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Cluster analysis to define distinct clinical
phenotypes among septic patients with
bloodstream infections
Maria Cristina Vazquez Guilamet, MDa,b,∗, Michael Bernauer, PharmDc, Scott T. Micek, PharmDd,
Marin H. Kollef, MDe,∗

Abstract
Prior attempts at identifying outcome determinants associated with bloodstream infection have employed a priori determined
classification schemes based on readily identifiable microbiology, infection site, and patient characteristics. We hypothesized that
even amongst this heterogeneous population, clinically relevant groupings can be described that transcend old a priori
classifications.
We applied cluster analysis to variables from three domains: patient characteristics, acuity of illness/clinical presentation and

infection characteristics. We validated our clusters based on both content validity and predictive validity.
Among 3715 patients with bloodstream infections fromBarnes-Jewish Hospital (2008–2015), themost stable cluster arrangement

occurred with the formation of 4 clusters. This clustering arrangement resulted in an approximately uniform distribution of the
population: Cluster One “Surgical Outside Hospital Transfers” (21.5%), Cluster Two “Functional Immunocompromised Patients”
(27.9%), Cluster Three “Women with Skin and Urinary Tract Infection” (28.7%) and Cluster Four “Acutely Sick Pneumonia” (21.8%).
Staphylococcus aureus distributed primarily to Clusters Three (40%) and Four (25%), while nonfermenting Gram-negative bacteria
grouped mainly in Clusters Two and Four (31% and 30%). More than half of the pneumonia cases occurred in Cluster Four. Clusters
One and Two contained 33% and 31% respectively of the individuals receiving inappropriate antibiotic administration. Mortality was
greatest for Cluster Four (33.8%, 27.4%, 19.2%, 44.6%; P< .001), while Cluster One patients were most likely to be discharged to a
nursing home.
Our results support the potential for machine learning methods to identify homogenous groupings in infectious diseases that

transcend old a priori classifications. These methods may allow new clinical phenotypes to be identified potentially improving the
severity staging and development of new treatments for complex infectious diseases.

Abbreviations: APACHE = Acute Physiologic Assessment and Chronic Health Evaluation, BJC = Barnes Jewish Consortium,
BSI = bloodstream infections, EMR= electronic medical record, GNB = Gram negative bacteria, IQR = interquartile range, L= liter,
PAC = proportion of ambiguous clustering, SD = standard deviation.

Keywords: bloodstream infection, machine learning, outcomes, sepsis

Main Point

� Cluster analysis applied to hospitalized septic patients
with bloodstream infections identified 4 stable clusters
correlating with clinical outcomes. Our results support
the potential for machine learning methods to identify
more homogenous infectious disease groupings that
transcend old a priori classifications.

1. Introduction

Bloodstream infections (BSIs) represent the seventh leading cause
of mortality with rates as high as 40% in most studies.[1] Usually
considered the consequence of a serious infection that arises
elsewhere in the body and subsequently spreading to the
bloodstream, bacteremia complicating primary infections has
been shown to dramatically amplify the mortality associated with
these infections.[2,3] Moreover, increasing antimicrobial resis-
tance especially among Gram-negative bacteria (GNB) has
contributed to the complexity of treating these types of
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infection.[4] Further limiting clinicians’ ability to objectively
determine optimal antimicrobial treatment strategies for patients
with BSI are the limited availability of clinically relevant profiles
of such patients linked to clinical outcomes.
Recently, opposing results have been produced by 2 groups of

investigators examining the relationship between the duration
of antimicrobial treatment and clinical outcome among patients
with Enterobacteriaceae BSI despite similar appearing patient
populations and statistical methodologies.[5–7] Such contradic-
tory findings are relatively commonplace making generalizabil-
ity difficult in regards to antimicrobial treatment decisions and
signaling the likely heterogeneity that characterizes patients
with similar infectious diseases. Prior attempts at trying to
gauge the outcome determinants associated with serious
infections have typically employed a priori determined
classification schemes based on readily identifiable microbiolo-
gy characteristics (causative agents of infection including GNB,
Staphylococcus aureus, Candida spp), primary site of the
infection (e.g., pneumonia, urinary tract, intra-abdominal), and
patient characteristics (e.g., critically ill patients, bone marrow
transplant recipients, trauma).[8–11] Unfortunately, this type of
approach for classifying patients fails to take into account the
important interactions that likely occur among these character-
istics.
Our objective was to explore the grouping of critically ill

