=0

∣∣∣∣+
2t

N
= − 1

N

∫ t

0

(
1

e
4σ
N +Ci − 1

+
1

e
4σ
N +Cl − 1

)
dσ.

(2.42)
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The R.H.S. of Eq. (2.42) is clearly a bounded quantity as t goes to infinity. Hence,

from the L.H.S., we observe that ln
∣∣pf (l)− pf |f (l, i)∣∣→ −∞ as t→ +∞. In other

words, limt→+∞ pf |f (l, i) = pf (l), ∀l 6= i. We summarize the results obtained for

the evolutionary dynamics in the known user type model as the following theorem,

Theorem 2.3.

Theorem 2.3 In the known user type model, the population dynamics pf (i) are

given in Eq. (2.32) while the relationship dynamics pff (i, l) are given in Eq. (2.34)

(for i 6= l) and Eq. (2.35) (for i = l).

The population dynamics evolve at a much slower speed than the influence

dynamics and the relationship dynamics. In a small time period such that the pop-

ulation states pf (·) remain constants, the influence dynamics pf |f (l, i) are given by

Eq. (2.38) (for any l, i). In such a small time period, each influence state pf |f (l, i)

will converge to the corresponding fixed population state pf (l).

According to Theorem 2.3, since the influence state will keep track of the

corresponding population state, we can make the approximation that pf |f (l, i) =

pf (l),∀l, i. Thus, the population dynamics can be further simplified into the follow-

ing form.

Corollary 2.1 In the known user type model, the population dynamics pf (i) for

each type i = 1, 2, ...M are (approximately) given by:

ṗf (i) =
αk

N
pf (i)pn(i)

M∑
j=1

q(j)[pf (j)(uff (i, j)−unf (i, j))+pn(j)(ufn(i, j)−unn(i, j))].

(2.43)
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2.5 Experiments

In this section, we implement synthetic data as well as real data experiments

to verify the theoretical results on information diffusion dynamics and ESSs. First,

using synthetic data, we show that the simulations match the theoretical findings

well. Then, using real data, we find that the theoretical dynamics also fit the real-

world information diffusion dynamics well and can even make predictions for the

future diffusion dynamics.

2.5.1 Synthetic Data Experiments

In this subsection, we conduct simulations to validate the theoretical evolu-

tionary dynamics and ESSs. We set M = 2, i.e., the network consists of two types

of users. We synthesize a constant degree network, i.e., all the nodes have the

same degree (k is a deterministic constant). We first consider the unknown user

type model. The payoff parameters of the two types of players are set as following:

uff (1) = 0.4, uff (2) = 0.2, ufn(1) = 0.6, ufn(2) = 0.4, unn(1) = 0.3, unn(2) = 0.5.

Other parameters are N = 1000, k = 20, q(1) = q(2) = 0.5, α = 0.05. The result

is reported in Fig 4.1. The theoretical dynamics match the simulation dynamics

well and the theoretical ESSs are near the simulated ESSs with average relative

ESS error† 3.54%. If we model the heterogeneous network as a homogeneous one

†The average relative ESS error is calculated as follows. We denote these two simulated ESSs

(for two different types, respectively) as x1 and x2. We denote the two theoretical ESSs as y1 and

y2. Then the average relative ESS error is 1
2 (|y1 − x1|/x1 + |y2 − x2|/x2). If we use homogeneous

network to model, we only have one global theoretical ESS z. In such a case, the average relative
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like in [54, 55], i.e., all the payoffs are set to be the average over all types, then the

average relative ESS error is 6.83%, indicating the advantage of the proposed hetero-

geneous model. In addition, we simulate the evolutionary dynamics under another

utility parameter setup in Fig. 2.3 and observe that the simulated dynamics still

match well with the theoretical ones. Furthermore, to manifest the extreme ESSs

highlighted in Theorem 2.2, i.e., ESSs of 0 and 1, we alter the utility parameters

to simulate and the results are shown in Fig. 2.4, where population dynamics with

ESSs of 0 and 1 are exhibited, respectively. We observe that the theoretical dynam-

ics again match well with the simulated ones. Simulation results for Erdos-Renyi

network [34] and Barabasi-Albert network [8] with the same parameter setup are

shown in Fig. 2.5-(a),(b) respectively. The population dynamics is very similar

to that of the constant degree network, and the theoretical dynamics still fit the

simulated one well. In Fig. 2.6, we simulate the information diffusion of a heteroge-

neous network with three types of users. We observe that the theoretical dynamics

still match well with the simulated ones. All of the above results demonstrate the

effectiveness and accuracy of the proposed heterogeneous network theory.

Next, we implement a simulation for the known user type model with payoff

parameters randomly chosen as follows:

ESS error is computed as 1
2 (|z − x1|/x1 + |z − x2|/x2).
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Figure 2.2: Simulation results of the evolution dynamics for the unknown user

type model. The theoretical dynamics fit the simulation dynamics well and the

ESSs are predicted accurately. The average relative ESS error of the heterogeneous

model is 3.54%. If we model the entire network as a homogeneous one as in [54,

55], the average relative ESS error becomes 6.83%, indicating the advantage of the

heterogeneous model in this chapter.
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Figure 2.3: Simulation results of evolution dynamics for the unknown user type

model with another utility parameter setup: uff (1) = 0.5, uff (2) = 0.1, ufn(1) =

0.8, ufn(2) = 0.5, unn(1) = 0.1, unn(2) = 0.3. We observe that the simulated

dynamics still match well with the theoretical ones.
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(a) Population dynamics with ESS of 0
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(b) Population dynamics with ESS of 1

Fig. 2.4: Simulations for unknown user type model: population dynamics wit ESSs of

0 and 1, respectively. In (a), the utility parameters are: uff (1) = 0.4, uff (2) = 0.2,

ufn(1) = 0.3, ufn(2) = 0.5, unn(1) = 0.6, unn(2) = 0.4. In (b), the utility parameters are:

uff (1) = 0.6, uff (2) = 0.4, ufn(1) = 0.3, ufn(2) = 0.5, unn(1) = 0.4, unn(2) = 0.2.
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(a) Erdos-Renyi network
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(b) Barabasi-Albert network

Fig. 2.5: More simulations of the evolutionary dynamics for the unknown user type model

with different networks.
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Figure 2.6: Simulation results for unknown user type model with three types of

users. We observe that the theoretical dynamics still match well with the simulated

ones.
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uff =

 0.5882 0.0116

0.8688 0.1590

 , ufn =

 0.9619 0.7370

0.5595 0.7180

 ,

unf =

 0.9339 0.9864

0.3288 0.4593

 , unn =

 0.2479 0.3385

0.6570 0.2437

 .
(2.44)

The other parameters are N = 1000, k = 20, q(1) = 0.5518, q(2) = 0.4482, α =

0.05. The simulated and theoretical population dynamics are shown in Fig. 2.7,

where the known user type model based theoretical dynamics and the simulated

dynamics match well. In Fig. 2.7, we also plot the evolutionary dynamics given

by the theory of the unknown user type model. This does not match the simulated

evolutionary dynamics under the known user type model, indicating the necessity of

the theory of the known user type model. Simulations under two different parameter

setups are shown in Fig. 2.8, where the theoretical dynamics and the simulated

dynamics match. In Fig. 2.8-(a), the utility parameters are set as follows:

uff =

 0.4228 0.1052

0.9184 0.5182

 , ufn =

 0.9641 0.9865

0.3008 0.7058

 ,

unf =

 0.7453 0.7104

0.8943 0.9505

 , unn =

 0.3199 0.6119

0.3162 0.4556

 .
(2.45)
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Figure 2.7: Simulation of evolutionary dynamics: the known user type model.

And in Fig. 2.8-(b), the utility parameters are set as follows:

uff =

 0.6673 0.1855

0.0703 0.2549

 , ufn =

 0.7964 0.1144

0.9288 0.9262

 ,

unf =

 0.7979 0.1071

0.8047 0.4854

 , unn =

 0.2721 0.7794

0.7564 0.0574

 .
(2.46)

In Fig. 2.8-(b), we observe some oscillations of the simulated dynamics. The reason

may be that the number of parameters in the known user type model is relatively

large and the strategy update rule is more complicated than the unknown user type

model, which may lead to unstable behaviors of the users.

2.5.2 Real Data Experiments

In this subsection, we use the Twitter hashtag dataset in [111] to validate

the theory. The dataset, comprising sequences of adopters and timestamps for the

observed hashtags, is based on sampled public tweets from March 24, 2012 to April

25, 2012. To characterize the heterogeneity of the users, we classify the users into two
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(a) Parameter setup 1
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(b) Parameter setup 2

Fig. 2.8: Known user type model: more simulations of the evolutionary dynamics with

different parameter setups.

types. The classification is based on the users’ activity. Specifically, we compute the

number of hashtags each user has mentioned. Then, the top 10% users with highest

number of hashtag mentioning are categorized as Type-1 users while the remaining

users are categorized as Type-2 ones. After classification, the number of type-1

users is 62757 while that of type-2 users is 533262. We set k to be 100, a typical

number of neighbors/friends in social networks. Since the dataset does not contain

the network structure of the users, we postulate the network to be a constant degree

network where each user has the same degree k = 100. The selection strength α

is not important in the curve fitting/prediction process, since it can be absorbed

into the payoff parameters as it always multiplies with all the payoff parameters.

In our dataset, the physical unit of time indices is not specified. In the following

experiments, we choose appropriate time slot length so that (i) the data dynamics

are smooth (so the time slot length cannot be too small), (ii) the data dynamics

vary continuously and can correctly reflect the variation of the diffusion dynamics

of real data (so the time slot length cannot be too large).
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(a) #ThoughtsDuringSchool
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(b) #WhenIwasLittle
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(c) #DearOOMF
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(d) #YouGetMajorPointsIf

Fig. 2.9: Fitting results for the unknown user type model. Type-1 users are always more

active than type-2 users because pf (1) is always larger than pf (2). The proposed the-

oretical dynamics fit the information diffusion dynamics of the real-world heterogeneous

social networks well, which validates the effectiveness of considering the individuals’ in-

teractions. The theory suggests that the heterogeneous behavior dynamics of online users

are consequences of their heterogeneous payoff structures.
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(a) #ididnttextback
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(b) #imhappywhen

Fig. 2.10: Fitting results for the unknown user type model. Two less popular hashtags,

#ididnttextback and #imhappywhen, are fitted. The fitting is still accurate though the

data become more noisy as these two hashtags are less popular.

We first fit the theoretical dynamics for the unknown user type model in Eq.

(2.14) and Eq. (2.15) with the real data. We use the real data to estimate the

parameters (i.e., ∆(i) and ∆n(i)) in Eq. (2.14) and Eq. (2.15), and then calculate

the theoretical dynamics based on the estimated parameters. We invoke the Matlab

function lsqcurvefit to implement the curve fitting, or in other words, to estimate

the payoff parameters. The parameter estimation process is built inside this Matlab

function. Given data and a function to be fit, lsqcurvefit selects the optimal

parameters in order to minimize the squared fitting error. The fitting results for

four popular hashtags are reported in Fig. 2.9. Type-1 users are more active than

type-2 users since the population state pf (1) is always larger than pf (2). We ob-

serve that the proposed theoretical dynamics fit the real-world information diffusion

dynamics well, indicating the effectiveness of taking the heterogeneous users’ inter-

actions and decision making into account. In the curve fitting of the dynamics of

the hashtag #ThoughtsDuringSchool, the utility parameters are estimated to sat-

isfy: uff (1)− ufn(1) = −3.32, unn(1)− ufn(1) = −0.578, uff (2)− ufn(2) = −0.64,
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(a) Using data up to time 22
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(b) Using data up to time 41

Fig. 2.11: Predictions. The heterogeneous game-theoretic model can predict future dif-

fusion dynamics. The predictions made by the heterogeneous model outperforms that of

the homogeneous one in [54].

unn(2) − ufn(2) = −0.004. From these relationships, we see that for real-world

information diffusion data, the estimated utility parameters satisfy the condition

ūfn > max{ūff , ūnn}. From Theorem 2.2, we see that this condition leads to an

ESS between 0 and 1, which is clearly the case in most real-world applications. In

the previous subsection on simulations, the utility parameters are also chosen in

compliance with this condition (e.g., Fig.3 and Fig. 4) and are hence justified by

the real data. Furthermore, we see that unn(1) is much smaller than ufn(1) while

unn(2) is basically the same as ufn(2). To some extent, this explains why Type-1

users are more active than Type-2 users. Furthermore, we fit two less popular hash-

tags #ididnttextback and #imhappywhen (with peak mention counts about 1/6 of

that of the hashtag #ThougtsDuringSchool). The results are reported in Fig. 2.10

from which we observe that the fitting is still accurate though the data become

more noisy as these two hashtags are less popular, indicating the robustness of our

approach.
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(a) Using data up to time 26
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(b) Using data up to time 28
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(c) Using data up to time 30

Fig. 2.12: Predictions for Twitter hashtag #ThoughtsDuringSchool.
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(a) Using data up to time 36
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(b) Using data up to time 38
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(c) Using data up to time 40

Fig. 2.13: Predictions for Twitter hashtag #YouGetMajorPointsIf.
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(a) [106], #ThoughtsDuringSchool, using

data up to time 28

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

time

in
fo

rm
at

io
n 

di
ffu

si
on

 d
yn

am
ic

s 
dp

f(i)
/d

t

 

 

predict type1
predict type2
training data type1
testing data type1
training data type2
testing data type2

(b) [70], #ThoughtsDuringSchool, using

data up to time 28
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(c) [106], #YouGetMajorPointsIf, using

data up to time 38
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(d) [70], #YouGetMajorPointsIf, using data

up to time 38

Fig. 2.14: Prediction results of [106] and [70]. Comparisons subfigures (a)(b) with Fig.

2.12-(b) and subfigures (c)(d) with Fig. 2.13-(b) highlight the advantage of the proposed

game-theoretic approach. In particular, the results in subfigures (b)(c)(d) fail to give

meaningful predictions.
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In addition, we conduct experiments on the prediction of future diffusion dy-

namics. Specifically, we only use part of the data to train the payoff parameters

in Eq. (2.14), Eq. (2.15), and use the trained parameters to predict future diffu-

sion dynamics. To compare with the homogeneous model in [54,55], we also model

the heterogeneous network as a homogeneous one and use the homogeneous net-

work theory in [54] to make predictions, which serve as benchmarks. The prediction

results for one popular hashtag #WhenIwasLittle are shown in Fig. 2.11. Two

different training data lengths are investigated. The heterogeneous game-theoretic

model can predict the future diffusion dynamics well. In contrast, by modeling the

network as a homogeneous one, the prediction does not match the real data well,

especially for type-1 users. The reason is that the prediction made by the homo-

geneous model can be thought of as a prediction of the overall diffusion dynamics

averaged over the two types. But, type-1 users are active minority (10% of all the

users). So, its diffusion dynamic is far from the average one and is poorly predicted.

The prediction results of two other Twitter hashtags #ThoughtsDuringSchool and

#YouGetMajorPointsIf are shown in Fig. 2.12 and Fig. 2.13, respectively. For

both hashtags, the prediction performance of our heterogeneous model is good. In

addition, we perform predictions for future 10 time slots immediately after the peak

of the diffusion dynamics is observed for the 8 most popular hashtags in the dataset.

The average relative error of the heterogeneous game model is 23% while that of

the homogeneous game model in [54] is 47%. Furthermore, prediction results of the

existing methods in [106] and [70] are reported in Fig. 2.14. Comparison with the

corresponding prediction results of the proposed approach in Fig. 2.12-(b) and Fig.
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(b) #WhenIwasLittle
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(c) #DearOOMF
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(d) #YouGetMajorPointsIf

Fig. 2.15: Fitting results of the known user type model for the four popular Twitter

hashtags.

2.13-(b) demonstrate the advantage of the proposed game-theoretic approach.

Lastly, we fit the theoretical dynamics of the known user type model with

the real data of the four popular Twitter hashtags. As shown in Fig. 2.15, the

theoretical dynamics fit the real data well. However, the prediction performance of

the known user type model is not stable, as shown in Fig. 2.16. The reason may be

that the known user type model involves more parameters and the observed data

quality is not high enough to estimate them accurately.
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Fig. 2.16: Known user type model: prediction results for various Twitter hashtags. The

prediction performance of the known user type model is not stable. Sometimes, it is

accurate (subfigures (a) and (b)) while sometimes not (subfigures (c) and (d)).

2.6 Summary

From the real data experiments, we see that sometimes the known user type

model cannot predict the future dynamics of information diffusion well. We ascribe

this to the quality of the data, i.e., the time resolution of the data is not good enough

or equivalently the data is not smooth enough when we narrow the time window,

since the known user type model involves more parameters than the unknown user

type model and needs better data to estimate all the parameters accurately. Another

reason is that unlike Facebook, in Twitter network (from which the data are col-

lected), users often follow celebrities rather than acquaintances, which implies that

Twitter users may not know their friends’ types very well. Hence, the known user

type model may not fit the Twitter network well. But, in the corresponding simu-
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lations, since the setup is just the known user type model, the theoretical dynamics

still match the simulated ones well, demonstrating the theory itself is accurate.

Overall, we present an evolutionary game-theoretic framework to analyze the

information diffusion over the heterogeneous social networks. The theoretical re-

sults fit and predict the information diffusion data generated by real-world social

networks well, confirming the effectiveness of the heterogeneous game-theoretic mod-

eling approach. The derived evolutionary dynamics can be absorbed to improve the

state-of-art machine learning based method in the literature of information diffusion.

More importantly, with a few parameters, our model gives a game-theoretic inter-

pretation to the mechanism of the individuals’ decision-making in the information

diffusion process over the heterogeneous social networks.
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Chapter 3

Understanding Popularity Dynamics: Decision-Making with

Long-Term Incentives

3.1 Motivation

In the big data era nowadays, people not only read lots of data but also

create vast amount of data everyday through interactions. For instance, Twitter

users may mention or retweet a hashtag; Youtube users can like or dislike a video;

researchers may quote keywords in papers. All of these interactions lead to a notion

of popularity dynamics such as: Twitter hashtags’ mention count dynamics and

research keywords’ quotation dynamics. The popularity dynamics can describe and

track people’s interactions with different types of items. In general, people can

only pay limited attention to a limited number of items. When the number of

items are growing drastically, they can only focus on certain items of their great

interest. Meanwhile, in the real world, some items go viral, i.e., appealing to lots of

interactions and attentions from people, while most items diminish quickly without

any impact. To manage and utilize people’s valuable interactions and attention

better, it is crucial to understand the underlying mechanisms of the popularity

dynamics and thus explain the reason why some items are so successful while others
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aren’t.

