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Abstract
Patients with nonesmall-cell lung cancer, including squamous-cell lung cancer (SqCLC), typically present at an
advanced stage. The current treatment landscape, which includes chemotherapy, radiotherapy, surgery, immuno-
therapy, and targeted agents, is rapidly evolving, including for patients with SqCLC. Prompt molecular and immune
biomarker testing can serve to guide optimal treatment choices, and immune biomarker testing is becoming more
important for this patient population. In this review we provide an overview of current and emerging practices and
technologies for molecular and immune biomarker testing in advanced nonesmall-cell lung cancer, with a focus on
SqCLC.
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Introduction
Over the past decade, determining the histology of nonesmall-cell

lung cancer (NSCLC) has become standard because treatment

options vary according to tumor histologic subtype. Multiple
guidelines, including the National Comprehensive Cancer Network
(NCCN), European Society for Medical Oncology, and the College
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of American Pathologists (CAP)/International Association for the
Study of Lung Cancer (IASLC)/Association for Molecular Pathology
(AMP), provide recommendations for performing molecular testing
to further guide treatment with targeted therapies in advanced
NSCLC, including squamous-cell lung cancer (SqCLC).1-3 Immune
testing, performed using immunohistochemistry (IHC), for expres-
sion of programmed death ligand 1 (PD-L1) as a predictive marker of
response to anti-programmed death 1 (PD-1)/PD-L1 checkpoint
inhibitors is also now being incorporated into many guidelines.2,3

Most patients (68%-79%) with lung cancer present at an advanced
stage,4-7 and often, only small biopsy or cytology samples are available
for diagnosis.7,8 Therefore, it is important to prioritize biopsy tissue
fromNSCLC tumors to allow for use in pathologic diagnosis as well as
molecular and immune biomarker testing to help guide individualized
treatment decisions. Herein, we review the current evidence and
practice for pathologic diagnosis and molecular and immune
biomarker testing inNSCLC, with a focus on SqCLC, and we evaluate
how changes in the treatment and technological landscape are likely to
affect molecular and immune biomarker testing in SqCLC within the
next 5 years and the challenges that must be overcome.

Current Practice for Pathologic Diagnosis and Molecular
and Immune Biomarker Testing in NSCLC, Including
SqCLC

Because distinguishing between the different NSCLC subtypes
has become central to patient management because of their thera-
peutic implications, it is recommended that samples showing
NSCLC be subject to pathologic diagnosis with histologic subtyp-
ing.9 Furthermore, current best practice involves a multidisciplinary
team approach to coordinate tumor tissue optimization for patho-
logic diagnosis as well as molecular testing to accelerate diagnostic
molecular and immune biomarker testing results and to ensure that
the most appropriate treatment choice is recommended to the pa-
tient in an expeditious fashion (Figure 1).7

The pathologic diagnosis of NSCLC subtypes, which include
SqCLC, adenocarcinoma, and large-cell carcinoma, is a multistep
process.9 In most cases, the classic histologic features of tumor cells
from SqCLC and other subtypes can be readily distinguished by
evaluating tissue sections stained with hematoxylin and eosin.7,9 In
the approximately 20% to 40% of challenging cases in which the
NSCLC subtype cannot be determined using histology alone,10,11

limited IHC on tissue sections to specifically detect p40/p63, thy-
roid transcription factor 1 (TTF-1), and in a few cases, neuroen-
docrine biomarkers such as neuron-specific enolase and
chromogranin A can be used to differentiate between SqCLC,
adenocarcinoma, and large- and small-cell carcinoma, respec-
tively.7,12-16 p40 is a more specific and sensitive marker for SqCLC
than p63 (p40: sensitivity 100%, specificity 98%; p63: sensitivity >
90%, specificity approximately 60%-75%), whereas the TTF-1
marker has > 80% sensitivity and 97% specificity for adenocarci-
noma.9,12,13,17,18 Cytokeratin 7 is preferentially expressed in
adenocarcinoma19 and can be used as a biomarker to support the
diagnosis of adenocarcinoma, but only when used alongside other
markers because it is not specific for adenocarcinoma.

