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The proliferation of handheld devices with cameras is among many changes in

the past several decades which affected the document image analysis community by

providing a far less constrained document imaging experience compared to tradi-

tional non-portable flatbed scanners. Although these devices provide more flexibility

in capturing, the users now have to consider numerous environmental challenges in-

cluding 1) a limited field-of-view keeping users from acquiring a high-quality images

of large sources in a single frame, 2) Light reflections on glossy surfaces that result

in saturated regions, and 3) Crumpled or non-planar documents that cannot be

captured effectively from a single pose.

Another change is the application of deep neural networks such as the deep con-

volutional neural networks (CNNs) for text analysis which is showing unprecedented

performance over the classical approaches. Beginning with the success in character



recognition [1], CNNs have shown their strength in many tasks in document analy-

sis as well as computer vision. Researchers have explored potential applicability of

CNNs for tasks such as text detection and segmentation, and have been quite suc-

cessful [2–7]. These networks, trained to perform single tasks, have recently evolved

to handle multiple tasks. This introduces several important challenges including

imposing multiple tasks on single architecture network and integrating multiple ar-

chitectures with different tasks. In this dissertation, we make contributions in both

of these areas.

First, we propose a novel Graphcut-based document image mosaicking method

which seeks to overcome the known limitations of the previous approaches. Our

method does not require any prior knowledge of the content of the document images,

making it more widely applicable and robust. Information regarding the geometrical

disposition between the overlapping images is exploited to minimize the errors at the

boundary regions. We incorporate a sharpness measure which induces cut generation

in a way that results in the mosaic including the sharpest pixels. Our method is

shown to outperform previous methods, both quantitatively and qualitatively.

Second, we address the problem of removing highlight regions caused by the

light sources reflecting off glossy surfaces in indoor environments. We devise an ef-

ficient method to detect and remove the highlights from the target scene by jointly

estimating separate homographies for the target scene and the highlights. Our

method is based on the observation that when given two images captured at dif-

ferent viewpoints, the displacement of the target scene is different from that of the

highlight regions. We show the effectiveness of our method in removing the high-



light reflections by comparing it with the related state-of-the-art methods. Unlike

the previous methods, our method has the ability to handle saturated and relatively

large highlights which completely obscure the content underneath.

Third, we address the problem of selecting instances of a planar object in a

video or set of images based on an evaluation of its “frontalness”. We introduce

the idea of “evaluating the frontalness” by computing how close the object’s surface

normal aligns with the optical axis of a camera. The unique and novel aspect of our

method is that unlike previous planar object pose estimation methods, our method

does not require a frontal reference image. The intuition is that a true frontal image

can be used to reproduce other non-frontal images by perspective projection, while

the non-frontal images have limited ability to do so. We show comparing ‘frontal’

and ‘non-frontal’ can be extended to compare ‘more frontal’ and ‘less frontal’ images.

Based on this observation, our method estimates the relative frontalness of an image

by exploiting the objective space error. We also propose the use of a K-invariant

space to evaluate the frontalness even when the camera intrinsic parameters are

unknown (e.g., images/videos from the web). Our method improves the accuracy

over a baseline method.

Lastly, we address the problem of integrating multiple deep neural networks

(specifically CNNs) with different architectures and different tasks into a unified

framework. To demonstrate the end-to-end integration of networks with different

tasks and different architecture, we select event recognition and object detection.

One of the novel aspects of our approach is that this is the first attempt to exploit

the power of deep convolutional neural networks to directly integrate relevant object



information into a unified network to improve event recognition performance. Our

architecture allows the sharing of the convolutional layers and a fully connected layer

which effectively integrates event recognition with the rigid and non-rigid object

detection.
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Chapter 1: Introduction

In the past several decades, there have been many changes that affected the

document image analysis community and the problems it addresses. One is the

proliferation of handheld devices including mobile phones with cameras which pro-

vide a far less constrained document imaging experience compared to traditional

non-portable flatbed scanners. Table 1.1 identifies some of the challenges for cam-

eras and shows a comparison between the scanners and the cameras in terms of

various potential constraints. Although this provides more freedom and flexible

experiences, the users now have to consider numerous environment settings such

as lighting or camera motion, since these may degrade or limit the capture quality.

Another change is the application of deep neural networks such as the deep convolu-

tional neural networks (CNNs) for text analysis [1–6] which is not only introducing

a new paradigm but also showing unprecedented performance. Since the initial suc-

cess in character recognition [1], CNNs have been shown to perform well in many

tasks in computer vision as well as document analysis. Researchers have explored

potential applicability of CNNs for tasks such as text detection and segmentation,

and have been quite successful. These networks, trained to perform single tasks,

eventually evolved into networks which are targeted to handle multiple tasks. This

1



Table 1.1: Challenges for cameras and comparison with scanners

Scanners Cameras Challenges for cameras

Source
Size

Limited
by device

Potentially
unconstrained

Capturing large area with
limited resolution

Lighting Controlled Uncontrolled Removing lighting variation

Text
Location On documents

On documents
or in scenes Acquiring best pose

Surfaces Planar
Planar or

non-planar Flattening or dewarping text

advancement introduces several important challenges such as, ‘how to impose multi-

ple tasks on single architecture network’ or ‘how to integrate different architectures

with different tasks’.

In the first part of the dissertation (Chapters 2, 3, and 4), we will address sev-

eral challenges that arise when capturing documents in unconstrained environments.

These challenges include 1) a limited field-of-view keeping users from acquiring a

high-quality images of large sources in a single frame, 2) reflections from bright

lights on glossy surfaces that result in saturated regions, and 3) crumpled or non-

planar documents that cannot be captured effectively from a single pose. In this

dissertation, we will explore methods targeting each of these topics.

In our first topic, we address the problem of generating a high-quality doc-

ument image by employing document image mosaicking. We introduce a novel

Graphcut-based document image mosaicking method which seeks to lessen the

known artifacts of the previous approaches such as ghosting effects or missing con-

tents. Our method does not require any prior knowledge of the content of the given

2



document images, making it more widely applicable and robust. Information re-

garding the geometrical disposition between the overlapping images is exploited to

minimize the errors at the boundary regions. Finally, we incorporate a sharpness

measure which induces cut generation in a way that results in the mosaic including

the sharpest pixels. Our method is shown to outperform previous methods quanti-

tatively in terms of OCR accuracy, qualitatively based on visual appearance.

For our second topic, we address the problem of removing highlight regions

caused by the light sources reflecting off glossy surfaces. We specifically target the

cases where the highlights are saturated and the original contents are completely ob-

scured. Our method is based on the observation that when two images are captured

at different viewpoints, the displacement of the target content is different from that

of the highlight regions (Motion parallax). Our method works with two images with

slightly different viewpoints using a novel algorithm called, Joint Homography Esti-

mation for Highlight Removal (JH2R) which performs a fast joint estimation of the

two homographies, foreground and highlight. We show that our method provides a

visually pleasing output with the highlights removed. We also show the effective-

ness of our method in removing the highlight reflections by comparing it with the

related state-of-the-art methods. Unlike the previous methods, our method has the

ability to handle saturated and relatively large highlights which completely obscure

the content underneath. Moreover, we stress that our method uses correspondence

between the “highlight” regions for better localization of the highlights in multiple

images.

For our third topic, we generalize the problem of “flattening” crumpled or

3



non-planar documents by assuming that each character or region-of-interest on a

document is residing on a piecewise planar surface. We address the problem of

selecting frames of a planar objects in a video or a set of images by analyzing their

“frontalness”. We exploit the idea of “evaluating the frontalness” by computing

how close the surface normal of an object aligns with the optical axis of a camera.

The unique and novel aspect of our method is that unlike previous planar object

pose estimation methods, our method does not require a frontal reference image.

Our approach was motivated by an observation that a true frontal image can be

used to reproduce other non-frontal images by perspective projection, while the

non-frontal images have limited ability to do so. We show comparing frontal and

non-frontal can be extended to comparing ‘more frontal’ and ‘less frontal’ images.

Our method estimates the relative frontalness of an image by exploiting the objective

space error. We also propose the use of K-invariant space to evaluate the frontalness

even when the camera intrinsic parameters are unknown (e.g., images/videos from

the web). Our method outperforms a baseline method which uses the homography

decomposition approach.

In the second part of this dissertation (Chapter 5), we will address a challenge

one may face when trying to make use of multiple deep neural networks (specifically

CNNs) with different architectures and different tasks within the same framework.

Here, we focus on the problem of “network integration” which is combining

different networks (for different tasks) together in an end-to-end multi-task learning

scheme. To demonstrate the integration of networks for “different” tasks, we se-

lect event recognition and object detection. Although many previous methods have

4



showed the importance of considering semantically relevant objects for performing

event recognition, yet none of the methods have exploited the power of deep con-

volutional neural networks to directly integrate relevant object information into a

unified network. We present a novel unified deep CNN architecture which inte-

grates architecturally different, yet semantically-related object detection networks

to enhance the performance of the event recognition task. Our architecture allows

the sharing of the convolutional layers and a fully connected layer which effectively

integrates event recognition, rigid object detection and non-rigid object detection.

This dissertation consists of the following chapters. Chapter 2 addresses the

problem of mosaicking the document images using Graphcuts, considering sharpness

and smooth transition between overlapped images. Chapter 3 describes the method

to remove highlight regions on glossy surfaces caused by the light sources by jointly

estimating separate homographies for the target scene and the highlights. Chapter

4 describes the method of selecting instances of planar objects in videos or sets

of images by applying the concept of “frontalness” evaluation which uses object

space error. Chapter 5 introduces a novel unified deep CNN architecture which

integrates architecturally different, yet semantically-related networks for different

secondary tasks (object detection) to enhance the performance of a primary task

(event recognition). We conclude with future work and open questions, as well as a

summary of theoretical contributions in Chapter 6.

