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SHORT REPORT Open Access

Amniotic fluid from healthy term
pregnancies does not harbor a detectable
microbial community
Efrem S. Lim1,2, Cynthia Rodriguez3 and Lori R. Holtz3*

Abstract

Recent studies have conflicting data regarding the presence of intra-amniotic microbiota. Viral communities are
increasingly recognized as important although overlooked components of the human microbiota. It is unknown if
the developing fetus is exposed to a community of viruses (virome). Given the debate over the existence of an intra-
amniotic microbial community and the importance of understanding how the infant gut is populated, we characterized
the virome and bacterial microbiota of amniotic fluid from 24 uncomplicated term pregnancies using next-generation
sequencing methods. Contrary to expectations, the bacterial microbiota of amniotic fluid was indistinguishable from
contamination controls. Viral reads were sparse in the amniotic fluid, and we found no evidence of a core viral
community across samples.

Keywords: Amniotic fluid, Microbiome, Virome, Sterile body fluid, Virus, Bacteria, Microbial invasion of the amniotic
cavity

Introduction
Microbial communities play an important role early in
the life of infant development by influencing nutritional
and immune functions [1]. Because factors that influence
the composition of the early gut microbiota have signifi-
cant prognostic and therapeutic implications, there is in-
tense interest in understanding if microbial interactions
occur within the fetal environment and, if so, how they
impact maternal and fetal health.
Amniotic fluid has traditionally been viewed as a sterile

site [2]. In healthy pregnancies, culture-based studies of
mid-trimester amniotic fluid obtained for genetic testing
have either found amniotic fluid to be sterile [3–5] or only
isolated bacteria in up to 13% of amniotic fluid samples [2,
6–8]. Similarly, targeted and broad range molecular
methods to detect bacterial agents in mid-trimester amni-
otic fluid also either did not detect bacteria [9] or detected
bacteria in only up to 11% of samples [10, 11]. However,
bacteria can be detected in amniotic fluid from pregnan-
cies with complications such as preterm labor [12],

preeclampsia [13], small for gestational age [14], and pre-
term prelabor rupture of membranes [15] by culture- and
molecular-based methods. Recently, using next-generation
sequencing, bacterial sequences were detected in amniotic
fluid from 15 healthy term gestations [16], suggesting that
human amniotic fluid harbors a microbial community.
The detection of microbial populations in healthy term
amniotic fluid implies that neonatal microbial colonization,
and thus microbial influences on infant health and devel-
opment, begins prior to birth.
Likewise, there is contention about the existence of

bacterial populations in other components of the in
utero environment including the placenta, cord blood,
and meconium [17, 18]. Bacteria have been isolated by
culture [19] and visualized [20] in 21–26% of placentas
from healthy term deliveries. Viable bacteria (Entero-
coccus, Streptococcus, Staphylococcus, or Propionibacter-
ium) have also been isolated from the cord blood of
healthy newborns [21]. With the advent of next-
generation sequencing, bacterial sequences have also
been detected in the placenta [16, 22] and meconium
[16, 23, 24] from term gestations. However, a recent
study found that the bacterial microbiota of term placen-
tas resembled that of contamination and extraction
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controls [25]. Furthermore, since gnotobiotic animals
from many mammalian species can reliably be derived
via sterile cesarean section, it is reasoned the in utero
environment of healthy pregnancies is sterile [17].
Considerably less is known about viruses in the fetal

environment. Specific pathogenic viruses such as cyto-
megalovirus (CMV), HIV, enteroviruses, influenza, ru-
bella, varicella, Zika, and human papilloma viruses
(HPV) are certainly transmitted transplacentally or vagi-
nally to the fetus. Using targeted PCR, CMV, adenovirus,
herpes simplex virus, human herpesvirus 6, enterovirus,
Epstein-Barr virus, respiratory syncytial virus, and hu-
man parvovirus B19 can be detected in amniotic fluid
obtained via amniocentesis for genetic screening [26–
30], apparently co-existing with the fetus without caus-
ing symptoms. Viruses are infrequently detected in am-
niotic fluid from a variety of disease states using PCR for
a panel of eukaryotic viruses followed by mass spectrom-
etry (PCR/ESI-MS) including 1.4% of amniotic fluid
from women with preterm labor and intact membranes
[31], 1.7% of amniotic fluid from cases of preterm prela-
bor rupture of membranes [32], and 3% of samples from
women with sonographic short cervix [33]. Additionally,
early in life stools (first 96 h of life) from term infants
have both eukaryotic viruses and bacteriophage present
[34]. However, there are no studies using an unbiased
approach to determine if viruses are present in amniotic
fluid.
Here, we ask using sequence-based methods if term

gestations have an amniotic fluid bacterial community
and/or virome (community of eukaryotic viruses and
bacteriophages), which would have major implications
on our understanding of how the infant gut is initially
populated by microbes.

