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This dissertation is a study of the phylogeny and evolutionary biology of gall 

formation in psyllids of the subfamily Sponclyliaspiclinae, with particular focus on 

North American hackberry gallers in the genus Pachypsylla. Species in this genus 

produce a variety of gall types on the leaves, petioles, buds and twigs of their 

hosts, four species of Celt is subgen. Euceltis (Ulmaceae ). The homogeneity of 

adult morphology in Pachyp.sylla, contrasted to the great variation in gall 

morphology and phenology, has led to much difficulty in delimiting species. 

Chapter I investigates species limits as related to gall type and host 

specificity in Pachypsylla. Strong differences in al lozymes, morphology and life 

history confirm that leaf, petiole, bud and twig galle rs belong to different species 

or species groups. Different leaf gall morphs probably also represent different 

species, as evidenced by significant allozyme frequ e ncy diffe rences among 

sympatric pairs of gall morphs, consistent frequency difference between co-

occurring morphs across localities, and discrete differences in gall type between 

progenies of individual females . 



Differences in allozymes, female phenology, adult and nymphal coloration, 

as well as laboratory rearings and field manipulations, show that side cell 

individuals within two nipple gall types represent an inquiline sibling species 

(Chapter II). 

Chapter III is an analysis of phylogenetic relationships within Pachypsylla, 

based on allozyme, morphological, life history and chromosome characters. Galler 

populations attacking the same plant tissue form monophyletic groups. The leaf 

galler morphs are little diverged, and phylogenetic relat ionships among them are 

unclear. Populations of inquilines from two different gall types appear closely 

related; the inquiline appears to be derived from a gall-forming ancestor. 

Phylogene tic re la tionships among gallers on different plant parts are consistent 

with an evolutionary sequence of gall position from leaf to petiole to bud to twig. 

Chapter IV is a morphological study of phylogenetic re lationships within 

Sponclyliaspiclinae. The tribe Pachypsyllini, including Pachypsylla and two related 

Celtis feeders, is monophyletic. The tree favors the hypothesis of Burckhardt over 

that of White ancl Hodkinson. The distribution of lerp ancl gall formation is 

shown to be non-random within Sponc.lyliaspidinae. 
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GENERAL INTRODUCTION AND OBJECTIVES 

The biology of gall forming insects represents one of the most conspicuous 

and complicated animal-plant interactions known. Galls have been utilized 

extensively in medicine, industry, and food for over a thousand years in ancient 

countries such as India and China. The first scientific report on insect-induced 

galls was published in the seventeenth century by Malpighi in Italy (Mani, 1992), 

but most subsequent reports were based on casual observation. In recent decades, 

however, serious and intensive studies have been undertaken on numerous aspects 

of galling, including gall morphology and development, physiology and 

biochemistry of gall tissues, life history, behavior, host specificity and nutritional 

physiology of gall makers, and also trophic relationships of the complex 

assemblages of organisms associated with galls (Mani, 1992). Contemporary 

studies report gall making from seven insect orders with their biology proving 

remarkably diverse. However, there is still little understanding of the evolutionary 

origin, adaptive significance, and ecological and evolutionary consequences of gall 

formation. 

This dissertation is a study of the phylogeny and evolutionary biology of gall 

formation in psyllids of the subfamily Spondyliaspidinae, with particular focus on 

North American hackberry gallers in the genus Pachypsylla. 

The Psylloidea (Insecta: Homoptera: Sternorrhyncha) comprises about 2000 

species in the world (Hodkinson, 1984 ). Psyllids feed on a wide range of di cots, 
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with a few species on monocots (Juncus, Carex and the palm Pritchardia) and 

conifers (Pinus). They are usually narrowly host specific, and species that initially 

appear to feed on more than one plant family are likely to prove to represent 

complexes of host specific sibling species (Hodkinson, 1986; Klimaszewski, 1964; 

Yang et. al, 1986). 

Psyllids are sucking insects, feeding primarily on the soluble contents of 

phloem tissue, though some species attack mesophyll tissues (Woodburn and 

Lewis, 1973; Hodkinson, 1973, 1984; White, 1970). In Roskam's view (1992), 

feeding on plant sap offers homopterans extensive opportunities for manipulating 

host plants, accounting for the repeated evolution of gall formers in this group. 

Gall-forming psyllids are broadly distributed across plant taxa and 

geographical regions. There are at least 350 gall-inducing species (Mani, 1964; 

Hodkinson, 1984; Dreger-Jauffret and Shorthouse, 1992), constituting more than 

15% of all psyllid species. Psyllid gall forms range from simple distortion of 

plants, such as leaf curling and leaf pit galls, to a highly complex structure, such 

as the sealed gall of Schedotrioza or that of Trioza magonoliae, which develops a 

dehiscent mechanism when mature (Ashmead, 1881; Crawford, 1914; Morgan, 

1984 ). Psyllid galls usually show a high degree of site specificity on their host 

plant. 

The complexity and specificity of ecological relationships in galling psyllids 

are well illustrated by the North American genus Pachypsylla, commonly known 

as hackberry psyllids. Species in this genus produce a variety of gall types on the 
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leaves, petioles, buds and twigs of their hosts (Fig.1-1), four species of Ce/tis 

subgen. Euceltis (Ulmaceae), whose geographic distributions are partially 

overlapping (Fig. 1-2). The homogeneity of adult morphology in Pachypsylla, 

contrasted to the great variation in gall morphology and phenology, has led to 

much difficulty in delimiting species. Over two dozen specific entities have been 

named, but the status of most of these is entirely unclear. 

Goals 

The first goal of this project is to combine electrophoretic, morphological 

and life history data to determine species limits and phylogenetic relationships in 

Pachypsylla, as a basis for understanding speciation and the evolution of host use 

and gall formation in this group. The second objective is an analysis of 

phylogenetic relationships in the subfamily Spondyliaspidinae, with particular focus 

on the monophyly and phylogenetic position of Pachypsylla. The third objective 

is a comparative analysis of galling and related habits in the subfamily, asking 

whether several evolutionary patterns suggested by Pachypsylla and allied genera 

reflect broader trends. The literature on spondyliaspidine life history is 

synthesized, and the distribution of galling and related habits mapped on the 

morphological phylogeny. 