Specifically for SqCLC, routine molecular testing for alterations
such as epidermal growth factor receptor (EGFR) mutations,
anaplastic lymphoma kinase (ALK) gene rearrangements, and ROS
proto-oncogene 1 (ROS-1) gene fusions is not recommended
because of their very low incidence in SqCLC (< 4%, < 3%, and
0%, respectively).20-27 However, molecular testing for these alter-
ations should be considered for patients with SqCLC who are
younger, who have never smoked, or are former very light smokers
(ie, < 15 packs per year), or for patients with small biopsy samples
or mixed histology,1-3 and potentially for patients who are of Asian
ethnicity, although the latter characteristic is not included in current
guidelines. The NCCN and CAP/IASLC/AMP guidelines also
advise performing broad molecular testing beyond EGFR mutations
and ALK and ROS-1 gene alterations to assist in the identification of

Figure 1 Multidisciplinary Scheme and Best Practice Timelines for Each Clinical Stage After the Patient’s Referral
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Abbreviations: FISH ¼ fluorescent in situ hybridization; IHC ¼ immunohistochemistry; MDT ¼ multidisciplinary team; PD-L1 ¼ programmed death ligand 1.
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rare genomic drivers for which effective therapy might already be
available (eg, translocations of the rearranged during transfection
gene and mesenchymal-epithelial transition exon 14 mutations) and
to counsel patients regarding available clinical trials.1,3 With the
recent approval of dabrafenib with trametinib for the treatment of
patients with NSCLC whose tumors carry the proto-oncogene
BRAF V600E mutation,28 testing for this mutation could also be
considered for SqCLC.3 However, the mutation is rare in SqCLC
and routine testing is therefore not recommended.29,30 Thus,
currently, most testing performed on SqCLC biopsy samples con-
sists of p40/p63 immunostaining on tissue sections to confirm the
histologic subtype and PD-L1 assessment to determine eligibility for
checkpoint inhibition first-line treatment.

The turnaround time for obtaining the results of molecular
testing is an important concern, because patients with advanced
disease benefit from starting appropriate treatment as soon as
possible. The CAP/IASLC/AMP guidelines for clinical practice
recommend a maximum of 2 weeks for the completion of all mo-
lecular testing.1 A streamlined process that incorporates a multi-
disciplinary team is pivotal for meeting the benchmark turnaround
time for the completion of all molecular tests (Figure 1).31 This
process should include optimizing procedures and workflows, such
as the transfer of tumor specimens between thoracic surgeons,
interventional pulmonologists, radiologists, and pathologists, and
intralaboratory communication. Recently, a study that analyzed
routine nationwide molecular testing in France observed that
obtaining results from molecular testing that approached acceptable
turnaround times was feasible (median of 11 days from initiation of
analysis to report of results).32

The type of assays used is also important, for which the CAP/
IASLC/AMP guidelines further recommend that each laboratory
determine the minimum proportion and number of cancer cells
needed to detect a mutation during validation of an assay.1 These
guidelines were last published in 2013, and updated guidelines with
evidence-based expert consensus opinion will be published soon.

Last, it is important to consider potential differences in the
implementation of molecular testing for NSCLC, including
SqCLC, which might affect successful adoption into practice. These
differences might arise partly because of regional availability of tests,
reimbursement policies, and treatment settings (eg, community vs.
academic centers).32-34 Greater uniformity in the practical imple-
mentation of molecular testing for NSCLC might be achieved
through the development of inter- and intrainstitutional and
network pathways.32

Technologies for Molecular Testing in NSCLC—Current
and New Methods

In practice, the use of multiplex or next-generation sequencing
(NGS) platforms for molecular testing is often restricted to larger
academic centers; many community treatment settings still rely on
single-gene testing or sending samples out to commercial labora-
tories for testing. For molecular testing of EGFR mutations in
NSCLC, guidelines recommend the use of any validated method-
ology with adequate coverage of mutations in exons 18 to 21,
including mutations associated with specific drug resistance.1-3,35