5



Chapter 2: Sharpness-aware Document Image Mosaicking Using Graph-

cuts

2.1 Introduction

In the field of document image analysis, document image mosaicing has re-

ceived a great deal of attention as mobile devices with low cost built-in cameras are

used to image printed materials. The idea of acquiring a single, high-quality, digital

copy of a document from multiple overlapping shots has become very attractive, es-

pecially for documents which are difficult to scan or capture in a single pass. Some

examples of such documents are shown in Figure 1 including long receipts, posters

on display, and framed documents.

Numerous approaches were introduced which address the general issue of image

mosaicking and many more now are even built into popular commercial software

applications [12]. Although they seem to perform well on natural scene images,

they typically show unsatisfactory results on document images. Unlike scene image

mosaics where discontinuities are less noticeable, document images show noticeable

errors because most of the content is small and very high contrast.

Figure 2 depicts examples of document image mosaics using two state-of-

6



Figure 2.1: Documents which may require document image mosaicing

the-art scene image mosaicing approaches: AutoStitch [12] and iPhone5s built-in

panorama. Figure 2(a) shows regions where the same texts appear twice with a

slight offset. This is typically referred to as ”ghosting”. Figure 2(b) illustrates

another erroneous result where contents are missing in the mosaic. Such artifacts

are caused by two major components of a general image mosaicing process: image

registration and image blending. The registration attempts to properly align the

overlapping images, while image blending is responsible for compositing the images

as naturally as possible.

Previous work can broadly be categorized into two groups based on which

major component (registration or blending) they address. Most of the approaches

[13–19] focus on enhancing the registration process. In early approaches [13,14], reg-

istration between overlapping images were estimated using methods such as image

pyramid, image correlation or Least Median of Squares. These approaches target

planar registration, typical of scanned documents. In [15], a sliding window reg-

7



(a) AutoStitch (b) iPhone5s

Figure 2.2: Document image mosaics with errors (a) AutoStitch showing ghosting

artifacts (b) iPhone5s built-in panorama with missing contents

istration method was introduced, but is time consuming and only applicable for

binary images. Kasar et. al. [16, 17] began using feature descriptor-based registra-

tion methods. In [16], the Harris corner detector and the discrete cosine transform

feature descriptors were exploited, while [17] employed angular radial transform

for the description of each connected component for registration. As mobile de-

vices became more popular, a mobile-based, user-interactive mosaicing scheme [20]

was introduced which incorporated SIFT features and RANSAC-based homogra-

phy estimation. Most recently, two methods [18, 19] were proposed which focus on

compensating for perspective distortion of the overlapping portions of documents.

We note that, most of the approaches addressing the registration problem

[13, 15–19], adhere to using the conventional alpha-blending (weighted averaging).

Although it is not explicitly stated in [13,15,18,19], we presume that they have used

alpha-blending by carefully inspecting their experimental results.

Instead of focusing on the registration problem, Liang et al. [21,22] addressed

the blending problem by using ”selective” image blending. The method was devel-

8



oped to handle text content, and thus performs binary morphology and word-level

segmentation. It is likely to perform poorly when dealing with complex figures, ta-

bles or text with different sizes. Even if the given document image includes uniformly

sized characters, words might appear jagged in the mosaicked image.

In this paper, we address the limitations introduced in the previous approaches

by using a sharpness-aware document mosaicing based on Graphcuts performed at

the pixel level. The contributions of our method are as follows. First, Graphcut-

based blending method is a novel method which effectively stitches two overlapping

images without requiring any prior knowledge of the document, thus being more

robust and widely applicable. Second, boundary constraints are imposed which

minimize discrepancy between overlapping and non-overlapping regions. Third, we

incorporate a sharpness measure which promotes cuts which favor a mosaiced image

with sharper pixels when blending the overlapping images.

2.2 Overall Document Mosaicing Approach

Although the novelty of our method is primarily in the image blending step,

we briefly summarize the overall framework for completeness, and additional detail

can be found in [20].

The mosaicing process begins with the capture of a portion of the document

with a user interactive approach. Motion of the mobile device is estimated in real-

time and the user is notified when to move and when to stop while scanning. The

result is a series of images suitable for mosaicing.

9



Once the images are captured, scale and rotation invariant SIFT [23] features

are extracted and matched. Matched features are then used to estimate the homog-

raphy, or perspective projection, between pairs of overlapping images. Since there

may exist outliers in the feature correspondences, we employ a robust homography

estimation which efficiently eliminates the outliers through RANSAC [24] followed

by a Levenberg-Marquardt refinement scheme.

Finally, we project the images onto a reference coordinate system, or a plane,

followed by blending the images together where they overlap to generate the mo-

saiced result. A detailed description of the proposed Graphcut-based blending pro-

cess is included in the next section.

2.3 Graphcut-based blending

As mentioned previously, the phenomenon of the same content appearing twice

with a slight offset, referred to as the ghosting artifact, is caused by alpha-blending

(weighted averaging) the two overlapping images when the homography estimation

contains errors. It is very difficult to have zero error in the homography estimation

throughout the overlapping region. Thus, the proposed method seeks to eliminate

such ghosting artifacts by using a Graphcut-based blending scheme which performs

well even when slight registration error exists. The proposed method also has ad-

vantages over the selective image blending [21, 22] in that it does not require any

segmentation.

Our method is capable of acquiring a cut line where two overlapping images
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Figure 2.3: dynamic programming based horizontal cut blending

can be stitched together like two pieces of puzzle. Since documents tend to have

empty space where text or other contents like figures or tables are not present, it is

desirable for the cut to be generated in those empty regions as shown in Figure 3.

2.3.1 Boundary Constraints

This problem can be viewed as a 2-class labeling problem where each of the

labels indicates which of the two images, pixels are being copied from. The energy

function E which is being minimized in solving this labeling problem is represented

by the sum of two terms: a smoothness term
∑
Vp,q and a data term

∑
Dp, as

shown in (1). The objective is to find a labeling f that labels each pixel p ∈ P as

fp.

E(f) =
∑
{p,q}∈N

Vp,q(fp, fq) +
∑
p∈P

Dp(fp) (2.1)

The smoothness term is the sum of the penalty Vp,q for all the pairs (p,q)

included in N, where N, fp, fq, indicate the set of neighboring pairs of pixels, label
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of pixel p, and label of pixel q, respectively. It can be described as the penalty

imposed on the edge between pixel p and q, whenever a cut is being made. The

data term is the sum of the penalty Dp for all the pixels in P . Dp measures the

penalty imposed on pixel p when p is labeled as fp. A detailed explanation of the

energy function and the Graphcut algorithm can be found in [25–27].

In our method, we use the following equation [28] as the smoothness term,

which is defined for edges between every pair of neighboring pixels in the overlapping

region

Vp,q(p, q, A,B) = |A(p)−B(p)|+ |A(q)−B(q)|, (2.2)

where p and q are the neighboring pixel locations in images A and B.

For the data term in (1), we have incorporated two different terms, a boundary

constraint and a sharpness measure, to guide the cut to minimize the discrepancy

where the overlapped regions meet with the non-overlapping regions, and to favor

the sharper image.

Our initial idea was to simply acquire a horizontal cut by using a method

in [29]. This approach performs well in generating a seamless mosaic near the cut.

However, a considerable number of discrepancies appear as shown in the dotted

circular region of Figure 3.

In order to mosaic the two images with minimum discrepancies where the

overlapped and non-overlapped regions meet, we have employed hard-constraints to

constrain which image the boundary pixels are copied from. We have adaptively

applied one of six different hard-constraints determined by the geometrical disposi-

12



Figure 2.4: The six hard-constraints used for the data term commonly encountered

for horizontal or vertical scanning

tion of the two overlapping images shown in Figure 4. This can also be viewed as

designating the locations of the two end points, X and Y, of the cut being made

within the overlapping region.

All the pixels located on the red dashed boundary line in Figure 4, are copied

from image A, by setting Dp(A) = 0, Dp(B) = ∞. In the same way, pixels on the

blue dotted boundary will be set with the data terms of Dp(A)= ∞, Dp(B) = 0.

2.3.2 Incorporating sharpness

The sharpness measure is also incorporated into the data term of the energy

function. This, in turn, penalizes the blurred pixels with higher cost and the sharper

pixels with lower cost when computing the energy function in (1).

The sharpness measure is computed for every pixel location within the overlap-

ping region of the two images using a method introduced in [30] which is designed to
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estimate sharpness for documents or scenes. For the proposed method, the penalty

value, Dp(A) or Dp(B) for each of the pixels in the overlapping region is controlled

by the difference of the sharpness of the two images as shown in (3). γpA and γpB are

the sharpness value of image A and B, respectively, computed at the pixel location

p.

Let,δ = |γpA − γpB|

IfγpA ≥ γpB, then Dp(A) = −δ and Dp(B) = δ

Else,Dp(A) = δ and Dp(B) = −δ

(2.3)

Thus, the Graphcut favors the pixels with higher sharpness, which guides the

cut so that regions with sharper pixels are included in the final mosaiced image.

2.4 Experimental Evaluation

2.4.1 Dataset

To the best of our knowledge, there are no publicly available datasets for

document image mosaicing. Thus, we have constructed a dataset where each session

is comprised of two partially overlapping shots of a document using the camera on

the iPhone5s. The images were captured with the resolution of 3264(w) x 2448(h)

in a reasonably lit, indoor environment.

Ten different documents were selected so that the method could be tested on

not only the text lines but also on other types of frequently appearing contents

such as equations, graphs, pictures, and tables. For each document, 6 sessions were

captured, for a total of 60 sessions. The images in a session may have no blur or

14



Table 2.1: OCR Performance Comparison

Alpha-blend Selective blend Proposed

character 72.31% 80.90% 83.70%

word 62.25 % 71.98 % 77.25%

blur in one of the two images. Note that the blur is added to the dataset for the

purpose of verifying the performance of sharpness-aware approach.