The process of the generation of popularity dynamics is complicated and in-

volves the decision-making of many individuals. Individual’s decision is influenced

by many factors including the quality and timeliness of the item, the personal pref-

erence of the individual and others’ decisions. An example of Twitter hashtag is

illustrated in Fig. 3.1. Thus, to model the generation process of the popularity

dynamics accurately, we need to take many factors into consideration: the intrinsic

attribute of an item, the decaying of the attractiveness of an item as time passes,

the heterogeneity of individuals’ interests, and the influence of others’ decisions,

i.e., network externality [105]. Since this involves the interactions between multiple

decision makers, game theory [99] can be a very suitable mathematical modeling

tool here. By appealing to game theory, we can incorporate all the aforementioned

factors into the model of popularity dynamics and the equilibrium of the formu-

lated game can facilitate the understanding or even prediction of users’ behaviors

in popularity dynamics.

In the literature, game theory has been utilized to model popularity dynam-

ics [54, 55]. However, most of existing game-theoretic models only consider the

instantaneous incentives of players, i.e., the decision-makers are myopic in the sense

that they only decide based on the current state of the system or the current de-

cisions of his neighbors in the network. All the myopic players in the network

iteratively update their decisions, leading to a popularity dynamics of an item. On

the contrary, in real-world, individuals are usually more farsighted: they may pre-

dict the subsequent behaviors of other individuals and then maximize their future
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Figure 3.1: An illustration of the decision making problem of popularity dynamics.

We use the mentioning of a Twitter hashtag as an example here. Consider an

arbitrary Twiter user who observes a Twitter hashtag. He needs to decide whether

to mention this hashtag or not based on many factors including the intrinsic quality

and timeliness of the hashtag, his own interest, current popularity of the hashtag

and future actions of other users.
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benefits based on the predictions. In other words, individuals can have long-term

incentives which depend on other individuals’ future actions. For instance, when

a Twitter user is deciding whether to forward a tweet or not, he may take the fu-

ture influence of the tweet and the future actions of other users into account: will

this tweet become popular in the future or will many other users also forward this

tweet? This is illustrated in Fig. 3.1. Different from the previous game-theoretic

frameworks for information diffusion dynamics [54,55], our model incorporates both

instantaneous incentives and long-term incentives of individuals. The latter depends

on subsequential individuals’ actions in the future. Our main contributions in this

chapter can be epitomized as follows.

• We propose a game-theoretic framework to model the sequential decision mak-

ing process of general popularity dynamics. The model incorporates both in-

stantaneous incentives and long-term incentives so that the decision-makers

are farsighted enough to take others’ future actions into account when making

decisions.

• We theoretically show that the formulated game has a unique symmetric Nash

equilibrium (SNE). We observe that the SNE is in pure strategy form and

possesses a threshold structure. Furthermore, we design a backward induction

algorithm to compute the SNE.

• From real data, we observe that: (i) most popularity dynamics first increase

and then decrease and (ii) for some dynamics, when they are increasing, the

increasing speed gradually slows down until they reach the peak and when
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they are decreasing, the decreasing speed also gradually slows down. We the-

oretically analyze these properties at the SNE of the proposed game-theoretic

model. We find that the equilibrium behavior of the proposed game confirms

with real data.

• The proposed theory is validated by both simulations and experiments based

on real data. It is shown that the proposed game-theoretic model can even

predict future dynamics of real data.

The roadmap of the rest of the paper is as follows. In Section 3.2, we review

the existing literature on popularity dynamics. In Section 3.3, we describe the model

in detail and formulate the problem formally. In Section 3.4, equilibrium analysis is

conducted. In Section 3.5, a property of the equilibrium is shown. Simulations and

real data experiments are carried out in Section 3.6. In Section 3.7, we conclude

this chapter.

3.2 Related Works

Recently, intensive research efforts have been devoted to network users’ be-

havior dynamics due to its importance [71]. In [87], Ratkiewicz et al. studied the

popularity dynamics of online webpages and online topics. They proposed a model

to combine classic preferential attachment [8] with the random popularity shifts

incurred by exogenous factors. Shen et al. [95] proposed to use reinforced Poisson

processes to model the popularity dynamics and presented a statistical inference

approach to predict the future dynamics accordingly.
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An important special case of popularity dynamics is the information diffusion

dynamics over social networks, which have attracted tremendous research efforts

in the recent decade. The abundant literature on information diffusion dynamics

can be divided into two categories. In the first category, researchers combine data

mining/machine learning techniques with empirical observations from real-world

datasets and propose simple models to explain the observed phenomena. Yang

and Leskovec [114] studied the temporal shapes of online information dynamics

and clustered these temporal dynamics into several patterns, which suggest several

types of information dynamics. In [70], the authors empirically studied the temporal

dynamics of online memes and discovered interesting phenomena such as an average

2.5 hours lag between the peaks of a phrase in news media and in blogs respectively.

The role of social networks, i.e., the influence between network users, in information

diffusion is studied in [7] through an experimental approach. In [40, 89, 113], with

machine learning approaches, the underlying implicit diffusion networks are inferred

from the observed information cascades to better understand the diffusion processes.

Guille and Hacid [43] proposed a predictive model for information diffusion process,

which could predict the future information dynamics accurately. In the second

category, game-theoretic analyses were conducted to understand the information

diffusion processes from the perspective of individual user’s decision making. This

category has closer relationship with this chapter. Jiang et al. [54, 55] exploited

evolutionary game theory to model and analyze the information diffusion dynamics,

where the information diffusion is treated as the consequence of the games played by

the network users. In [54,55], the users were assumed to be myopic and didn’t take
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other individuals’ future actions into account when making decisions. Furthermore,

in [37], the authors proposed a sequential game model to analyze the voting and

answering behaviors in social computing systems such as Stack Overflow, which

inspired our model in this chapter. The differences between the model in [37] and

the model here are: (i) we focus on characterizing the temporal dynamics of the

interactions while the main goal of [37] was to describe users’ behaviors (voting

and answering) when facing with certain system states; (ii) we include preferential

attachment [8] (a universal phenomenon in network science that items with large

popularity are more visible and hence can gain new popularity more easily) into our

model while [37] didn’t.

There are also many domain specific research literature on popularity dy-

namics. The citation dynamics were studied in [106] and a universal formula was

proposed to characterize the temporal citation dynamics of individual papers. The

channel popularity dynamics of Internet Protocol TV were investigated in [86] while

the authors in [68] proposed a model predict the dynamics of news. Furthermore,

a model for Twitter dynamics was presented in [60] while the dynamics of viral

marketing were studied in [69].

3.3 Model

In the generation process of popularity dynamics, multiple intelligent decision

makers decide whether to interact with an item or not with the goal of maximizing

their own utilities. The system has network externality [105], i.e., the utility of
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an individual is affected by other individuals’ actions, as explained in Section 3.1.

Game theory is a mathematical tool to study the decision-making of multiple strate-

gic agents where one’s utility is influenced by others’ actions, and thus very suitable

for modeling the popularity dynamics. Additionally, there are various equilibrium

concepts in the game theory literature which can serve as predictions of individuals’

behaviors in popularity dynamics and thus promote the understanding of the mech-

anisms of popularity dynamics. In this section, we will introduce a game-theoretic

model of the popularity dynamics in detail.

Suppose an item, item A, is generated. The item can be an online meme, an

online video or a keyword in scientific research. People decide whether to interact

with item A or not sequentially. For instance, Twitter users decide whether to

mention a hashtag or not; Youtube users decide whether to like a video or not;

researchers decide whether to quote a keyword in their papers or not. We view

the cumulative interaction dynamics xt, i.e., the total number of interactions up to

time t, as a stochastic dynamical system. We assume people, i.e., players of the

game, arrive at the system at discrete time instants t ∈ N (one player arrives at

each time instant) and decide whether to interact with item A or not. Players are

heterogeneous and have different types, which indicate the relevances of the item to

the different players. For example, for a Twitter hashtag related to football, football

fans have higher types than normal users; for a research keyword related to signal

processing, researchers specializing in signal processing have higher types than other

researchers. We suppose that each player’s type θ is a random variable distributed

in [0, 1] with probability density function (PDF) h(θ). The above concepts are
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Table 3.1: Game-theoretic model for popularity dynamics

Game-theoretic model Popularity dynamics concepts

System state at time t Cumulative interactions xt

Players People arriving at the system

Player type Relevance of the item to the player θ ∈ [0, 1]

Action set of each player {interacting, not interacting}

summarized in Table 5.1.

To complete the game-theoretic formulation, we need to define the utilities

of the players. As stated in Section 3.1, the utility should encompass both the

immediate effect and the future effect of the interactions. Furthermore, due to

the preferential attachment property of networks [8], items which already get many

interactions should be more visible, i.e., easier to be found by players arriving at

the system. Combining all these factors, the proposed model can be illustrated in

Fig. 3.2. When a player arrive at the system with state x, the item will be visible

to him with some probability related to the current state of the system. If the

item is visible to the player and he chooses to interact with the item, then he will

get an instantaneous reward which depends on both the type (e.g., hobbies) of the

player and the state of the system. Afterwards, whenever there is a new interaction

with the item (occurs at say, state y), the aforementioned player will obtain a future

reward because the current interacting player may pay attention to him. The overall

utility of the player will be a discounted sum of the instantaneous reward and all

the future rewards. In the following, we specify these components of the model in
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Figure 3.2: Illustration of the state transition in the system model. The numbers

inside the blue circle are the current states. The numbers inside the green square

are the types of the arriving players.

more detail.

3.3.1 Instantaneous Reward

Each player choosing to interact with item A gets an instantaneous reward

R(x, θ), where x is the state of the system when the interaction occurs and θ is

the type of the player. For instance, if a Twitter user is interested in a hashtag,

then by mentioning this hashtag, the user will gain some immediate utility. The

instantaneous reward depends on the system state since the immediate utilities of

an item at different stages (e.g., incipient stage, blooming stage and ending stage)

are different. The instantaneous reward also depends on the type of the interacting

player because the same item is of different relevances to players of different types: a
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football fan can get much more utility by mentioning a football related hashtag than

a normal Twitter user. Note that R(x, θ) can also be negative since the interaction

implicitly incurs a cost for the player, e.g., by mentioning a hashtag, a Twitter user

needs to spend some time and efforts during the manipulation. Now, we impose five

assumptions on the function R(x, θ) as follows.

1. R(x, θ) decreases with respect to x.

2. R(x, θ) strictly increases with respect to θ.

3. R(x, θ) is continuous with respect to θ, for each given x.

4. R(0, 0) < 0 and R(0, 1) > 0.

5. limx→∞R(x, 1) < 0.

The five assumptions can be justified as follows respectively. (1) Taking time-

liness of the item into account, players who interact with the item early (when x is

small) should get higher utility than those who interact later (when x is large). For

example, a Twitter user mentioning up to date hashtags should gain higher instan-

taneous reward than a user mentioning outdated hashtags. (2) Those players who

find the item more relevant gain higher instantaneous reward by interacting with it.

(3) A technical assumption. (4) Initially (i.e., x = 0), some players’ instantaneous

rewards are positive while some are negative. (5) Even for those who find the item

very relevant (θ = 1), if the item is very outdated (x → ∞), then it is no longer

attractive.
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3.3.2 Future Reward

For a player B choosing to interact with item A, whenever there is a subsequent

interaction with item A, this subsequent interacting player will pay attention to

player B with probability 1
x

, where x is the system state when this subsequent

interaction occurs. Thus player B will receive an expected reward of 1
x

due to the

possible attention he gets. This reward is called the future reward since it is obtained

after the interaction occurs. For instance, if a Twitter user B mentions a hashtag

A, and later, when hashtag A has already been mentioned x times, another user

C also mentions hashtag A. In such a case, user C may visit those users who have

mentioned hashtag A, and with probability 1
x
, user B will be visited by user C.

We further assume players discount future reward with factor 0 < λ < 1, which

is a common assumption in dynamic games and sequential decision making. The

instantaneous reward and the future reward together constitute the utility of an

interacting player.

3.3.3 Visibility Probability

We assume one player arrives at the system at each time instant. Item A

is visible to a player with probability f(x) ∈ [0, 1], where x is the system state

when the player arrives. In other words, after a player arrives, he/she will notice

item A with probability f(x). We also impose several assumptions on the visibility

probability function f(x) as follows.

• f(x) increases with x. Justification: Popular items are more visible. This is
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also refereed as the ‘rich gets richer’ or preferential attachment phenomenon

in network science [8].

• f(0) > 0. Justification: Even the most unpopular item is visible with positive

probability.

3.3.4 Action Rule and Utility Function

When a player arrives at the system and sees item A, he/she needs to decide

whether to interact with the item or not based on the current system state x and

his/her type θ. For sake of generality, we allow the players to use mixed action

rule π : N × [0, 1] :→ [0, 1], where π(x, θ) is the probability of choosing the action

interacting when the state is x and the type of the player is θ. Denote the set

of all possible mixed action rules as Π. We denote gπ(x) the long-term utility of an

interacting player starting from state x while the subsequent players use action rule

π.

Denote pπ(x) = Eθ[π(x, θ)], i.e., the expected probability of a new interaction

when the system state is x and users adopt action rule π. Thus, the long term utility

gπ(x) can be computed recursively as follows. ∀x ≥ 1:

gπ(x) =

instantaneous reward at the current time slot︷ ︸︸ ︷
f(x)pπ(x)

x
+λ {f(x)pπ(x)gπ(x+ 1) + [1− f(x)pπ(x)] gπ(x)}︸ ︷︷ ︸

reward in future time slots

. (3.1)

Denote u(x, θ, a, π) the utility of a type-θ player who enters the system in state x
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and takes action a while other players adopt action rule π. Thus,

u(x, θ, a, π) =


R(x, θ) + λgπ(x+ 1), if a =interacting,

0, if a =not interacting.

(3.2)

If a player chooses mixed action, i.e., interacting with probability q, then his/her

utility is:

U(x, θ, q, π) = q[R(x, θ) + λgπ(x+ 1)]. (3.3)

3.3.5 Solution Concept

In this chapter, the solution concept is chosen to be the symmetric Nash equi-

librium (SNE), which is defined in the following.

Definition 3.1 An action rule π∗ is said to be a symmetric Nash equilibrium (SNE)

if:

π∗(x, θ) ∈ arg max
q∈[0,1]

U(x, θ, q, π∗), ∀x ∈ N, θ ∈ [0, 1]. (3.4)

In an SNE, no player wants to deviate unilaterally, hence the action rule is self

enforcing.

3.4 Equilibrium Analysis

In this section, we show that there is a unique SNE of the formulated game.

A backward induction algorithm for computing this unique SNE is also presented.

The infinite-horizon sequential game is effectively of finite length, given the

following lemma, which says that no one will interact with item A after a certain

number of interactions is reached.
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Lemma 3.1 There exists an x̃ ∈ N such that ∀x ≥ x̃, θ ∈ [0, 1], π ∈ Π:

u(x, θ, interacting, π) < u(x, θ, not interacting, π), (3.5)

i.e., the action interacting is strictly dominated by the action not interacting

regardless of the player type and other players’ action rule.

Proof: The long-term utility of an interacting player starting from state x

while subsequent players use action rule π can be upper bounded as follows:

gπ(x) = E{xt}∞t=2

[ ∞∑
t=1

λt−1
f(xt)p

π(xt)

xt

∣∣∣∣π, x1 = x

]
≤
∞∑
t=1

λt−1
1

x
=

1

(1− λ)x
→ 0, as x→∞. (3.6)

Note that limx→∞R(x, 1) < 0. So, there exists an x̃ ∈ N, such that ∀x ≥ x̃:

R(x, 1) +
λ

(1− λ)x
< 0. (3.7)

Hence, ∀x ≥ x̃, θ ∈ [0, 1], π ∈ Π:

R(x, θ) + λgπ(x+ 1) ≤ R(x, 1) +
λ

(1− λ)x
< 0, (3.8)

i.e., u(x, θ, interacting, π) < u(x, θ, not interacting, π) due to the utility ex-

pression in (3.2).

Denote x̂ = max{x ∈ N|R(x, 1) > 0}. We design a backward induction

algorithm, Algorithm 3.1, to compute the SNE. We first show that the action rule

obtained from Algorithm 3.1 is indeed an SNE.

Theorem 3.1 (Existence of the SNE) The action rule π∗ computed by Algorithm

3.1 is an SNE.

Proof: According to Lemma 3.1, ∀x ≥ x̃, θ ∈ [0, 1] : arg maxq∈[0,1] U(x, θ, q, π∗) =

{0}. Thus, π∗(x, θ) ∈ arg maxq∈[0,1] U(x, θ, q, π∗),∀x ≥ x̃, θ ∈ [0, 1].
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Algorithm 3.1: Computation of the unique equilibrium

Inputs:

Instantaneous reward function R(x, θ).

Player type PDF h(θ).

Visibility probability function f(x).

Discount factor λ.

Outputs:

Unique equilibrium action rule π∗(x, θ).

1: When x ≥ x̂+ 1: π∗(x, θ) = 0, θ ∈ [0, 1]; gπ∗(x) = 0.

2: Let x = x̂.

3: while x ≥ 0 do

4: if R(x, 0) + λgπ∗(x+ 1) > 0 then

5: θ∗x = 0,

6: else

7: θ∗x is the unique solution of R(x, θ) + λgπ∗(x+ 1) = 0.

8: end if

9: Compute:

π∗(x, θ) =


1, if θ ≥ θ∗x,

0, if θ < θ∗x,

(3.9)

pπ
∗
(x) =

∫ 1

θ∗x

h(θ)dθ, (3.10)

gπ∗(x) =
1

1− λ[1− f(x)pπ∗(x)]

[
f(x)pπ

∗
(x)

x
+ λf(x)pπ

∗
(x)gπ∗(x+ 1)

]
. (3.11)

10: x← x− 1.

11: end while
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When x̂+ 1 ≤ x ≤ x̃− 1, we have the following. ∀θ ∈ [0, 1]:

u(x, θ, interacting, π∗) = R(x, θ) + λgπ∗(x+ 1) = R(x, θ) ≤ R(x, 1) ≤ 0. (3.12)

So, π∗(x, θ) = 0 ∈ arg maxq∈[0,1] U(x, θ, q, π∗).

When x = x̂, we still have u(x̂, θ, interacting, π∗) = R(x, θ). If θ ≥ θ∗x, we

have u(x̂, θ, interacting, π∗) ≥ 0 and thus π∗(x, θ) = 1 ∈ arg maxq∈[0,1] U(x, θ, q, π∗).

If θ < θ∗x, we have u(x̂, θ, interacting, π∗) < 0 and hence π∗(x, θ) = 0 ∈ arg maxq∈[0,1]

U(x, θ, q, π∗).