The standard testing methodology for ALK gene rearrangements
and ROS-1 gene fusions is fluorescence in situ hybridization, but

IHC with high-performance ALK antibodies is also an approved
ALK assay used for treatment decisions.1-3,35,36

As additional therapeutic targets are identified and new treat-
ments are approved for patients with SqCLC, moving toward
prioritizing tissue preservation for molecular testing as standard
procedure will become a major practical change for institutions and
physicians who manage patients with this NSCLC subtype. The
implementation of newer technologies, such as NGS, might assist in
addressing the challenges associated with an increased need for
performing molecular testing on small biopsy samples in SqCLC
and improve turnaround times for molecular testing (Table 1).37-43

The current reality is, however, that the lack of genomic targets and
approved therapies in SqCLC means that relatively few cases are
subjected to molecular screening. Hence, tissue availability for PD-
L1 IHC, for example, is therefore less challenging than for
adenocarcinoma.

Next-Generation Sequencing
Next-generation sequencing technologies are high-throughput

methods that allow for the parallel sequencing of multiple tar-
geted genomic regions and include whole genome or exome capture
sequencing (DNA-based sequencing platform), whole or targeted
transcriptome sequencing (RNA-based sequencing platform), and
epigenetic profiling44 (Table 1). The potential for increased clinical
use of NGS is supported by the recent validation of an NGS-based
framework as the primary molecular testing method in a large,
prospective clinical trial with patients with advanced NSCLC.45

Because approved targeted treatments are limited for patients with
SqCLC, routine molecular testing using NGS is not currently
required. However, the use of NGS has facilitated the screening of
patients for enrollment in ongoing clinical trials aimed at identifying
new actionable molecular targets and evaluating novel targeted
therapies that might benefit this patient population.37-40 NGS was
also recently used in a study that showed that patients who had
ErbBemutation-positive SqCLC had higher progression-free sur-
vival (PFS) and overall survival when treated with afatinib than
when treated with erlotinib, or in patients who had
ErbBemutation-negative disease.46 These findings, in addition to
the recent US Food and Drug Administration (FDA) approval of an
NGS-based companion test to identify patients with NSCLC
eligible for treatment with crizotinib, gefitinib, and dabrafenib
combined with trametinib,47 support the clinical application of
NGS for molecular testing in NSCLC, including SqCLC.

Furthermore, use of NGS for molecular testing in NSCLC might
become routine with the potential role of tumor mutational burden
(TMB) to assess the likelihood of benefit from immunotherapy. In a
study that included 2 independent cohorts, patients with NSCLC
whose tumors had a high TMB, or nonsynonymous mutation
burden, experienced greater clinical benefit from treatment with the
PD-1 inhibitor pembrolizumab than patients whose tumors had a
lower mutation load.48 More recently, results from a subset analysis
of a phase III clinical trial showed that patients with NSCLC whose
tumors had a high TMB and PD-L1 expression using IHC had a
higher clinical response to first-line treatment with the PD-1 in-
hibitor nivolumab than with chemotherapy.49

Despite the applicability of NGS for molecular testing in
NSCLC, and potentially for SqCLC as more targeted treatments
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become available, several drawbacks need to be addressed before it is
routinely implemented in clinical practice. The implementation of
NGS into regulatory and standard diagnostic pathways might be
negatively affected by the multiple proprietary NGS variant data-
bases,50 the use of different methodologies (eg, sequencing of
nonamplified genome vs. amplicons),51 the inconsistent concor-
dance between different biopsy types such as liquid biopsies and
matched tissue biopsies, and the very large volume of complex
bioinformatics data that require analysis.52 Another potential
drawback of NGS is the lack of uniform policy for supporting,
covering, or reimbursing the use of NGS comprehensive molecular
testing, presenting additional challenges to its implementation in
clinical practice.34,50 Furthermore, many of the NGS platforms
currently used in the clinical setting are amplicon-based, which do
not detect gene fusions or gene rearrangements, unlike newer
platforms such as Archer (ArcherDX, Inc, Boulder, CO), Founda-
tionOne (Foundation Medicine, Cambridge, MA), and NovaSeq
(Illumina, Eindhoven, The Netherlands). Last, the limited infor-
mation currently available on the applicability of NGS for
biomarker testing relating to immunotherapies will further affect its
adoption for molecular testing for SqCLC.