2.4.2 Performance Comparison

Our experiments compare alpha-blending and selective blending to our method

using our dataset. As the target objects for the mosaicing are documents which typi-

cally include text contents, OCR performance was used as a measure for quantitative

performance comparison. Character and word level OCR accuracy were obtained

using the OCR Frontiers Toolkit [31]. Table 1 shows that our method significantly

outperforms the previous methods in both character and word-level OCR accuracy.

Figure 5 shows the resulting mosaics of two documents generated by three

different blending approaches.The gray regions indicate the overlaps between pairs

of images. Observe that the ghosting artifacts clearly occur when using the alpha-

blending as depicted in Figure 5(a) and (d). Meanwhile, the selective blending

approach generates several different types of artifacts due to its binary morphology

based procedures which incorporate dilation, thresholding and connected component

labeling. In result, the mosaic shows unwanted fragments of contents as seen in
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Figure 5(b).

Moreover, neither of the previous approaches demonstrate the smooth transi-

tion between the overlapping and the non-overlapping regions, thus generating text

or figures on the boundary with improper alignment. Such phenomenon can also

be seen in Figure 5(b). The selective blending may even lose some of the contents

which reside on the boundary. Notice that almost an entire text line is missing in

Figure 5(e), while the same portion is properly recovered in Figure 5(f).

2.4.3 Limitations

Although our method outperforms the previous approaches, Graphcut-based

blending does not address registration errors. In other words, if the registration error

is considerably large, the resulting mosaicked image may contain duplicate contents

as shown in Figure 6. The red crosses and blue dots indicate the corresponding

feature points.

Note that in an ideal case, only one of the two matching features should appear.

However, such problems arise when the cut runs between the corresponding feature

points. The relative positions of the cut and the matching features could be used

do an automatic check on the mosaicing quality.

2.5 Summary

In this work, we have proposed a novel method for document image mosaicing

based on Graphcuts. We have focused on comparing the proposed blending approach
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(a) alpha-blending (example 1)

(b) selective blending (example 1)

(c) Graphcut-based blending (example 1)

(d) alpha-blending (example 2)

(e)selective blending (example 2)

(f) Graphcut-based blending (example 2)

Figure 2.5: Resulting mosaic documents using (a),(d) alpha blending, (b),(e) selec-

tive blending, (c),(f) proposed
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Figure 2.6: A failure case with duplicate content

with the two blending approaches used in previous literature. We have verified that

our approach outperforms other approaches both qualitatively and quantitatively,

showing its advantage in eliminating the ghosting effects and being capable of han-

dling various types contents other than text. In the future, it will be worthwhile to

devise a method which incorporates the registration error along with the matching

correspondence information when running the Graphcut so that the result could

effectively avoid having duplicate contents in possible erroneous cases.
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Chapter 3: Joint Homography Estimation for Highlight Removal

3.1 Introduction

Imagine being in an art museum or any other indoor environment where there

are numerous paintings, pictures, documents or posters held inside glass-frames

for protection. There are pieces which you wish to capture using a camera, but

you experience difficulty avoiding highlights which are generated by bright indoor

lighting reflected off the glossy surfaces. Similar problems occur when trying to

capture contents off of whiteboards, documents printed on glossy surfaces or objects

such as books or CDs with plastic covers. Figure 3.1a illustrates typical examples.

In this work, we address the problem of removing unwanted highlight regions

in images generated by reflections of light sources on glossy surfaces. Although

there have been efforts made to synthetically fill in the missing regions using the

neighboring patterns by applying methods like inpainting [32,33], it is impossible to

recover the actual missing information in completely saturated regions. Therefore,

it is prudent to consider using multiple images where corresponding regions are not

covered by the saturated highlights.

We make the following observations in devising our approach:
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(a) (b)

Figure 3.1: (a) Examples of highlights shown on the glossy surfaces obscuring the

desired content and degrading visual quality (b) Result (right) obtained

using our algorithm to remove the highlights using two images (left and

middle) captured at different viewpoints

• The distance between the camera and the virtual location of the light source

is typically larger than the distance between the camera and the target con-

tent. (Figure 3.2). Thus, it is reasonable to use two separate homographies

in distinguishing the objects at different distances. [34]

• When two images are captured with a change of view point, the displacement

of the desired content is different from the displacement of the highlight

regions. This is referred to as ‘motion parallax’.

Our method works with two images with slightly different viewpoints and ap-

plies a novel algorithm called, Joint Homography Estimation for Highlight Removal

(JH2R) which performs a fast joint estimation of the two homographies, foreground

and highlight, and provides a visually pleasing output with the highlights removed.

(Figure 3.1b)

To the best of our knowledge, no previous work has addressed an approach

which can successfully handle relatively large and saturated highlight regions ob-
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scuring the content underneath. We show the effectiveness of our approach by

comparing it with closely related state-of-the-art methods.

3.2 Related Work

Several methods have been suggested to explicitly address highlight issues

based on the dichromatic reflection model [35]. Tan et al. [36] uses a user-assisted

inpainting and show that highlight pixels contain useful information for highlight

removal. Similarly, [37] asserts that the color texture data lying outside the high-

lights can assist in filling in the missing diffuse surface colors inside the highlights.

Yang et al. [9, 38] introduced a method which propagates the diffuse color infor-

mation into the highlight regions using an iterative bilateral filter. Tan et al. [39]

proposed a local operation based method which does not require explicit color seg-

mentation. They strongly assume that surface color is chromatic and ignores cases

with saturated regions.

Solutions based on reflection removal or layer separation can also be taken

into consideration. Some suggest that it is possible to solve this ill-posed problem

using a single image supported by additional priors. Levin et al. [40] showed that

layer decomposition can be performed by minimizing the total number of edges

and corners. In [41], the prior information for layer separation is strengthened by

bringing the user into the loop for manual gradient labeling. Li and Brown [8]

recently suggested an approach which assumes that one layer is smoother than

the other. Since all of these methods use only one image as input, it is virtually
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impossible to recover the content obscured by the highly-saturated or large highlights

unless the region is homogeneous and smooth.

Numerous approaches to exploit multiple images have also been explored.

Some approaches have used the polarizing effect on specularities [42–45] while oth-

ers have used focus [46] or flash [47] as priors. However, using polarizers, different

focuses or flash may require use of additional hardware which is not always feasible

or convenient for typical users.

Techniques using multiple images with different viewpoints have also proven

effective. Szeliski et al. [48] showed that relative motion between the layers in

multiple images can be used effectively. In [10], gradients across the aligned image

set are used to distinguish pixels in different layers. Lin et al. [49, 50] integrated

color analysis and multi-baseline stereo. This, however, requires large set (>50) of

images captured by moving the camera along a linear path with constant velocity.

The approach also suffers when images contain color saturations. Recently, Guo et

al. [11] showed that by harnessing correlation, sparsity, and the independence prior,

reflection separation can be performed.

These methods share a similar perspective with our approach in that they use

multiple viewpoints and incorporate the relative motion difference in different layers.

However, our method does not employ any sophisticated optimization which usually

requires significant processing time [10,11], nor does it require any user intervention

[11]. Most importantly, unlike others, our method uses the relationship between

the highlight regions resulting in more robust removal of saturated highlights. A

detailed comparison is presented in the experiments section where our method is
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shown to outperform the representative state-of-the-art.

3.3 Our Method

3.3.1 Overview

  

  

D

d

Light 

source

Light 

source

(virtual 

location)

viewpoint 1

viewpoint 2

viewpoint 2

viewpoint 1

Figure 3.2: The illustration depicts the overhead view of the camera, the desired

content, and the light source.

Our method was motivated by a widely acknowledged physical phenomenon

known as ‘motion parallax’. Motion parallax states that as the viewer moves, the

movement of the objects in the vicinity is greater across the field of view than those

in the distance. A driver can easily observe that the objects close to the window

(e.g., roadside traffic signs) pass by quickly while those in the distance (e.g., clouds)

remain in one’s field of view longer.

Without loss of generality, we can view the relationship between the desired

content (e.g., a painting) and the highlights as shown in Figure 3.2. Since the
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highlights caused by the light source are the result of the reflection on the glossy

surface before they reach the camera, the light source can be modeled to virtually

exist on the other side of the content. Note that the distances of the two sources

(target content and light) from the camera are different. Unless the light source is

attached on the same wall as the painting, in which case no reflection would exist,

the distances can never be the same. In fact, the distance from the light source is

always larger than the distance from the content (D > d, in Figure 3.2).

In order to distinguish the movements of the highlights, we need at least

two images captured in different views. We detect where the highlights are by

searching for the two separate homography matrices: one for the content (HC) and

the other for the highlights (HH). Applying two different homographies for scenes

at different distances proved to be effective by Gao et al. in [34]. We exploit the fact

that the homography (HC) which can properly overlay the desired contents in the

two images will generate an erroneous overlap between the corresponding highlight

regions. Similarly, the desired contents will display incorrect overlap when HH is

employed. This is shown in the second step of Figure 3.3b.

Unlike the intrinsic layer separation problem, removing the saturated high-

lights from images requires another image which can provide the corresponding

non-highlight pixels. To perform such “pixel-transfer”, it is necessary to have the

pixel-level detection results of the highlights. In our approach, we first detect the

highlight regions at the feature level by jointly estimating the two homographies

using the proposed JH2R algorithm. Then HH is used to estimate the highlight

regions at the pixel-level. Finally, we remove the highlights in both of the images by
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(a) (b) (c) (d) (e)

Figure 3.3: Schematic overview of our method (a) Input images (b) Joint homog-

raphy estimation (c) Feature-level labeling (d) Pixel-level labeling (e)

Final results

transferring the corresponding pixels from the complementary image using Poisson

blending [51]. Figure 3.3 shows the schematic overview of our method. Details on

each steps of the algorithm are explained in the following subsections.