Results
Amniotic fluid has low bacterial biomass
We evaluated 24 amniotic fluid specimens from term
uncomplicated pregnancies obtained at the time of elect-
ive cesarean section at Barnes-Jewish Hospital, St. Louis,
Missouri. The median maternal age was 28 years, and
the median infant weight at birth was 3288 g
(Additional file 1: Table S1 and Additional file 2).
To quantify the bacterial biomass in amniotic fluid

specimens, we performed a qPCR assay to measure the
absolute number of 16S rRNA gene copies. The mean
16S rRNA gene copies in amniotic fluid samples were
944 copies/mL (SD 374), a very low bacterial biomass
(Fig. 1) when compared to pediatric stool samples which
was 3.92 × 108 copies/g (SD 3.84 × 108). We were
concerned that these low-density sequences reflected
contamination. Therefore, we sought the 16S rRNA gene
copies in negative controls that were performed in paral-
lel: DNA-free water (reagent negative control) that had

no additional input material and did not undergo the
DNA extraction protocol and extraction buffer that was
subjected to the same DNA extraction protocol used for
the samples (extraction negative control). The mean 16S
rRNA gene copies in water (negative control) were 93
copies (SD 40), and the mean 16S rRNA gene copies in
buffer extraction negative controls were 1062 copies/mL
(SD 390). While amniotic fluid 16S rRNA gene copies
were higher than the water negative controls, there was
no statistically significant difference between the 16S
rRNA gene copy number between amniotic fluid and
buffer extraction negative controls. Thus, consistent with
prior studies [9–11], amniotic fluid had an absolute 16S
rRNA gene copy number indistinguishable from the ex-
traction negative controls.

The bacterial microbiota signature of amniotic fluid is
indistinguishable from controls
We next considered the possibility that amniotic fluid har-
bored a qualitatively different set of bacterial DNA than
the reagents, i.e., that there was discrete bacterial micro-
biota present at low abundance in amniotic fluid. If so, bac-
teria of true amniotic fluid origin should differ in content
from the negative controls. Therefore, we performed deep
sequencing of the 16S rRNA gene V4 region from amniotic
fluid, water (reagent negative control), buffer (extraction
negative control), and pediatric stool samples (positive
control) Additional file 3. Seven samples were omitted
from further analyses as they contained less than 5000 16S
rRNA gene sequencing reads (five amniotic fluids, one
water, and one buffer). We found that there was no statisti-
cally significant difference between the bacterial richness of

Fig. 1 Bacterial 16S rRNA gene quantitative PCR. 16S rRNA gene
copies per reaction were quantified in the amniotic fluid samples,
water (reagent negative control), buffer (extraction negative control),
and pediatric stool samples. Statistical significance was assessed by
Mann-Whitney test; **P ≤ 0.01, ***P ≤ 0.0001. ns, non-significant
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amniotic fluid specimens and buffer extraction negative
control (Fig. 2a). Amniotic fluid bacterial richness was
higher than water negative controls, but lower than the

stool controls. To compare the bacterial community struc-
ture between the amniotic fluid specimens and controls,
we measured the unweighted UniFrac distances between

a b

c

d

Fig. 2 The bacterial microbiota of amniotic fluid is indistinguishable from controls. a Richness (number of bacterial OTUs) of each sample type
by sequencing depth. b PCoA of unweighted UniFrac distances. c Bray-Curtis dissimilarity analysis compared within sample type and between
sample type and buffer control. Statistical significance was assessed by Mann-Whitney test. d Relative abundance of bacterial OTUs unique to
amniotic fluid and not present in negative controls
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the samples and performed PCoA analyses. Amniotic fluid
specimens overlapped extensively with buffer extraction
negative controls but were distinct from stool (positive
controls) and water negative controls (Fig. 2b). This was
confirmed by Bray-Curtis dissimilarity analyses: although
the bacterial microbiota of stool had significantly higher
dissimilarities from buffer controls than when compared to
other stools (Fig. 2c, right), we found no statistically signifi-
cant difference between the bacterial microbiota detected
in amniotic fluid and buffer controls (Fig. 2c, left).
We were concerned that a limitation of diversity mea-