When x ≤ x̂− 1, we discuss two cases:

• Case 1: R(x, 0) + λgπ∗(x+ 1) > 0. In this case, θ∗x = 0 and π∗(x, θ) = 1,∀θ ∈

[0, 1]. Thus, u(x, θ, interacting, π∗) ≥ R(x, 0) + λgπ∗(x+ 1) > 0,∀θ. Hence,

π∗(x, θ) = 1 ∈ arg maxq∈[0,1] U(x, θ, q, π∗),∀θ.

• Case 2: R(x, 0) + λgπ∗(x+ 1) ≤ 0. In such a case, if θ ≥ θ∗x, then

u(x, θ, interacting, π∗) ≥ 0 and thus π∗(x, θ) = 1 ∈ arg maxq∈[0,1] U(x, θ, q, π∗).

Otherwise, if θ < θ∗x, then u(x, θ, interacting, π∗) < 0 and π∗(x, θ) = 0 ∈

arg maxq∈[0,1] U(x, θ, q, π∗).

Overall, we always have π∗(x, θ) ∈ arg maxq∈[0,1] U(x, θ, q, π∗),∀x, θ ∈ [0, 1].

We further prove that the π∗ computed in Algorithm 3.1 is indeed the unique

SNE.

Theorem 3.2 (Uniqueness of the SNE) Suppose the distribution of player type θ is

atomless, i.e., h(θ) is finite for every θ ∈ [0, 1]. Then, any SNE π̃ differs with π∗

for zero mass players, i.e., P{π̃(x, θ) 6= π∗(x, θ)} = 0 for every x ∈ N.
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Proof: Suppose π̃ is an SNE, i.e., π̃(x, θ) ∈ arg maxq∈[0,1] U(x, θ, q, π̃),∀x, θ ∈

[0, 1]. In the following, we show that π̃ differs from π∗ for zero-mass players. We

discuss for different values of x as follows.

• Case 1: x ≥ x̃. From Lemma 3.1, we know that ∀θ ∈ [0, 1], u(x, θ, interacting, π̃)

< 0. So, π̃(x, θ) = 0 = π∗(x, θ).

• Case 2: x̂+ 1 ≤ x ≤ x̃− 1. First, we note that u(x̃− 1, θ, interacting, π̃) =

R(x̃ − 1, θ). When θ < 1, u(x̃ − 1, θ, interacting, π̃) < 0, and thus π̃(x̃ −

1, θ) = 0. Hence, pπ̃(x̃ − 1) = 0 and gπ̃(x̃ − 1) = 0. Suppose we have

π̃(x+1, θ) = gπ̃(x+1) = 0, where x̂+1 ≤ x ≤ x̃−2. Then, for θ < 1, we have

u(x, θ, interacting, π̃) = R(x, θ) < 0. Hence, π̃(x, θ) = 0,∀θ. Thus, px̃(x) =

gx̃(x) = 0. By induction, we know that π̃(x, θ) = gπ̃(x) = 0, ∀x̂+1 ≤ x ≤ x̃−1

and θ < 1. In particular, we still have π̃(x, θ) = π∗(x, θ), ∀x̂ + 1 ≤ x ≤ x̃− 1

and θ < 1.

• Case 3: x = x̂. u(x̂, θ, interacting, π̃) = R(x̂, θ). If θ > θ∗x̂, we have

u(x̂, θ, interacting, π̃) > 0 and thus π̃(x̂, θ) = 1. Similarly, if θ < θ∗x̂, we have

π̃(x̂, θ) = 0. So, π̃(x̂, θ) = π∗(x̂, θ),∀θ 6= θ∗x̂. Hence, pπ̃(x̂) = pπ
∗
(x̂), gπ̃(x̂) =

gπ∗(x̂), π̃(x̂, θ) = π∗(x̂, θ),∀θ 6= θ∗x̂.

• Case 4: x ≤ x̂−1. Suppose for some 1 ≤ x ≤ x̂−1, we have gx̃(x+1) = gπ∗(x+

1) and π̃(x+ 1, θ) = π∗(x+ 1, θ),∀θ 6= θ∗x+1. We note that these already hold

for x = x̂ − 1 according to Case 3. Thus, we have u(x, θ, interacting, π̃) =

R(x, θ) + λgπ̃(x+ 1) = R(x, θ) + λgπ∗(x+ 1). If θ > θ∗x, we have

u(x, θ, interacting, π̃) > 0 and thus π̃(x, θ) = 1. Otherwise, if θ < θ∗x, we
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have u(x, θ, interacting, π̃) < 0 and π̃(x, θ) = 0. Consequently, we have

π̃(x, θ) = π∗(x, θ),∀θ 6= θ∗x and hence gπ̃(x) = gπ∗(x). So, by induction, we

have π̃(x, θ) = π∗(x, θ),∀θ 6= θ∗x,∀x ≤ x̂− 1, θ 6= θ∗x.

In all, we have π̃ = π∗ except for a zero mass amount of players.

Remark 3.1 The unique SNE of the game is in pure strategy form and possesses a

threshold structure. For every state x, there exists a threshold θ∗x such that a player

of type θ will interact with item A if and only if θ ≥ θ∗x.

3.5 Popularity Dynamics at the Equilibrium

In this section, we first observe some properties of popularity dynamics from

real data. Then, we analyze the corresponding properties at the equilibrium of

the proposed game. We find that the equilibrium behavior of the proposed game-

theoretic model confirms with the real data.

3.5.1 Observations from real data

In Fig. 3.3, we plot mention dynamics of popular memes and sum citation

dynamics of all the papers published in Nature in 1990. Here, we use the dynamics

of memes and the citation dynamics of papers as examples of popularity dynamics.

We observe that, typically, the popularity dynamics of an item will first in-

crease and then decrease, leading to a peak in the dynamics. This is a general

first order property of popularity dynamics. Thus, a natural question is: does the

equilibrium behavior of the proposed game-theoretic model possess this property?
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Intuitively, it should. The reason is as follows. At first, according to our model,

the visibility probability is low since the item has few interactions. As time goes,

the item accumulates more interactions so that the visibility probability increases

and the interaction rate, i.e., the dynamics observed in Fig. 3.3, also increases.

When time is sufficiently large, the visibility probability basically saturates. With

the augment of the cumulative interactions, the instantaneous reward and long-term

reward decreases so that few players will further interact with the item, leading to

a decrease in interaction rate. In next subsection, we will formally state and prove

this first order property.

Furthermore, we observe that some popularity dynamics, especially the cita-

tion dynamics of papers as in Fig. 3.3-(b), Fig. 3.6 and Fig. 3.7-(c)(d), have the

following second order property: when it is increasing, its increasing speed gradu-

ally slows down and when it is decreasing, its decreasing speed also gradually slows

down. This behavior is reasonable. Many items’ interaction rates increase drasti-

cally when they first come out and keep increasing (but at a lower speed) until they

reach the peak. Later, after the items are no longer that popular, their interaction

rates decrease quickly and will keep decreasing for some time (but at a lower speed).

In next subsection, we will formally state and prove this second order property under

certain assumptions.
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(a) Mention dynamics of popular

memes.

(b) Sum citation dynamics of all the papers published in

Nature in 1990.

Fig. 3.3: Real-world popularity dynamics [46,114].
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3.5.2 Properties at the equilibrium

Generally, the unique SNE should be computed using the backward induction

as specified in Algorithm 3.1, which is hard to analyze. To facilitate analysis, we

further restrict attention to models satisfying the following three assumptions:

(1) (Linear reward) R(x, θ) = −x+ aθ − b, where a > b > 0.

(2) (Uniform player type distribution) h(θ) = 1, ∀θ ∈ [0, 1].

(3) (Saturated visibility probability) There exists a x̌ ∈ N less than x̂ = ba− bc such

that: ∀x ≥ x̌ : f(x) = 1, and ∀1 ≤ x ≤ x̌:

f(x)

f(x− 1)
≥ 1 +

1 + λ
x

a− b− x̌
. (3.13)

These three assumptions can be justified as follows. (1) Linear reward is used to

simplify the analysis and it indeed increases with θ and decreases with x, which

coincides with the assumptions in Section 3.3. (2) Uniform player type distribution

is also to simplify calculations though our analysis is applicable to more complicated

distributions in principle. (3) When the number of interactions is large enough, the

item becomes ‘famous’ enough so that it is visible to everyone arriving at the system.

Before this saturation occurs, however, it increases at a speed not too slow. Note

that the R.H.S. of (3.13) is very close to 1 since the numerator of the ratio is close

to 1 while the denominator is some integer much larger than 1 generally. So, the

assumption is indeed very weak.

Denote r(x) = f(x)pπ
∗
(x), i.e., the probability that there is a new interaction

at state x in the SNE. We first show the first order property of the SNE.
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Theorem 3.3 (First order characterization of the SNE) Suppose the as-

sumptions (1)(2)(3) hold, the SNE π∗ satisfies the following:

• For 1 ≤ x ≤ x̌: r(x) ≥ r(x− 1);

• For x ≥ x̌: r(x) ≥ r(x+ 1).

In other words, the interaction rate r(x) first increases and then decreases.

Proof: According to the assumptions of linear reward and uniform player type

distribution, we can obtain closed form expression of the iterative update of θ∗x and

pπ
∗
(x) in Algorithm 3.1 as follows: ∀x ≤ x̂ = ba− bc:

pπ
∗
(x) = 1− 1

a
(x+ b− λgπ∗(x+ 1))+, (3.14)

gπ∗(x) =
1

1− λ(1− f(x)pπ∗(x))

[
f(x)pπ

∗
(x)

x
+ λf(x)pπ

∗
(x)gπ∗(x+ 1)

]
, (3.15)

where x+ , max{x, 0}.

We first consider the case x ≥ x̌. In the following, we show that gπ∗ is decreas-

ing for x̌ ≤ x ≤ x̂ + 1. When x̌ ≤ x ≤ x̂, noticing that f(x) = 1, we rewrite (3.15)

as:

gπ∗(x)− gπ∗(x+ 1) =
pπ

∗
(x)

1− λ(1− pπ∗(x))

[
1

x
− 1− λ
pπ∗(x)

gπ∗(x+ 1)

]
. (3.16)

Since gπ∗(x̂+ 1) = 0, we have:

0 = gπ∗(x̂+ 1) ≤ gπ∗(x̂) =
pπ

∗
(x̂)

[1− λ(1− pπ∗(x̂))]x̂
≤ pπ

∗
(x)

(1− λ)x̂
. (3.17)

Suppose gπ∗(x) ≥ gπ∗(x + 1) and gπ∗(x) ≤ pπ
∗

(x)
(1−λ)x

,∀m ≤ x ≤ x̂ for some x̌ + 1 ≤

m ≤ x̂ (note that we already show that these hold for m = x̂). We next show

gπ∗(m− 1) ≥ gπ∗(m) and gπ∗(m− 1) ≤ pπ
∗

(m−1)
(1−λ)(m−1)

.
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According to (3.14), for m ≤ x ≤ x̂:

pπ
∗
(x− 1) = 1− 1

a
(x− 1 + b− λgπ∗(x))+, (3.18)

pπ
∗
(x) = 1− 1

a
(x+ b− λgπ∗(x+ 1))+. (3.19)

Since gπ∗(x) ≥ gπ∗(x+ 1),∀m ≤ x ≤ x̂, comparing the above two expressions,

we have pπ
∗
(x− 1) ≥ pπ

∗
(x),∀m ≤ x ≤ x̂. In particular, pπ

∗
(m− 1) ≥ pπ

∗
(m), thus,

gπ∗(m) ≤ pπ
∗
(m)

(1− λ)m
≤ pπ

∗
(m− 1)

(1− λ)(m− 1)
. (3.20)

Hence, by (3.16) and (3.20), we obtain:

gπ∗(m− 1)− gπ∗(m) =
pπ

∗
(m− 1)

1− λ(1− pπ∗(m− 1))

[
1

m− 1
− 1− λ
pπ∗(m− 1)

gπ∗(m)

]
≥ 0.

(3.21)

So, gπ∗(m− 1) ≥ gπ∗(m). In addition:

gπ∗(m−1) = E

[
∞∑
t=1

λt−1p
π∗

(xt)

xt

∣∣∣∣π∗,m− 1

]
≤

∞∑
t=1

λt−1p
π∗

(m− 1)

m− 1
=

pπ
∗
(m− 1)

(1− λ)(m− 1)
.

(3.22)

Hence, by induction, we have gπ∗(x) ≥ gπ∗(x + 1) and gπ∗(x) ≤ pπ
∗

(x)
(1−λ)x

,∀x̌ ≤

x ≤ x̂. Thus, by (3.14), we have: pπ
∗
(x − 1) ≥ pπ

∗
(x), ∀x̌ ≤ x ≤ x̂. Note that

pπ
∗
(x) = 0, ∀x ≥ x̂ + 1 since π∗(x, θ) = 0,∀x ≥ x̂ + 1, θ ∈ [0, 1]. Thus, for x ≥ x̌:

pπ
∗
(x) ≥ pπ

∗
(x+ 1). So, for x ≥ x̌: r(x) ≥ r(x+ 1).

Next, we consider the case x ≤ x̌(≤ x̂). In such a case, we rewrite the update

equations (3.14) and (3.15) in terms of gπ∗ and r as follows:

gπ∗(x) =
r(x)

1− λ(1− r(x))

[
1

x
+ λgπ∗(x+ 1)

]
,∀1 ≤ x ≤ x̌, (3.23)

r(x) =

[
1− 1

a
(x+ b− λgπ∗(x+ 1))+

]
f(x),∀0 ≤ x ≤ x̌. (3.24)
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Rewriting (3.23) yields: ∀1 ≤ x ≤ x̌:

gπ∗(x)− gπ∗(x+ 1) =
r(x)

1− λ(1− r(x))

[
1

x
− 1− λ

r(x)
gπ∗(x+ 1)

]
≤ r(x)

1− λ(1− r(x))

1

x
≤ 1

x
.

(3.25)

For 1 ≤ x ≤ x̌:

r(x)

r(x− 1)
=

1− 1
a
(x+ b− λgπ∗(x+ 1))+

1− 1
a
(x− 1 + b− λgπ∗(x))+

f(x)

f(x− 1)
. (3.26)

For 1 ≤ x ≤ x̌, from (3.25) we have:

(x+b−λgπ∗(x+1))−(x−1+b−λgπ∗(x)) = 1+λ[gπ∗(x)−gπ∗(x+1)] ≤ 1+
λ

x
. (3.27)

So,

(x+ b− λgπ∗(x+ 1))+ − (x− 1 + b− λgπ∗(x))+ ≤ 1 +
λ

x
. (3.28)

Hence,

[
1− 1

a
(x+ b− λgπ∗(x+ 1))+

]
−
[
1− 1

a
(x− 1 + b− λgπ∗(x))+

]
≤ 1

a

(
1 +

λ

x

)
.

(3.29)

We further know that:

1− 1

a
(x+ b− λgπ∗(x+ 1))+ ≥ 1− 1

a
(x+ b) ≥ 1− 1

a
(x̌+ b). (3.30)

Thus,

1− 1
a
(x− 1 + b− λgπ∗(x))+

1− 1
a
(x+ b− λgπ∗(x+ 1))+

− 1 ≤
1
a

(
1 + λ

x

)
1− (x+ b− λgπ∗(x+ 1))+

(3.31)

≤
1
a

(
1 + λ

x

)
1− 1

a
(x̌+ b)

(3.32)

=
1 + λ

x

a− b− x̌
. (3.33)
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Note that for 1 ≤ x ≤ x̌:

1 +
1 + λ

x

a− b− x̌
≤ f(x)

f(x− 1)
. (3.34)

Combining (3.33) and (3.34) yields:

1− 1
a
(x− 1 + b− λgπ∗(x))+

1− 1
a
(x+ b− λgπ∗(x+ 1))+

≤ f(x)

f(x− 1)
, (3.35)

which, according to (3.26), is equivalent to:

r(x) ≥ r(x− 1), (3.36)

where 1 ≤ x ≤ x̌.

Next we turn to the second order property of the SNE.

Theorem 3.4 (Second order characterization of the SNE) Suppose that the

assumptions (1)(2)(3) hold. Further assume that (i) λ ≤ 1
a−b and (ii) ∀ 2 ≤ x ≤ x̌:

f(x) +
(

1 +
1+λ

x

a−b−x̌

)
f(x− 2) ≤ 2f(x− 1). Then the SNE π∗ satisfies the following:

• For 2 ≤ x ≤ x̌: 0 ≤ r(x)− r(x− 1) ≤ r(x− 1)− r(x− 2);

• For x ≥ x̌+ 2: 0 ≤ r(x− 1)− r(x) ≤ r(x− 2)− r(x− 1).

In other words, we have: (a) when r(x) is increasing, its increasing speed gradually

slows down; (b) when r(x) is decreasing, its decreasing speed also gradually slows

down.