patients with bacteremia by reducing the multidimensionality of
data while still preserving homogenous groups.
Cluster analysis is an unsupervised machine learning method-

ology that can discover more homogenous groups within
heterogeneous sets of data.[12] Cluster analysis has recently
been employed to describe novel groupings of individuals within
diverse disease states including chronic obstructive pulmonary
disease, asthma, psychiatric disorders, and various malignan-
cies.[13–18] We hypothesized that even amongst the heteroge-
neous population of patients with BSIs, clinically relevant
groupings can be described that transcend old a priori
classifications. Improved ability to distinguish subgroups of
infected patients for specific therapeutic strategies could lead to
improved outcomes and potentially less emergence of antimicro-
bial resistance.

2. Methods

2.1. Setting and participants

This study was conducted at Barnes-Jewish Hospital in St Louis
(1300 beds) and the Washington University School of Medicine
Institutional Review Board waived informed consent. All adult
patients with BSIs and severe sepsis or septic shock who were
hospitalized between January 2008 and April 2015 were eligible
for inclusion. BSI was defined as the presence of at least 1 positive
blood culture with a true pathogen, or multiple positive cultures
with a compatible clinical scenario in the case of isolating typical
contaminant species (e.g., coagulase-negative staphylococci). We
recorded all episodes of BSIs but only the initial episode for each
patient was used in this analysis. Data were collected from the
hospital’s electronic medical record (EMR) provided by the
Center for Clinical Excellence, BJC Healthcare. This data
repository includes diagnoses, Charlson, and APACHE II scores,
laboratory, microbiology, imaging results, and pharmacy
records. Additionally, we manually checked the time frame for
the presence of central venous catheters and mechanical

ventilation. Infection source was determined based on concomi-
tant positivity of sterile cultures (cerebral spinal fluid, pleural,
bronchoalveolar lavage, tissue, joint aspirate) plus descriptive
diagnoses in the EMR, when absent an unknown source of
infection was assigned.
Previous antibiotics was defined as intravenous administration

of antimicrobial agents within 30 days of the index episode of
BSI, while previous hospitalizations had to occur within 90 days.
Immunosuppression was defined as having the acquired immune
deficiency syndrome, solid organ transplant, bone marrow/stem
cell transplant, hematologic malignancies, solid cancers treated
with chemotherapy or radiation, long term corticosteroid
administration (greater than 2 weeks at greater than 10mg/
day of prednisone equivalent), and other immune suppressive
drugs such as biologics for rheumatologic disorders. Septic shock
was considered present when vasoactive agents (norepinephrine,
epinephrine, vasopressin, phenylephrine) were used. EMR data
for analysis was available for patient admissions to any of the
fifteen BJC hospitals.

2.2. Microbiology and pharmacology methods

For our analyses, bacterial species were grouped into the
following categories: S aureus (methicillin-susceptible and
methicillin-resistant strains), Streptococcus pneumoniae, Enter-
obacteriaceae, non-fermenting GNB, Candida spp, anaerobes,
other Gram-positive cocci including Streptococcus spp (not
pneumoniae) and Enterococcus spp, and other GNB. Antimicro-
bial susceptibility testing was standardized and was determined
using the Phoenix BD Automated System (BD Diagnostics,
Sparks, Maryland).
From January 2002 through the present, Barnes-Jewish

Hospital utilized an antibiotic control program during which
time the use of intravenous ciprofloxacin, imipenem,meropenem,
piperacillin/tazobactam, ceftolozone/tazobactam, ceftazidime/
avibactam, linezolid, or ceftaroline was restricted and required
preauthorization from an infectious diseases physician or clinical
pharmacist. However, patients in the Intensive Care Unit setting
could be empirically started on any antimicrobial regimen for the
first 24hours pending subsequent review. Appropriate antibiotic
therapy was considered to be present based on subsequently
documented in vitro activity of the empirically selected
antimicrobial regimen against the isolated microbe(s) and had
to be started within 24hours of the positive blood cultures being
drawn.