3.3.2 Joint homography estimation and highlight feature labeling

In our approach, we attempt to estimate the two different homographies. We

devise a novel, yet efficient algorithm which only requires feature correspondences

between the two images along with Maximally Stable Extremal Region (MSER) [52]

features for those images as input. Although we have utilized the SIFT [23] features

in our implementation, any type of feature extractor and descriptor can be used

as long as the features can be stably matched throughout the image including the

highlight regions. Before triggering our algorithm, a set of all the feature correspon-

dences (F ) is acquired by thresholding the Euclidean distances between tentative

feature pairs as described in [23]. Our algorithm is shown in Algorithm 1. Note that
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F and M represent the set of all feature correspondences and the set of all MSER

features, respectively. The framework of our algorithm was inspired by the Random

Sample Consensus algorithm [24].

Algorithm 1: Joint homography estimation for highlight removal (JH2R)

Input : F,M

Output: HC ,HH , FC , FH

1 k ← 1 /* iteration index */

2 repeat

3 Randomly select 4 correspondences ∈ F , Compute HC

4 for ∀Fi ∈ F do

5 if e(Fi,HC) > T then

6 FO ← FO ∪ Fi

7 end

8 end

9 Randomly select 4 correspondences ∈ FO, Compute HH

10 for ∀Fi ∈ F do

11 if e(Fi,HC) ≤ T & e(Fi,HC) ≤ e(Fi,HH) then

12 FC ← FC ∪ Fi

13 end

14 if e(Fi,HH) ≤ T& e(Fi,HC) > e(Fi,HH) & Fi ∈M then

15 FH ← FH ∪ Fi

16 end

17 end

18 Compute Jcurr (Eqn. 3.2)

19 if Jcurr ¡ J then

20 J ← Jcurr and update HC ,HH , FC , FH

21 end

22 k ← k + 1

23 compute and update N (Eqn. 3.5)

24 until k < N

Our algorithm begins by estimating the homography for the content (HC)
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using four randomly selected feature correspondences from F . Using HC , we tem-

porarily label all the feature correspondences in F as either the content feature FC or

the outlier feature FO by thresholding (T ) their symmetric transfer errors [53]. The

threshold T is empirically acquired. For estimating the symmetric transfer error of a

feature correspondence Fi, we consider both the forward (HC) and backward (H−1C )

transformations and use them to compute the sum of geometric errors as follows:

e(Fi,HC) = d(xi,H
−1x′i)

2 + d(x′i,Hxi)
2, (3.1)

where xi and x′i are the corresponding feature points in Fi, while d(p, q) represents

the Euclidean distance between the inhomogeneous points p and q.

At this point, we assume that the set of outlier correspondences, FO, should

include the highlight feature correspondences since they do not follow the homogra-

phy for the desired content (HC). Based on that, a second random sampling from

set FO is carried out to compute the homography for the highlights (HH). The

results for the joint homography estimation is depicted in Figure 3.3b.

Once both of HC and HH are estimated, all the feature correspondences are

relabeled into three different mutually exclusive sets: FC , FH and FO. Figure 3.3c

depicts a sample result of the feature-level labeling step. If a feature correspondence

Fi is not labeled as either desired content or highlight, it is labeled as an outlier.

In order for a correspondence Fi to be categorized into the desired content corre-

spondence set (FC), the symmetric transfer error using HC (i.e., e(Fi,HC) ) should

be smaller than the threshold T . At the same time, the error using HC has to be

smaller than the error using HH , which indicates that Fi favors HC over HH . If Fi

does not get categorized into FC , the algorithm checks if it can be categorized as

one of the highlights by evaluating the symmetric transfer error using the highlight

homography (HH) in a similar manner.

One additional criterion is employed for Fi to be categorized into FH . It

constrains the features in Fi to be present on the “bright-on-dark” MSERs [52].

The “bright-on-dark” MSER regions indicate the MSER regions which are brighter

than the vicinity. As the intensity values in highlight regions tend to be stable

and lighter than the neighboring regions, MSER is a reasonable choice for obtaining

potential highlight regions. Yet, MSER also detects some other non-highlight regions

as shown in Figure 3.3d which will be eliminated by the pixel-level labeling and the
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blending scheme in Section 3.3.3.

Having obtained the labeling for all the feature correspondences along with

the two homographies, the cost J for the current iteration is computed as

J = E(FC ,HC) + E(FH ,HH) − γ
(
n(FC) + n(FH)

n(F )

)
. (3.2)

The first and the second term incorporate the symmetric transfer error while

the third incorporates the number of inlier (desired content and highlights) feature

correspondences. γ is a parameter which balances the three terms. n(FC) and n(FH)

indicates the number of feature correspondences in each of the sets, respectively,

while ntot represents the total including the outliers. The first term which measures

the average symmetric transfer error for the set (FC) is computed using Equation

3.3. The second term is computed in the same manner.

E(FC ,HC) =
∑

Fi∈FC

e(Fi,HC)

n(FC)
(3.3)

If the cost for the current iteration is smaller than the best previous case, the

two homographies along with the two feature correspondence sets are updated. This

process is repeated until the termination criteria are met.

Termination criteria We determine a maximum iteration number N adaptively

after every iteration. We define wC as the probability that any correspondence ran-

domly selected from F is included in FC . We assume that wH is the probability that

any correspondence randomly selected from F −FC is included in FH . These proba-

bilities can be iteratively updated at the end of each iteration as wC = n(FC)/n(F )

and wH = n(FH)/(n(F ) − n(FC)). In Equation 3.4, p is defined as the probability

that 4 randomly selected samples are from FC in the first selection and 4 randomly

selected correspondences are from FH in the second selection within N interations,

at least once.

p = 1− ((1− w4
C) + w4

C(1− w4
H))N = 1− (1− w4

Cw
4
H)N (3.4)

Here,
(
1−w4

C

)
is the probability that all 4 correspondences in the first selection

are not from FC . w4
C

(
1− w4

H

)
indicates the probability that the 4 correspondences

from the first selection are from FC but at least one sample from the second selection
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are from the outlier set. Therefore, the adaptive maximum iteration number N can

be derived from equation 3.4 as

N =
log(1− p)

log(1− w4
Cw

4
H)
. (3.5)

3.3.3 Pixel-level highlight detection and blending

Using the JH2R algorithm, the two homographies (Figure 3.3b) along with

the two feature correspondence sets (Figure 3.3c) for the desired content and the

highlight regions can be acquired. However, the feature-level detection of the high-

light regions is insufficient to properly eliminate the highlights. Instead, it needs to

be extended up to the pixel-level so that the non-highlight pixels can be transferred

complimentarily to recover the obscured contents.

We make use of two previously acquired results which make this step computa-

tionally efficient: the estimated homographies (HC , HH) and the MSER detection.

Pink regions in the left column of Figure 3.3d depict the MSER detection result.

Then the homography HH is used to warp the two MSER images onto a common

plane. This overlays the highlight regions from one image onto the corresponding

highlight regions on the other. Thus, the intersection between the two MSER im-

ages, when projected onto the same plane using HH , should be the estimated region

for the highlights in pixel sense. The right column of Figure 3.3d shows the final

highlight detection result. Note that we are assuming that the two images both

contain the highlights which we wish to eliminate.

Given the pixel-level highlight regions in both of the images, HC is used to

project the two images onto a common plane so that the desired contents are overlaid

properly while the highlight regions do not overlap. In other words, highlight regions

in one image are layed over the non-highlight regions in the other image. This enables

us to easily recover missing information for all the highlight regions in both of the

images. Lastly, Poisson blending [51] is applied to assist the pixel transfers at the

highlight regions with smooth boundaries. Figure 3.3e shows the sample result with

all the highlights eliminated with visually pleasing quality.
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3.4 Experimental Evaluation

(a) Input (b) Ours (c) Li et al. (d) Yang et al. (e) Li et al. (f) Guo et al.

Figure 3.4: Five examples of highlight removal results using (b) our method com-

pared with those produced by (c) Li et al. [8], (d) Yang et al. [9], (e) Li

et al. [10], (f) Guo et al. [11]

Our method is implemented in Matlab and run on Intel Core i5 PC (2.6GHz

CPU, 4GB RAM). All the data used in the experiments are captured in real world

scenes under different indoor lighting conditions. Each input image set contains two

images with two different viewpoints.

Comparison with state-of-the-art We have compared our method with four

state-of-the-art algorithms [8–11]. They were chosen to represent three different

approaches to solving the given problem : 1) highlight removal [9], 2) single image-

based reflection removal [8], and 3) multiple image-based reflection removal [10,

11]. We have used the implementations provided by the authors using author-

recommended parameters. Since [8] and [9] only use a single image, we have used

only one of the two images per set as input.

Figure 3.4 shows five sample results of real world images. As can be observed

in Figure 3.4c and 3.4d, both [8] and [9] are incapable of removing the highlights

due to the lack of information within the saturated regions. Li et al. [8] fails to
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obtain a sufficient amount of gradient information which they use to separate the

reflection layer. Yang et al. [9] also suffers since the saturated highlights are void

of diffuse color information which is supposed to change smoothly from outside the

highlights to the inside.

Multiple-image based approaches by [10, 11] produce results where the high-

lights are only partially removed. In [10], gradients with variation across the aligned

images are assumed to belong to the reflected scenes while constant gradients are

assumed to belong to the desired scene. Thus, when the gradients on the highlights

are too weak to be distinguished from the underlying smooth texture, this approach

may suffer as shown in Figure 3.4e. While [11] uses several priors including the inde-

pendence between the desired content and the reflection to separate the two layers,

none of the priors explain the inherent characteristics of highlights. Thus, in most

cases (Figure 3.4f), color components were falsely categorized into the reflection

layers, generating unnaturally colored results.

Our method, unlike others, specifically uses the relationship between the high-

light regions resulting in more precise detection and removal. One may observe

from Figure 3.4 that our method can also handle dim highlights as there still ex-

ist geometrical distinction between desired contents and dim highlights in terms of

homography. In overall, our method produces the most visually pleasing results.

Homography estimation evaluation In Figure 3.5, we show the efficacy of JH2R

by comparing the warped images using the estimated homographies with those using

the groundtruth. The estimated HC for the desired content are very accurate.