Proof: We first consider the case x̌+ 2 ≤ x ≤ x̂− 1. From λ ≤ 1
a−b , we get:

λ

(
a− b− x̌+

λ

(1− λ)(x̌+ 1)

)
≤ 1. (3.37)
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Since pπ
∗
(x) is decreasing for x ≥ x̌, we have:

pπ
∗
(x) ≤ pπ

∗
(x̌) = 1− 1

a
(x̌+b−λgπ∗(x̌+1)) ≤ 1− 1

a
(x̌+b)+

λ

a(1− λ)(x̌+ 1)
≤ 1

λa
,

(3.38)

where in the second last inequality and last inequality we make use of (3.6) and

(3.37) respectively. Furthermore,

pπ
∗
(x)

1− λ(1− pπ∗(x))
=

1

λ+ 1−λ
pπ∗ (x)

≤ 1. (3.39)

So, together with (4.11), we have:

λpπ
∗
(x)

1− λ(1− pπ∗(x))
≤ 1

apπ∗(x)
. (3.40)

For any x̌ ≤ x ≤ x̂:

x+ b− λgπ∗(x+ 1) ≥ x̌+ b− λgπ∗(x̌+ 1) ≥ x̌+ b− λ

(1− λ)(x̌+ 1)
≥ 0. (3.41)

So, from (3.14), for any x̌+ 2 ≤ x ≤ x̂− 1, we obtain:

pπ
∗
(x− 1)− pπ∗

(x) =
1

a
+
λ

a
gπ∗(x)− λ

a
gπ∗(x+ 1) ≥ 1

a
, (3.42)

where the last inequality is due to the monotonicity of gπ∗(x) for x ≥ x̌. Combining

(4.12) and (4.10) yields ∀x̌+ 2 ≤ x ≤ x̂− 1:

λpπ
∗
(x)

1− λ(1− pπ∗(x))
≤ pπ

∗
(x− 1)− pπ∗

(x)

pπ∗(x)
. (3.43)

From (3.15), noticing that f(x) = 1, we have ∀x̌+ 2 ≤ x ≤ x̂− 1:

gπ∗(x+ 1) ≥ 1

1− λ(1− pπ∗(x))

pπ
∗
(x)

x
, (3.44)
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and thus

gπ∗(x)

gπ∗(x+ 1)
≤ pπ

∗
(x)

1− λ(1− pπ∗(x))

{
1

x

x[1− λ(1− pπ∗
(x))]

pπ∗(x)
+ λ

}
= 1 +

λpπ
∗
(x)

1− λ(1− pπ∗(x))

≤ pπ
∗
(x− 1)

pπ∗(x)
,

(3.45)

where the last inequality is due to (3.43). Hence, ∀x̌+ 2 ≤ x ≤ x̂− 1:

gπ∗(x+ 1)

pπ∗(x)
≥ gπ∗(x)

pπ∗(x− 1)
. (3.46)

From (3.15), we have:

gπ∗(x)− gπ∗(x+ 1) =
pπ

∗
(x)

1− λ(1− pπ∗(x))

[
1

x
− 1− λ
pπ∗(x)

gπ∗(x+ 1)

]
, (3.47)

gπ∗(x− 1)− gπ∗(x) =
pπ

∗
(x− 1)

1− λ(1− pπ∗(x− 1))

[
1

x− 1
− 1− λ
pπ∗(x− 1)

gπ∗(x)

]
.(3.48)

From monotonicity of pπ
∗
(x) on x ≥ x̌, we have:

pπ
∗
(x)

1− λ(1− pπ∗(x))
≤ pπ

∗
(x− 1)

1− λ(1− pπ∗(x− 1))
. (3.49)

Combining (3.46) and (3.49) yields:

gπ∗(x)− gπ∗(x+ 1) ≤ gπ∗(x− 1)− gπ∗(x). (3.50)

From (3.14) and (3.41), we get:

2pπ
∗
(x−1)−pπ∗

(x)−pπ∗
(x−2) =

λ

a
[2gπ∗(x)− gπ∗(x− 1)− gπ∗(x+ 1)] ≤ 0. (3.51)

So, r(x− 1)− r(x) ≤ r(x− 2)− r(x− 1),∀x̌ + 2 ≤ x ≤ x̂− 1. Furthermore, since

0 = 2gπ∗(x̂+ 1) ≤ gπ∗(x̂) + gπ∗(x̂+ 2), we have:

2

[
1− 1

a
(x̂+ b− λgπ∗(x̂+ 1))

]
≤ 1− 1

a
(x̂− 1 + b− λgπ∗(x̂)) + 1− 1

a
(x+ 1 + b− λgπ∗(x̂+ 2))

< 1− 1

a
(x̂− 1 + b− λgπ∗(x̂)).

(3.52)
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Hence,

pπ
∗
(x̂) ≤ 1

2
pπ

∗
(x̂− 1) =

1

2
(pπ

∗
(x̂− 1) + pπ

∗
(x̂+ 1)) (3.53)

Thus, we have r(x̂) − r(x̂ + 1) ≤ r(x̂ − 1) − r(x̂). Since λ ≤ 1
a−b , we have x̂ − 1 ≤

(1− λ(1− pπ∗
(x̂)))x̂. Together with pπ

∗
(x̂) ≤ 1

2
pπ

∗
(x̂− 1), we have:

pπ
∗
(x̂− 1)

x̂− 1
≥ 2

1− λ(1− pπ∗(x̂))

pπ
∗
(x̂)

x̂
= 2gπ∗(x̂) ≥ (2− 2λ+ λpπ

∗
(x̂− 1))gπ∗(x̂).

(3.54)

So,

gπ∗(x̂− 1) =
1

1− λ(1− pπ∗(x̂− 1))

[
pπ

∗
(x̂− 1)

x̂− 1
+ λpπ

∗
(x̂− 1)gπ∗(x̂)

]
≥ 2gπ∗(x̂).

(3.55)

Thereby,

2pπ
∗
(x̂− 1)− pπ∗

(x̂)− pπ∗
(x̂− 2) =

λ

a
[2gπ∗(x̂)− gπ∗(x̂− 1)] ≤ 0. (3.56)

So, r(x̂ − 1) − r(x̂) ≤ r(x̂ − 2) − r(x̂ − 1). Hence, overall, r(x − 1) − r(x) ≤

r(x− 2)− r(x− 1),∀x ≥ x̌+ 2.

Now, consider 2 ≤ x ≤ x̌. Because gπ∗(x + 1) ≤ 1
(1−λ)(x+1)

≤ 1
(1−λ)x

, we have

1
x
− 1−λ

r(x)
gπ∗(x+ 1) ≥ 1

x

(
1− 1

r(x)

)
. Hence, from (3.25), we get:

gπ∗(x)− gπ∗(x+ 1) ≥ r(x)

1− λ(1− r(x))

1

x

(
1− 1

r(x)

)
= − 1− r(x)

1− λ(1− r(x))

1

x
≥ −1

λ
.

(3.57)

Thus,

(x+ b− λgπ∗(x+ 1))+ ≥ (x− 1 + b− λgπ∗(x))+. (3.58)

So,

1− 1
a
(x+ b− λgπ∗(x+ 1))+

1− 1
a
(x− 1 + b− λgπ∗(x))+

≤ 1. (3.59)
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Together with (3.33), we know that:

1− 1
a
(x+ b− λgπ∗(x+ 1))+

1− 1
a
(x− 1 + b− λgπ∗(x))+

f(x) +
1− 1

a
(x− 2 + b− λgπ∗(x− 1))+

1− 1
a
(x− 1 + b− λgπ∗(x))+

f(x− 2)

≤ f(x) +

(
1 +

1 + λ
x

a− b− x̌

)
f(x− 2)

≤ 2f(x− 1).

(3.60)

Thus, r(x)+r(x−2) ≤ 2r(x−1), i.e., r(x)−r(x−1) ≤ r(x−1)−r(x−2),∀ 2 ≤ x ≤ x̌.

Remark 3.2 Assumption (i) of Theorem 3.4 requires the discount factor λ to be

sufficiently small, or in other words, players of the popularity dynamics game are

myopic and don’t care about future rewards very much. Assumption (ii) is basically

equivalent to f(x) − f(x − 1) ≤ f(x − 1) − f(x − 2), ∀2 ≤ x ≤ x̌ since the ratio in

the parenthesis of (ii) is usually very small. This requires f(x)’s increasing speed

is slowing down as x approaches x̌, which is a reasonable assumption. Moreover,

we notice that Theorem 3.4 does not cover all the situations of popularity dynamics.

There are real-world popularity dynamics, such as those in Fig. 3.3-(a), which have

more complicated second order patterns. For example, during increasing phase of

the dynamics, the increasing speed can first increase and then decrease. Due to the

intricacy of these second order patterns, we don’t give theoretical discussions about

them here.

3.6 Simulations and Real Data Experiments

In this section, we conduct simulations and real data experiments to validate

the theoretical results obtained. We choose the form of instantaneous reward func-
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tion to be linear, i.e., R(x, θ) = −x+ aθ − b, where a > b > 0.

3.6.1 Simulations

In our simulation, we define the visibility probability function f(x) in the

following form:

f(x) = α
(
1− e−βx

)
+ 1− α, (3.61)

where α, β are parameters controlling the initial visibility probability and the in-

creasing speed of the visibility probability. We set the discount factor to be λ = 0.5.

For different parameter setups of a, b, α, β, we stochastically simulate the equilib-

rium popularity dynamics calculated by Algorithm 3.1 many times and then take

average of them. Here, the equilibrium behaviors are stochastic because (i) the user

types are random variables; (ii) whether the item is visible to the arriving player

is random. We also theoretically compute the expected equilibrium popularity dy-

namics by Algorithm 3.1, which serve as the theoretical dynamics. Specifically, for

theoretical dynamics, at each time instant, we replace the actual stochastic equilib-

rium behavior with the expected equilibrium behavior. This deviation may affect

the system state at the next time instant, which in turn influence the equilibrium

behaviors at the next time instant since players’ strategies depend on the system

state. In other words, the deviation caused by using the expected equilibrium be-

haviors to approximate the actual stochastic equilibrium behaviors may propagate

and accumulate. The simulations are aimed at verifying that this approximation

does not hurt much, i.e., the theoretical dynamics can still match well with the
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Figure 3.4: Simulation results under different parameter setups.

simulated ones. The theoretical cumulative dynamics as well as the corresponding

simulated cumulative dynamics are shown in Fig. 4.1, from which we observe that

(i) the theoretical dynamics indeed match well with the simulated dynamics; (ii)

the proposed game-theoretic model can flexibly generate popularity dynamics of

different shapes by tuning the parameters.

3.6.2 Real data experiments

In this subsection, real data experiments are carried out to verify that the pro-

posed theory matches well with the real-world popularity dynamics. The datasets

we use here are Twitter hashtag dataset [114] and the citation data of papers from

the Web of Science [46]. The Twitter hashtag data are the mentioning counts of pop-

ular hashtags from June to December 2009. We first use the equilibrium computed

by Algorithm 3.1 to fit the mention dynamics of four popular Twitter hashtags in
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(d) #DavidArchuleta

Fig. 3.5: Fitting Twitter hashtag dynamics.

Fig. 3.5. To fit a popularity dynamics, we use the dynamics data to estimate the pa-

rameters of the proposed model and then use the estimated parameters to generate

a theoretical dynamics, which is the fitting result. We observe that the theoretical

fitting dynamics match well with the real-world dynamics. We further fit the av-

erage citation dynamics of the papers published in Nature 1990 and Science 1990,

respectively, in Fig. 3.6. We remark that the fitting is still very accurate, though

the temporal shape of the citation dynamics are very different from that of the

Twitter hashtag dynamics, confirming the universality of our theory for popularity

dynamics.

Additionally, we can even exploit the equilibrium of the proposed game to

predict future dynamics for real data. To this end, we use part of the dynamics

data to train the proposed game-theoretic model, i.e., estimate the parameters in

the model, and then predict future dynamics by using the trained model. The
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Fig. 3.6: Fitting paper citation dynamics.

prediction results are reported in Fig. 3.7, from which we see that the prediction is

quite accurate. To highlight the advantage of the proposed approach, we compare

with the prediction results of two existing methods, namely the methods in [106]

and [54], which are reported in Figures 3.8 and 3.9, respectively. The four dynamics

to be predicted are the same as those in Fig. 3.7. First, we note that the approach

in [106] is proposed for citation dynamics. From Fig. 3.8, we observe that the

method of [106] fails in predicting the dynamics of the two hashtags (subfigures (a)

and (b)). Even for prediction of citation dynamics (subfigures (c) and (d)), our

approach outperforms the method in [106]. Second, noting that the method in [54]

is designed for information diffusion dynamics, we observe that our approach still

outperforms it when predicting the dynamics of two hashtags (Fig. 3.9-(a) and Fig.

3.9-(b)). When it comes to the prediction of citation dynamics, our approach is much

better than the method in [54] (Fig. 3.9-(c) and Fig. 3.9-(d)). These comparisons

demonstrate that our proposed approach is universally good for general popularity

dynamics. Even compared with methods specifically designed for a certain kind

of popularity dynamics (e.g., [54] for information diffusion and [106] for citations),

our method is still better. In addition, the performance enhancement over the
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Fig. 3.7: Predicting future dynamics.

method in [54] can be ascribed to the fact that the model in [54] is merely based

on instantaneous incentives while our model incorporates long-term incentives as

well, which suggests the importance and necessity of taking long-term incentives of

individuals into account.

Generally, the prediction is accurate when the training period includes the

peak of the dynamics. However, sometimes, we may even predict future dynamics

accurately without knowing the peak, which is illustrated by a Twitter hashtag

#Tehran in Fig. 3.10.

3.7 Summary

In this chapter, a sequential game is proposed to characterize the mechanisms

of popularity dynamics. We prove that the proposed game has a unique SNE, which

is a pure strategy action rule with a threshold structure and can be computed using
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Fig. 3.8: Prediction results of the method in [106]
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Fig. 3.9: Prediction results of the method in [54]
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Figure 3.10: Prediction before reaching the peak of the dynamics: Twitter hashtag

#Tehran.

a backward induction algorithm. Moreover, at the equilibrium of the proposed

game, we analyze some properties observed from the real data, demonstrating that

the equilibrium behavior of the proposed game confirms with real-world popularity

dynamics. The theory is validated by both simulations and experiments based on

real data. The proposed model can even predict future dynamics.

88



Chapter 4

A Graphical Evolutionary Game Approach to Social Learning

4.1 Motivation

In the recent decade, tremendous research efforts have been devoted to the

social learning problems, in which agents of networked systems learn from not only

their own private signals but also other agents. Applications of such social learn-

ing problems are ubiquitous in fields such as state estimation in power systems,

distributed detection over sensor networks and behavior analysis of social networks.

The setups of the social learning problems can be sorted into two categories.

In the first category, agents arrive at the system sequentially and make one-shot

decisions consecutively based on their own private observations and the actions of

their predecessors. In [63,64], the sequential detection problem was studied by using

partially observable Markov decision processes (POMDP). The impact of the mem-

ory size of the agents was investigated in [30,61]. The effect of noisy communications

in sequential detection was considered in [116] while the benefits of randomness of

decision making were studied in [109]. Furthermore, a Chinese restaurant game-

theoretic analysis of agents’ sequential decision making processes was presented

in [105]. The problem formulation of this letter is closer to the second category of
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social learning setups, in which agents are fixed and networked and update their

actions iteratively based on their own private signals and neighbor agents’ actions

or beliefs. In this line of models, the consensus hypothesis testing over networks was

investigated in [12,108], while its applications in wireless communications were con-

sidered in [76]. Moreover, a non-Bayesian social learning method with the property

of asymptotic learning was proposed in [51]. Overviews on topics in social learning,

distributed detection/estimation over networks were presented in [28,29,84].

As the social learning problems involve interactions (learning and decision

making) between multiple agents, game theory emerges as an appropriate mathe-

matical tool to study them [99]. In [32,33], a Bayesian quadratic network game filter

was proposed for rational agents to learn the state of the world in a cooperative man-

ner. A Bayesian dynamic game model of social learning was investigated and the

conditions of asymptotic learning were presented in [2]. Additionally, the network

users’ decision making problems were studied with a Bayesian game formulation

in [65,66].

In this chapter, inspired by the recent success of evolutionary game theory in

diverse fields [14,53–55,80,83], we propose a graphical evolutionary game-theoretic

method for social learning. In the proposed method, based on a death-birth decision

update rule, agents only need to communicate their binary decisions instead of

the real-valued beliefs with their neighbors, which endows the method with low

communication complexity. By invoking mean field approximations, we analyze

the steady state equilibria of the game and show that the evolutionarily stable

states (ESSs) [110] coincide with the decisions of the benchmark centralized detector.
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Lastly, we present numerical results to confirm the effectiveness of the proposed

game-theoretic learning method.

4.2 Problem Formulation

Consider a network of N agents or nodes (the two terms are used interchange-

ably in the following). Assume for simplicity that the network is k-regular, i.e.,

the degree (number of neighbors) of each agent is k. In practice, many networks

are k-regular graphs. For example, many sensor networks are grid networks over

2-dimensional plane and are thus 4-regular graphs [56]; many cellular communica-

tion networks are comprised of hexagon cells (each hexagon cell corresponds to the

service area of one base station) and are hence 6-regular graphs. In the social learn-

ing problem, there is an unknown state of the nature θ ∈ {0, 1} to be detected by

all the nodes in a collaborative manner based on their individual private signals or

measurements. Suppose the prior distribution of θ is Pr(θ = 0) = Pr(θ = 1) = 0.5.

Agents are sorted into I categories depending on the qualities of their private sig-

nals, i.e., the usefulness of the private signals in detecting the unknown state θ.

Suppose agent n has some private signal sn and its type is i. Then, its private belief

is pi = Pr{θ = 0|sn}. Clearly, if pi is close to 0 or 1, then the signals of type-i agents

are useful for detecting θ. Oppositely, if pi is close to 0.5, then the signals of type-i

agents are not very useful.
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4.2.1 The Centralized Detector

In this subsection, a centralized detector, i.e., a detector utilizing the signals of

all agents in a centralized manner, is derived as a performance benchmark. Assume

that, given the true state θ, the signals s1, ..., sN (henceforth s1:N for shorthand) are

conditionally independent, i.e., p(s1:N |θ) = ΠN
n=1p(sn|θ). With the signals s1:N of all

N nodes, a centralized processor can form the posterior distribution Pr(θ = 0|s1:N)

according to the Bayesian rule as follows:

Pr(θ = 0|s1:N) (4.1)

=
p(s1:N |θ = 0) Pr(θ = 0)

p(s1:N |θ = 0) Pr(θ = 0) + p(s1:N |θ = 1) Pr(θ = 1)
(4.2)

=
ΠN
n=1p(sn|θ = 0)

ΠN
n=1p(sn|θ = 0) + ΠN

n=1p(sn|θ = 1)
(4.3)

=
1

1 + ΠI
i=1

(
1−pi
pi

)Nqi , (4.4)

where we denote the proportion of type-i agents as qi. With a threshold of 0.5 for the

posterior distribution Pr(θ = 0|s1:N), the decision rule of the centralized detector θ̂c

is given by:

I∑
i=1

qi log

(
1− pi
pi

)
θ̂c=1

≷
θ̂c=0

0. (4.5)

4.2.2 A Graphical Evolutionary Game Framework

The centralized detector has several drawbacks such as large communication

overhead and vulnerability to link failures which make it infeasible in many appli-

cations. Therefore, we are motivated to find another detection algorithm with the

following favorable properties.
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• P1 The detection algorithm is distributed, i.e., each agent only communicates

with its neighbors and no centralized entity is needed.

• P2 Agents only interchange their current binary decisions on the state θ instead

of their real-valued beliefs (posterior distributions) on θ. This reduces the

communication complexity significantly.

• P3 The detection algorithm produces the same result as the centralized detec-

tor (4.5) does, possibly asymptotically if the algorithm is iterative.

In this subsection, we present a graphical evolutionary game social learning ap-

proach, which satisfies the aforementioned three properties. Suppose each agent

n has a decision dn ∈ {0, 1} on the state θ and the decision dn shall be updated

iteratively in the game. When a type-i agent n interacts with one of its neighbors,

agent m, the utility of agent n is summarized in the following table for different

combinations of actions of the two interacting parties n and m:

dm = 0 dm = 1

dn = 0 log(1− pi) + u − log(1− pi)

dn = 1 − log pi − log pi + u

Here u ≥ 0 is some non-negative constant used to capture the fact that agents

tend to imitate their neighbors (or friends in social networks) and reach consensus.