Analysis of Circulating-Tumor DNA (Liquid Biopsies)
Liquid biopsies are performed on blood samples and can be used

to assess circulating-tumor cells, circulating-tumor DNA, circu-
lating cell-free DNA, and exosomes for tumor-associated genetic
and molecular alterations through several approaches.41,42 The use
of blood samples for liquid biopsies offers several potential advan-
tages over tissue biopsy testing, including quick and noninvasive

sample retrieval, faster testing turnaround times, and the potential
for monitoring responses and resistance to treatment.41,42

Furthermore, NSCLC tumors are highly heterogeneous and the
ability to assess circulating-tumor cells, circulating-tumor DNA,
circulating cell-free DNA, and exosomes that derive from a patient’s
whole tumor or tumors allows for the detection of intra- and
intertumor heterogeneity.22,41,42,53,54 In 2016, the FDA approved
a companion diagnostic test for the detection of exon 19 deletions
or exon 21 substitution mutations in EGFR from liquid biopsies to
identify patients with NSCLC who were eligible for treatment with
erlotinib.55 The indication for the companion test was subsequently
extended to include the detection of EGFR T790M mutations from
liquid biopsies to identify tyrosine kinase inhibitor-resistant pa-
tients eligible for treatment with osimertinib.56 Despite recent
advances, however, the remaining technical challenges, including
inconsistent concordance compared with tissue,41,42,57 will need to
be overcome before the implementation of liquid biopsies into
practice (Table 1).

Overall, a number of new technologies are becoming available for
molecular testing and might assist in addressing some of the issues
that will arise from an increased need for molecular testing in
SqCLC in the near future. Validating these methodologies and
using external quality assurance programs will be essential to
ensuring accurate and timely results to guide treatment for patients.

Effect of New Treatments on Molecular and Immune
Testing in SqCLC

Targeting genetic abnormalities in SqCLC remains a research
aim; however, the molecular profile of SqCLC is complex and

Table 1 Key Features of Single-Gene, Next-Generation Sequencing, and Liquid Biopsy Technologies in SqCLC37-43

Technology Single-Gene Testing NGS Liquid Biopsy

Features
� Targeted gene testing using
Sanger DNA sequencing,
RT-PCR, FISH, and IHC

� High-throughput genetic profiling for decision-making
in individual patients

� Includes whole genome or exome capture sequencing
of DNA, whole or targeted transcriptome sequencing
of RNA, and epigenetic profiling

� Analysis of circulating cell-free DNA from plasma
via quick and noninvasive retrieval

� Method for potentially monitoring responses and
resistance to treatment

Advantages for
SqCLC � Current approach for

decision-making in individual
patients if it can be performed
in the benchmark turnaround
time for results

� Allows for the sparing of limited SqCLC tumor tissue
for testing

� Expands testing beyond currently known biomarkers
� Facilitates the screening of patients with SqCLC
for enrollment in ongoing clinical trials aimed at
identifying new actionable molecular targets

� Might allow for an initial diagnosis of patients who
might not be able to undergo a biopsy because of
advanced disease

� Analyzes circulating-tumor cells, circulating-tumor
DNA, circulating cell-free DNA, and exomes, which
might help overcome sampling and tumor
heterogeneity

Limitations for
SqCLC � Tissue samples are often

inadequate for all required
testing, requiring greater
tissue prioritization

� Multiple proprietary databases negatively affect
implementation into regulatory and standard diagnostic
pathways