surements (Fig. 2b, c) is their lack of sensitivity for rare
taxa, such as rare OTUs within a dominant background of
contamination-derived OTUs. Therefore, we sought to
identify bacterial OTUs that were present in amniotic fluid
but absent from buffer and water negative controls
Additional file 4. We found that bacterial OTUs unique to
amniotic fluid accounted for very little of the relative abun-
dance (Fig. 2d). Importantly, these rare bacterial OTUs
were not frequently detected across the other amniotic fluid
specimens.

Viruses are rarely detected in amniotic fluid
The emerging “intra-amniotic microbiome” hypothesis
raises the possibility that amniotic fluid might also har-
bor a resident community of viruses. Thus, we investi-
gated the virome of these amniotic fluid specimens. To
comprehensively detect both DNA and RNA viruses,
total nucleic acid extracted from amniotic fluid speci-
mens was subjected to sequence-independent DNA and
RNA amplification (SIA), which provides an unbiased
representation of RNA viruses and, to a lesser degree,
DNA viruses. Likewise, water reagent negative controls
and buffer extraction negative controls (PBS subjected
to the same sample processing and nucleic acid extrac-
tion protocols as samples) were included in these experi-
ments. Only one amniotic fluid specimen yielded a
eukaryotic virus—GB virus C (specimen #10, 12 viral se-
quencing reads). GB virus C, also known as human pegi-
virus, is an RNA virus that is detected in approximately
2–4% of blood donors [35].
Because we only identified a single RNA virus, we then

used multiple displacement amplification (MDA) which
only identifies DNA viruses and is generally more sensitive
for their detection than the SIA method [34]. The average
number of viral sequencing reads in amniotic fluid was
331 reads (SD 248) (Fig. 3a). In comparison, stool speci-
mens yielded an average of 34,027 viral sequencing reads
(SD 44,667). The viral richness of amniotic fluid speci-
mens was less than buffer extraction negative controls,
water reagent negative controls, and stool samples (Fig.
3b) Additional file 5. Most of the viruses detected in amni-
otic fluid could be attributed to the extraction negative
controls and/or water reagent negative controls (Fig. 3c).

We next sought to identify viruses that were detected only
in amniotic fluid specimens, but absent from controls. We
found that one amniotic fluid specimen (specimen 5) had
106 sequencing reads of a bacteriophage most similar to
the Aeromonas phage 44RR2.8t. However, most other am-
niotic fluid specimens did not have “amniotic fluid
unique” viral sequences (Fig. 3d). To evaluate whether in-
hibitors of PCR might be present in these amniotic fluid
specimens, we performed a spike-in experiment. 1.8 × 107

copies of a plasmid containing a portion of the adenovirus
hexon gene were added to an amniotic fluid specimen,
followed by total nucleic acid extraction. Quantitative
PCR targeting the spiked nucleic acid detected 3.3 × 106

copies (Fig. 3e), indicating that the paucity of viruses in
amniotic fluid was not due to PCR inhibition.

Discussion
These data fail to identify a population of bacterial
microbiota in amniotic fluid from healthy term pregnan-
cies that meaningfully differs in concentration or content
from the sequences amplified from negative controls
(Figs. 1 and 2). The most parsimonious explanation for
our inability to find differences is that amniotic fluid of
healthy term pregnancies has negligible bacterial bio-
mass. Similarly, we find only limited evidence for viral
presence using metagenomic sequencing of material that
has been subjected to preparation techniques optimized
to recover DNA as well as RNA viruses, including DNA
and RNA bacteriophages. Based on these analyses, we
provisionally conclude that the term infant is not nor-
mally exposed to bacterial or viral populations in the im-
mediate pre-birth interval.
Although the womb is traditionally viewed as ster-