Although the estimated HH may not be equivalent to the groundtruth as illustrated

in the third example, notice that the highlight regions are still well aligned. As

long as the highlights overlap properly, pixel-level labeling can be performed. The

groundtruth homographies are computed using manually labeled correspondences

for content and highlights, separately.

Processing time Our method spends 25.3 seconds on average which is much faster

than Li et al. [10] and Guo et al. [11] by almost the order of magnitude as shown in

Table 3.1. Although Li et al. [8] and Yang et al. [9] both spend less processing time

compared to ours, their performance in removing the highlights are unsatisfactory.

We have used a single image ( [8,9]) or a pair of images (ours, [10,11]) according to

each methodology. The size of the images used in the experiments is 640 x 480.
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(a) (b)

Figure 3.5: (a) Estimated homographies compared with the (b) groundtruth. These

estimated homographies are used to generate the results in the top three

rows of Figure 3.4b. Overlapped regions between the pairs are shaded

in red.

In Figure 3.6, we show more results produced by our method including a

failure case. The red arrow indicates the region which is obscured by the highlights

in both of the input images which leaves no information to recover from. This

violates our assumption that the highlights in the input images should not cover the

same content. However, this assumption is known to be reasonable when targeting

saturated regions as stated in [49, 50], and such cases can easily be avoided with

user cooperation.

3.5 Summary

In this work, we have devised an efficient method for removing highlights

reflected off glossy surfaces of the target scene generated by bright sources. Our

algorithm jointly estimates the two representative homographies for the target scene

and the highlights to effectively detect and remove the highlights. Unlike some of
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Figure 3.6: More highlight removal results produced by our method. Red arrow

indicates a failure case.

Method Num of Imgs Processing Time

Ours 2 25.3 s

Li et al. [8] 1 24.5 s

Yang et al. [9] 1 < 1s

Li et al. [10] 2 221.7s

Guo et al. [11] 2 260.2s

Table 3.1: Quantitative processing time comparison with previous methods

the previous approaches that use homography between non-highlight regions, we

newly use correspondences between “highlight” regions for better localization.

We have verified that our approach outperforms closely-related approaches,

showing its state-of-the-art quality in handling highly saturated highlights which

obscure the underlying content. It requires fewer constraints in image acquisition

and is faster than any other multi-view methods [54]. It will be worthwhile to

further investigate an automatic capture scheme which can smartly overcome the

challenging scenarios.
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Chapter 4: Content Selection Using Frontalness Evaluation of Mul-

tiple Frames

4.1 Introduction

Consider a crumpled receipt or a folded document which one would like to

capture and save using a mobile device. It is often impossible to find the precise

location and pose to capture the entire source with perfect quality. This is because

some portions of the documents would not be directly facing the image plane while

other portions may be out of focus, or experience inconsistent lighting. (Figure 4.1)

One possible solution is to capture and model the 3-D structure to “flatten”

the document using dewarping algorithms to reconstruct the original planar surface.

However, these methods either require external sensors such as structured light

[55,56] or light grid projectors [57] which makes them inconvenient or even impossible

for typical users or cannot handle complex distortion. It also may not be desirable

in outdoor environments. Instead of seeking to recover the whole document at once,

an alternative approach may be to attempt to recover locally “optimal” portions of

the image, from a collection of possible poses.

In another task, consider having an interest in a planar object, such as a book

cover or business logo, in a movie or a long video. If one wants to find a frame

which best depicts that object with respect to its pose, one may have to manually

browse through the entire video. An example set of frames for such a case is shown

in Figure 4.2.

As suggested in the case of crumpled documents, one may assert that this can

be handled by applying a pose estimation solution for planar objects which seeks to

estimate the relative pose of an object with respect to a reference (frontal) image.

This has been addressed in a number of article including [58–60] which were shown

to have reliable and stable performance. However, these methods all share the same
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Figure 4.1: Set of frames showing a folded document in different poses representing

the case of crumpled document.

Figure 4.2: Set of frames extracted from a video which shows different poses of an

object of interest.

limitation in that they assume the reference model (frontal image) is provided a

priori. This makes them unsuitable for handling this case because the assumption

of having an ideal frontal image beforehand directly conflicts with the very purpose

of our goal. Homography decomposition [61–63], on the other hand, does not require

this assumption and can estimate the surface normal of a planar surface with respect

to the optical axis of a camera when given a pair of images. However, it suffers from

highly unstable performance and also provides results which are ambiguous.

We claim that these problems can be handled in a common framework which

relies on analyzing the poses of the local planar targets and selecting the best one

when given images or a video which span different viewpoints. Without loss of

generality, the best shot of a planar target can be considered as the one capturing

the pose closest to the frontal pose of the target.

In this paper we develop the concept of evaluating the frontalness of the image

of a planar source by measuring how well the surface normal of a planar object aligns

with the optical axis of a camera. We show that measuring the relative frontalness

can be analyzed by noting that if an image is assumed to be a true frontal image

(as a reference), but is not, it shows limited ability to represent other non-frontal

images. In other words, a less frontal image has less representability for different

poses of an object than a more frontal image. Based on this observation, we estimate
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the relative frontalness by comparing the objective space errors for a given image

pair, first setting one of the two images as the true frontal image (reference image),

then setting the other. Objective space error values are acquired by applying a

state-of-the-art pose estimation algorithm for planar objects [58].

4.2 Our Method

4.2.1 Overview

We assume that we have a short video or camera burst of a planer source,

captured from different orientations, sufficient to adequately capture at least one

instance that would be considered acceptably “frontal”. Given a pair of candidates,

our goal is to evaluate the relative frontalness of the images and select the one which

is more frontal. Through multiple pairwise comparisons, we can ultimately find

the best or most frontal candidate. Since our method does not use any temporal

information, it can be applied to any unordered set of images in an equivalent

manner.

In order to evaluate the relative frontalness of a target, we use a pose estimation

error-based method. Typically, pose estimation is used to estimate the pose of

an object with respect to a set of model points which are assumed to be known

beforehand. However, in our case, the pose estimation algorithm is employed to

measure the pose estimation error, or objective space error for an image with respect

to another image. Thus, to compare the pose estimation errors for each image in a

pair, the error is computed twice, once with the first image as the reference model

and the second time with the other image as the reference model.

The intuition behind this process is that, when the true (or more) frontal

image is used as a reference image, the pose estimation error is smaller than the

case where non (or less) frontal image is used as the reference. This occurs because

a true-frontal image can be used to reproduce non-frontal images by perspective

projection, whereas the non-frontal image has a limited ability to reproduce other

non-frontal images. Detailed explanation on our method is explained in the following

subsection.
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4.2.2 Frontalness evaluation with known intrinsic camera parameters

(K)

Let us first summarize the typical approach for a pose estimation procedure.

Consider n coplanar model points pi =
[
pix piy 0

]T
in reference coordinate system.

These points can be transformed into the camera coordinates vi by:

vi ∝ Rpi + t, (4.1)

where ∝ indicates that the left hand side is directly proportional to the right hand

side, due to the fact that vi can only be computed up to a scale. Note that R and t

indicate the 3 dimensional rotation and translation vectors, respectively, which are

also known together as extrinsic camera parameters. Under the assumption that

the image coordinate system aligns with the reference coordinate system, the task

of estimating the pose of a camera with respect to the reference coordinate system,

is to estimate R and t. So in principle, a pose estimation algorithm seeks to find

the values for R and t that minimizes an error function. We use the object-space

error, as used by [58,60,64], which can be written as:

Eos(R̂, t̂) =
n∑

i=1

‖ (I − V̂i)(R̂pi + t̂) ‖2 with V̂i =
v̂iv̂i

t

v̂i
tv̂i
. (4.2)

For evaluating frontalness, we exploit the objective error itself which is being

minimized in the pose estimation process instead of utilizing R̂ or t̂. When given a

pair of images, we first acquire a set of corresponding features from both images (in

our case, SIFT [23] and RANSAC [24]). These feature coordinates are then normal-

ized (i.e., transformed to camera coordinates) using the camera intrinsic parameters

(represented by the matrix K) which are assumed to be known.

Using the transformed feature coordinates, we perform the pose estimation

(Eq. 4.2) twice. In each case, one of the two images is chosen as the reference

image. Lastly, we compare the two error values to decide which one better fits as

the reference image or “which one is more frontal”. Note that the smaller error

value indicates that the reference image has been chosen well and this image serves

better as a representative for the other image.

The overall process of frontalness evaluation given a set of corresponding fea-

ture coordinates extracted from a pair of images (image i and image j) is computed
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(a)

(b)

Figure 4.3: (a) Synthetic images of number “5” with various rotations captured by

perspective camera model. (b) Objective space error plot for different

reference images. X-axis: Test image angle (−70◦ to +70◦), Y-axis: Ep.

as shown below:

f ∗ =

i, Ep(j|µ = i)/Ep(i|µ = j) ≤ 1

j, otherwise
(4.3)

where f ∗ and µ indicate image to be chosen (more frontal of the two) and the model

frame, respectively. Also note that Ep(j|µ = i) indicates the pose estimation error

of image j when image i is set as the reference image.

To verify that our method of comparing Ep is a reasonable approach for frontal-

ness evaluation, we have run a simulation using a synthetic dataset generated by a

perspective camera model with known K. The images of a number “5” in various

poses were captured by rotating the camera between −70◦ to 70◦ with respect to

the y axis (Figure 4.3a). Each graph in Figure 4.3b is acquired by plotting the ob-

jective space error (Ep) for all the images in the dataset with respect to a reference

model (µ). Observe that the Ep values generate a smoothly changing plot which is

minimum when the reference model (µ) is used as as the test model.

Now consider one example of comparing the Ep values which correspond to

the two locations with the circle and the triangle marks in Figure 4.3b. It clearly

shows that Ep(−60◦|µ = −40◦) is smaller than Ep(−40◦|µ = −60◦), and this verifies
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that the image with −40◦ angle is indeed “closer to the true frontal” than the image

with −60◦. By comparing any two Ep values in two different plots, one can verify

that the method can be applied in general.