Significance 

Over the long term, these and my intended subsequent studies will bear on 
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several general questions about the nature of evolution in gall formers. The first 

concerns the role of ecological specialization in speciation. Perhaps more than 

any other phytophagous insect, gallers meet the broad definition of "parasites" 

advanced by Price (1980). There are several reasons to suppose that ecologically 

highly specialized organisms, exemplified by parasites, should have unusually high 

rates of diversification (Price, 1980; Futuyma and Moreno, 1988). Parasites, 

including galling psyllids, are typically modified and intimately dependent for 

survival on only one or a few types of hosts or even parts thereof, which often 

constitute both food and habitat for the much smaller parasite. They should thus 

be highly subject to diversifying selection arising from variation within and among 

host species. Reproductive isolation could result from such selection either 

directly, e.g. through adaptive divergence in phenology (Wood, 1980; Wood and 

Guttman, 1982; Wood et. al. 1990; Bush, 1969; Prokopy et. al. 1988), or indirectly, 

through pleiotropy (Maynard Smith, 1966; Ringo, 1977; Futuyma, 1986). 

Ecological specialization could also promote diversification by reducing 

competition between incipient species; this is the gist of Mayr's assertion (1976) 

that "extreme specialization is characteristic in insects and explains their 

prodigious rate of speciation." 

A necessary first step in assessing the role of host adaptation in the 

speciation of galling psyllids is documentation of the degree and kinds of 

differences in host use between closely related species. Do nearest relatives differ 

most prominently in host species, in plant part attacked, or in phenology with 
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respect to that of the host; or do they instead show great overlap, suggesting that 

niche specificity is not crucial to speciation? This study of species limits in 

Pachypsylla is one of the first to explicitly address this question for galling insects. 

The "specialization-diversification" hypothesis above also makes two 

broader predictions, which I hope to address in a long-term phylogenetic analysis 

of psyllids as a whole, for which this project is a first step. First, gall-forming 

species should show greater specialization in host taxon use than related non­

gallers. Second, clades of gallers should be consistently more diverse than closely­

related non-galling clades of the same age, i.e. their sister groups. 

In strong contrast to the "specialization-diversification" hypothesis as 

applied to "parasites" in the broad sense, an older view holds that ecological 

specialization particularly as exhibited by parasites is a "dead end" sharply limiting 

the potential for subsequent evolutionary change or diversification (Futuyma and 

Moreno, 1988; Moran, 1988). On a broad scale, this hypothesis predicts that 

evolutionary reversion to free living from galling should be rare, gall formers may 

shift among host taxa less often than related free-living forms, and gall formers 

should be less diverse than their non-galling sister groups. 

If galling imposes strong constraints on niche shifts, we might also expect 

that evolutionary transitions to different types of galling habit would occur in small 

steps (Janson, 1992). This should be reflected in phylogenetic sequences 

predictable from the probable degree of genetic divergence between habits. For 

example, it could be predicted that in Pachypsylla, leaf blade galling should 
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represent the ancestral gall position, as leaf feeding is typical of psyllids as a 

whole; attack of the petiole, bud and twig may represent successively more 

different and evolutionarily more recent habits. A similar sequence was 

postulated for leaf, bud and twig gallers in the sawfly subfamily Nematinae (Smith, 

1970; Price, 1988, 1992). 

On a broader scale, it has been hypothesized that the origin of true gall 

formation itself may occur in a predictable sequence from other forms of 

concealed feeding. Thus, construction of a lerp ( a cover constructed from 

hardened honeydew and probably mixed with wax; see Chapter IV) and of partial 

galls by related species in related genera have been suggested by Hodkinson 

(1984) as precursors to the enclosed galls formed by Pachypsylla. 

My phylogenetic analyses test these postulates for Pachypsylla and relatives. 

The comparative study across Spondyliaspidinae and related genera permit a 

preliminary statistical testing for the generality of such trends, as all of these 

habits have probably arisen multiple times. 

This dissertation is divided into four chapters, each will be a separate 

publication. The first chapter treats the analyses of species limits within 

Pachypsylla. The second chapter examines the occurrence of multiple individuals 

within leaf galls, and provides the first demonstration of a gall inquline in psyllids, 

and discusses the evolution of inquilinism in Pachypsylla. The third chapter is a 

phylogenetic analyses of relationships and the evolution of gall types within 
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Pachypsylla and the two other genera in Pachypsyllini, based on allozyme and 

morphological data. The fourth chapter examines phylogeny in the subfamily 

Spondyliaspidinae, test hypotheses of previous authors including White and 

Hodkinson (1985), then uses the phylogeny estimate to examine the evolution of 

galling and lerp formation. 
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Chapter I. 

Species limits as related to gall form and host specificity 

in hackberry psyllids, Pachypsy/la 
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INTRODUCTION 

Pachypsylla is one of the most conspicuous gall formers in North America, 

producing a variety of gall types on the leaves, petioles, buds and twigs of its hosts, 

Ce/tis subgen. Euceltis (Ulmaceae) (Fig. 1-1 ). The gall types are differentially 

distributed across four species of Celtis whose geographic distributions are partially 

overlapping (Fig. 1-2). Within the gall makers in the same position in the tree, 

adult morphology is quite homogeneous but there is great variation in gall 

morphology, especially among the leaf gall makers. This has led to widely 

differing views on the number of species in Pachypsylla. 

This study tests several hypotheses on species limits of Pachypsylla as 

related to galling position, gall shape variation, and host specificity, as a pre­

requisite for understanding speciation in this group. 

PACHYPSYLLA BACKGROUND 

The first described species of what is now considered to be Pachypsylla was 

the petiole gall maker, Psylla venusta Osten Sacken. In a short paragraph, Osten 

Sacken (1861) delineated the shape and seasonal change in texture of petiole galls 

and mentioned the large body size and dark maculated wings of the adults. 

Although he treated the insect as Psylla venusta, he pointed out that peculiarities 

of venation and the form of the metasternal spur indicated that it should be 

placed in a new genus. Riley first described the genus in 1883 and gave a short 
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description of the gall and nymph. He provided a more extensive description two 

years later (Riley, 1885) for the genus and three species, P. venusta, P. celtidis­

mamma and P. (Blastophysa) celtidis-gemma. 