� Potential issues with reimbursement might affect
implementation of comprehensive molecular testing
into clinical practice

� Most NGS platforms used in clinical institutions
are amplicon-based, which do not detect gene
fusions or rearrangements

� Analysis of a large volume of bioinformatics
� Limited information on its applicability for biomarker
testing relating to immunotherapies

� Testing of circulating tumor cells is not yet optimized
for use with NGS and other less sensitive platforms

� Technical challenges remain to validate and
implement for use in clinical practice

Abbreviations: FISH ¼ fluorescent in situ hybridization; IHC ¼ immunohistochemistry; NGS ¼ next-generation sequencing; RT-PCR ¼ reverse transcription polymerase chain reaction; SqCLC ¼
squamous-cell lung cancer.
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SqCLC tumors have a high mutation load.22 Consequently, the
profile of SqCLC is unlikely to offer many actionable molecular
targets, because the dominant molecular changes are not addictive
oncogenes.22 Indeed, this lack of identifiable oncogenic drivers in
SqCLC has proven to be a challenge, and targeting single genetic
alterations seems to achieve only modest clinical benefits in
advanced SqCLC.58-63

Conversely, the elucidation of how tumor cells use various
complex and overlapping mechanisms to evade the immune sys-
tem64 has led to an increased focus on immuno-oncology, partic-
ularly the PD-1/PD-L1 axis. Immunotherapy with antiePD-1/
ePD-L1 antibodies now provides an important alternative to
chemotherapy for SqCLC.65-68 The emergence of immunotherapy
for the treatment of patients with advanced SqCLC has been
transformative and will further affect the future of molecular and
immune testing by leading to changes in the way genomic alter-
ations are explored in SqCLC.

Because of the challenges in developing targeted therapies for
advanced SqCLC previously noted, novel study designs have been
developed to evaluate additional potential targeted treatments for
advanced SqCLC and, most recently, nonsquamous NSCLC. For
example, the Lung-MAP (Lung Cancer Master Protocol) study
(Southwest Oncology Group S1400) seeks to identify potentially
actionable molecular alterations in the second-line advanced SqCLC
setting through the comprehensive screening of patients via an NGS
platform.37,69 The NGS platform used in Lung-MAP detects base
substitutions, short insertions and deletions, copy number alter-
ations, and gene fusions across 287 cancer-related genes (Founda-
tion Medicine).70 The rapid turnaround of results from the NGS
screening (ie, 10-14 days), which is critical for patients with
advanced SqCLC, might be partly responsible for enabling patients
to be prescreened with molecular testing before disease progression
during or after first-line therapy, thus facilitating the efficient
assignment of eligible patients to a substudy on the basis of the
identification of biomarkers or to a nonmatch substudy in which
they receive immunotherapy. The testing approach of the Lung-
MAP study might affect how new targeted agents are developed
for SqCLC and nonsquamous NSCLC and, consequently, might
influence the implementation of additional molecular testing in
practice.

Recently, 3 Lung-MAP phase II substudies that included the
fibroblast growth factor receptor inhibitor AZD4547, the cyclin-
dependent kinase 4/6 inhibitor palbociclib, and the phosphoinosi-
tide 3-kinase inhibitor taselisib failed to meet their primary end
points in their respective biomarker-enriched cohorts of patients
with SqCLC.71-73 Nonetheless, the substudies served to catalog the
array of diverse mutations present in these cancer-related genes
among patients with SqCLC. On a rolling basis, new Lung-MAP
substudies continue to be incorporated as new targeted therapies
with actionable molecular targets become available.