2.3. Statistical plan

Variables are reported as proportions, means and standard
deviations or medians and interquartile range as appropriate.

2.3.1. Feature selection.All collected variables were considered
as potential candidate variables for cluster analysis and were
selected from three domains: patient characteristics, acuity of
illness/clinical presentation and infection characteristics. Patient
characteristics included: age, gender, comorbidities, immuno-
suppression, prior hospitalization, prior exposure to intravenous
antibiotics, recent surgery (abdominal versus non-abdominal),
use of total parenteral nutrition, presence of a central vein
catheter, admission source (home, nursing home, transfer from
outside hospital), duration of hospitalization prior to the index
BSI. Acuity of illness/clinical presentation features encompassed
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the need for vasopressors, use of mechanical ventilation, and
APACHE II scores. Infection characteristics included the
bacterial species, the source of infection, and the administration
of appropriate antibiotic therapy. Non-normally distributed
variables were log transformed. The initial iteration of
the clustering analysis used all variables. We wanted to
reduce the high dimensionality of data (3715 patients with more
than 25 characteristics each) to obtain a parsimonious model that
could be useful clinically. In subsequent iterations, variables that
did not add to the robustness of the clustering algorithm that is,
they were equally distributed among the clusters were dropped
while checking the lack of change in the make up of the
groupings.

2.3.2. Consensus clustering. Cluster analysis refers to a broad
set of unsupervised learning techniques used to discover distinct
subgroups or clusters within a set of data. The goal of clustering is
to partition observations into distinct groups in which observa-
tions assigned to the same group are similar with respect to one or
more attributes while observations assigned into different groups
are dissimilar. The process is unsupervised since it requires no a
priori specification of group organization.
Consensus clustering is a clustering procedure that provides

quantitative and visual evidence of cluster stability through
repeated subsampling and clustering of the original data set.[19]

We specified a subsampling parameter of 80% with 1000
repetitions and the number of potential clusters (k) ranging from
2 to 9, in order to avoid producing an excessive number of
clusters that would not be clinical useful. This also helps to
provide stability in the setting of probable sampling variability.
Binary variables were treated as being symmetrical. The selected
clustering algorithm was the partitioning around medoids
method.[20] For each number of clusters, the algorithm calculates
and retains the proportion of runs in which 2 observations are
grouped together called pairwise consensus values. Due to the
presence of mixed data (e.g., binary and continuous variables) we
computed pairwise distances between each observation using
Gower’s distance.[19] We assessed cluster stability by visually
inspecting the diagnostic plots produced by ConsensClusterPlus
including the consensus matrix and the cumulative distribution
function plots. In addition, given the documented limitations of
consensus clustering in choosing the number of clusters (k), we
also computed the proportion of ambiguous clustering (PAC) to
help select the most appropriate value for clinically relevant k.
This represents the difference between pairs always clustered
together and pairs never clustered together. The smallest PAC
renders the optimal k.

2.3.3. Cluster validity. We assessed cluster validity using
multiple approaches. After performing the cluster analysis and
choosing the most appropriate value for k, we compared each of
the clusters and categorized them into distinct clinical phenotypes
on the basis of their clinical characteristics (i.e., content validity).
We compared outcome measures (discharge disposition and
mortality) across each of the clusters (i.e., predictive validity). We
hypothesized that valid, clinically distinct phenotypes would have
measureable differences in outcomes. We assessed the stability of
each cluster by inspecting the distribution of consensus values for
each of the cluster members. Stable clusters typically have high
mean consensus values with low variance. For each of the
clusters, we then tabulated the total number of observations with
consensus values 2 standard deviations less than the cluster mean,
so called “outliers”. These observations represent admissions

that were the least representative of the cluster and we then
looked at “purified” cluster characteristics after removing these
outliers. We performed consensus clustering using the Consen-
sClusterPlus package available in R project for statistical
computing version 3.4.4.
We tried to limit selection bias by including all patients who

had developed bacteremia during the study period. In order to
avoid inaccuracies in electronic health records mining, after
collection, data, and time stamps were manually verified.