Twenty-four names (Table 1-1) have been used for species of Pachypsylla, 

based on gall structure, host differences, and adult morphology. The status of 

many of these entities is uncertain. Of the two recent treatments, Tuthill (1943), 

who followed Crawford's system (1914), recognized 7 species, while Riemann 

(1961) in his unpublished dissertation recognized 12 (Table 1-1). 

Members of Pachypsylla can be divided into four groups based on nymphal 

and adult morphology and on the position of the galls on the hackberry host. The 

groups are the petiole gall maker, Pachypsylla venusta, leaf-blade gall makers (here 

after termed simply leaf gall makers), Pachypsylla spp., the bud gall maker, 

Pachypsylla celtidisgemma, P. pallida & P. dubia, and the twig gall maker, P. 

celtidisinteneris. 

It is generally accepted that there is only one species of petiole gall maker. 

Riley (1883) synonyrnized P. celtidisgrandis, which he had described as a new 

species in his earlier publication (Riley, 1876), with P. venusta, and Crawford 

(1914) synonyrnized P. tridentata (Patch, 1912) with P. venusta; their actions left 

only one eligible name for the petiole gall maker. 

Bud and twig gall makers are similar in morphology. Several species of 

bud and twig gall makers have been named, but these are mostly based on little 

information. Tuthill (1943) recognized four of these, namely P. celtidisgemma, P. 
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celtidisinteneris, P. dubia and P. pallida. The first two species, P. celtidisgemma and 

P. celtidisinteneris, are bud and twig gall makers, respectively. The latter two 

species were described by Patch (1912) based on specimens in the Cornell 

collection. They are similar morphologically to the bud gall maker P. 

celtidisgemma, except in forewing pattern. P. celtidisgemma has uniformly 

immaculate wings, whereas the wings of P. dubia are densely mottled and those 

of P. pallida are shaded, with a pale streak extending transversely across the 

forewing. Patch associated only the specimens of P. dubia with a Celtis gall, while 

no gall data were indicated for P. pallida. Tuthill (1943) identified specimens 

accompanied by galls from several localities in Arizona and New Mexico as P. 

pallida. These are very densely pubescent bud galls. The subgenus Blastophysa 

was erected by Riley (1885) for P. celtidisgemma but was not accepted by most 

later workers. 

The taxonomic situation is most confusing within the leaf gall making 

complex. At least twelve names have been assigned to the leaf gall makers. Riley 

looked at gall variations and named many new species based more on the gall 

rather than on the insect itself in his series of publications (1876-1890) on 

hackberry galls. He provided a key to three species of Pachypsylla based mainly 

on adult morphology, but gave a key and description to the galls for 9 species and 

a variety, including 6 new species (Riley, 1890). Mally (1894) studied the biology 

of hackberry psyllids at Ames, Iowa. Unlike Riley, Mally individually separated 

galls of variant nipple shapes in pill boxes and reared the adults. Because there 
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was great variation in adult characters but no constant association of these 

variants with gall shape and size, he concluded that they were all part of a single 

variable species. A year later, however, Mally (1895) listed several names that 

Riley described, such as P. celtidis-cucurbita, and P. celtidis-pubescens which form 

different nipple-shaped galls. It is not clear to what extent Mally considered gall 

variation to be species specific. 

Crawford (1914) adopted Mally's skepticism about Riley's species and 

considered all leaf gallers except the blister gall maker to represent P. 

celtidismamma. From then on, many authors looked at gall shape and/or adult 

morphology and named new species or synonyrnized old species (e.g. Caldwell, 

1938; Tuthill, 1943). Tuthill (1943) in his revision of North American psyllids 

separated the leaf galling species by body size; he recognized two species, the 

blister gall maker, P. celtidisvesicula (2.5mm or less), and the nipple gall maker, 

P. celtidismamma (3 to 4 mm). 

Riemann (1961) reported that there is no variation in chromosome number 

among leaf gall makers including P. celtidisasterisca, P. celtidispubescens, P. 

celtidismamma, P. celtidisvesicula and five undetermined species, although there 

is variation among gallers on different plant tissues. Various species of 

Pachypsylla leaf gall makers and the twig galler, P. celtidisinteneris, had the same 

chromosome numbers (2N = 25 d and 26 9) as did their closest North American 

relative, Tetragonocephala flava. Both the petiole galler, P. venusta (2N = 23 d , 

24 9 ), and the bud galler, P. celtidisgemma (2N = 22 d, 22 9 ), had smaller 
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chromosome numbers. All of these were reported to have an XO sex 

determination system except P. celtidisgemma which was described as having XY. 

Riemann's findings, however, did not entirely agree with those of Walton 

(1960). Four species of Pachypsylla from New York were studied by Walton, 

including three leaf gall makers and a bud galler. Unlike Riemann, Walton found 

variation between leaf gallers; both P. celtidismamma and P. celtidisvesicula were 

reported to have a 2N chromosomal number of 27 in males and 28 in females 

while P. celtidiscucurbita had 2N = 25d, 269. Like Riemann, Walton found fewer 

chromosomes in the bud gall maker (2N = 2ld, 229) than leaf gallers, but he 

reported a different male chromosome number. Chromosome number variation 

in Pachypsylla remains unclear. 

Gallers on different host tissues also differ in which stage overwinters. The 

leaf gall makers emerge from the gall just before leaf drop in the fall and 

overwinter as adults. Where the leaf gall makers overwinter is uncertain. Mally 

(1894) found leaf gall makers in the cracks and crevices of hackberry bark in 

March 1892 while the weather was still cold in Iowa. Some authors (e.g. Tuthill, 

1943) reported that psyllids were found in large numbers on screens and 

frequently became a nuisance in the house in autumn. Most workers (e.g. Wells, 

1920; Tuthill, 1943) have assumed, without real evidence, that these psyllids 

overwinter in bark crevices or leaf litter. 

The petiole, bud and twig gallers overwinter inside the gall on the tree in 

the last nymphal instar and emerge the following spring. All Pachypsylla nymphs 
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emerge by sawing their way out of the gall using the spiny chitinized tip of the 

abdomen. 