Immune Biomarker Testing for Immunotherapy
Treatments

Immune testing for checkpoint inhibitor PD-L1 protein
expression as a predictive biomarker for response to antiePD-1 or
antiePD-L1 antibodies is evolving. Testing for PD-L1
protein expression is performed using IHC, with each approved

antiePD-1/ePD-L1 immunotherapy having a different compan-
ion/complementary PD-L1 IHC assay.74-79

The antiePD-1 agent pembrolizumab is approved for first-line
treatment of patients with advanced NSCLC, including SqCLC,
in patients with high PD-L1 expression (tumor proportion score �
50%),68,76,77 on the basis of a phase III, prospective, randomized
clinical study showing superior efficacy and lower toxicity for
pembrolizumab than for chemotherapy.68 Furthermore, second-line
treatment of patients with advanced NSCLC with antiePD-1
agents pembrolizumab and nivolumab and antiePD-L1 agent
atezolizumab have all shown superiority to docetaxel chemotherapy
after initial platinum doublet chemotherapy in randomized phase
III studies.65-67 The studies with nivolumab and atezolizumab
included patients with any or no PD-L1 expression, whereas the
study with pembrolizumab included only patients with a tumor
proportion score of > 1%. However, the benefit of immunotherapy
over chemotherapy increased with higher PD-L1 expression in each
of these trials. Thus, PD-L1 testing at diagnosis for metastatic
disease has been incorporated into guidelines such as the NCCN
guidelines.3 The recently updated American Society of Clinical
Oncology treatment guidelines state that the guidance starts from
the point at which the results of molecular and PD-L1 testing are
known; however, reviewing the molecular testing literature is
beyond the scope of the guideline.80

The existence of multiple distinct diagnostic assays for deter-
mining PD-L1 expression to guide treatment with each antiePD-1/e
PD-L1 antibody constitutes a barrier to routine implementation of
PD-L1 testing in clinical practice because of the impracticality of
conducting multiple assays for the same protein. Consequently,
there is great interest in establishing whether these assays provide
comparable results for PD-L1 expression and could be used inter-
changeably in laboratories. Recently, comparison studies between
the multiple PD-L1 assays reported a high degree of agreement
between most assays.81-83 However, interchanging the assays and
PD-L1 expression cutoff values used for the different antiePD-1/
ePD-L1 antibodies led to a misclassified PD-L1 status for some
patients, highlighting the need for standardization.82 Validated
cutoffs are a function of drug activity and should remain allied to
the drug/indication relevant to the patient and not allied to the
assay.

A further need for standardization of PD-L1 testing relates to the
reporting of PD-L1 expression by pathologists. Identifying the
subset of patients with NSCLC who will benefit the most from
therapy with antiePD-1/ePD-L1 antibodies can be challenging,
because of the diversity of PD-L1 expression levels used to stratify
patients in clinical studies for different antiePD-1/ePD-L1 anti-
bodies.49,66,68 Therefore, standardized pathology reporting for PD-
L1 expression using a numeric value rather than stating PD-L1
positivity/negativity is mandatory for the treating oncologist.

More recently, a randomized phase II trial comparing pemetrexed
and carboplatin used with pembrolizumab with pemetrexed and
carboplatin in patients with nonsquamous NSCLC showed superior
results with respect to response rate and PFS for the combination
with pembrolizumab.84 Although the number of patients involved
was small, there was some evidence that more patients with a PD-L1
tumor proportion score of � 50% achieved an objective response
with pembrolizumab with chemotherapy (80%; n ¼ 16) compared
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with patients with a tumor proportion score of 1% to 49% (26%;
n ¼ 5). Although this study did not include patients with SqCLC,
several randomized phase III trials in the first-line setting comparing
treatment with antiePD-1 and antiePD-L1 checkpoint inhibitors
alone or in combination with anti-cytotoxic Telymphocyte-asso-
ciated protein 4 inhibitors and trials comparing chemotherapy alone
or in combination with checkpoint inhibitors are currently ongoing.
The results of these trials will undoubtedly determine the role of
immune testing for PD-L1 protein expression at diagnosis,
depending on where the role of first-line immunotherapy is chal-
lenged. In addition, a recent randomized phase III trial in patients
with stage III NSCLC, including SqCLC, showed that standard
chemotherapy/radiotherapy followed by durvalumab yielded supe-
rior PFS compared with chemotherapy/radiotherapy alone, irre-
spective of PD-L1 expression before chemotherapy/radiotherapy.85

Other trials with checkpoint inhibitors are ongoing in patients
with stage III NSCLC and in the adjuvant setting in patients with
earlier-stage disease. The results of these trials might influence how
we test for PD-L1 expression in these stages, but for now, we
suggest a pathway for this testing in Figure 2.