3. Results

Three thousand seven hundred fifteen patients with BSIs
and severe sepsis or septic shock met our inclusion criteria.
The mean age was 58.4±15.6 years and most patients
were admitted from home (66.5%) (Table 1). More than
one-third of our study population had immunosuppression and
more than half of the study cohort had recently received
intravenous antibiotics. The most common comorbidities were
active cancer, diabetes, and chronic obstructive pulmonary
disease. Septic shock was present in 45% of patients while
29.7% required mechanical ventilation. The most common
sources of infection were pneumonia (27.7%) and urinary tract
(22.0%). Inappropriate antibiotic therapy was administered to
25.4% of patients, while Enterobacteriaceae and S aureus
accounted for the highest number of infections in our sample.
Candida was responsible for 10.1% of the infectious episodes
and Pseudomonas spp andAcinetobacter spp accounted for the
majority of nonfermenters (85.0%).
The most stable cluster arrangement occurred with formation

of 4 clusters with demonstrated block diagonal pattern in the
consensus matrix (Fig. 1). PAC value was 0.27. This clustering
arrangement resulted in an approximately uniform distribution
of the population between the four clusters: 800 patients
(21.5%), 1037 patients (27.9%), 1068 patients (28.7%), and
810 patients (21.9%) (Table 2).
Cluster One called “Surgical Outside Hospital Transfers” was

mainly characterized by patients transferred from outside
hospitals (90.8%) who had undergone recent surgery and had
bacteremia secondary to either a urinary tract or intra-abdominal
source. Almost half (43.9%) of all Candida infections were
grouped in Cluster One.
Cluster Two named “Functional Immunocompromised

Patients” was made up primarily of immunocompromised
individuals admitted from home with unknown sources of
bacteremia, most often secondary to Enterobacteriaceae spp.
Immunosupression was due to underlying malignancy treated
with chemotherapy in almost half of the cluster (Supplementary
Table 1, http://links.lww.com/MD/C927). Patients had a signifi-
cantly longer duration of hospitalization prior to bacteremia
compared to the other clusters (7 days vs 2 and 0 days). The
administration of prior antibiotics had occurred in 77.8%.
Cluster Three named “Women with Skin and Urinary Tract

Infection” was the only cluster dominated by females (64.6%).
Even though most individuals within Cluster Three were
admitted from home, 45.5% of the total number of nursing
home patients aggregated within Cluster Three. The duration of
hospitalization prior to BSI was significantly shorter in Cluster
Three and a significant proportion of patients had urinary tract
infections. Although only 10.9% of the Cluster Three infections
were attributed to skin infections, 48.5% of the patients having
skin and soft tissue infections grouped in Cluster Three.
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Enterobacteriaceae and S aureus accounted for most infections
and the patients within Cluster Three were the least likely to
receive inappropriate antibiotic therapy. Moreover, patients in
Clusters Two and Three appeared to have lower acuity of illness
as determined by APACHE II scores and the need for
vasopressors or mechanical ventilation.
Cluster Four named “Acutely Sick Pneumonia” was

comprised predominantly of critically ill patients as evidenced
by the high requirements for vasopressor support and
mechanical ventilation, along with higher APACHE II scores.
The source of bacteremia was the lung in over 71% of
cases and the predominant microbiology varied including S
aureus, nonfermenters, and Enterobacteriaceae. Almost one-
third of BSIs attributed to nonfermenting GNBwere grouped in
Cluster Four along with 35.8% of the BSIs attributed to S
pneumoniae.

In terms of bacterial species, BSIs caused by S aureus
distributed to Cluster Three (40%) and Cluster Four (25%),
while Enterobacteriaceae were divided predominantly into
Clusters Two (34%), Three (30%), and Four (22%). Non-
fermenting GNB groupedmainly in Clusters Two and Four (31%
and 30%). More than half of the pneumonia cases (56%)
occurred in Cluster Four, while 37.8% of the catheter-associated
bloodstream infections were in Cluster Three. Median white
blood cell count was highest for patients in Cluster Three at
26700cells/L. Cluster One contained 33% of the individuals
receiving inappropriate antibiotic administration and Cluster
Two contained 31% of these cases. Mortality was greatest for
individuals within Cluster Four at 44.6% (Table 3). Cluster One
patients were more likely to be discharged to a nursing home
(40.1%) while Cluster Two patients were the most likely to be
discharged home - 54.2% (Table 3).