4.2.3 K-Invariant projective space

In applying the method described in the previous subsection, we assume that

the camera intrinsic parameters (K) are known. This means it remains a challenge

for uncalibrated cameras where K is inconsistent or unknown [65]. There may be a

case where K is constantly changing due to zooming even if a same camera is used.

When the goal is to evaluate a set of randomly collected images from a web search,

K is also unknown and most likely different for each image. In such cases, we need

to transform the points from two images onto a space to make them invariant to the

camera intrinsic parameters. This can be done by using a projective transformation

as used in [66,67].

Consider three non-collinear points in one image (p1,p2,p3) and their cor-

responding points in a second image (p∗1,p
∗
2,p

∗
3), both in image coordinates. The

image coordinates of these points are acquired by equations:

P = KV and (4.4)

P∗ = K∗V∗. (4.5)

where P = [p1 p2 p3], V = [v1 v2 v3], P∗ = [p∗1 p∗2 p∗3], and V∗ = [v∗1 v∗2 v∗3]. Here,

vi is a point represented in camera coordinates as in Eq. 4.1. Since we assumed that

these three points are not collinear, matrices P and P∗ are non-singular which can

define two different projective spaces, for example, γ and γ∗. Thus, we can transfer

the points in the images on to those spaces as w = P−1p and w∗ = P∗−1p∗, re-

spectively. Thus, if we consider these equations with Eq. 4.6 and Eq. 4.7, we can

observe that w and w∗ are you below:

w = P−1p = V−1K−1Kv = V−1v and (4.6)

w∗ = P∗−1p∗ = V∗−1K∗−1K∗v∗ = V∗−1v∗. (4.7)

For generating the matrices P and P∗, three non-collinear points from each

images need to be chosen. These points are automatically chosen so as to maximize

39



Figure 4.4: Sample images from the dataset including scanned frontal images (top

row) and corresponding non-frontal images (bottom two rows).

the spacing as recommended in [68]. We will show in the following section, that this

approach indeed increases the accuracy of frontalness evaluation on images with

unknown K.

4.3 Experimental Evaluation

The experimental evaluation was carried out by targeting two real data scenar-

ios based on the availability of camera intrinsic parameters (K). First, we evaluated

our method assuming that the camera is calibrated (i.e., K is known). The camera

intrinsic parameters were obtained beforehand using the the calibration method in-

troduced in [69]. We compare the performance of our method with the homography

decomposition-based method [62].

Second, we performed an evaluation on images under the assumption that K

is unknown. In this scenario, we compare the performance of two different methods:

1) our method with a known or fixed K and 2) our method which uses a K-invariant

space.

For both experiments, frontalness evaluation was performed on each possible
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pair of images deciding which of the two images is more frontal. The overall accuracy

is computed as the percentage of the correct pairwise decisions over all possible pairs

in the given dataset.

Lastly, we include two samples results which qualitatively verify that our

method performs well in selecting the most frontal image from a set of images.

4.3.1 Experiment 1: Calibrated Camera, Known K

We have constructed a new dataset as there are no public dataset available

targeting the evaluation of frontalness. The dataset consists of 1200 images which

were captured using the camera on iPhone5s with the resolution of 3264 x 2448 (w

x h). This includes 30 different planar objects (books, documents, boxes), with each

object being captured in 40 different camera angles and distances. The images were

captured so that the angle between the optical axis of the camera and the surface

normal of the plane ranges between 0◦ to 50◦, approximately, distributed in various

random directions.

To evaluate the performance of each decision, the angle between a test image

and the optical axis of the camera should be provided as groundtruth. Since it

is difficult to directly measure and work with the optical axis of a camera, we

computed the angle between each image in the dataset (non-frontal) with respect

to its corresponding true frontal shot. The pose estimation method in [58], which

is known to be one of the state-of-the-art in robustness and accuracy, was used to

compute the angles and be saved as the groundtruth. The true frontal image of

each planar object was acquired by scanning the frontal surface of the object using

a flatbed scanner. Figure 4.4 shows some of the selected images of frontal (scanned)

and non-frontal shots from the dataset.

Each decision is made in a pairwise manner. Thus, testing was performed

on every possible image pair in the dataset, which sums up to 23.4k pairs. The

frontalness evaluation accuracy of our method and the homography decomposition-

based method (baseline) for the overall dataset is shown in Table 1. Our method

clearly outperforms the baseline method.

To better analyze the capability of our method with different difficulty levels,

we have defined the measure of difficulty ν which can be computed for each image
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Table 4.1: Frontalness Evaluation Accuracy

Homography-decomp 68.35%

Ours 86.04%

pair. We use the cosine similarity as the measure which is shown below:

ν =
A ·B

‖ A ‖‖ B ‖
=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

, (4.8)

where A and B are the two surface normal vectors of the two given images which

are provided by the groundtruth.

The plot in Figure 4.5 shows the performance of our method with respect

to the 7 different difficulty levels along with two sample pairs with minimum and

maximum difficulty. The accuracy goes up to 97% for the easiest pairs while it

performs 71% for the most difficult ones. Note that, however, as the difficulty level

goes up, the appearance of the image pairs begin to resemble with each other, thus

having low risk even if the decision is incorrect.

The frontalness evaluation of each pair of images requires less than a second

(0.54 seconds in average for the given dataset) with MATLAB implementation on

Intel Core i5 PC (2.6GHz CPU, 4GB RAM) excluding the feature extraction time.

4.3.2 Experiment 2: Randomly Collected Images, Unknown K

Our method explained in Section 4.3.1 which assumes that K is given, is not

suitable for handling images captured with cameras with unknown intrinsic parame-

ters. To validate the effectiveness of using K-invariant space with a pose estimation-

based method, we have collected images of 3 different planar objects (a FedEx logo,

a UPS logo, and a Wall Street sign), each at various rotations. For each planar

object, 20 non-planar images are included along with the one true frontal image for

each object. Note that there are 190 possible pairs for each object for evaluation.

The groundtruth for each pair was generated in an equivalent manner as described

in Experiment 1. The images were downloaded from the internet and sample images

are shown in Figure 4.6.
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Figure 4.5: Frontalness evaluation accuracy with respect to difficulty levels. Testing

dataset size = 23.4k pairs.

We compare the performance of two different methods: our method which

assumes known/fixed K, our method which uses K-invariant space (KIS). When

applying the method which assumes known/fixed K, we have used the K of our

pre-calibrated camera to transform the points to camera coordinates in order to

make a fair comparison. The performance comparison is shown in Figure 4.7 and

it depicts the effectiveness of applying the K-invariant space. However, the overall

performance does not quite reach the accuracy shown in the known/fixed K cases.

4.3.3 Qualitative Results

In addition, we show that our method can be used in selecting the best char-

acters from a set of 40 images with various viewpoints. The sample images are

shown in Figure 4.8a. Each character in different images are assumed to be resid-

ing on piecewise planar surfaces. Bounding boxes for the characters were manually

assigned so that the evaluations are carried out within the same set of characters.

Compare the best set of characters with the worst set of characters in Figure 4.8b

and Figure 4.8c, respectively.

In addition, our method of performing the pairwise comparison of the Ep values

can easily be used on a set of images to order them in terms of their frontalness. We
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Figure 4.6: Sample images from the dataset for cases with unknown K.

Figure 4.7: Frontalness evaluation accuracy on dataset with unknown K. Using K-

invariant space (KIS) shows its effectiveness.

have selected one of the objects from the dataset introduced in 4.3.1 and applied

our method. The resulting ordered images are shown in Figure 4.9.

4.4 Summary

In this paper, we have devised a novel method for evaluating the frontalness

of planar objects. Our method takes a pair of images at a time to measure the

relative frontalness between the two by exploiting the objective space error. Each

run only requires a fraction of a second which makes it possible to be applied in

real applications. Unlike the previous pose estimation methods that strictly require

a true frontal image of the target object as a reference model, our method does not
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(a)

(b)

(c)

Figure 4.8: (a) Sample Images of a folded document captured in different view-

points. (b) Characters with highest frontalness. (c) Characters with

lowest frontalness.
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Figure 4.9: Ordered images with respect to their frontalness, from high to low.

require any reference model. Moreover, by introducing K-invariant space, we show

that the proposed method can be applied even when the camera intrinsic parameters

are unknown. The approach can be applied to optimizing the reconstruction of

severely crumpled documents from a short video scan, especially the cases where a

character or any continuous content reside on two or more piecewise planar surfaces.

In addition, bringing more efficiency in terms of computation time would trigger real

time applications or auto capturing of planar objects using mobile devices.
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Chapter 5: IOD-CNN: Integrating Object Detection Networks

for Event Recognition

5.1 Introduction

To better perform event or action recognition, recently introduced approaches

have exploited the importance of considering semantically relevant and distinctive

objects. For example, Althoff et al. [70] showed that the statistics derived from ob-

ject detection results can better represent events. Joel et al. [71] claimed that event

recognition performance can be enhanced by incorporating semantically related key-

words which represent the salient objects. Jain et al. [72] showed that objects do

matter for actions by encoding object categories that benefit action recognition as

well as object localization.

Recently, Wang et al. [73] presented an approach which uses two separate

deep convolutional neural networks (CNNs): an object CNN and a scene CNN.

They used a simple late fusion to combine the fully connected (FC) layer outputs

from the networks and applied a support vector machine (SVM) for classification.

Similarly, an enhanced network was introduced in [74] by incorporating the local

features (TDD: Transformed Deep-convolutional Descriptor), because the features

from the FC layers were found to be weak in capturing the local information in the

images. Both approaches use separate networks which are integrated with a late

fusion.

In our approach, we exploit the power of deep convolutional neural networks

(CNNs) in combining different networks (for different tasks) together in an end-to-

end multi-task learning scheme. Learning a unified network allows better harvesting

of the semantically relevant object information to boost event recognition. We in-

corporate event recognition as a primary task and relevant object detections as sec-

ondary tasks. This approach is motivated by previously methods [75–79] which have
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demonstrated that a task can be better learned assisted by appropriate secondary

tasks.