Because PD-L1 protein expression is an imperfect biomarker,
other potential biomarkers such as TMB are currently being eval-
uated in several ongoing studies. At present, assessment of TMB is
not standardized and it is not part of routine management. How-
ever, recent retrospective studies showing that high TMB predicted
favorable outcomes for checkpoint inhibitor therapy and that the
combination of TMB with PD-L1 expression levels was superior to
either marker alone48 support the implementation of TMB for use
as a biomarker in the future.

Discussion: The Future for Molecular and Immune
Testing in SqCLC

The molecular and immune testing landscape for SqCLC is likely
to change rapidly over the next several years because of the emer-
gence of immunotherapies such as antiePD-L1 and antiePD-1
antibodies and novel targeted therapies for advanced SqCLC.
Indeed, the need to test for PD-L1 expression levels before

prescribing pembrolizumab as first-line therapy for advanced
NSCLC, including SqCLC, has already meant that institutions are
beginning to implement this test as part of standard practice. In
some instances, this is occurring “reflexively,” without requiring
additional orders. Therefore, integration of new molecular and
immune testing into standard diagnostic and treatment algorithms
and guidelines for advanced SqCLC will become essential to
ensuring that patients receive appropriate and timely treatment.

Initially, the use of NGS for molecular testing in SqCLC is more
likely to be adopted over other testing platforms because of features
such as tumor tissue sample optimization, fast turnaround, and
comprehensive genomic testing. The use of NGS testing might
further expand as the significance of TMB as a biomarker for
response to immunotherapy becomes better understood. However,
analyses on value (in clinical trials) and the cost of increased
screening and the use of comprehensive technology platforms that
test for more than standard genetic alterations with approved tar-
geted therapies will be necessary for these platforms to be widely
accepted among payers and regulators.

Last, as molecular testing for SqCLC evolves, greater education
for patients will be needed. Improved patient communication will
help patients understand the need for, timing of, eligibility for, and
results from molecular tests and how these results might affect their
treatment options.

Conclusion
The workload for pathologists will increase because of increased

requests for genomic and proteomic profiles in SqCLC. The
establishment of multidisciplinary teams and best practices for
institutions to accommodate the need for, and to meet benchmark
timelines for, molecular and immune biomarker testing for
NSCLC, including SqCLC, is recommended. Furthermore, as
new therapeutic targets are identified for SqCLC, standardized
pathology reporting of new genomic and proteomic test results will
play an important role in ensuring that accurate, concise, and
appropriate information is available for clinicians to guide treat-
ment decisions.

Figure 2 Recommended Molecular and Immune Biomarker Testing for Patients With Confirmed SqCLC Histology

All confirmed SqCLC

Confirmed SqCLC and:
patient < 50 years;

non-smoker/former light 
smoker (< 15 packs/year); or of 

Asian ethnicity

Confirmed SqCLC
histology

Standard immune testing:
•  PD-L1 (companion/complementary IHC)

Final report with tumor 
histology and molecular 

testing results

Therapy determination 
and treatment course

Standard molecular testing (in parallel with
immune biomarker testing):
•  EGFR-mutation testing (exon 18-21 
   sequencing)
•  ALK rearrangement (IHC+ and/or FISH+) 
•  ROS-1 fusions (FISH+)

10 working days1-2 working days
(except IHC)

Abbreviations: FISH ¼ fluorescent in situ hybridization; IHC ¼ immunohistochemistry; PD-L1 ¼ programmed death ligand 1; SqCLC ¼ squamous-cell lung cancer.
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