Figure 1. Consensus matrix for 4 clusters (k=4). The most stable cluster arrangement occurred with formation of 4 clusters with demonstrated block diagonal
pattern in the consensus matrix. The dark blue rectangles show the patients assigned to the 4 clusters while the light blue lines represent the unassigned patients.

Guillamet et al. Medicine (2019) 98:16 Medicine

4



The number of outliers was small and it was roughly equally
distributed across the 4 clusters [Clusters One, 54 (6.72%); Two,
62 (6%); Three, 81 (7.6%); Four, 61 (7.5%)]. The distribution of
outcomes was maintained when calculated for the “purified”
clusters after excluding the outliers. The distribution of consensus
values across the 4 clusters including outliers was high ranging
between 0.79 for Cluster Three to 0.93 for Cluster One (Fig. 2).
Given the electronic health records mining and manual data

extraction, the missing data were limited to <5%.

4. Discussion

We applied clustering to a large database of patients with BSIs
and severe sepsis or septic shock and identified four distinct
groups with prognostic differentiation. Mortality varied amongst
the clusters ranging from a low of 19.2% to a high value of
44.6%. We also found that the clusters segregated patients
according to differing dispositions post hospital discharge with
Cluster One having the highest discharge rate to skilled nursing
facilities. It is also interesting that our groupings did not
necessarily aggregate patients only around known and commonly
used infectious disease classifiers such as bacterial species or
infection source. Our study represents the first analysis employ-
ing clustering to construct homogenous groupings of patients
with BSIs. The distinctiveness of the identified clusters is
supported by their correlation with differing outcomes
and discharge dispositions. Moreover, we also identified few
outliers and “purified” clusters had similar correlations to
outcomes as our initial clustering results also supporting their
robustness.
Previous investigations have attempted to identify clinical

factors impacting mortality in patients with BSIs. Certain risk
factors to include severity of illness, presence of infection with
multidrug resistant bacteria, inappropriate initial antibiotic
therapy, and comorbid conditions have been identified as
independent risk factors of mortality in BSIs and sepsis.[21–23]

Interestingly, we found that the cluster with the highest rate of

Figure 2. Consensus values across the clusters. Consensus values represent the proportion of times 1 observation (patient) was assigned to the same cluster. For
instance, an observation with a consensus value of 93 for cluster one means it was assigned to cluster 1 920 times out of 1000. The Y axis presents the consensus
values as box plots with median and interquartile range along with outliers. Cluster One had a consensus value of 0.93, Cluster Two of 0.91, Cluster Three of 0.79,
Cluster Four of 0.89.

Table 1

Baseline characteristics for entire cohort.
Characteristic N

Age, years, mean±SD 58.4±15.6
Male 2082 (56.0)
Race
Caucasian 2453 (66.0)
Black 1020 (27.5)
Other/ unknown 242 (6.5)

Admitted from home 2469 (66.5)
Admitted from nursing facility 341 (9.2)
Admitted from other hospital 868 (23.4)
Any surgery 924 (24.9)
Abdominal surgery 457 (12.3)
Non-abdominal surgery 467 (12.6)
Prior hospitalization 248 (6.7)
Prior antibiotics 2029 (54.6)
Hemodialysis 463 (12.5)
Immunosuppression 1331 (35.8)
Total parenteral nutrition 9 (0.2)
Central vein catheter 102 (2.7)
Charlson score 5.2±3.5
Congestive heart failure 589 (15.9)
Chronic obstructive lung disease 654 (17.6)
Cirrhosis 385 (10.4)
Diabetes 699 (18.8)
Renal disease 511 (13.8)
Malignancy 935 (25.2)
Human immune deficiency virus 30 (0.8)
Duration of hospitalization prior to BSI, days, median, IQR 1 (0–10)
Mechanical ventilation 1104 (29.7)
Septic shock 1676 (45.1)
APACHE II score 15.5±6.3
Peak white blood cell count, 109/L, median, IQR 22.5 (9.2–30.6)
Inappropriate antibiotic therapy 942 (25.4)
Candida 376 (10.1)
Enterobacteriaceae 1009 (27.2)
Non-fermenters 384 (10.3)
Staphylococcus aureus 879 (23.7)
Streptococcus pneumoniae 81 (2.2)
Central vein catheter source 487 (13.1)
Pulmonary source 1028 (27.7)
Skin source 239 (6.4)
Urinary tract source 817 (22.0)
Intra-abdominal source 500 (13.5)