Additionally, agent n also tends to adhere to its own private belief pi. As such, we

reward or penalize the utility of agent n for actions conforming to or deviating from

its belief pi, respectively. The usage of logarithmic terms in the utility is inspired by

the centralized detector (4.5). For an agent with total utility U through interactions
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with her neighbors, we further define her fitness π as a convex combination of U

and 1: π = 1 − α + αU , where α > 0 is some small positive constant called the

selection strength in evolutionary game theory. The bigger the selection strength α,

the more heavily the fitness π depends on the utility U and the bigger the advantage

of agents with large utility. For a type-i agent with k0 neighbors making decision 0,

if he makes decision d = 0, then his fitness is:

π0(i, k0) =1− α + α[k0(− log(1− pi) + u)− (k − k0) log(1− pi)]. (4.6)

If he makes decision d = 1, then his fitness is:

π1(i, k0) = 1− α + α[−k0 log pi + (k − k0)(− log pi + u)]. (4.7)

Based on fitness, agents can update their decisions according to some strategy

update rule. In the literature of graphical evolutionary game theory [14, 54, 55,

82, 83], there are mainly three strategy update rules: the death-birth process, the

birth-death process and the imitation process. In this letter, we will focus on the

death-birth update rule and other rules can be similarly analyzed. In the death-

birth update rule, at each time slot, one agent is selected to abandon her decision

uniformly randomly (death process) and the chosen agent update her decision to

be one of her neighbors’ decisions with probability proportional to their fitness

(birth process). This decision update process continues repeatedly across time. In

this chapter, our goal is to study the agents’ steady state behaviors in this update

process.

The proportion of adoption of decision 0 among type-i agents is denoted as

xi while the proportion of adoption of decision 0 among all agents is denoted as x.
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We call xi the population dynamics of type-i agents and x the population dynamics

of the entire network (or simply population dynamics). Obviously, we have x =∑I
i=1 qixi. Our goal in this letter is to study the steady state equilibrium of the

population dynamics x and show that this equilibrium coincides with the centralized

detector (4.5).

We note that the gossip method proposed in [108] tackles a similar social

learning problem and also possesses properties P1, P2 and P3. In this chapter, we

take an alternative approach based on evolutionary game theory as opposed to the

gossip based method in [108]. The proposed game-theoretic social learning method

takes agents’ rational learning and decision-making behaviors (such as learning from

neighbors with high fitness) into consideration and is thus more amenable to prac-

tical implementations in systems with intellegient or strategic agents, e.g., social

networks.

4.3 Algorithm Development and Equilibrium Analysis

In this section, we develop the detailed algorithm of the game-theoretic social

learning method and analyze the corresponding steady state equilibrium, i.e., the

evolutionarily stable state (ESS) [110], of the population dynamics x. Suppose,

at a time instant, a type-i agent with decision 0 is chosen to abandon her decision.

According to the death-birth update rule, this agent should update her decision to be

one of her neighbors’ decisions with probability proportional to fitness. However, as

we only allow the agents to communicate their decisions d rather than their private
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beliefs p (property P2), the chosen agent is unaware of her neighbors’ fitness, which

depend on their private beliefs. As such, the chosen agent will update her decision

as if all of her neighbors’ types are i, i.e., their beliefs are pi, and only take the

neighbors’ decisions into consideration. Thus, the probability that the chosen agent

will change her decision from 0 to 1 is given by:

Pr
0→1

(i, k0) =
(k − k0)π1(i, k0)

k0π0(i, k0) + (k − k0)π1(i, k0)
. (4.8)

Exploiting the expressions of fitness in (4.6) and (4.7) and making use of the first
order approximation 1+aα

1+bα
≈ 1 + (a − b)α for small α, we compute the transition

probability Pr0→1(i, k0) in (4.9).

Pr
0→1

(i, k0)

=
k − k0

k

1 + α[−k0 log pi + (k − k0)(− log pi + u) − 1]

1 + α
{
k0
k

[k0(− log(1 − pi) + u) − (k − k0) log(1 − pi) − 1] +
(
1 − k0

k

)
[−k0 log pi + (k − k0)(− log pi + u) − 1]

}
≈
k − k0

k
+ α(k − k0)

[(
log

1 − pi

pi
+ u

)
k0

k
− 2u

k20

k2

]
(4.9)

Note that k0 is a binomially distributed random variable with probability mass

function (PMF) β(k, k0) =

k
k0

xk0(1 − x)k−k0 . Using the moments of binomial

distribution, we obtain E[k0] = kx, E[k2
0] = (k2 − k)x2 + kx, E[k3

0] = k(k − 1)(k −

2)x3 + 3k(k− 1)x2 + kx. Thus, we can compute the expected transition probability

averaged over k0:

Ek0
[

Pr
0→1

(i, k0)
]

= 1− x+ α

(
log

1− pi
pi

+ u

)
[−(k − 1)x2 + (k − 1)x]

− 2uα[(−k + 3− 2k−1)x3 + (k − 4 + 3k−1)x2

+ (1− k−1)x] (4.10)
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Noticing that the probability of choosing a type-i agent with decision 0 to abandon

her decision is qixi, we write the PMF of the increment of xi, denoted as δxi, in the

following:

Pr

(
δxi = − 1

Nqi

)
= qixiE

[
Pr
0→1

(i, k0)
]
. (4.11)

Similarly, by considering the scenario where a type-i agent with decision 1 is selected

to abandon her decision, we get:

Pr

(
δxi =

1

Nqi

)
= qi(1− xi)E

[
Pr
1→0

(i, k0)
]

(4.12)

= qi(1− xi)
(

1− E
[

Pr
0→1

(i, k0)
])
. (4.13)

We approximate the discrete time decision update system with a continuous time

version, as per convention in the analysis of graphical evolutionary game [14,54,55,

82,83]. Thus, utilizing (4.10), (4.11) and (4.12), we derive the evolutionary dynamics

of xi as follows:

ẋi =
1

Nqi
Pr

(
δxi =

1

Nqi

)
− 1

Nqi
Pr

(
δxi = − 1

Nqi

)
=

1

N

(
1− xi − E

[
Pr
0→1

(i, k0)
])

=
x

N
− xi
N

+
α

N
x(x− 1)

{
2u
[ (
−k + 3− 2k−1

)
x

− 1 + k−1
]

+

(
log

1− pi
pi

+ u

)
(k − 1)

}
(4.14)

Taking a weighted average over all types, we get the evolutionary dynamics of the
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population dynamics x as:

ẋ =
I∑
i=1

qiẋi

=
α

N
x(x− 1)

{
2u
[(
−k + 3− 2k−1

)
x− 1 + k−1

]
+ (λ+ u)(k − 1)

}
, (4.15)

where λ ,
∑I

i=1 qi log 1−pi
pi

. Note that λ is just the discriminant used in the central-

ized detector (4.5). Now, we are ready to present the main theorem of this letter

regarding the ESS of the social learning game.

Theorem 4.1 (i) Suppose the degree k ≥ 2. Then, the set of evolutionarily stable

states (ESSs) X ∗ of the social learning game is:

X ∗ =



{0}, if λ > u− 2k−1u,

{1}, if λ < −u+ 2k−1u,

{0, 1}, if − u+ 2k−1u < λ < u− 2k−1u.

(ii) If we further assume that the initial value of the population dynamics x is

x(0) = 0.5, which can be achieved by a random guess by all agents, then the ESS x∗

that the population dynamics x converges to is:

x∗ =


0, if λ > 0,

1, if λ < 0.

(4.16)

Proof: (i) Letting ẋ = 0 in the population dynamics (4.15) yields three equi-

libria 0, 1, and x̃, where x̃ , λ
2u(1−2k−1)

+ 1
2
. For an equilibrium point to be an ESS,

it needs to be a locally asymptotically stable for the underlying dynamical system.
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To test the stability of the three equilibria, we form the Jacobian matrix J ∈ R2×2

of the dynamical system (xi, x) specified in equations (4.14) and (4.15):

J =

 ∂ẋi
∂xi

∂ẋi
∂x

∂ẋ
∂xi

∂ẋ
∂x

 . (4.17)

The entries of J are computed as follows:

∂ẋi
∂xi

= − 1

N
,

∂ẋ

∂xi
= 0,

∂ẋi
∂x

=
1

N
+
α

N
(2x− 1)

[
− 2u

((
k − 3 + 2k−1

)
x+ 1− k−1

)
+

(
log

1− pi
pi

+ u

)
(k − 1)

]
+

2uα

N
x(x− 1)

(
−k + 3− 2k−1

)
,

∂ẋ

∂x
=
α

N
(2x− 1)

[
− 2u

( (
k − 3 + 2k−1

)
x+ 1− k−1

)
+ (u+ λ)(k − 1)

]
+

2uα

N
x(x− 1)(−k + 3− 2k−1)

As J is upper triangular and ∂ẋi
∂xi

is negative, the locally asymptotically stability is

equivalent to ∂ẋ
∂x
< 0. Therefore, x = 0 is an ESS iff ∂ẋ

∂x
|x=0 < 0, i.e., λ > −u+2k−1u.

Similarly, x = 1 is an ESS iff ∂ẋ
∂x
|x=1 < 0, i.e., λ < u − 2k−1u. x = x̃ is an ESS iff

∂ẋ
∂x
|x=x̃ < 0, i.e., x̃ < 0 or x̃ > 1, which contradict to the fact that the population

dynamics is within [0, 1]. So, x̃ can never be an ESS. We thus conclude the first

part of the theorem.

(ii) If λ > u− 2k−1u, then the unique ESS is 0 and the population dynamics

x will converge to it. Similarly, if λ < −u + 2k−1u, then the unique ESS is 1 and

the population dynamics x will converge to it. In these two circumstances, (4.16)

evidently holds. If −u+ 2k−1u < λ < u− 2k−1u, then the set of ESSs X ∗ contains
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both 0 and 1 and we need to ascertain which ESS will the population dynamics x

converge to. Recall the evolutionary dynamics of x in (4.15) and we note that if

x > x̃, then ẋ > 0 and x is increasing; if x < x̃, then ẋ < 0 and x is decreasing.

Recall that the initial value of x is x(0) = 0.5. If λ > 0, then x̃ > 0.5 = x(0). So, x

is decreasing initially, which means x will become even smaller and x < x̃ still hods.

Therefore, x is always decreasing and the ESS it converges to is 0. Analogously, if

λ < 0, then the ESS x converges to is 1.

Remark 4.1 Part (ii) of Theorem 4.1 establishes that the steady state of the game-

theoretic social learning method coincides with the decision of the centralized detec-

tor, i.e., the game-theoretic social learning method possesses property P3.

4.4 Numerical Results

In this section, numerical results are presented to corroborate the proposed

game-theoretic social learning approach. We simulate a random regular network

with N = 1000 nodes (agents) and the degree of each node is k = 20. The game

parameters are chosen to be α = 0.05 and u = 0.5. All experimental results are

averages over 100 independent trials.

We first consider a network of I = 2 types of agents. The belief of the first

type is fixed to be p1 = 0.2. We consider two scenarios (i) q1 = q2 = 0.5; (ii)

q1 = 0.3, q2 = 0.7. The relation between the ESS and p2 is reported in Fig. 4.1-

(a) for the two scenarios, respectively. , The ESSs are computed as the average

proportion of agents with decision 0 over the 100 trials. The decisions of the cen-
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tralized detector are also plotted as a benchmark. We observe that the ESSs of the

game-theoretic learning are close to the decisions of the centralized detector in both

scenarios. The gaps between the ESSs of the game-theoretic learning method and

the decisions of the centralized detector are consequences of the randomness of the

graphical evolutionary game formulation (e.g., the birth process in the death-birth

decision update rule is subject to randomness). Note that the theoretical result

(e.g., Theorem 4.1) is based on mean-field approximations, i.e., replacing random

variables with their expectations to simplify analysis. Therefore, though Theorem

4.1 asserts that the steady states of the game-theoretic learning method coincide

with the decisions of the centralized detector, there exist some gaps between the

two in numerical experiments. Since the game-theoretic learning method is fully

distributed and only requires communications of agents’ binary decisions instead of

their real-valued beliefs, it is still more desirable in many applications, especially

those in need of low communication overhead and robustness.

We further conduct experiments for networks with I = 5 types of agents. The

beliefs of the first four types are set to be p1 = 0.6, p2 = 0.7, p3 = 0.5, p4 =

0.4. We consider two scenarios: (i) q1 = q2 = q3 = q4 = q5 = 0.2; (ii) q1 =

0.2, q2 = 0.1, q3 = 0.1, q4 = 0.1, q5 = 0.5. The relation between the ESSs and

p5 is illustrated in Fig. 4.1-(b). The decisions of the centralized detector are also

shown as a comparison. Similar to the experiments with 2 types of agents, the

ESSs of the game-theoretic learning method can still match the decisions of the

centralized detector approximately, which confirms the effectiveness of the proposed

game-theoretic social learning method for different numbers of types.
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Fig. 4.1: Performance of the proposed social learning method

The typical number of iterations (or equivalently, time slots) needed to con-

verge to the ESS is between 5 × 104 to 105. Though the iteration number seems

huge, the actual convergence time in real networks is not large given the fact that

the length of each time slot is very small (the length of time slot is approximately

inversely proportional to the number of agents N since one agent is chosen to update

her decision in each time slot).

4.5 Summary

In this letter, a graphical evolutionary game based social learning method

is proposed. The method is fully distributed and only requires communications

of agents’ binary decisions instead of their real-valued beliefs, which endows the

proposed method with low communication complexity. Theoretical analysis under

mean field approximations indicates that the evolutionarily stable states of the game

coincide with the decisions of the centralized detector. Numerical experiments are

implemented to validate the performance of the game-theoretic learning method.
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Chapter 5

Data Trading with Multiple Owners, Collectors and Users: An

Iterative Auction Mechanism

5.1 Motivation

In the big data era, vast amount of data are generated and exploited by vari-

ous agents. For example, numerous memes such as Twitter hashtags are produced

in online social networks and millions of videos are uploaded to Youtube. Many

software/APP developers may need certain online data (such as the click-through

rate of some advertisements or mention count dynamics of some memes) to enhance

the quality of their products. As another example, with the development of data

procurement and storage capability, many organizations own databases of the statis-

tics of their fields, e.g., hospitals may have data about the clinical performances of

medicines. In order to conduct research, researchers need to access these data owned

by organizations. In all these circumstances, we face the problem of allotting/trading

data from the data owners (e.g., social networks/websites or organizations) to the

data users (e.g., software companies or researchers). In fact, several data trading

markets or companies have already emerged recently, such as the Data Marketplace,

Big Data Exchange and Microsoft Azure Marketplace. However, these data markets
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are still at the incipient stage and lack appropriate regulations. Economically, the

data agents are selfish and seek to maximize their own utilities instead of the overall

system efficiency. As such, a sophisticated mechanism is imperative to guide the

agents to distribute or trade data efficiently.

The problem of coordinating data trading in a data market falls into the gen-

eral topic of resource trading/allocation in networks, for which abundant works

have been done in the past decades. For communication networks, by using op-

timization and game theoretic techniques, researchers propose various algorithms

to allocate power [47, 48] or channels [44, 91] to communication nodes or access

points. For cognitive radio networks, spectrum resources are allotted among pri-

mary users and secondary users [52,103]. For power networks or smart grids, power

or voltage resources are distributed to devices and apparatuses in order to maintain

high-performance and stable power systems [36,67,72]. The most relevant resource

allocation/trading problem to this chapter is the privacy trading problem [90]. In

most privacy trading problems investigated in the current literature, a single data

collector is aimed at collecting binary data from multiple data owners in order to

estimate some statistics. From example, each data owner may have a binary answer

(yes/no) to some problem and the data collector wants to estimate the proportion

of data owners with the answer yes. The involved data are private and leakage of

them to the data collector compromises the security of data owners. The loss from

this compromising of privacy can be quantified by the differential privacy [31]. As

such, data owners should be somehow compensated by the data collector. Addi-

tionally, data owners are selfish and may not report their true data to the data
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collector. Therefore, from the perspective of the data collector, a mechanism is

needed to collect accurate data at a low cost from the data owners. To this end,

Ghosh and Roth proposed an auction mechanism for a single data collector to collect

data from multiple data owners [38]. Along this line, Fleischer and Lyu extended

the auction mechanism to the scenario where individual data owner’s valuation of

the data privacy was correlated with the data themselves [35]. Furthermore, Xu et

al. proposed a contract-theoretic mechanism to collect general private data which

are not necessarily binary [112].

However, there are two limitations of existing models of data trading in the

aforementioned works [35, 38, 112]. First, in the existing models, there is only one

single data collector. This is not the case in most real-world data market, where

multiple data collectors (such as many companies or groups like Big Data Exchange)

often coexist and compete with each other. Second, in most data markets, the

data collectors usually do not exploit the data by themselves. Instead, they often

sell the data to data users, who are not capable of collecting and storing massive

datasets but need data to develop projects or conduct research. For example, many

APP developers are small companies who cannot afford collecting necessary data

to develop APPs and thus need to purchase data from professional data collecting

companies. In other words, in data markets, besides data owners and collectors,

there are data users who can make use of the data but are not able to collect

data by themselves. In this chapter, we take the above mentioned two limitations

of existing works into consideration and investigate the data trading problem in a

market with multiple data owners, collectors and users (in the following, we use the
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term data agents to refer to data owners, collectors and users).

Due to the existence of multiple collectors and users, the problem in this

chapter is significantly different from the data trading in [35, 38, 112]. Instead of

maximizing the profit of a single collector as in previous works, we consider from a

system designer’s perspective and are aimed at maximizing the overall social welfare,

which quantifies the operation efficiency of the data market. However, in practice,

the data agents are usually selfish and seek to maximize their own utilities instead of

the overall system performance. In order to coordinate the data trading among mul-

tiple selfish agents, we resort to the iterative auction mechanism, which is initially

proposed in [57]. In iterative auction, the auctioneer announces the resource alloca-

tion and payment rules to the bidders. Then, the selfish bidders submit appropriate

bids to the auctioneer with the goal of maximizing their own utilities. Based on the

submitted bids, the auctioneer adjusts the resource allocation and payment rules

and another round of auction starts. Through careful design of the mechanism, the

iterative auction may converge to an operation point with satisfactory properties.

The iterative auction has already been successfully applied to resource allocation in

communication networks [13,49,50,73].

The contribution of this chapter is epitomized in the following.

• We present a data market model with multiple data owners, collectors and

users who have heterogeneous utility functions. Considering from the per-

spective of the system designer, we formulate corresponding social welfare

maximization problem.
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• An iterative auction mechanism is proposed to coordinate the data trading

among the data agents. The mechanism avoids direct access to the data

agents’ utility functions, which are private information unknown to the system

designer. The selfish nature of individual data agents is also respected in the

mechanism.