All species of Pachypsylla mate and lay eggs in the spring. However, there 

are phenological differences among gall types. The petiole gall makers emerge 

from the gall in very early spring (mid-March to early April in Maryland) as soon 

as the weather turns warm. If petiole galls are brought into a warm room in the 

winter, nymphs emerge from the gall and molt to adults several hours later. The 

leaf gall makers come back to the tree in early spring when the buds begin to 

swell and are present until the leaves are fully extended (from late March/early 

April to late May in Maryland). They usually mate and lay eggs on the bud scale 

or underside of the leaf. In late spring (late May to early June in Maryland), 

when the year's new twigs are formed but still green, the bud and twig gall makers 

emerge, mate and lay eggs. 

Differential times of occurrence were also observed between different types 

of leaf gall makers in the National Agricultural Library population. Of the two 

types of leaf galls which co-exist on this tree, even on the same leaf, nipple galls 

were formed earlier than star galls. 

The petiole galls are always polythalamous or multi-chambered, each 

chamber confining a single nymph. The bud galls are usually polythalamous but 

sometimes there is only one individual inside a gall whereas a twig gall always 

harbors only one individual. Both single and multiple-cell galls are found in most 

leaf galls except blister galls on C. occidentalis. The species status of the 
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individuals within one gall is discussed in Chapter IL 

A final uncertainty concerning species limits in the leaf gallers is the status 

of populations on different host species. Some species of Pachypsylla use several 

hosts and are widely distributed over the range of subgenus Euceltis in the United 

States, e.g. P. venusta and P. celtidisinteneris. Others are largely restricted to 

particular species of Celtis (Table 1-2). For example, in the northeastern United 

States, the hairy nipple gall (P. celtidismamma) and the blister gall (P. 

celtidisvesicula) are commonly associated with C. occidentalis, while the glabrous 

nipple gall (probably P. celtidisglobulus) and the star gall (P. celtidisasteriscus) are 

usually on C. tenuifolia. 

Riemann (1961) postulated strict host specificity within two of the leaf gall 

making groups, the nipple gall group and blister gall group. He named two new 

species (Table 1-2, new species 1 and 2) comprising the blister gall makers feeding 

on Celtis laevigata and C. reticulata, respectively, and restricted the name P. 

celtidisvesicula to blister gallers on C. occidentalis. Similarly, he restricted P. 

celtidismamma to the occidentalis nipple gall maker, applying the name P. 

celtidispubescens to nipple gall makers on C. reticulata, and P. sp. (probably P. 

celtidiscucurbita var. "?" Riley) to those on C. laevigata. Members of the nipple 

gall group were distinguished by host and gall shape differences as well as slight 

dissimilarities of male genitalia. The blister gallers were distinguished by host 

differences and slight differences in the male genitalia, mainly the head/shaft ratio 

of the terminal segment of the aedeagus. 
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Riemann attributed some exceptions to host specificity to hybridization 

among Celtis species. Hybridization and introgression among hosts are not rare. 

The species of Euceltis are very similar to each other, and there has been difficulty 

in defining species limits (Elias, 1970; Wagner, 1974). 

HOST PLANT CELTIS BACKGROUND 

Celtis belongs to the elm family, Ulmaceae. It consists of about 70-80 

species, found in both temperate and tropical regions (Rehder, 1949; Preston, 

1961; Correll and Johnston, 1970; Kriissmann, 1976). 

Celtis has been used in the manufacture of furniture, as an ornamental 

plant, as a shade tree in Temperate region (Hough, 1936) and as material for 

making ropes and papers in Asia. The native American Indians used the fruits as 

a flavoring for meat or finely pounded the berries and mixed them with parched 

corn (Gilmore, 1919; p.76). The common hackberry, C. occidentalis, has many 

desirable traits as a shade tree, such as an upright crown with lower branches 8 

to 10 feet from the ground, and considerable drought hardiness (Albertson and 

Weaver, 1945). It is receiving attention in the Great Plains because of the disease 

problems that have developed in several tall-tree species such as elm (Anderson 

and Tauer, 1993). 

Planchon (1873) divided Celtis into four subgenera on the basis of floral 

morphology and geographic distribution. Two of these occur in North America, 

i. e. Euceltis and Momesia. Euceltis is distributed in temperate regions of the 
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northern hemisphere and high mountains of the tropics. Momesia is found in 

tropical and subtropical parts of the western hemisphere. 

Five species of Celtis are found in North America. The desert hackberry, 

C. pallida, is a member of the subgenus Momesia. The remaining four species 

belong to the subgenusEuceltis, namely the common hackberry, Celtis occidentalis, 

the dwarf hackberry, C. tenuifolia, the sugar hackberry, C. Zaevigata, and the 

netleaf hackberry, C. reticulata. They support as many as 17 or even more types 

of insect galls, though these pests seldom kill the tree (Elias, 1970; Wells, 1916). 

Arthropod galls are so common on hackberries that some field botanists use these 

galls, e.g. witches brooms caused by mites and petiole galls of hackberry psyllids, 

as a way to identify these deciduous trees in the winter (Wagner, 1974). 

Pachypsylla and the other two genera of the tribe Pachypsyllini feed only on 

species of Euceltis. Apart from Pachypsylla, the monotypic North American genus 

Tetragonocephala is known from C. reticulata and C. Zaevigata, while Celtisaspis, 

found in China, Japan and Korea, has been reported from Celtis sinensis and C. 

bungeana, two of the approximately 26 species of subgenus Euceltis in Asia 

(Rehder, 1949). 

Of the host plants of Pachypsylla, Celtis occidentalis has the widest 

distribution (Fig. 1-2), occurring mainly in mid-western and north-eastern North 

America. It is commonly found in rich, moist soil along stream banks or on flood 

plains (Stephens, 1973) usually in semi-shade areas. Celtis tenuifolia has a patchy 

distribution in the eastern region. It prefers limestone regions, growing upon 
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rocky bluffs, in rocky woods, and in open glades (Stephens, 1973; Wagner, 1974). 