Values expressed as number (%); mean± standard deviation; or median, interquartile range.
SD= standard deviation, BSI=bloodstream infection, IQR= interquartile range, L= liter.
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inappropriate initial antibiotic therapy (Cluster One) did not
have the greatest mortality. In fact the highest mortality was
observed in Cluster Four despite having one of the lower rates of
inappropriate initial antibiotic therapy. This suggests that factors
other than inappropriate antibiotic therapy may also be
important in determining patient outcome. This observation is
consistent with our previous results demonstrating that among
patients with bacteremic pneumonia, mortality was highest for
those with pneumonia attributed to Pseudomonas aeruginosa
despite inappropriate initial antibiotic therapy being greatest
amongst patients infected with antibiotic-resistant Enterobacter-
iaceae.[2] Cluster Four also had the highest rate of infection with
nonfermenting Gram-negative bacteria suggesting that underly-
ing virulence of the offending pathogens likely contributed to the
higher mortality.[24]

The ability to identify cluster–associated outcomes can be
useful from many viewpoints. Machine learning techniques such
as cluster analysis can be employed to insure that populations are
similar relative to the outcome of interest in clinical trials of novel

therapies.[25] Similarly, the ability to identify clinically important
groupings has potential implications for the management of
seriously ill patients including those with BSIs. Machine learning
techniques may be able to identify clusters of individuals who are
more likely to respond to specific therapies or benefit from
different diagnostic approaches. For example, 1 potential clinical
application as suggested by our results would be that Cluster One
patients might be most likely to benefit from initial broad-
spectrum antibiotics or application of rapid microbiologic
diagnostics given the higher rate of inappropriate initial antibiotic
therapy within this cluster. Grouping methodologies could also
allow for improved outcome comparisons between hospitals,
especially with increasing requirements for public reporting of
such data through systems such as the Severe Sepsis/Septic Shock
Early Management Bundle and New York State’s Rory’s
Regulations.[26,27]

The strengths of our study are that we had a large sample size
to perform clustering, the clusters we obtained seem to make
clinical sense and are consistent with previous studies using

Table 2

Phenotype summaries for Clusters.

Characteristic

Cluster One “Surgical
Outside Hospital

Transfers” (n=800)

Cluster Two “Functional
Immunocompromised
Patients” (n=1037)

Cluster Three “Women with
Skin and Urinary Tract
Infection” (n=1068)

Cluster Four “Acutely
Sick Pneumonia”

(n=810)

Male 488 (61.0) 663 (63.9) 378 (35.4) 553 (68.3)
Duration of hospitalization prior to bacteremia, days 2.0 (0.0, 13.0) 7.0 (0.0, 15.0) 0.0 (0.0, 1.0) 2.0 (0.0, 11.0)
Hemodialysis 131 (16.4) 91 (8.8) 126 (11.8) 115 (14.2)
Immunosuppression 137 (17.1) 773 (74.5) 189 (17.7) 232 (28.6)
Prior antibiotics 548 (68.5) 807 (77.8) 164 (15.4) 510 (63.0)
Inappropriate antibiotics 313 (39.1) 291 (28.1) 168 (15.7) 170 (21.0)
Mechanical ventilation 278 (34.8) 107 (10.3) 122 (11.4) 597 (73.7)
Peak white blood cell count, 103/L 24.0 (12.1, 30.3) 15.7 (1.4, 19.6) 26.7 (12.4, 50.0) 24.2 (11.7, 32.1)
Septic shock 339 (42.4) 317 (30.6) 314 (29.4) 706 (87.2)
APACHE II score 15.6±6.1 14.5±6.1 14.6±5.5 17.8±7.0
Admission source
Home 0 (0.0) 972 (93.7) 857 (80.2) 640 (79.0)
Nursing home 67 (8.4) 32 (3.1) 156 (14.6) 86 (10.6)