There are several technical challenges in constructing a unified deep network

which integrates image classification (event recognition in our case) and object de-

tection which are architecturally different in nature. First, the image classification

system must pass an input image through the sequential layers of a network and

generate class probability scores as an output [80–83]. Second, object detection

must generate local candidate object region of interests (RoIs) which are evaluated

to compute their scores. We inherit a widely used object detection approach called

the Fast R-CNN [84] for this. This object detection approach uses RoI generation

and RoI pooling steps which are the two primary differences when compared to the

aforementioned image classification.

To integrate these architectures, we devised a unified CNN framework which

enables the sharing of the convolutional layers, one FC layer and one RoI pooling

layer between image classification and object detection. As the CNN is integrated

by object detection modules, we refer to it as an Integrated Object Detection (IOD)-

CNN. The fact that the image classification also uses the RoI pooling layer (which

is different from typical image classification) not only makes the network differ in

appearance, but also adds beneficial functionality. With the help of the shared RoI

pooling layer, it is no longer necessary to resize the input images to a fixed size. This

allows the use of high-resolution images as input, providing room for classification

performance enhancement.

For image classification, the input to the RoI pooling (i.e., RoI), is the entire

region of the input image. For object detection, object proposals generated by the

selective search (rigid objects) or by the multi-scale sliding window search (non-rigid

objects) are used as inputs to the RoI pooling.

Our contributions can be summarized as:

1. The introduction of a novel unified deep CNN architecture which integrates

architecturally different, yet semantically-related networks for different sec-

ondary tasks to enhance the performance of a primary task

2. A demonstration of the effectiveness of the novel approach by showing that

the performance of event recognition (primary task) can be boosted by incor-

porating rigid and non-rigid object detection.
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3. The fact that our architecture can be further enhanced by appending a late

fusion, indicating that early-sharing of the layers is complementary to the late

fusion.

5.2 Our Approach

5.2.1 IOD-CNN: Integrated Object Detection CNN

In this section, we elaborate on three tasks of event recognition, rigid object

detection and non-rigid object detection followed by the modifications we made to

architectures which implement them. We then explain how these different architec-

tures are integrated into a unified network.

Event Recognition. We use a common classification architecture, known as Con-

vNet [80], for event recognition. As shown in Fig. 5.1a, the network typically

consists of a number of convolutional layers followed by several FC layers. The in-

put is an image with predefined fixed width and height for both training and testing,

while the output is the softmax probability estimates over all of the classes.

Rigid Object Detection. As shown in Fig. 5.1b, the Fast R-CNN (FRCN) [84]

was chosen to perform the rigid object detection. Unlike the deep ConvNet which

requires resized images as input, the original FRCN architecture takes in a full

image as input and passes it through a series of convolutional layers to generate a

feature map. This map along with approximately 2000 object proposals generated

by selective search are then fed into a Region of Interest (RoI) pooling layer. The

output from the RoI pooling is fed into the FC layers which are followed by two

output layers: one for the softmax class-wise probability estimation and the other

for the bounding box regression.

The bounding box regression is removed from our architecture (dotted box in

Fig. 5.1b) because the primary task of event recognition does not benefit from it.

This is due to the fact that the power of bounding box regression in the original

FRCN is exhibited in the post-processing which is separate from the learning pro-

cess. We have experimentally observed that when object detection is learned along

with the bounding box regression in a multi-task scheme, the performance degrades
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Figure 5.1: IOD-CNN architecture. (a, b, c) Architectures for three separate tasks

before the integration (d) A novel architecture which integrates event

classification with rigid and non-rigid object detection.
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Figure 5.2: Multi-scale sliding window for non-rigid object detection

unless the bounding box regression post-processing is existent. In short, incorpo-

rating the bounding box regression into our architecture will have a negative effect

for the primary task, as there is no chance to perform the post-processing to make

up for the loss.

Non-rigid Object Detection. Modeling the “objectness” for objects with non-

standard or non-rigid shape, such as smoke or fire, is not only difficult but also

computationally expensive. Thus, instead of using a fine scanning method such as

selective search which is used for rigid object detection, we use a multi-scale sliding

window strategy as shown in Fig. 5.2. For one input image, five RoIs are generated:

one covering the whole image region and the others covering the four overlapping

regions with 2/3 height and 2/3 width of the whole region. These five RoIs are fed

into the network shown in Fig. 5.1c.

Integrating the Different Architectures. The unified network for training and

inferencing are shown in Fig. 5.1d. The training architecture consists of a series of

convolutional layers, a RoI pooling layer, and three separate modules responsible for

event recognition, rigid-object detection and non-rigid object detection, respectively.

Each module consist of one shared and two non-shared FC layers. For testing, only

the components responsible for the event recognition (primary task) are included in
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the architecture.

The training network takes an input image and passes it through a series

of convolutional layers until it reaches the RoI pooling layer. At the same time,

the input image goes through two different sample generators: a selective search

and a multi-scale sliding window search, generating samples for rigid and non-rigid

object detection, respectively. The output of the convolutional layers along with the

outputs of the two sample generators are fed into the shared RoI pooling layer. The

three task-specific streams go through the FC layers. Each stream is connected to

an appropriate loss function at the end.

The effective integration of these architectures was made possible by sharing

the convolutional layers and the first FC layer (known as fc6) which are learned to

serve all three tasks. Note that, the other two “task-specific” FC layers (fc7 and fc8)

are learned separately for different tasks. By sharing these layers, we provide each

task a means to associate the information from the other tasks. In the experiments

(Section 5.3), we show that the performance of our primary task is indeed boosted

by this integration. In addition, although the RoI pooling layer is not a layer to be

learned, it serves a crucial role in allowing full-size input images to be fed into the

convolutional layers without resizing.

It is noted in [80] that the first convolutional layer (conv1) is more generic

and task independent than other convolutional layers. In our case, we share a

similar philosophy, but we also show that the network can be better learned when

the overall set of convolutional layers is shared and learned together between the

semantically-related tasks.

5.2.2 Learning the Unified Network

We have found the network introduced by Krizhevsky et al. [80] suitable for

the single-task event recognition architecture. In our experiments, we used the

Malicious Crowd Dataset [71], which is described more fully in Section 5.3.1. To

label the RoI for training in the rigid and non-rigid object detection, we have used

0.5 and 0.2 as the thresholds for the intersection over union (IoU) metric. While

the fc6 and fc7 are fine-tuned, the weights for fc8 are initialized by samples from a

Gaussian distribution with zero mean and 0.1 standard deviation.

For every iteration, a batch of two images is used. We made sure that each
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batch is comprised of one sample with a benign label (a normal scene) and one

with a malicious one (which would draw attention of law enforcement). For training

the rigid object detection, the network takes 64 RoIs from each image which is the

selected subset of the initial RoI set provided by the selective search. For event

recognition and non-rigid object detection, 1 and 5 RoIs, respectively, are generated

per image, thus 2 and 10 RoIs are used as one batch.

Cascaded Optimization. One technical challenge in learning the IOD-CNN is se-

lecting the appropriate learning parameters. Naively using the parameters optimized

for one of the three modules may not be suitable for acquiring the best performance

out of the unified network. For the event recognition and non-rigid object detection,

all the RoIs acquired from one image are used for one batch. However, for the rigid

object detection, approximately 2000 RoIs are generated per image and only the

subset of those RoIs (i.e., 64 for malicious and 64 for benign) are used per batch.

To allow more training iterations for the rigid object detection module, we have

employed a three step cascaded optimization strategy. The initial CNN network is

first trained on the Places Dataset [85]. Then only the rigid object detection module

is learned/fine-tuned on the target Malicious Crowd Dataset using the learning rate

of 0.01, 30k iterations, and the step size of 20k. Lastly, the unified network (i.e.,

IOD-CNN with all the modules) is trained with the learning rate of 0.0001, 12k

iterations, and the step size of 8k.

5.3 Experimental Evaluation

5.3.1 Dataset

To demonstrate the effectiveness of our architecture, we use the Malicious

Crowd Dataset introduced in [71]. This dataset was chosen as it contains not only

the crowd event images but also the ground truth labels for relevant objects which

are suitable for testing our architecture which requires both image classification

and object detection. The dataset contains 1133 crowd images, equally split into

malicious and benign classes (Sample images are shown in Fig. 5.3. The malicious

label is said to have been assigned to an image when the scene would be alarming to

a passerby or a law enforcement personnel. For both classes, the images contain two
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(a) benign examples

(b) malicious examples

Figure 5.3: Sample images from the Malicious Crowd Dataset with two classes: (a)

benign and (b) malicious events

different types of objects: rigid (e.g., cars) and non-rigid (e.g., smoke). The dataset

also provides the bounding boxes of the frequently appearing “malicious-related”

objects which are police, helmet, car, fire, and smoke. The bounding boxes are used

to train and evaluate the rigid and non-rigid object detection. Details on how the

objects are selected is given in [71].

5.3.2 Performance Evaluation

We have carried out a set of experiments to demonstrate how our architecture

integration approach can boost event recognition performance to a new state-of-the-

art. For all the experiments described in this subsection, we have used the Malicious

Crowd Dataset briefly described in the previous subsection.

The first six rows of Table 5.1 show that IOD-CNN without any fusion process-

ing outperforms all the baseline single CNNs. The results indicate that integrating

rigid (R), non-rigid (N), or both (R,N) object detections into the network all show

superior performance, and integrating both works the best. Moreover, we verify

that incorporating the RoI pooling layer which allows the input images of arbitrary

size, increases the performance.
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Table 5.1: Event recognition average precision (AP). All methods use [80] as the

baseline architecture. Task: E: Event Recognition, R: Rigid Object De-

tection, N: Non-rigid Object Detection. [71]* reproduces the result of [71]

with our network learning strategy.