Some authors consider C. tenuifolia to be a subspecies or variety of C. occidentalis 

(e.g. Pepoon, 1927), but most recent researchers have recognized it as a true 

species (e.g. Kriissmann, 1976). Wagner (1974) compared the two species in the 

Great Lakes region and confirmed the species distinctness of C. tenuifolia. He 

reported that in addition to its "normal" range, which is well below the line of 

maximum Wisconsin glaciation, this species occupies scattered localities in the 

Great Lakes region. I also found the distribution of this species to be far broader 

than depicted by Little (1971, 1976, 1977) (Fig. 1-2). Many populations were 

found in Maryland, Virginia and Delaware, sometimes closely co-occurring with 

C. occidentalis (e.g. at Great Falls, Virginia). The sugar hackberry, Celtis laevigata, 

is a southeastern species while C. reticulata is a southwestern species. The 

distributions of the two species overlap in central Texas and Oklahoma. 

Species of Euceltis are very difficult to distinguish, because there are many 

varieties and natural hybrids (Rehder, 1949; Preston, 1961; Stephens, 1973; 

Kriissmann, 1976). Named varieties tend to be intermediate between species. For 

example, C. laevigata var. taxana seems to be intermediate between C. reticulata 

and C. laevigata (Sargent, 1922). Thus the taxonomy of Celtis is in a confused 

state and needs revision. 

QUESTIONS ADDRESSED and SPECIFIC OBJECTIVES 

Complete revision of the Pachypsylla species is one long-term aim of my 
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work, but this goal will take many years. My thesis work has focused on several 

hypotheses about the nature of species differences in this genus. These include 

contrasts among gallers on different host tissues, on different host species, and 

with different gall morphologies and phenologies. 

The following specific questions are addressed. 

1. Do galls on different plant tissues represent different species? 

Nymphs dissected from and adults emerging from leaf, bud, petiole, and 

twig galls were compared by electrophoresis, to check previous conclusions that 

they are distinct species, and to gauge the power of allozyme data for separating 

species in Pachypsylla. 

2. Are different leaf gall types different species? 

The following hypotheses are contrasted: 

A. The null hypothesis is that all the leaf gall makers, despite making different 

gall types, are a single species. 

B. Under the "two species hypothesis" of Crawford (1913) and Tuthill (1943), 

only the blister galler (P. celtidisvesicula) is distinct from all other gallers 

(P. celtidismamma). 

C. Under the "multiple species hypothesis" of Riley (1876- 1890) and Riemann 

(1961), there are multiple species (up to seven) of leaf gall makers 

distinguished by gall shape. 

Different types of leaf gallers from different hosts across a wide 
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geographical area were sampled and analyzed morphologically and electro­

phoretically. Possible differences in life history were examined, and rearing 

experiments were conducted to test whether the offspring of an individual female 

all produce the same gall type, as expected if gall shape is genetically determined 

and species specific, rather than being determined by, for example, leaf 

developmental stage. 

3. Do Pachypsylla of similar gall type on different host species represent different 

species? 

The hypothesis of Riemann (1961), who proposed that blister gall makers 

on different host species are different species, was tested. Sympatric samples of 

nymphs and/or adults from Celtis laevigata and C. reticulata were compared using 

morphological and allozyme analysis. 

MATERIAL AND METHODS 

Samples: 

Extensive collections of adults from sixteen localities across the United 

States were obtained in the fall of 1991. Galls were collected by myself and lab 

colleagues in the greater Washington area and by cooperators in Ohio, Arkansas, 

Louisiana, Texas and Arizona (Table 1-3 and Fig. 1-3). Galls were collected in 

the fall before the adults emerged. I sorted the galls by shape into different bags, 

collected emergent adults from the bags, and froze them at -80°C. Seven gall 

types, including 3 populations of petiole gall makers, 3 populations of bud gall 
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makers and 32 populations of leaf gall makers were included in this survey. These 

samples represented all five leaf gall types. Owing to its rarity and the high 

parasitism rate in the greater Washington area, the twig gall was not included in 

this survey of adult. Each type of gall on each host in each locality was treated 

initially as a separate population. Samples of each population were collected from 

1-3 trees. Sample sizes for individual populations ranged from two to 33, with 

most being 8 or more. For pairwise comparison of 5 sympatric leaf gall types at 

Great Falls Virginia (GFV), three (blister gall, hairy nipple gall and glabrous 

nipple galls) of the five gall types were taken from the same tree. The other two 

gall types were collected from two other separate trees. All these trees are C. 

occidentalis and are located within 0.5 km of each other. 

Following the discovery that adults emerging from leaf galls with multiple 

cells may include both the gall former and inquilines (see Chapter 11), a second 

set of samples, of nymphs, was obtained in the fall of 1992. These individuals 

were collected by dissecting individual galls from multiple branches of one to five 

trees. Only individuals from mono-cell galls or from the center cell of multiple 

cell galls were used to represent each gall type. The sample sizes were 14 to 46 

individuals for each population for leaf gall makers, and 4 to 13 per population 

for other gall makers. Twenty-four populations were examined, including three 

populations of the petiole gall maker, four populations of glabrous bud gall 

makers, one population of hairy bud gall maker, one population of twig gall maker 

and 15 populations, including all five types, of the leaf gall makers (Table 1-3, Fig. 
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1-4). 

For pairwise comparisons of sympatric gall types, three populations with 

multiple gall types were studied. Three gall types, blister gall, disc gall and 

glabrous nipple gall, were collected from two trees, both bearing all three gall 

types in the GFV population. These two trees are ten meters from each other in 

an open area. The two gall types, blister and hairy nipple gall, from Catoctin 

Mountain (CMt), Maryland, were from four and three trees, respectively, with two 

of these trees being sampled for both gall types. All the trees are in the Poplar 

Grove area within 0.5 km of each other. Both glabrous nipple gall and star gall 

were found on the same tree in the National Agricultural Library (NAL) and 

Branchville Road, Berwyn (BB) populations in Maryland. Samples of these are 

based on a single tree from each locality. The NAL and BB populations are 

about 5 km apart. 