• We theoretically show that the proposed mechanism converges to the socially

optimal operation point. We also analytically substantiate that the mechanism

possesses appealing economic properties including individual rationality and

weakly balanced budget.

• We also extend the mechanism to the non-exclusive data trading scenario,

where the same data can be used by multiple data users repeatedly.

• Simulations as well as real data experiments are implemented to validate the

theoretical results of the mechanism.

The roadmap of this chapter is as follows. In Section 5.2, our model of the data

market is presented and the social welfare maximization problem is formulated. In

Section 5.3, we design an iterative auction mechanism to coordinate the data trading.

The convergence analysis and economic properties of the proposed mechanism are

presented in Section 5.4. Then, we extend the mechanism to the non-exclusive data

trading scenario in Section 5.5. In Section 5.6, simulation results and real data

experiments are shown. Lastly, we conclude the paper in Section 5.7.
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Figure 5.1: A data market with multiple data owners, collectors and users

5.2 Model

In this section, we describe the model of a data market with multiple data

owners, collectors and users in detail. Then, we formulate the associated social

welfare maximization problem and motivate the iterative auction mechanism.

Consider a data market with M data owners, N data collectors and L data

users as shown in Fig. 5.1. In real world, the data owners correspond to those sources

or producers of the data such as websites with online user data or organizations with

certain statistics. The data users can be any companies or individuals who either

consume the data or exploit data to develop projects and to make profits. For

example, a software company may need certain user record data to develop an APP.

Often, in a data market, data users do not interact with the data owners directly

due to the limited data collection, storage and processing capability of many data

users. Instead, between data owners and users, there may exist data collectors who

are able to collect, store and process massive datasets.

The collectors collect data from the owners through various methods such as
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web scraping for websites or direct inquiries to organizations with certain statistics.

The specific data collection manner depends on the form of the data. After obtaining

the (massive) data, the collectors store them and further process them to be more

sanitary and user-friendly. Lastly, the collectors sell the data to users according to

the different demands of users.

Different from prior works [35, 38, 112], we assume the existence of multiple

data owners, collectors and users competing with each other, which is the case in

reality as explained in Section 5.1. This makes the problem more challenging because

of the conflicting interests and selfishness of the data agents, which necessitates a

framework different from the traditional auction theoretic approach in [35, 38] and

contract theoretic approach in [112]. Next, we describe the data trading among the

data agents and their utility functions in detail.

5.2.1 Data Owners

Suppose owner m (there are M data owners in total) entitles collector n to

collect xmn amount of data, which is the maximum amount of data that collector

n can get from owner m. For instance, a website may give a data collector (e.g.,

a web scraper) access to a certain part of data in that website; an organization

may allow a data collector to access certain records or statistics of the organization.

Due to the exposure of its data, the owner m suffers a loss of Um(xm), where

xm = [xm1, ..., xmN ]. This loss may stem from compromise of privacy or leakage of

lucrative information/technologies. For example, if a social network allows some of
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its users’ data to be accessed by companies or researchers, its users’ privacy will be

compromised and the social network may lose popularity among online users.

We assume that the data here are exclusive, i.e., the same data can only be

assigned to one collector and one user. For example, software companies (data

users) may need tailored data (e.g., click-through rate of specific web pages or ad-

vertisements in order to monitor the users’ feedback) to develop their own softwares

or APPs. These data are useful only to this user and are useless for others, i.e.,

these data are exclusive. In Section 5.5, we extend the proposed mechanism to

non-exclusive data trading scenario, where the same data can be used by multiple

users.

We assume that owner m has Cm amount of data in total. In real world,

when the data exposure or leakage is tiny, the data owner may hardly suffer any

loss. However, if the data exposure is severe, e.g., larger than a certain threshold,

the privacy loss will increase faster and faster with the amount of data exposure.

In order to capture this second order property of loss function of data owners, we

assume that the loss function Um is a convex function.

5.2.2 Data Collectors

Suppose collector n (there are N data collectors in total) collects ymn data

from owner m. Clearly, ymn is no larger than xmn. When it is strictly smaller than

xmn, the collector n does not collect all the authorized data from owner m due to the

loss from collection efforts. We assume that the collecting procedure incurs a loss
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of Vn(yn) for collector n, where yn = [y1n, ..., yMn]T . In real world, the collecting

procedure can be data scraping from websites or direct inquiry to organizations

etc., depending on the form and availability of the data. The collection and basic

trimming/processing of the massive data need significant efforts of the collectors.

In addition, the storage of the massive datasets also necessitate lots of apparatuses

and devices. All of these contribute to the loss of the data collectors. Often, with

the increase of the data to be collected, the difficulty (and hence efforts) of data

collection increases faster and faster due to reasons such as the limitations on the

internet connections and computers’ processing speed (if the data amount is huge,

collectors need to greatly enhance their internet connections or computer devices,

which is costly). Therefore, we assume Vn is a convex function.

5.2.3 Data Users

Lastly, data user l (there are L data users in total) buys znl amount of data

from collector n. The gain of user l is Wl(zl), where zl = [z1l, ..., zNl]
T . For instance,

by exploiting the user feedback data such as click-through rate, a software/APP

developer can enhance its product and makes more profits. As per conventions of

the resource allocation literature, the gain function Wl is assumed to be a concave

function.
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5.2.4 Social Welfare Maximization

As the interests of the data agents conflict with each other (e.g., the data

owners want to sell the data with high price while the data collector wants to gain

the data at low cost) and the data agents are selfish, a system designer is needed

to coordinate the agents’ behaviors to maximize overall system efficiency or social

welfare, which is defined as the difference between the total gain of users and total

loss of owners and collectors. The corresponding social welfare maximization problem

SWM can be formulated as follows.

SWM : MaximizeX,Y,Z −
M∑
m=1

Um(xm)−
N∑
n=1

Vn(yn) +
L∑
l=1

Wl(zl) (5.1)

s.t.

N∑
n=1

xmn ≤ Cm, ∀m, (5.2)

L∑
l=1

znl ≤
M∑
m=1

ymn, ∀n, (5.3)

ymn ≤ xmn, ∀m,n. (5.4)

The first constraint is the total data constraint at each data owner. The second

constraint is the data constraint at each collector where the total amount of sold

data is no larger than the amount of total collected data. The third constraint

means that the data collected by a collector n from an owner m is no bigger than

the data that owner m entitles collector n to collect.

SWM is a convex optimization problem and can be solved in a centralized

manner by using state-of-the-art optimization toolbox such as CVX [11]. However, in

real-world applications, we cannot directly solve the SWM to coordinate the data

trading due to the following reasons.

112



• First, data agents (data owners, collectors and users) are selfish and seek to

maximize their own utilities instead of the social welfare. As a result, even if

the system designer computes the socially optimal point by solving SWM, the

optimal solution cannot be enforced given the selfishness of the data agents.

• Second, the utility functions U, V,W are private information of the agents

which is unknown to the system designer. Thereby, SWM cannot be solved

at the system designer’s side in a centralized fashion.

In order to elicit the private information of the agents and guide the selfish

agents to cooperate to achieve social optimum, we resort to iterative auction mech-

anism [57]. The presumption of this mechanism is that the agents are price-takers,

meaning that the each agent takes the announced prices as fixed and does not expect

any impact of its action on the prices. This hypothesis holds when either (1) the

agents have limited computational capability and thus limited rationality so that

they do not consider the effects of their actions on pricing; or (2) the number of

agents is large so that each agent has little influence on the prices.

5.3 Mechanism Design

In this section, we design an iterative auction mechanism for the data trading

problem formulated in Section 5.2. Our design goal is to guide the selfish agents to

trade data at a socially optimal point while respecting each agent’s private infor-

mation, i.e., avoiding direct inquiry of the agents’ utility functions. The proposed

iterative auction mechanism is illustrated in Fig. 5.2. The system designer serves
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as the auctioneer and the data agents are the bidders. Analogous to many auction

mechanisms in the literature [62], the agents submit bids to signal their valuations

of the resources, or data in this context. The first step of the mechanism is that

the system designer announces the data allocation and pricing/reimbursement rules

to the agents. In the second step, based on these rules, each agent calculates and

submits an appropriate bid in order to maximize her own utility in accordance with

her selfishness. In the third step, the system designer computes the data allocation

result according to the submitted bids and the data allocation rule. The aforemen-

tioned three steps are common in auction theory. The unique feature of iterative

auction lies in the fourth step, in which the system designer adjusts the data allo-

cation and pricing/reimbursement rules based on the data allocation results. Then,

the system designer announces these new rules and another auction begins. This

iterative process continues until the system designer observes convergence. In the

following subsections, we describe each step of the mechanism in more detail.

5.3.1 The System Designer’s Problem

As explained in Section 5.2, a difficulty for the system designer to solve the

SWM is that the she is unaware of the loss and gain functions U, V,W , which

are private information of the agents. Thus, the system designer has to replace

these unknown functions with some known functions. In addition, denote the bid

that owner m submits to the system designer by sm = [sm1, ..., smN ] � 0, where

� means componentwise inequality. Similarly, denote the bid of collector n by
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Figure 5.2: An illustration of the proposed iterative auction mechanism, which

iterates the four steps depicted in the figure.
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tn = [t1n, ..., tMn]T � 0 and the bid of user l by rl = [r1l, ..., rNl]
T � 0. The bids

signal the agents’ valuations of the data and should be incorporated into the loss

and gain functions in the system designer’s perspective. In the iterative auction

mechanism, the system designer makes the following utility function replacements

to avoid direct access of the private information of the agents:

Um(xm)←
N∑
n=1

smn
2
x2
mn, (5.5)

Vn(yn)←
M∑
m=1

tmn
2
y2
mn, (5.6)

Wl(zl)←
N∑
n=1

rnl log znl. (5.7)

Note that through these replacements, the convexity/concavity of the functions

U, V,W are preserved. Then, the SWM is transformed into the following designer’s

allocation problem DAP.

DAP : MaximizeX,Y,Z

L∑
l=1

N∑
n=1

rnl log znl −
M∑
m=1

N∑
n=1

smn
2
x2mn −

N∑
n=1

M∑
m=1

tmn
2
y2mn (5.8)

s.t. the constraints (5.2), (5.3) and (5.4) (5.9)

Denote the dual variables associated with constraints (5.2), (5.3) and (5.4) by

λ ∈ RM ,µ ∈ RN ,η ∈ RM×N , respectively. The Lagrangian of DAP is:

L(X,Y,Z,λ,µ,η) =

M∑
m=1

N∑
n=1

smn
2
x2mn +

N∑
n=1

M∑
m=1

tmn
2
y2mn −

L∑
l=1

N∑
n=1

rnl log znl

+

M∑
m=1

λm

(
N∑
n=1

xmn − Cm

)
+

N∑
n=1

µn

(
L∑
l=1

znl −
M∑
m=1

ymn

)
+

M∑
m=1

N∑
n=1

ηmn(ymn − xmn).

(5.10)

Thus, the Karush-Kuhn-Tucker (KKT) conditions of DAP can be written as

follows.
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Primal Feasibility :
N∑
n=1

xmn ≤ Cm,∀m, (5.11)

L∑
l=1

znl ≤
M∑
m=1

ymn, ∀n, (5.12)

ymn ≤ xmn, ∀m,n, (5.13)

Dual Feasibility : λ � 0, µ � 0, η � 0, (5.14)

Complementary Slackness : λm

(
N∑
n=1

xmn − Cm

)
= 0,∀m, (5.15)

µn

(
L∑
l=1

znl −
M∑
m=1

ymn

)
= 0,∀n, (5.16)

ηmn(ymn − xmn) = 0, (5.17)

Stationarity : smnxmn + λm − ηmn = 0, ∀m,n, (5.18)

tmnymn − µn + ηmn = 0,∀m,n, (5.19)

−rnl
znl

+ µn = 0, ∀n, l. (5.20)

From equations (5.18), (5.19) and (5.20), we obtain the data allocation rule:

xmn =
ηmn − λm
smn

, ymn =
µn − ηmn
tmn

, znl =
rnl
µn
, ∀m,n, l. (5.21)

The data allocation rule prescribes how the data are allocated given the submitted

bids S = [smn]M×N ,T = [tmn]M×N ,R = [rnl]N×L. The allocation rule is parameter-

ized by the Lagrangian multipliers λ,µ,η. Given a set of {λ,µ,η}, an allocation

rule is defined according to Eq. (5.21), i.e., a relationship between the data alloca-

tion and the bids is specified. As stated in the first step of the mechanism in Fig.
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5.2, besides data allocation rule, the system designer also needs to specify the data

pricing/reimbursement rule, i.e., the price and reimbursement of data as functions

of the bids of the agents. In other words, for owner m, given its bid sm, the system

designer needs to reimburse fm(sm) amount of money to compensate her loss due to

privacy compromise. Similarly, the system designer will reimburse gn(tn) amount

of money to collector n given her bid tn. Furthermore, the system designer will

charge user l hl(rl) amount of money given her bid rl. As a mechanism designer,

we need to appropriately design the pricing/reimbursement functions fm, gn, hl so

that the data allocation will gradually converge to the socially optimal point, i.e.,

the optimal point of SWM. In the following subsections, we specify how to design

these pricing/reimbursement functions in detail.

5.3.2 Owners’ Problems

For owner m, if she bids sm, she will get an reimbursement of fm(sm) as well

as a loss of Um

(
ηm1−λm
sm1

, ..., ηmN−λm
smN

)
, according to the data allocation rule in Eq.

(5.21). Hence, the utility maximization problem of owner m can be written as:

Maximizesm�0 fm(sm)− Um
(
ηm1 − λm
sm1

, ...,
ηmN − λm
smN

)
. (5.22)

The first order optimality condition of owner m’s problem is:

∂fm(sm)

∂smn
+
∂Um
∂xmn

ηmn − λm
s2
mn

= 0,∀n. (5.23)

In order to design a suitable fm such that the data allocation will converge to the

socially optimal point, we need to compare Eq. (5.23) with the optimality condition
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of SWM. To this end, we write the Lagrangian of SWM as follows:

L̃(X,Y,Z,λ,µ,η) =

M∑
m=1

Um(xm) +

N∑
n=1

Vn(yn)−
L∑
l=1

Wl(zl)

+

M∑
m=1

λm

(
N∑
n=1

xmn − Cm

)
+

N∑
n=1

µn

(
L∑
l=1

znl −
M∑
m=1

ymn

)
+

M∑
m=1

N∑
n=1

ηmn(ymn − xmn).

(5.24)

The constraints of SWM and DAP are the same and the only difference is the

objective function. Thus, in the KKT conditions of SWM, the primal feasibility,

dual feasibility and complementary slackness conditions are the same as those of

DAP, i.e., equations (5.11)-(5.17), while stationarity condition of SWM is:

∂Um(xm)

∂xmn
+ λm − ηmn = 0, ∀m,n, (5.25)

Vn(yn)

∂ymn
− µn + ηmn = 0, ∀m,n, (5.26)

−Wl(zl)

znl
+ µn = 0, ∀n, l. (5.27)

Combining equations (5.23) and (5.25), we derive:

∂fm(sm)

∂smn
=
λm − ηmn
s2
mn

∂Um
∂xmn

=
λm − ηmn
s2
mn

(ηmn − λm) = −(λm − ηmn)2

s2
mn

. (5.28)

Therefore, we set the reimbursement rule of ownerm to be fm(sm) =
∑N

n=1
(λm−ηmn)2

smn
.

5.3.3 Collectors’ Problems

For collector n, if she bids tn, she will get a reimbursement of gn(tn) and a loss

of Vn

(
µn−η1n
t1n

, ..., µn−ηMn

tMn

)
. Thereby, the utility maximization problem of collector

n is:

Maximizetn�0 gn(tn)− Vn
(
µn − η1n

t1n
, ...,

µn − ηMn

tMn

)
. (5.29)

The optimality condition of collector n’s problem is:

∂gn(tn)

∂tmn
+

∂Vn
∂ymn

µn − ηmn
t2mn

= 0, ∀m. (5.30)
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Combining equations (5.26) and (5.30) yields:

∂gn(tn)

∂tmn
=
ηmn −mun

t2mn

∂Vn
∂ymn

=
ηmn −mun

t2mn
(µn − ηmn) = −(µn − ηmn)2

t2mn
. (5.31)

So, the reimbursement function of collector n should be gn(tn) =
∑M

m=1
(µn−ηmn)2

tmn
.

5.3.4 Users’ Problems

For user l, if she bids rl, she will be charged hl(rl) and has a gain ofWl

(
r1l
µ1
, ..., rNl

µN

)
.

Thus, the utility maximization problem of user l is:

Maximizerl�0 − hl(rl) +Wl

(
r1l

µ1

, ...,
rNl
µN

)
. (5.32)

The optimality condition of user l’s problem is:

−∂hl(rl)
∂rnl

+
∂Wl

∂znl

1

µn
= 0,∀n. (5.33)

Combining equations (5.27) and (5.33) yields:

∂h(rl)

∂rnl
=

1

µn

∂Wl

∂znl
=

1

µn
· µn = 1. (5.34)

Thus, we design the price function of user l to be hl(rl) =
∑N

n=1 rnl.

5.3.5 Summary of Algorithm

The owners’ problem (5.22), the collectors’ problem (5.29) and the users’ prob-

lem (5.32) together specify how the bids are chosen in the second stage of the mech-

anism in Fig. 5.2. Then, in the third stage, the system designer computes the

new data allocation result based on these submitted bids and the data allocation

rule in Eq. (5.21). In the fourth stage, we update the dual variables λ,µ,η (or
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equivalently, update the data allocation rule and data pricing/reimbursement rule)

by invoking the subgradient method:

λm ←

(
λm + α

(
N∑
n=1

xmn − Cm

))+

, ∀m (5.35)

µn ←

(
µn + α

(
L∑
l=1

znl −
M∑
m=1

ymn

))+

, ∀n (5.36)

ηmn ← (µmn + α(ymn − xmn))+,∀m,n, (5.37)

where α > 0 is the step length and x+ = max{x, 0}. The proposed iterative auction

mechanism is summarized in Algorithm 5.1. We remark that Algorithm 5.1 is a

distributed algorithm: each data agent solves its own utility maximization prob-

lem in a parallel manner and the interactions between the agents. Algorithm 5.1

clearly resolves the two difficulties for directly solving SWM in Subsection 5.2-D:

(i) each agent maximizes her own utility in accordance with her selfishness; (ii) the

system designer does not direct access the private information of the agents, i.e., the

loss/gain functions U, V,W . Instead the system designer gradually and implicitly

elicits this information through iterative auctions.