Method Tasks AP

Single CNN [71] - 72.2

Single CNN [71]* - 82.5

Single CNN+RoI pooling - 90.2

IOD-CNN E, R 91.8

IOD-CNN E, N 91.9

IOD-CNN E, R, N 93.6

2 CNNs&DPM+Score Fusion [71] - 77.1

OS-CNN+fc7&TDD Fusion [74] - 92.9

3 Separate CNNs+Score Fusion - 92.9

IOD-CNN+Score Fusion E, R, N 93.9

IOD-CNN+fc7&TDD Fusion E, R, N 94.2
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Table 5.2: Single task versus multitask performance. C: Classification, D:

Detection, R and N used mean average precision (mAP) as the evaluation

metric.

Method C/D Single-task (AP/mAP) Multi-task (AP/mAP)

E C 90.2 93.6

R D 11.8 11.0

N C 27.7 82.1

In the last five rows of Table 5.1, we have also compared IOD-CNN with two

baselines [71, 74] which use multiple CNNs and exploit fusion strategies. To make

a fair comparison with the baselines, we use the same fusion techniques, i.e., score

fusion [86] and fc7&TDD fusion. To generate a two stream network, we prepared two

networks pretrained on the ImageNet [87] and the Places [85] Datasets, as in [74].

By applying the same score fusion or fc7&TDD fusion used in [71] and [74], the

performance of pre-fusion IOD-CNN is improved by 0.3 and 0.6 AP, respectively.

This indicates that the early-sharing of the network layers (convolutional and one

FC) is complementary to the late fusion in terms of the performance. The IOD-CNN

with either of the fusion strategies outperforms all the baselines and the case where

3 separate CNNs (E,R,N) are score-fused.

We have also carried out an experiment to analyze how the performance of each

task changes when all the tasks are learned together using the IOD-CNN. Table 5.2

shows that the event recognition and the non-rigid object detection performance is

boosted when learned together. Notably, the non-rigid object detection performance

improved drastically by almost three fold.

5.4 Summary

We presented a novel unified deep CNN architecture which integrates archi-

tecturally different, yet semantically-related networks for different tasks to enhance

the performance of event recognition. The experimental results show that each of

the newly incorporated architecture components are crucial in boosting the per-

formance. The architecture which integrates the two object detections with the
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event recognition outperforms the previous object-aware event recognition CNNs.

As one unified network is learned in an end-to-end fashion, the training can also

be performed more efficiently. Moreover, the performance of our architecture can

be further improved by appending a late fusion approach. This indicates that the

within-network sharing of the layers is complementary to the late fusion.
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Chapter 6: Summary of Thesis Contributions and Open Problems

In the first part of this dissertation, we have addressed challenges in capturing

documents in unconstrained environments including 1) a limited field-of-view keep-

ing users from acquiring a high-quality images of large sources in a single frame, 2)

light reflections on glossy surfaces that result in saturated regions, and 3) crumpled

or non-planar documents that cannot be captured effectively from a single pose. In

the second part, we have addressed the challenge of effectively integrating multiple

CNNs with different architectures, yet with relevant tasks.

The following subsections summarize our approach to each topic, our contri-

butions and open problems.

6.1 Sharpness-aware Document Image Mosaicking Using Graphcuts

6.1.1 Overview of Approach

To address the unique problems associated with document image mosaicking,

we used a novel Graphcut-based document image mosaicking method which focuses

on lessening the known artifacts such as ghosting effects and missing contents. The

major contribution is that we have incorporated a sharpness measure into the Graph-

cut formula which induces the cut generation in a way that results in selecting the

sharpest pixels from the source images. We also incorporated geometrical disposi-

tion between the overlapped images to minimize the errors at the boundary regions.

Proposed method not only generates visually pleasing mosaicked results but also

outperforms previous methods quantitatively, in terms of OCR accuracy.
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6.1.2 Summary of Contributions

• A novel document image mosaicking method is presented which allows the

acquisition of a single, high-quality, digital copy of a document from multiple

overlapping shots.

• Graphcut-based blending is introduced which effectively stitches two overlap-

ping images without requiring any prior knowledge of the document, thus

being more robust and widely applicable.

• Boundary constraints are imposed which minimize discrepancy between over-

lapping and non-overlapping regions.

• A sharpness measure is incorporated which promotes cuts which favor mo-

saicked images with sharper pixels when blending the overlapping images.

• As there are no publicly available datasets for document image mosaicking, we

have newly constructed a dataset where each test case is comprised of two par-

tially overlapping shots of different types of documents (including equations,

graphs, pictures, and tables) using a mobile device.

6.1.3 Open Problems

One of the remaining challenges is how to effectively deal with duplicate con-

tents caused by mis-registration. The idea of incorporating the locations of the

corresponding features into the Graphcut formula so as to effectively avoid generat-

ing a cut that runs between the regions with duplicate contents can be explored. We

also need to consider ways of realigning regions that are detected as having missing

content with a second pass.

6.2 Joint Homography Estimation for Highlight Removal

6.2.1 Overview of Approach

To address the problem of having saturated highlights induced by light re-

flections on glossy surfaces, we proposed a method which exploits the fact that the

reflections and the target contents reside on two separate virtual planes. We have
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devised a novel algorithm which jointly estimates the two representative homogra-

phies for the target scene and the highlights. Unlike previous methods that only

use the relationship between the target scenes in multiple images, we considered the

relationship between the corresponding highlights as well the target scenes. The

proposed method was shown to outperform previous approaches, especially show-

ing its state-of-the-art quality in recovering the underlying contents in saturated

highlight regions.

6.2.2 Summary of Contributions

• Our method is the first to successfully handle relatively large and saturated

highlight regions obscuring the content underneath.

• Unlike some of the previous approaches that use homography between non-

highlight regions, we newly use correspondences between “highlight” regions

for better localization.

• We have exploited the observation that the distance between the camera and

the virtual location of the light source is typically larger than the distance

between the camera and the target content. Thus, it is reasonable to use two

separate homographies in distinguishing the objects at different distances.

• We have shown that when two images are captured with a change of view point,

the displacement of the desired content is different from the displacement of

the highlight regions (‘Motion parallax’).

• We have verified that our approach outperforms closely-related approaches,

showing its state-of-the-art quality in handling highly saturated highlights

which obscure the underlying content. It requires fewer constraints in image

acquisition and is faster than any other multi-view methods.

6.2.3 Open Problems

To lessen the potential artifacts with our current reflection removal method,

we should explore the viability of using a video as input instead of using a pair of

images. A method to automatically select a set of images which could reconstruct

the optimal “reflection-removed” result can also be explored.
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6.3 Content Selection Using Frontalness Evaluation of Multiple Frames

6.3.1 Overview of Approach

To address the problem of selecting best instances in a set of images in terms of

their “frontalness”, we proposed a novel method to evaluate the relative frontalness

of an object by computing and comparing the objective space error of a pair of

images. The novelty of our method is based on the observation that a true frontal

image can be used to reproduce other non-frontal images by perspective projection,

while the non-frontal images have limited ability to do so. To handle the cases where

the intrinsic camera parameters (K) are unknown, we additionally propose the use

of K-invariant space.

6.3.2 Summary of Contributions

• We have devised a novel method for evaluating the “frontalness” of planar

objects by computing the objective space error for a pair of images.

• The novelty of our method is based on the observation that a true frontal image

can be used to reproduce other non-frontal images by perspective projection,

while the non-frontal images have limited ability to do so.

• Unlike the previous pose estimation methods that strictly require a true frontal

image of the target object as a reference model, our method does not require

any reference model.

• By incorporating K-invariant space, we show that the proposed method can

be applied even when the camera intrinsic parameters are unknown.

• Each run only requires a fraction of a second which makes it possible to be

applied in real applications.

6.3.3 Open Problems

Addressing the problem of “flattening” the crumpled document by employing

a deep neural network which includes our local frontalness evaluation will be a

good topic to follow. Incorporating unpooling layers and deconvolutional layers
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could be effective for the purpose of learning the reconstruction process of degraded

characters.

6.4 IOD-CNN: Integrating Object Detection Networks for Event Recog-

nition

6.4.1 Overview of Approach

To address the problem of exploiting the power of deep convolutional neural

networks (CNNs) in combining different networks (image classification and object

detection in our case), we proposed a unified CNN framework which enables the

sharing of the convolutional layers, one FC layer and one region of interest (RoI)

pooling layer between image classification and object detection. As the CNN is

integrated by object detection modules, we call it the Integrated Object Detection

(IOD)-CNN. The major contribution is that we have introduced a novel unified CNN

architecture which integrates architecturally different, yet semantically-related net-

works for different secondary tasks (rigid and non-rigid object detection) to enhance

the performance of a primary task (event recognition). The IOD-CNN can be fur-

ther enhanced by appending a late fusion strategy, indicating that early-sharing of

the layers is complementary to the late fusion.

6.4.2 Summary of Contributions

• We introduced a novel unified deep CNN architecture which integrates archi-

tecturally different, yet semantically-related networks for different secondary

tasks to enhance the performance of a primary task.

• Unlike the previous deep CNN-based event recognition approaches, our ap-

proach uses an architecture which shares the early portion of deep CNN layers.

• We demonstrated the effectiveness of the novel approach by showing that the

performance of event recognition (primary task) can be boosted by incorpo-

rating rigid and non-rigid object detection.

• The fact that our architecture can be further enhanced by appending a late

fusion, indicating that early-sharing of the layers is complementary to the late
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fusion.

• Our network which integrates multiple tasks outperforms all the baselines and

the case where 3 separate CNNs (Event recognition ,rigid object detection,

non-rigid object detection) are score-fused.

6.4.3 Open Problems

Based on the successful integration of single image classification and object

detection (which are semantically related) to boost the object detection performance,

it would be meaningful to devise a unified network which is targeted to better

recognize human actions or activities within a video by the help of semantically

relevant tasks such as object detection, scene recognition or human pose estimation.

Similarly, we might also construct a network which contains multiple experts, where

each expert is specialized to better detect/recognize objects with different scales or

different appearances.
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