For testing Riemann's hypothesis on host specificity, I made a trip to the 

Southwest, including Riemann's original localities, in the fall of 1992. Riemann 

(1961) regarded populations of blister gall makers on Celtis laevigata and C. 

reticulata in the southwestern U.S. as separate species. My collecting sites 

included the following Texas localities: Brackenridge field lab of the University 

of Texas at Austin; Zilker Park, Austin; and Palmetto State Park, Gonzales. In 

each locality, samples were collected, dissected and frozen from two or three sets 

of paired trees of C. laevigata and C. reticulata, located from O to 10 meters apart 

with no intervening barriers. 
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Electrophoretic methods: 

Allozyme electrophoresis was carried out using cellulose acetate gels, 

following the methods of Hebert and Beaton (1989) and Easteal and Boussy 

(1987). The Titan III cellulose acetate gel apparatus from Helena Laboratories 

was used, with gels measuring 94 x 76 mm. This allowed twelve samples to be run 

side-by-side at the same time. 

Prior to sample preparation, body sizes of each individual was measured 

using electronic caliper. Frozen individual psyllids were homogenized in 5 µI of 

distilled water in the sample well, using a glass rod cut from microscope slides. 

Then, another O to 2.5 µl of distilled water, depending on the body size, was added 

to each well. Up to 13 runs, yielding 16 loci, could be obtained from each 

individual. However, the PEP-2 locus stain was too light to be read accurately, 

so this locus is not included in the analyses. 

Buffer systems follow Richardson et al. (1986). Fifteen loci were resolved 

by an injtial survey of 27 enzyme stains across 11 buffers. The optimal buffers and 

running conditions for each locus, used in data collection, are given in Table 1-4. 

Gels were soaked prior to loading in the same buffer as for running. They were 

run in a refrigerator at 180 volts for 35 to 90 minutes (Table 1-4 ). 

Staining was carried out using an agar overlay, following recipes taken from 

Hebert and Beaton (1989). The agar was washed away after the gel was 

sufficiently stained. Gels were then soaked in water for at least half an hour and 

recorded by drawings, photographs or xeroxing. All gels were preserved dry in 
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transparent pocket sheets and filed for later reference. 

Fourteen loci were recorded for the adults. These plus PEP-1, discovered 

later, were analyzed for nymphs. Three of the loci were monomorphic m 

Pachypsylla, but the other 12 showed differences among gall types. 

Electrophoretic data analysis: 

With exceptions to be noted, alleles at each locus were originally 

designated alphabetically from fast to slow in the adult data and (separately) in 

the nymphal data for leaf gall makers. The codings for adults and nymphs do not 

correspond exactly, because the adult were analyzed first, and additional rare 

alleles were found in nymphs. Moreover, some of the alleles originally recognized 

at five loci (PGM, ME, PEP-1, MDH-1 and LDH) in some gall makers were 

subsequently found to consist of two distinct alleles. The new alleles were given 

new codes, out of alphabetical order (see footnote to Table 1-6). 

The fit to Hardy-Weinberg equilibrium was analyzed at each variable locus 

using the Biosys-1 package of Swofford and Selander (1981). Chi-square 

contingency table analyses, carried out in Systat 5.2, were used for testing the 

heterogeneity of allele frequencies for all loci among samples. Alleles for which 

the expected value was less than five in more than 1/5 of the cells were pooled 

(Sokal and Rohlf, 1981). Multiple pairwise, a posteriori, comparisons were carried 

out, using the adjusted a' = 1- (l-a)1
/k (Sokal and Rholf, 1981, p. 728), where k 

is the number of comparisons. This value was rounded down to the nearest value 
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table in Rohlf and Sokal (1969), making the test more conservative. 

Life history traits: 

The life histories of two leaf gall makers, the glabrous nipple gall and the 

star gall, in the NAL population were observed closely starting in 1990. I visited 

the NAL tree every two to four weeks from March to November, 1991, in addition 

to occassional observations made at various localities between 1990 and 1994. 

Collected galls were dissected and preserved in alcohol or by freezing. The 

developmental stages of the insects were recorded for each gall type. 

Rearing experiments: 

Individual wild-caught females were caged on hackberry seedlings in the lab 

to determine whether their progenies are always homogeneous in gall type. The 

sources of insects were two nearby populations in Maryland in which the same two 

gall types occur. In one, the NAL population, the glabrous nipple gall (LNg) is 

more abundant than the star gall (LS), whereas in the other, the BB population, 

the reverse is true. No absolute morphological differences are known between the 

adults of LNg and LS, but the adults emerging from the two gall types differ in 

size. To ensure that both gall types were represented in the experiment, adults 

Were sorted into "large" (bigger than 3mm), presumably LNg, and "small" (smaller 

than 3mm), presumably LS, size classes. Only dark abdomen females were used, 

to avoid side cell inquilines (see Chapter II). Species distinctness is supported if 
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siblings always have the same gall type, but progeny from different individuals set 

up on the same date are different in gall type. 

Cylindrical cages (30 cm X 50 cm) were sewn from white polyester fine­

mesh organza, incorporating a median belt of transparent mylar ( 4cm wide, 0.012 

mm thick) to permit convenient inspection of the cage contents. These cages were 

slipped onto branches and tied on with "Stretchrite" round cord elastic at both 

ends. 

Originally, this experiment was intended to be carried out in the field. 

Numerous cages were set in place in the field before budbreak to exclude natural 

infestation by adult psyllids. Single females were introduced into the experimental 

cages when the insects became available, while none were introduced into control 

cages. However, several weeks into the experiment it was apparent from the 

numbers of galls in both control and experimental cages that the cages had failed 

to exclude natural infestation. The field experiment was therefore abandoned, and 

a reduced version of the original design was added to a lab rearing experiment 

conducted to investigate the possibility of an inquiline species (see Chapter II). 

In the lab experiment, wild-caught females were caged on potted seedlings, 

three or more years old, during the period when both types of galls are being 

initiated in the field. The seedlings included both Celtis tenuifolia and C. 

occidentalis and also varied in leaf age. The latter had been manipulated to test 

the possibility that differences in gall morphology are due not to differences in the 

cecidogen, but to attack of the host during different stages in leaf development. 
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"Old" (well developed) versus "young" (still-developing) foliage seedlings were 

produced by covering the plants with plastic bags, placing wet paper towels at the 

bottom of the bag, keeping the plants in a cold room (2-5°C) starting in late 

winter, and moving them back to the lab at different times the following spring 

(1993). 