Other hospital 726 (90.8) 21 (2.0) 45 (4.2) 76 (9.4)
Any surgery 286 (35.8) 168 (16.2) 241 (22.6) 264 (32.6)
Candida spp 165 (20.6) 108 (10.4) 54 (5.1) 49 (6.0)
Enterobacteriaceae 136 (17.0) 342 (33.0) 306 (28.7) 225 (27.8)
Non-fermenters 72 (9.0) 121 (11.7) 75 (7.0) 116 (14.3)
Staphylococcus aureus 181 (22.6) 121 (11.7) 354 (33.1) 223 (27.5)
Streptococcus pneumonia 7 (0.9) 13 (1.3) 32 (3.0) 29 (3.6)
Source, line 98 (12.2) 152 (14.7) 184 (17.2) 53 (6.5)
Source, lung 132 (16.5) 78 (7.5) 243 (22.8) 575 (71.0)
Source, skin 51 (6.4) 47 (4.5) 116 (10.9) 25 (3.1)
Source, urinary 177 (22.1) 74 (7.1) 372 (34.8) 194 (24.0)
Source, unknown 228 (28.5) 618 (59.6) 161 (15.1) 48 (5.9)
Source, intra-abdominal 156 (19.5) 97 (9.4) 114 (10.7) 133 (16.4)

Values expressed as number (%); mean± standard deviation; or median, interquartile range.

Table 3

Distribution of mortality and discharge disposition for Clusters.

Disposition
Cluster One “Surgical

Outside Hospital Transfers”
Cluster Two “Functional

Immunocompromised Patients”
Cluster Three “Women with Skin
and Urinary Tract Infection”

Cluster Four “Acutely
Sick Pneumonia” P value

Mortality (%) 270 (33.8) 284 (27.4) 205 (19.2) 361 (44.6) <.0001
Discharge to SNF (%) 321 (40.1) 173 (16.7) 376 (35.2) 250 (30.9) <.0001
Discharge to home (%) 197 (24.6) 562 (54.2) 472 (44.2) 167 (20.6) <.0001

SNF= skilled nursing facility.
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alternative statistical techniques, and the we were able to assign
the majority of the patients to a cluster. There are important
limitations of our study that should be noted. First, the data are
from a single center so that the groupings may be unique to that
population and variables included. Second, consensus clustering
can lead to inaccurate numbers of clusters with little discrimina-
tory power. Moreover, cluster analyses may create structured
groups even when no structure is present in heterogeneous data
sets. However, the correlation and validation of our clusters with
pertinent outcomes supports the clinical relevance of the
groupings we identified. Given the repeated subsampling,
splitting the sample into derivation and validation cohorts was
considered unnecessary. Finally, we may have missed entering
other clinically important variables and processes of care in our
analysis that could have improved the discriminatory ability of
the groupings we identified.
New methods are needed to advance the practice of infectious

diseases especially in critically ill patients. Machine learning
methods such as cluster analysis offers the ability to more
efficiently analyze large volumes of data to better understand the
underlying risk for acquisition of infectious diseases and
transmission pathways, develop targeted interventions, and
potentially reduce nosocomial infections and improve patient
outcomes.[12] Our results support the potential for machine
learning methods to identify more homogenous groupings in
infectious diseases that transcend old a priori classifications.
These methods may allow new clinical phenotypes to be
identified, improve severity staging of complex infectious diseases
which currently are rudimentary, and more directly target
therapies and diagnostics. An excellent example is the use of
newly developed immune checkpoint inhibitors. Clustering
patients opens new hypotheses about immune pathways and
mediators that may be similar for 2 patients suffering from
different infections and microbiology while at the same time
dissimilar for 2 patients with the same diagnostic. Clustering
analysis will also aid with patient recruitment permitting more
generalized entry criteria. With new and expensive or risky
treatments entering the field of infectious disease (e.g., mono-
clonal antibodies, specific pathogen-directed antibiotics, immune
stimulatory agents), we need to find the groups of patients that
are more likely to get the highest benefit. Medicine is becoming
more personalized, yet the available clinical data repositories are
highly multidimensional so that finding clinically relevant
patterns is more difficult. Our findings suggest that machine
learning methods may be part of the solution to this
problem.[28,29]
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