5.4 Convergence and Economic Properties of the Mechanism

In this section, we theoretically show that the proposed iterative auction mech-

anism for data trading can indeed converge to the socially optimal operating point,

i.e., the optimal point of SWM. Moreover, we prove that the mechanism has two

appealing economic properties, i.e., individual rationality and weakly balanced bud-

get, which makes the mechanism economically viable.
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Algorithm 5.1: The proposed iterative auction mechanism

1: Initialize X(0),Y(0),Z(0),λ(0),µ(0),η(0) to be non-negative. Set the time index

τ to be 0.

2: Repeat the following until convergence:

3: The system designer announces λ(τ),µ(τ),η(τ).

4: τ ← τ + 1.

5: Each owner m solves its problem (5.22) to get s
(τ)
m .

6: Each collector n solves its problem (5.29) to get t
(τ)
n .

7: Each user l solves its problem (5.32) to get r
(τ)
l .

8: The system designer computes the new X(τ),Y(τ),Z(τ) according to the

current allocation rule (5.21) and the submitted bids S(τ), T(τ) and R(τ).

9: The system designer updates the dual variables:

λ(τ)
m =

(
λ(τ−1)
m + α

(
N∑
n=1

x(τ)
mn − Cm

))+

, ∀m (5.38)

µ(τ)
n =

(
µ(τ−1)
n + α

(
L∑
l=1

z
(τ)
nl −

M∑
m=1

y(τ)
mn

))+

, ∀n (5.39)

η(τ)
mn =

(
η(τ−1)
mn + α

(
y(τ)
mn − x(τ)

mn

))+
,∀m,n. (5.40)
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5.4.1 Convergence Analysis

When designing the mechanism in Section 5.3, we make a connection between

the data allocation rule, the optimality condition of each agent’s utility maximization

problem and the KKT conditions of SWM. Intuitively, the mechanism should guide

the data allocation towards the solution of SWM. In this subsection, we rigorously

demonstrate this convergence result. To make the analysis tractable, we assume

that the step size α in the update of dual variables (5.38), (5.39) and (5.40) is very

small, which is a reasonable assumption in the literature of subgradient method

in optimization theory [10] and LMS algorithm in adaptive signal processing [45].

Thus, we can approximate Algorithm 5.1 with a continuous-time version by taking

the time slot to be α. From Eq. (5.38), we know that λm is always non-negative. If

λ
(τ−1)
m > 0, since α is very small, the quantity inside the parenthesis of Eq. (5.38) is

still positive. Thus, λ
(τ)
m = λ

(τ−1)
m + α

(∑N
n=1 x

(τ)
mn − Cm

)
. Noting that the time slot

length is α, a small positive number, we have dλm
dτ

=
∑N

n=1 xmn −Cm. If λ
(τ−1)
m = 0,

we can similarly derive that dλm
dτ

=
(∑N

n=1 xmn − Cm
)+

. Define the notation (for

x, y ∈ R and y ≥ 0):

(x)+
y =


x, if y > 0,

x+, if y = 0.

(5.41)

Then, we have:

dλm
dτ

=

(
N∑
n=1

xmn − Cm

)+

λm

. (5.42)
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Similarly, we have:

dµn
dτ

=

(
L∑
l=1

znl −
M∑
m=1

ymn

)+

µn

, (5.43)

dηmn
dτ

= (ymn − xmn)+
ηmn . (5.44)

Now, we are ready to state the convergence result.

Theorem 5.1 Suppose the step size α in Algorithm 5.1 is small enough. Then, the

data allocation (X,Y,Z) of Algorithm 5.1 converges to the optimal point of SWM.

Moreover, the dual variables (λ,µ,η) of Algorithm 5.1 converge to the dual optimal

point of SWM.

Proof: Denote the dual optimal point of SWM by (λ∗,µ∗,η∗). Define the

Lyapunov function:

H(λ,µ,η) =
1

2

M∑
m=1

(λm − λ∗m)2 +
1

2

N∑
n=1

(µn − µ∗n)2 +
1

2

M∑
m=1

N∑
n=1

(ηmn − η∗mn)2.(5.45)

Taking derivative of Z with respect to the (continuous) time τ yields:

dH

dτ
=

M∑
m=1

(λm − λ∗m)
dλm
dτ

+
N∑
n=1

(µn − µ∗n)
dµn
dτ

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)
dηmn
dτ

(5.46)

=
M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn − Cm

)+

λm

+
N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
M∑
m=1

ymn

)+

µn

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − xmn)+
ηmn (5.47)

≤
M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn − Cm

)
+

N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
M∑
m=1

ymn

)

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − xmn), (5.48)
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where we use equations (5.42), (5.43) and (5.44) to get Eq. (5.47). The rea-

son of inequality (5.48) is as follows. If λm = 0, then
(∑N

n=1 xmn − Cm
)+

λm
=(∑N

n=1 xmn − Cm
)+

≥
∑N

n=1 xmn − Cm. Since λm − λ∗m = −λ∗m ≤ 0, we have

(λm − λ∗m)
(∑N

n=1 xmn − Cm
)+

λm
≤ (λm − λ∗m)

(∑N
n=1 xmn − Cm

)
. If If λm > 0, we

evidently have (λm− λ∗m)
(∑N

n=1 xmn − Cm
)+

λm
= (λm− λ∗m)

(∑N
n=1 xmn − Cm

)
. In

all, we always have (λm−λ∗m)
(∑N

n=1 xmn − Cm
)+

λm
≤ (λm−λ∗m)

(∑N
n=1 xmn − Cm

)
and similar inequalities hold for the other two terms in (5.47), leading to inequality

(5.48). In Step 5, the optimal point of the problem (5.22) should satisfy the opti-

mality condition (5.23). Noting the form of the reimbursement function f we design

in Subsection 5.3-B, we have:

−(λm − ηmn)2

s2
mn

+
∂Um(xm)

∂xmn

ηmn − λm
s2
mn

= 0, (5.49)

which leads to:

λm = ηmn −
∂Um(xm)

∂xmn
. (5.50)

Similarly, from the optimality condition (5.30), we get

µn = ηmn +
∂Vn(yn)

∂ymn
. (5.51)

And from the optimality condition (5.33), we obtain:

µn =
∂Wl(zl)

∂znl
. (5.52)

Denote the optimal point of SWM by (X∗,Y∗,Z∗). Since SWM is a convex opti-

mization problem, KKT condition is necessary and sufficient for optimality. Hence,

the primal optimal point (X∗,Y∗,Z∗) together with dual optimal point (λ∗,µ∗,η∗)
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should satisfy the stationarity condition (5.25), (5.26) and (5.27), which can be

further rewritten as:

λ∗m = η∗mn −
∂Um(x∗m)

∂xmn
, (5.53)

µ∗n = η∗mn +
∂Vn(y∗n)

∂ymn
, (5.54)

µ∗n =
∂Wl(z

∗
l )

∂znl
. (5.55)

Hence, according to equations (5.50) and (5.53), we have:

M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn −
N∑
n=1

x∗mn

)

=
M∑
m=1

N∑
n=1

(
ηmn −

∂Um(xm)

∂xmn
− η∗mn +

∂Um(x∗m)

∂xmn

)
(xmn − x∗mn),

(5.56)

which can be further rewritten as:

M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn −
N∑
n=1

x∗mn

)
+

M∑
m=1

N∑
n=1

(ηmn − η∗mn)(x∗mn − xmn)

=
M∑
m=1

N∑
n=1

(
∂Um(x∗m)

∂xmn
− ∂Um(xm)

∂xmn

)
(xmn − x∗mn).

(5.57)

Similarly, from equations (5.52) and (5.55), we obtain:

N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
L∑
l=1

z∗nl

)
=

N∑
n=1

L∑
l=1

(
∂Wl(zl)

∂znl
− ∂Wl(z

∗
l )

∂znl

)
(znl − z∗nl).

(5.58)

And combining equations (5.51) and (5.54) yields:

N∑
n=1

(µn − µ∗n)

(
M∑
m=1

y∗mn −
M∑
m=1

ymn

)

=
M∑
m=1

N∑
n=1

(
ηmn +

∂Vn(yn)

∂ymn
− η∗mn −

∂Vn(y∗n)

∂ymn

)
(y∗mn − ymn),

(5.59)
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which can be rewritten as:

N∑
n=1

(µn − µ∗n)

(
M∑
m=1

y∗mn −
M∑
m=1

ymn

)
+

M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − y∗mn)

=
M∑
m=1

N∑
n=1

(
∂Vn(yn)

∂ymn
− ∂Vn(y∗n)

∂ymn

)
(y∗mn − ymn).

(5.60)

Moreover, since the primal optimal point (X∗,Y∗,Z∗) together with dual optimal

point (λ∗,µ∗,η∗) should satisfy the KKT conditions of SWM, including conditions

(5.11)-(5.17) (this part of KKT conditions coincides with that of DAP), from the

complimentary slackness conditions, we have:

λ∗m

(
N∑
n=1

x∗mn − Cm

)
= 0, (5.61)

µ∗n

(
L∑
l=1

z∗nl −
M∑
m=1

y∗mn

)
= 0, (5.62)

η∗mn(y∗mn − x∗mn) = 0. (5.63)

Further notice that λm, µn, ηmn ≥ 0 and
∑N

n=1 x
∗
mn ≤ Cm,

∑L
l=1 z

∗
nl ≤

∑M
m=1 y

∗
mn.

Thus, we get:

(λm − λ∗m)

(
N∑
n=1

x∗mn − Cm

)
≤ 0, (5.64)

(µn − µ∗n)

(
L∑
l=1

z∗nl −
M∑
m=1

y∗mn

)
≤ 0, (5.65)

(ηmn − η∗mn)(y∗mn − x∗mn) ≤ 0. (5.66)
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Adding the six equations and inequalities (5.57), (5.58), (5.60), (5.64), (5.65) and

(5.66) gives:

M∑
m=1

(λm − λ∗m)

(
N∑
n=1

xmn − Cm

)
+

N∑
n=1

(µn − µ∗n)

(
L∑
l=1

znl −
M∑
m=1

ymn

)

+
M∑
m=1

N∑
n=1

(ηmn − η∗mn)(ymn − xmn),

≤
M∑
m=1

N∑
n=1

(
∂Um(x∗m)

∂xmn
− ∂Um(xm)

∂xmn

)
(xmn − x∗mn)

+
N∑
n=1

L∑
l=1

(
∂Wl(zl)

∂znl
− ∂Wl(z

∗
l )

∂znl

)
(znl − z∗nl)

+
M∑
m=1

N∑
n=1

(
∂Vn(yn)

∂ymn
− ∂Vn(y∗n)

∂ymn

)
(y∗mn − ymn)

≤ 0

(5.67)

The last inequality of (5.67) is due to the convexity/concavity of the functions

U, V,W . Specifically, since Um, Vn are convex functions and Wl is concave function,

we have:

(∇Um(x∗m)−∇Um(xm))T (x∗m − xm) ≥ 0, ∀m, (5.68)

(∇Wl(zl)−∇Wl(z
∗
l ))

T (zl − z∗l ) ≤ 0, ∀l, (5.69)

(∇Vn(yn)−∇Vn(y∗n))T (yn − y∗n) ≥ 0,∀n. (5.70)

Adding inequalities (5.68), (5.69) and (5.70) together over all m,n, l yields the last

inequality of (5.67). Combining the inequalities (5.48) and (5.67), we obtain dH
dτ
≤

0. Thus, according to LaSalle’s invariance principle [59], (λ,µ,η) converges to

(λ∗,µ∗,η∗). Comparing equations (5.50), (5.51) and (5.52) with equations (5.53),

(5.54) and (5.55), we conclude that (X,Y,Z) converges to (X∗,Y∗,Z∗).
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5.4.2 Economic Properties

Implementation of the proposed iterative auction mechanism in real-world

data trading market necessitates brilliant economic properties of the mechanism.

In this subsection, we show that the proposed mechanism has appealing economic

properties. First, the proposed mechanism is clearly efficient since it converges to

the socially optimal point. Second, the proposed mechanism possesses the incentive

compatibility property because in each auction iteration, each agent is maximizing

her own utility selfishly. To ensure that each agent complies to the mechanism

voluntarily, the mechanism needs to guarantee that every agent has non-negative

utility, i.e., the mechanism should be individually rational. This is shown in the

following proposition.

Proposition 5.1 Assume that Um(0) = 0, Vn(0) = 0,Wl(0) = 0,∀m,n, l. Then,

when Algorithm 5.1 converges, every data agent has non-negative utility, i.e., the

proposed mechanism is individually rational.

Proof: As shown in Theorem 5.1, when Algorithm 5.1 converges, (X,Y,Z)

becomes (X∗,Y∗,Z∗) and (λ,µ,η) becomes (λ∗,µ∗,η∗). Thus, according to the

allocation rule (5.21), the bids (S,T,R) become (S∗,T∗,R∗) defined as follows:

s∗mn =
η∗mn − λ∗m
x∗mn

, (5.71)

t∗mn =
µ∗n − η∗mn
y∗mn

, (5.72)

r∗nl = z∗nlµ
∗
n. (5.73)
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Since Um is convex, we have:

0 = Um(0) ≥ Um(x∗m) +∇Um(x∗m)T (0− x∗m), (5.74)

which can be rewritten as:

N∑
n=1

∂Um(x∗m)

∂xmn
x∗mn − Um(x∗m) ≥ 0. (5.75)

By Eq. (5.53), we further derive:

N∑
n=1

(η∗mn − λ∗m)x∗mn − Um(x∗m) ≥ 0, (5.76)

which by Eq. (5.71) can be written as:

N∑
n=1

(λ∗m − η∗mn)2

s∗mn
− Um(x∗m) ≥ 0. (5.77)

Note that the left hand side is exactly the utility of owner m when Algorithm 5.1

converges. So, owner m has non-negative utility. Similarly, from the convexity of

Vn, we have:

Vn(y∗n) ≤
M∑
m=1

y∗mn
∂Vn(y∗n)

∂ymn
, (5.78)

which by equations (5.54) and (5.72) can be rewritten as:

M∑
m=1

(µ∗n − η∗mn)

t∗mn
− Vn(y∗n) ≥ 0. (5.79)

Notice that the left hand side is just the utility of collector n when Algorithm 5.1

converges. We thus assert that each collector has non-negative utility. From the

concavity of Wl, we obtain:

Wl(z
∗
l ) ≥

N∑
n=1

z∗nl
∂Wl(z

∗
l )

∂znl
, (5.80)
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which by equations (5.55) and (5.73) is be written as:

−
N∑
n=1

r∗nl +Wl(z
∗
l ) ≥ 0. (5.81)

Hence, each user has non-negative utility. Overall, we conclude that the mechanism

is individually rational.

We can further show that the system designer has weakly balanced budget, i.e., the

income (through the data reimbursement/pricing) of the system designer in the

mechanism is non-negative when Algorithm 5.1 converges. In other words, the

system designer does not need to inject any money into the data market in order to

implement the mechanism.

Proposition 5.2 When Algorithm 5.1 converges, the income of the system designer

through data reimbursement/pricing in the mechanism is non-negative. In other

words, the mechanism has weakly balanced budget.

Proof: The income of the system designer through data reimbursement/pricing

is:

L∑
l=1

hl(r
∗
l )−

M∑
m=1

fm(sm
∗)−

N∑
n=1

gn(t∗n) (5.82)

=
L∑
l=1

N∑
n=1

r∗nl −
M∑
m=1

N∑
n=1

(λ∗m − η∗mn)

s∗mn
−

N∑
n=1

M∑
m=1

(µ∗n − η∗mn)2

t∗mn
(5.83)

=
L∑
l=1

N∑
n=1

z∗nlµ
∗
n −

M∑
m=1

N∑
n=1

x∗mn(η∗mn − λ∗m)−
N∑
n=1

M∑
m=1

y∗mn(µ∗n − η∗mn) (5.84)

=
M∑
m=1

N∑
n=1

η∗mn(y∗mn − x∗mn) +
N∑
n=1

µ∗n

(
L∑
l=1

z∗nl −
M∑
m=1

y∗mn

)
+

M∑
m=1

N∑
n=1

x∗mnλ
∗
m (5.85)

≥ 0 (5.86)
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where Eq. (5.84) comes from equations (5.71), (5.72) and (5.73). The reason of the

last step is: η∗mn(y∗mn−x∗mn) = 0, µ∗n

(∑L
l=1 z

∗
nl −

∑M
m=1 y

∗
mn

)
= 0 due to complimen-

tary slackness (5.62) and (5.63) and x∗mn ≥ 0, λ∗m ≥ 0.

5.5 Extension to Non-Exclusive Data Trading

In previous sections, we assume that the data are exclusive, i.e., the same data

can be dispensed to only one user and one collector. However, in many real-world

data markets, the data can be non-exclusive, i.e., the same data can be allotted to

multiple collectors and users. For example, many software/APP developers (data

users) may want to access the same online data of some social network (data owner);

or many researchers (data users) may want to use the same data from an organization

(data owner) to conduct research. In this section, we formulate the data trading

problem with non-exclusive data and extend the proposed mechanism in Section 5.3

to this scenario.

Since the same data can be distributed to multiple collectors, different collec-

tors’ data can overlap each other. To avoid purchasing the same data from different

collectors, we assume that each user buys data from only one single collector. Equiv-

alently, from the collectors’ perspective, each collector n serves a set of users Ln and

users in Ln only purchase data from collector n. For example, in real world, a data

collection company may occupy the most of the share of the local market in some

region and becomes the monopoly in the local region. Basically all data users in

this region will purchase data only from this data collector. Note that the sets
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Ln, n = 1, ..., N are mutually exclusive and
⋃N
n=1 Ln = {1, ..., L}. Each user l pur-

chases from its designated collector zml amount owner m’s data. Other notations

are the same as the exclusive data trading model in Section 5.2. The social welfare

maximization problem for non-exclusive data trading can be formulated as follows.

MaximizeX,Y,Z −
M∑
m=1

Um(xm)−
N∑
n=1

Vn(yn) +
L∑
l=1

Wl(zl) (5.87)

s.t. ymn ≤ xmn, ∀m,n, (5.88)

xmn ≤ Cm, ∀m,n, (5.89)

zml ≤ ymn, ∀m,n, l ∈ Ln. (5.90)

The first constraint means that the data collected by collectors should be

no more than the data authorized by the owners. The second constraint is the

data constraint at each owner. Instead of total data constraint in the exclusive

data trading scenario, the data constraint becomes individual data constraint in the

non-exclusive data trading scenario. The third constraint indicates that the data

purchased by users are no greater than the data collected by collectors. Similar to

the exclusive data trading scenario, it is inviable to directly solve this social wel-

fare maximization problem and enforce the solution for the data agents. Hence,

we go through similar procedures as in Section 5.3 to obtain an iterative auction

mechanism which can achieve the social optimum while respecting agents’ private

information (their loss/gain functions) and selfishness. The mechanism is summa-

rized in Algorithm 5.2 and the design details are omitted. In Algorithm 5.2, we

denote the Lagrangian multipliers corresponding to constraints (5.88), (5.89) and
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(5.90) by µ ∈ RM×N ,λ ∈ RM×N and η ∈ RM×L, respectively.