ile, recent molecular findings of bacterial DNA in the
in utero environment challenge this paradigm [16, 22,
36]. Since the intra-amniotic cavity is distinct from
the placenta, we cannot discount the possibility that
the placenta is separately colonized with microbes
and that perhaps protective mechanisms prevent entry
of these agents into the amniotic fluid. We also ac-
knowledge that our data pertain only to amniotic
fluid at term and that there might have been earlier
in gestation colonization with bacteria and/or viruses.
Indeed, alteration of the placental and amniotic fluid
bacterial microbiota has been associated with preterm
birth [12, 20, 37, 38]. Our work further demonstrates
that when sequencing samples with low microbial
density, it is critical to pay assiduous attention to
controls, so as not to attribute microbial presence in
specimens to contamination [25]. Our findings also
prompt intensive efforts to learn how the chorioam-
niotic unit is so efficient at preventing colonization of
the amniotic fluid despite evidence for circulating
bacteria and viruses in healthy adults [39–41].
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Fig. 3 Viruses are rarely detected in amniotic fluid. a Sequencing reads (virus and other) by sample type. b Viral richness by sample type. c Heatmap
of reads assigned to virus species. d Number of reads assigned to viral species per sample which were unique to amniotic fluid and not present in
negative controls. e Amount of adenovirus plasmid detected in spiked amniotic fluid sample and amount in spiked material (dotted line)
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Methods
Subjects
This study was approved by the Human Research Pro-
tection Office of Washington University School of Medi-
cine in St. Louis. Twenty-four archived frozen amniotic
fluid samples were obtained from the Women and In-
fants Health Specimen Consortium biobank at Washing-
ton University. Samples were selected if non-laboring,
C-section, and full-term gestation. Women with diabetes
of any type, hypertension of any type, seizure disorder,
intrauterine growth restriction, cancer, heart disease,
kidney disease, or treated with acyclovir were excluded.

Sample collection
Amniotic fluids were obtained in a sterile fashion at the
time of C-section by aspirating through intact amniotic
membranes. The amniotic fluid was then spun at 1620g
for 5 min at 4 °C. Fluid was then placed into conical
tubes and stored at − 80 °C.

Bacterial 16S rRNA gene sequencing
One thousand fifty microliters of amniotic fluid was centri-
fuged (7000g, 10 min). Extraction buffer was added to the
pellet, which was disrupted by bead beating, and DNA was
extracted using QIAamp DNA stool Mini Kit in a deconta-
minated sterile environment. In parallel, four buffer-only
blank controls and four pediatric stool samples were dis-
rupted by bead beating and extracted to serve as negative
and positive controls respectively. PCR was performed
using Golay-barcoded primers specific for the V4 region
(F515/R806). Reactions were held at 94 °C for 2 min to de-
nature the DNA, with amplification proceeding for 40 cy-
cles at 94 °C for 15 s, 50 °C for 30 s, and 68 °C for 30 s,
and a final extension of 2 min at 68 °C. Each sample was
amplified in triplicate, combined, and cleaned using
Ampure bead clean up kit. Equimolar libraries were pooled
and sequenced using an Illumina MiSeq sequencer (2 ×
250 v2 kit) at the Center for Genome Sciences & Systems
Biology at Washington University.

Bacterial 16S rRNA gene analysis
16S OTU clustering was performed using UPARSE
(http://drive5.com/uparse/) [42]. Paired reads were
merged and filtered at maximum expected error thresh-
old of 1.0 (-fastq_maxee 1.0). Unique sequences were
identified using the “fastx_uniques” command, followed
by clustering at 97% and chimera filtering using
“cluster_otus”. For OTU identification, the 16S rRNA
gene sequences were subjected to BLASTN search
against the NCBI 16S ribosomal RNA database.
Ecological analyses were performed using the vegan
package in R and QIIME2 scripts.

Bacterial 16S rRNA gene qPCR
SYBR green quantitative PCR for 16S rRNA gene was
performed using primers 515F (5′-GTGCCAGCM
GCCGCGGTAA-3′) and 805R (5′-GACTACCAGGG-
TATCTAATCC-3′) primers on DNA as previously de-
scribed [43]. The qPCR was performed using TaqMan
Fast Advanced Master Mix (Thermo Fisher). The 25-μL
reaction included 5 μL of extracted DNA and 5 μmol of
each primer. The following cycling conditions were used:
95 °C for 10 min, then 40 cycles of 95 °C for 15 s and
60 °C for 60 s followed by a melt curve. To generate a
standard curve for this assay, a plasmid containing the
16S PCR amplicon from Escherichia coli (DH5α) was
serially diluted from 5 × 107 copies to five copies and
used to generate a standard curve; a limit of detection of
500 copies was defined. Samples were tested in a 96-well
plate format with six water-only negative controls, six
buffer only controls, and 14 pediatric stools samples. All
water controls were below the limit of detection.