Seedlings were used as their foliage reached the appropriate stage of 

development. Four sets of cagings were set up, two using females from the NAL 

population (May 13 and 24 ), both on C. tenuifolia, and the other two with females 

from the BB population (May 17 and 23), one on C. tenuifolia and the other on 

C. occidentalis (see Table 1-9). Four or five seedlings were used each time, for 

a total of 18. Each seedling received three cages, one containing a large female, 

another a small female, and the other had no psyllids as a control. (Each seedling 

also bore three other cages, part of an experiment on inquilines - see Chapter II.) 

The seedlings were kept near a south-facing window in ambient light. Females 

were removed and frozen at -80° C ten days after being caged. The type of galls 

formed within each cage was recorded one month after infestation. 

Morphological methods: 

Morphological comparisons were conducted using both optical and scanning 

electron microscopy. Color variation of live insects was recorded immediately 

after dissection from the gall. Specimens were preserved in a freezer, in alcohol 

or dry. Specimens were dissected and slide mounted in Canada balsam when 
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necessary. Both adults and last (5th) instar nymphs were examined. Taxa 

examined included gall makers from all five type of leaf galls, and petiole, bud 

and twig galls. Ten to thirty specimens were examined for each gall type and each 

stage, except that for rare species only 3-7 individuals were used. The specimens 

inspected for each taxon included 2-7 populations across geographic regions 

(Table 1-3). 

Body sizes of gall makers from petiole, glabrous bud and all five leaf gall 

types were measured based on electrophoretic samples. The sample size of each 

gall types were 42 to 99 for leaf gall makers and 14 to 15 for non-leaf gall makers. 

The body size variation among leaf gall makers was analyzed using Tukey-Kramer 

methods of multiple comparisons among pairs of means (Sokal and Rohlf, 1981, 

p. 252). 

Specimens for scanning electronic microscopy were sonicated before 

dehydration. Five treatments of specimen preparation process were compared 

using 2 individuals each in a preliminary study. In the full process, specimens 

were pre-treated with glutaradelhyde fixer (4%, 12hrs) and osmium tetroxide (2%, 

4hrs), dehydrated in a series of increasing ethanol concentrations (30, 40, 50, 60, 

70, 80, 90, 95% each 10 mins and 100% EtOH 1hr), then critical point dried in 

CO2 using a "Samdri-780A" critical point dryer. Three other treatments were 

similar but the pre-treatment of glutaradelhyde and osmium tetroxide was 

eliminated. Each of these treatments started with different concentrations of 

ethanol (30-40-50-70-80-90-100%; 70-80-90-95-100% and 70-100%), followed by 
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critical point drying. The final treatment was air drying alone. Air-dried 

specimens shrank dramatically and this method was abandoned. No significant 

differences were found between specimens which were or were not pre-treated 

with glutaradelhyde and osmium tetroxide. Neither did it matter whether 

dehydration started with a lower EtOH concentration (30%-) or a higher (70%-). 

The final procedure adopted was an EtOH series with concentrations of 70-80-90-

95-100%, followed by critical point drying. Specimens were then mounted on 

aluminum stubs with double-sided adhesive tape, sputter coated with gold-

palladium using Hummer V and examined with an Amray scanning electronic 

microscope. Polaroid 4X5 photos (type 55, black and white) were taken. Two to 

four adults and nymphs of each gall type were examined. 

RESULTS 

1. Do galls on different plant parts represent different species? 

Electrophoretic analyses of the 1991 adult (Table 1-5) and 1992 nymphal 

(Table 1-6) samples confirm that psyllids that make petiole, bud and twig galls are 

clearly separate species, from each other and from leaf gallers. There are 

multiple fixed or nearly fixed allelic differences among these classes of gall types. 

For example, allele C (adult) or D (nymph) of TPI is fixed in and unique to the 

petiole gall maker, allele D (adult) or E (nymph) of TPI similarly distinguishes the 

bud gall makers, and allele D of GPDH and allele C of TPI characterize the twig 

gall maker (Tables 1-5 and 1-6). 

Variations among populations within the glabrous bud galls were minor, 
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suggesting that it represent a single species (Table 1-7, contrast AOO). When the 

hairy bud gall was added, the differences were significant (Table 1-7, contrast AO). 

However, five out of the six pairwise X2 contingency tests of allele frequency 

between the four bud gall populations in the nymphal data showed no significant 

differences (Table 1-7, contrasts Al-A6). The only significant pair was between 

glabrous bud gall from Virginia and hairy bud gall from Oklahoma. Since the two 

populations were far apart from each other, the geographic variation may 

contribute to the variation. However, the two types of bud galls, hairy versus 

glabrous, have some times been regarded as distinct (Crawford, 1914; Tuthill, 

1943). Tree building methods usually intermingle these two bud gall types (see 

Chapter III, Fig. 3-2). 

The three geographic populations of petiole gall makers show significant 

differences in allele frequencies when considered all together (Table 1-7, contrast 

BO) or pairwisely (Table 1-7, contrasts Bl-B3). No morphological differences 

were found among these populations except that the body color of the last instar 

nymphs from Arizona is lighter (yellow) than the color (orange) of those from the 

other two populations. 

Gall makers attacking different plant parts are also distinct in morphology. 

Although the bud and twig gallers are very similar, one can easily distinguish them 

by body size and wing maculation. 

The petiole gall maker has a large body size including wings ( ca. 5 .5-6.5 

mm) compared to the rest of Pachypsylla, which range from 1.9 to 4.4 mm (Table 
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1-8). The forewing of the petiole galler is clear with a few brown maculations, 

mostly in the apical region (Fig. 1-5). The glabrous and hairy bud gallers are very 

similar. Both are of moderate size ( ca. 3.2 mm). However, while the forewings 

of the glabrous gall type are uniformly brownish, the hairy type has a lighter 

brown background with an oblique clear band subapically. The twig galler looks 

like the bud galler but its body size is bigger (3.5-4 mm) and the brown colored 

region is restricted to the margin of the distal half of the wing. The leaf gallers 

range in body size from 1.9 to 4.4 mm. Their wings are uniformly mottled and 

spotted except for a clear subapical oblique band. 