5.6 Simulations and Real Data Experiments

In this section, we present simulations as well as real data experiments to

validate the theoretical results for the proposed iterative auction mechanism. We

consider both exclusive data trading and non-exclusive data trading.

5.6.1 Simulations

Consider a data market with M = 2 data owners, N = 2 data collectors and

L = 4 data users. The total data amount of owners 1 and 2 are set to be 2 and 4,

respectively. The owners’ convex loss functions are defined as follows:

Um(xm) = am

(
2∑

n=1

exmn − 2

)
, m = 1, 2, (5.100)

where a1 = 0.1, a2 = 0.3. The collectors’ convex loss functions are defined as:

Vn(yn) = bn

2∑
m=1

y2
mn, n = 1, 2, (5.101)

where b1 = 0.5, b2 = 1. The users’ concave gain functions are:

Wl(zl) = cl

2∑
n=1

log(1 + znl), l = 1, 2, 3, 4, (5.102)

where c1 = 3
2
, c2 = 7

6
, c3 = 5

6
, c4 = 1

2
.

We first consider the exclusive data trading scenario. We simulate the pro-

posed iterative auction mechanism in Algorithm 5.1. In Fig. 5.3, we validate the

convergence behavior of the mechanism. The relative error used in Fig. 5.3 is
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Algorithm 5.2: The iterative auction mechanism for non-exclusive data trad-

ing

1: Initialize X(0),Y(0),Z(0),λ(0),µ(0),η(0) to be non-negative. Set the time index τ to be 0.

2: Repeat the following until convergence:

3: The system designer announces λ(τ),µ(τ),η(τ).

4: τ ← τ + 1.

5: Each owner m solves the following problem to get r
(τ)
m :

Maximizerm�0

N∑
n=1

(
λ
(τ)
mn − µ(τ)

mn

)2
rmn

− Um

(
µ
(τ)
m1 − λ

(τ)
m1

rm1
, ...,

µ
(τ)
mN − λ

(τ)
mN

rmN

)
. (5.91)

6: Each collector n solves the following problem to get s
(τ)
n :

Maximizesn�0

M∑
m=1

(∑
l∈Ln η

(τ)
ml − µmn

)2
smn

− Vn

(∑
l∈Ln η

(τ)
1l − µ

(τ)
1n

s1n
, ...,

∑
l∈Ln η

(τ)
Ml − µ

(τ)
Mn

sMn

)
.

(5.92)

7: Each user l solves the following problem to get t
(τ)
l :

Maximizetl�0 −
M∑
m=1

tml +Wl

(
t1l

η
(τ)
1l

, ...,
tMl

η
(τ)
Ml

)
. (5.93)

8: The system designer computes the new X(τ),Y(τ),Z(τ) according to:

x(τ)mn =
µ
(τ)
mn − λ(τ)mn

r
(τ)
mn

, (5.94)

y(τ)mn =

∑
l∈Ln η

(τ)
ml − µ

(τ)
mn

s
(τ)
mn

, (5.95)

z
(τ)
ml =

t
(τ)
ml

η
(τ)
ml

. (5.96)

9: The system designer updates the dual variables:

λ(τ)mn =
(
λ(τ−1)mn + α

(
x(τ)mn − Cm

))+
, ∀m,n, (5.97)

µ(τ)
mn =

(
µ(τ−1)
mn + α

(
y(τ)mn − x(τ)mn

))+
, ∀m,n, (5.98)

η
(τ)
ml =

(
η
(τ−1)
ml + α

(
z
(τ)
ml − y

(τ)
mn

))+
,∀m,n, l ∈ Ln. (5.99)
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Figure 5.3: Convergence of the iterative auction mechanism to the socially optimal

point, i.e., the optimal point of SWM.

max
{
||X−X∗||F
||X∗||F

, ||Y−Y
∗||F

||Y ∗||F
, ||Z−Z

∗||F
||Z∗||F

}
, where || · ||F means the Frobenius norm. As

guaranteed by Theorem 5.1, the mechanism converges to the socially optimal point,

i.e., the mechanism is efficient. We further investigate the economic properties of

the mechanism through simulations in Fig. 5.4. We report the utilities of the owner

1, collector 1 and user 1 as the algorithm gradually converges. As asserted in Propo-

sition 5.1, the mechanism is individually rational: the three data agents in Fig. 5.4

have non-negative utilities when the algorithm converges. Furthermore, we show the

budget balance (income) of the system designer and find that as assured by Propo-

sition 5.2, the budget balance is non-negative when the algorithm converges. Next,

we turn to the non-exclusive data trading scenario. We set L1 = {1, 2},L2 = {3, 4}.

Other simulation setup remains unchanged and we simulate the iterative auction

mechanism in Algorithm 5.2. As exhibited in Fig. 5.5, the mechanism still con-

verges to the socially optimal point.
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Figure 5.4: The utilities of owner 1, collector 1 and user 1 and the budget balance

(income) of the system designer.
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Figure 5.5: Convergence of the iterative auction mechanism to the socially optimal

point: non-exclusive data trading.
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Fig. 5.6: Fitting the real-world data price

5.6.2 Real Data Experiments

In this subsection, we use real data to get the loss/gain functions of the data

agents and investigate the performance of the proposed mechanism on them. We

still consider a data market with M = 2 owners, N = 2 collectors and L = 4 users.

We first use real data prices to estimate the users’ gain functions. To this end,

we fit the prices of the two datasets, namely the wealth score dataset and the text

analytics dataset, in the Microsoft Azure Marketplace [1] (a data trading platform)

with the function y = axb. The fitting results are shown in Fig. 5.6, which are very

accurate. The sum of these two price functions can be regarded as the mean user

gain function. To introduce heterogeneity into users’ gain functions, we multiple a

coefficient onto this mean user gain to get individual users’ gains as follows:

Wl(zl) = c′l

2∑
n=1

αnz
βn
nl , l = 1, 2, 3, 4 (5.103)

where α1 = 0.821, α2 = 1.267, β1 = 0.9131, β2 = 0.5329, c′1 = 1/2, c′2 = 5/6, c′3 =

7/6, c′4 = 3/2.

Next, we estimate the owners’ loss functions. In [112], a relationship between

the information loss and the privacy breach level in anonymization is obtained from
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real data [3]. Specifically, the privacy leakage is quantified by the k-anonymity,

which means that the probability that an individual item being re-identified by an

attacker is no higher than 1/k. Thus, 1/k can be regarded as the loss of the data

owner. (total data amount − IL) can be regarded as the effective amount of data

obtained by a collector, where IL means the information loss. The relationship

between k and IL is estimated to be IL = −0.4804k−0.2789 + 0.7883, which can

be rewritten as 1/k = (2.0816(0.7883 − IL))3.5855. We set 0.7883 to be the total

amount of data and thus y = (2.0816x)3.5855 can be regarded as the average owners’

loss function. By varying the coefficients, we introduce heterogeneity to the loss

function and finally set:

Um(xm) = a′m

2∑
n=1

(θnxmn)3.5855, m = 1, 2, (5.104)

where θ1 = 1.5816, θ2 = 2.5816, a′1 = 5, a′2 = 15. As for the collectors’ loss functions

Vn, it is hard to find corresponding real data and we directly use quadratic functions

in simulation setups for them. Other experiment setups are the same as those of

simulations.

With the loss/gain functions estimated from real data, we test the perfor-

mance of the proposed iterative auction mechanism. We first consider the exclusive

data trading. The total data amounts of owner 1 and owner 2 are 0.25 and 0.5,

respectively. As shown in Fig. 5.7, the mechanism still converges to the socially

optimal point. In Fig. 5.8, we further observe that the individual rationality and

weakly balanced budget still hold as the utilities of owner 1, collector 1 and user 1

as well as the budget balance of the system designer are all non-negative. Then, we
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Figure 5.7: Convergence of the iterative auction mechanism to the socially optimal

point in real data experiment.

change to the non-exclusive data trading and alter the total data amounts of owner

1 and owner 2 to be 0.2 and 0.4, respectively. We remark that the mechanism still

converges to the socially optimal point, as illustrated in Fig. 5.9.

Lastly, we endeavor to compare the proposed iterative auction mechanism with

the contract-theoretic approach in [112]. The model of [112] consists of multiple

data owners and one single data collector without the notion of data users. To

accommodate to this, we consider M = 4 owners, N = 1 collector and L = 1 user

in our model. As per setups of real data experiments, we set the loss function of

owners to be:

Um(xm) = a′′m(2.0816xm)3.5855, m = 1, 2, 3, 4, (5.105)

where a′′1 = 5, a′′2 = 25
3
, a′′3 = 35

3
, a′′4 = 15. The total data amount of each owner is
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Figure 5.8: The utilities of owner 1, collector 1 and user 1 and the budget balance

(income) of the system designer in real data experiment.
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Figure 5.9: Convergence of the iterative auction mechanism to the socially optimal

point in real data experiment: non-exclusive data trading.
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0.08. Moreover, we set the gain function of the single user to be:

W1(z1) = 0.82105z0.5329
1 . (5.106)

The loss function of the single data collector still takes the quadratic form previously

used, i.e., V1(y1) = 1
2
y1

Ty1. Since the model in [112] only considers linear owner

loss, we use Ũm(xm) = 2.0816a′′mxm for [112]. Besides, the model in [112] sets the

collector’s gain to be a square root function. Hence, we use W̃1(z1) = 0.82105z0.5
1 for

[112]. Note that the collector in [112] plays the role of end user and we translates that

into the user in our model. In the model of [112], we need to specify a required total

amount of data, i.e., qreq =
∑M

m=1 xm, which we set to be 0.16, i.e., the half of the

sum of total data amounts of all the owners. We first simulate the proposed iterative

auction mechanism, which still converges to the socially optimal point, as illustrated

in Fig. 5.10. The socially optimal point is X = Y = [0.08, 0.08, 0.074, 0.074]T , Z =

0.3015 and the optimal social welfare (which is obtained by the proposed mechanism)

is 0.373. Then, we simulate the contract-theoretic approach of [112], which gives

the data allocation X = Y = [0.080.0800]T , Z = 0.16 and a social welfare of 0.2812.

Thus, we observe that the proposed mechanism can achieve a higher social welfare

than [112].

According to the experiments and simulations, a practical issue of the pro-

posed iterative auction mechanism is that it may need hundreds of iterations to

converge. This requires the bidders (agents) to bid for hundreds of times. A com-

mon solution to this issue is to equip each bidder with some bidding software, which

can automatically bid for the agent according to some preset bidding rule such as
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Figure 5.10: Convergence of the iterative auction mechanism to the socially optimal

point in the comparison experiment.

the one specified in the proposed iterative auction mechanism. With the help of

such bidding softwares, the bidding processes can be very fast and accomplish hun-

dreds of iterations quickly, making the proposed mechanism practical. In fact, fast

iterative bidding with the assist of bidding softwares is already used in practice such

as the eBay auction.

5.7 Summary

In this chapter, we study the data trading problem with multiple data owners,

collectors and users. We present an iterative auction mechanism to guide the selfish

agents to behave in a socially optimal way without direct access of their private

information. We theoretically prove the convergence as well as economic properties

(individual rationality and weakly balanced budget) of the mechanism. Simulations

and real data experiments are carried out to confirm the theoretical properties of
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the proposed mechanism.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we have presented several game-theoretic analyses of user

behaviors in social systems. We have also designed an efficient data trading mech-

anism for data markets with multiple data agents. These works shed some light on

the fundamentals of the comprehension, design and optimization of modern social

networks, data markets or more generally, multi-agent systems.

First, we study the information propagation problem in heterogeneous social

networks composed of users with different hobbies and influences or more abstractly,

types. Two distinct network scenarios are considered, namely the unknown user type

model and the known user type model, depending on whether users know the types

of their neighbors. Modeling users’ learning and decision-making processes as a

graphical evolutionary game, we theoretically derive the evolutionary dynamics and

the evolutionarily stable states (ESSs) of the information diffusion game. Numerical

experiments based on both synthetic data and real-world information dessemination

data are presented to confirm the validity of the proposed game-theoretic models

for information diffusion.
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Second, incorporating the notion of long-term incentives of users, we propose

a novel sequential game theoretic model for users’ decision making procedure in the

formation of generic popularity dynamics, e.g., information diffusion dynamics and

paper citation dynamics. The existence and uniqueness of the symmetric Nash equi-

librium (SNE) of the game are proved. First and second order properties of the SNE

are demonstrated, confirming our empirical observations from real-world popularity

dynamics. Furthermore, the game-theoretic model and analysis are corroborated

by fitting and prediction experiments based on real-world information propagation

data and paper citation data.

Third, we examine the social learning problem, in which networked agents

collaborate to detect some unknown state of the nature, which can be the quality

of some products or services in recommendation systems in practice. A distributed

evolutionary game theoretic learning algorithm is proposed and each agent only

needs to communicate its binary action with its neighbors, making the algorithm

computationally efficient. Theoretical analysis manifests that the ESS of the game

coincides with the decision of a fictitious centralized detector, highlighting the op-

timality of the proposed learning algorithm.

Finally, we investigate the data trading problem in data markets with mul-

tiple data owners, collectors and users. An iterative auction based data trading

mechanism is proposed to guide the selfish agents to trade data efficiently with-

out direct access their private information. The proposed mechanism is shown to

converge to the socially optimal operation point and has appealing economic proper-

ties including individual rationality and weakly balanced budget. Additionally, the
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mechanism is validated through numerical experiments based on real-world data

prices from Microsoft Azure Marketplace, an emerging data trading market.

This dissertation has broad applications in multi-agent systems with intelli-

gent users and modern data trading platforms. Firstly, the proposed game-theoretic

frameworks deepen our comprehension of social network users’ behaviors. With

the presented game-theoretic analysis, we can go one step further to design smart

mechanisms to guide users to behave in a certain way. For instance, we may

give online users appropriate virtual badges or virtual coins to alter their utility

functions and thus influence the outcomes (or equilibria of the games) of users’

interactions/decision-making. This can be used to incentivize users to adopt certain

behaviors that we desire. In fact, some simple incentive mechanisms have already

been implemented in several successful real-world social websites, e.g., Stack Over-

flow (a popular Q&A website), where virtual badges and sophisticated rating mech-

anisms are used to incentivize users to raise meaningful questions and to provide

high quality answers. Secondly, the iterative auction based data trading mechanism

proposed in this dissertation can be applied to real-world data trading systems as a

novel trading paradigm in contrast to the traditional fixed price trading scheme used

in most existing data trading platforms such as Microsoft Azure Marketplace. While

respecting the selfishness and privacy concerns of data agents, the proposed mecha-

nism guarantees overal system efficiency, which cannot be achieved by existing data

trading methods. Actually, in practice, some simple auction mechanisms have al-

ready been used in electronic trading platforms (e.g., eBay Auction) for goods other

than data, indicating the promising prospect of auction based trading schemes.
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6.2 Future Work

In this section, I point out two potential future research directions, namely

signal processing for social networks and data trading beyond our existing work in

Chapter 5.

6.2.1 Signal Processing for Social Networks

The first three works in this dissertation, i.e., Chapters 2, 3, 4, are focused on

game-theoretic analysis for social network users’ behaviors. One commmon implicit

assumption made in most game-theoretic works is that the players should be rational

so that the various solution concepts of the game, e.g., Nash equilibrium, subgame

perfect equilibrium, evolutionarily stable states, can hold in practice. Sometimes,

this rationality hypothesis is overly restrictive as many practical agents are not fully

rational due to factors such as limited computational capability. For instance, a

social network user may not make the best response with respect to her neighbors’

actions because calculation of such best response consumes too much efforts for

the user. Consequently, though game theory is a powerful tool to give insightful

explanations of the underlying mechanisms of many social phenomena, it is not

suitable for those data driven tasks such as statistical inference, estimation and

detection (or at least, one cannot solely rely on game theory for those tasks). This

limitation motivates me to pursue a more data-centric approach for problems in

social networks by invoking tools from signal processing, pattern recognition and

optimization theory in the future.
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In fact, there are plenty of emerging well-posed signal processing problems in

social networks or more generally, network science. For instance, researchers often

encounter the so called topology inference problem in network science [5, 96], e.g.,

inferring an influence graph of social entities from the observed social events and

inferring a brain connection network from the available brain signals. Generally

speaking, in topology inference, we are given some data or signals over a network

and our goal is to estimate the underlying network topology. To some extent, the

topology inference problem can be regarded as the opposite of classical distributed

signal processing problems, in which we are given the network topology and our goal

is to process the signals over the network.

Another example of signal processing in social networks is cascade track-

ing [5, 6]. When a piece of information propagates over social networks, it gen-

erates a path of information dissemination, which is called information cascade. For

instance, an information cascade of A → B → {C,D} means that the information

propagates from A to B and later from B to C and D. Information cascades are im-

portant for many applications such as identification of critical/influential users in

social networks. Unfortunately, in practice, information cascades are often not di-

rectly observable since users usually do not identify who influences whom in social

networks. Therefore, we have to apply statistical signal processing techniques to

infer the hidden information cascades from the available data such as timestamps of

infections, e.g., mentioning a certain phrase or purchasing a certain product. Other

network signal processing issues encompass community detection, signal recovery

and signal sampling over graphs, etc [4, 19–22,74,92,93].
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6.2.2 Data Trading: Quantity versus Quality

In Chapter 5, we design an efficient data trading scheme for data markets with

multiple data agents. As more and more data are desired by more and more individu-

als and companies to perform various data analytics for either research or businesses,

it is foreseeable that data trading will become more important in the future and de-

serves more research efforts. Actually, besides our work in [15], i.e., Chapter 5 of

this dissertation, there have been several research efforts on data trading in recent

years [107,112,115,117,118]. Hitherto, most works on data trading are either solely

focused on the quantity aspect of the data [15, 115, 117] or merely concentrated on

the quality aspect of the data (e.g., privacy concerns of data providers) [107, 112],

yet no joint consideration of both quantity and quality of the data exists in the

literature.

Therefore, in the future, I am motivated to investigate the quantity and quality

aspects of the data jointly in the data trading problems. The goal of this research is

twofold. The first goal is to steer the data markets to trade an appropriate quantity

of data among the data agents subject to their selfishness and privacy constraints.

The appropriateness here is measured from the perspective of either social welfare

or the profits of certain parties of the data market. The second goal is to incentivize

the data providers to offer high quality data by designing an intellegient incentive

mechanism. This goal will promote the reliability of data and is particularly crucial

for modern data acquisition methods such as crowdsourcing, which, though being

efficient and convenient, has poor reliability.
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