Virome sequencing
One thousand fifty microliters of amniotic fluid was cen-
trifuged (7000g, 10 min). The supernatant was then fil-
tered through a 0.45-μm membrane. Total nucleic acid
was extracted from the filtrate using COBAS Ampliprep
(Roche). In parallel, PBS was filtered and extracted to
serve as extraction reagent-only control and two
pediatric stool samples were filtered and extracted to
serve as a positive control. Sequence-independent DNA
and RNA amplification (SIA) was performed on the total
nucleic acid as previously described [34] and used for
NEBNext library construction (Illumina). For multiple
displacement amplification (MDA), total nucleic acid
and three water negative controls were amplified with
Phi29 polymerase (GenomiPhi V2 kit, GE Healthcare)
according to the manufacturer’s instructions and used
for Nextera DNA library construction (Illumina). Librar-
ies were purified and size-selected using Agencourt
Ampure XP beads (Beckman-Coulter), followed by
quantification using a 2100 Bioanalyzer (Agilent Tech-
nologies). Multiplexed SIA libraries were pooled and se-
quenced separately from multiplexed MDA libraries.

Virome sequence analysis
Illumina sequencing reads were analyzed using Virus-
Seeker [44], a BLAST-based computational pipeline to
identify viral sequences. Taxonomic classification for
bacteriophage sequences were parsed using MEGAN
version 6.10.2 [45]. Ecological analyses were per-
formed using the vegan package in R and QIIME2
scripts. Sequencing reads were normalized to 400,000
reads per sample.

Lim et al. Microbiome  (2018) 6:87 Page 6 of 8

http://drive5.com/uparse/)


Spiking of amniotic fluid
To determine whether inhibitors of PCR might be present
in these amniotic fluid specimens, 1.8 × 107 copies of a
plasmid containing a portion of the adenovirus hexon
gene were added to 1050 μL of amniotic fluid and to
1050 μL of PBS. Total nucleic acid was extracted from
these spiked samples using COBAS Ampliprep (Roche). A
previously published qPCR targeting the adenovirus hexon
gene was then used to quantify the spiked DNA [46]. The
qPCR was performed using TaqMan Fast Advanced
Master Mix (Thermo Fisher). The 20-μL reaction included
5 μL of extracted total nucleic acid, 18 pmol of each pri-
mer, and 5 pmol of probe. The following cycling condi-
tions were used: 95 °C for 2 min, then 45 cycles of 95 °C
for 1 s and 60 °C for 20 s. To generate a standard curve for
this assay, a plasmid containing the region of interest was
used in serial dilutions from 5 × 106 copies to five copies
and a limit of detection of five copies was defined. Samples
were tested triplicate in a 96-well plate format with water-
only negative controls. All water controls were below the
limit of detection.

Statistics
To compare the 16S rRNA gene copy number between
specimens, CT values from qPCR assay were converted
to copy numbers as determined by the standard curve
[y = − 4.4358x + 41.126, R2 = 0.9941]. Copy number was
normalized to input volume, and a non-parametric
Mann-Whitney test (two-tailed) was performed to com-
pare the 16S rRNA gene copy number between speci-
men types. The bacterial OTU richness was rarefied
from 10,000 to 50,000 sequencing reads, in steps of
10,000 over 10 iterations each. To compare the bacterial
microbiota beta diversity between specimen groups,
Mann-Whitney test (two-tailed) was performed. The
heatmap of virome abundance was plotted in R using
gplots, with clustering by virus abundance (rows).

Additional files

Additional file 1: Table S1. Summary of demographics (DOCX 13 kb)

Additional file 2: Metadata associated with all samples used in this
study. (TXT 1 kb)

Additional file 3: 16S operational taxonomic unit table. (CSV 40 kb)

Additional file 4: Fasta sequence file of most abundant OTUs only
detected in amniotic fluid. (FA 5 kb)

Additional file 5: Virome species table. (CSV 73 kb)
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