The bud and twig gall makers also have similar life histories. Their adults 

emerge in late spring and overwinter in the last (5th) nymphal instar. The petiole 

gall makers also overwinter in the last (5th) nymphal instar but the adults emerge 

in very early spring. The leaf gall adults emerge in the fall and it is this stage that 

overwinters. 

2. Do the different leaf gall morphs represent different species? 

Allozyme evidence 

Initial evidence on this question came from the electrophoretic analysis of 

adults collected in 1991 (Table 1-5). These data suggest that species limits will 

be harder to determine within the leaf gallers than between these and other gall 

positions. The Nei genetic distances among leaf gallers are all smaller than 0.1, 

and there are no fixed or nearly fixed differences (Table 1-5; see also Fig. 3-3 a). 
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However, there are almost always significant frequency differences between 

different gall types from a single locality. For example, at Great Falls, Virginia, 

there are five co-occurring gall types on Celtis occidentalis. Three of these types 

were collected from the same individual tree. At this site, all 10 pairwise 

comparisons between leaf gall types showed strongly significant differences (Table 

1-9, contrasts Cl-ClO). This suggests that the leaf gall makers do not form a 

single randomly mating population. 

The hypothesis that leaf gall morphs represent separate species would be 

stronger if one could show consistent frequency differences of particular alleles 
' 

in comparisons from different locations. The most consistent differences are those 

between the blister gall maker and other gall makers. For example, adults show 

a consistently much higher frequency of the C allele and a lower frequency of 

allele E in IDH-1 in the blister galler than in other sympatric gall types, in 

collections at three widely separated localities from the same host, C. occidentalis 

(Table 1-10). A similar trend was seen at the 6PGDH locus. 

A difficulty with interpreting the adult data is that in the adult samples, 

center-, mono- and side-cell individuals are combined. The side cell nymphs 

actually represent a distinct species (see Chapter II). Their occurrence could 

either decrease the ability to detect frequency differences between gall types, or 

produce apparent differences where none exist, depending on the relative 

frequency of side cells among different gall types. However, removal of adult 

individuals carrying the allele E ( equivalent to allele F in the nymphs) at malic 
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enzyme, the strongest marker for the side cell nymphs (see Chapter II), had no 

effect on the conclusions to be drawn from Table 1-10 (contrast set C), suggesting 

that the differences among gall types are not due to "contamination" by the side 

cell form. 

Direct support for the reality of the patterns seen in the adult data comes 

from analysis of nymphal collections in 1992, from which inquilines were excluded 

by using monocell or center cell individuals only. As in adults, the allele 

frequencies in sympatric gall morphs are generally significantly different. For 

example, the allele frequencies of the three leaf gall types ( disc, blister and 

glabrous nipple) types sampled from Great Falls, Virginia were significantly 

different from each other pairwisely (Table 1-9, contrast Dl-3), paralleling the 

adult findings. Similar differences were detected between the two gall types 

sampled from Catoctin Mountain (Table 1-9, contrast El), and the other two gall 

types found in Maryland (BB and NAL) populations (Table 1-9, contrast Fl). 

Concordant with the adult data, the allele frequencies of the blister gallers 

differed most obviously from other gallers, consistently across localities, in the 

frequencies of allele Din IDH-1. A similar pattern, though less pronounced and 

consistent, is found in 6PGDH, as in the adult data. 

Life history evidence 

Phenological differences were found among co-occurred leaf gall makers 

in the National Agricultural Library population. Of the two types of leaf galls 
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which co-exist on this tree, even on the same leaf, nipple galls were formed earlier 

than star galls (Fig. 1-5). Eggs of glabrous nipple galls were laid earlier in the 

spring than those of star galls. 

Rearing evidence 

In 18 of 36 cages set up with single females, three or more leaf galls were 

found (Table 1-11). None were found in the other 18 cages, presumably because 

the female either died or was unfertilized at capture. None of the control bags 

had galls at all. In every cage containing galls, all the galls, necessarily 

representing progeny of a single female, were of the same type. Seven cages 

contained nipple galls while eleven had star galls. In 14 of 18 cases, the gall type 

was that predicted from the size class of the female. Both types of gall were 

formed on both "old" and "young" foliage class seedlings, and on two seedlings, 

both types of galls occurred (in separate cages). This suggests that foliage age is 

not a determinant of gall shape. Progenies of "large" females did not always 

produce nipple galls, nor did those of "small" size females always produce star 

galls, suggesting either that 3 mm is not the appropriate recognition criterion, or 

that the sizes of these gall-formers overlap. However, there is a strong association 

between the body size and type of galls made (see foot note to Table 1-11 and 

next section). 
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Morphological evidence 

Morphologically, the leaf gallers are extremely similar to each other, with 

highly overlapping variation. All the differences I could find were relative, not 

absolute. However, measurements of adult body size among almost all different 

pair leaf gall types show significant differences, except those of two types of nipple 

galls. The galler which is most nearly distinguishable from the others is the blister 

gall maker. The smaller body size ( < 2.5mm) of the blister gall maker was used 

to separate it from the nipple galler (3-4rnm) by Crawford (1914) and Tuthill 

(1943). The male genitalia of the blister galler are also slightly different from 

those of the others: the male proctiger is less hairy and the forceps are more 

sharply pointed (Fig. 1-7). 

All other gallers are very hard to identify without knowing the gall shape. 

3. Do Pachypsylla of similar gall type on different host species represent different 

species? 

Allozyme allele frequencies did not differ between blister gall nymphal 

samples from different localities on the same host species in Texas. The data 

were therefore pooled to yield a single contrast between the two host species 

(Table 1-6, populations 10 & 11). There were no significant frequency differences 

between these populations, either at individual loci or when they were combined 

(Table 1-9, contrast Gl). Thus, there is no evidence of allozyme divergence 

between sympatric blister gall makers from the two different host species. 
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Morphological differences between blister gall makers from C. laevigata, C. 

reticulata and C. occidentalis were also investigated, especially in the male 

aedeagus, following Riemann (1961). Riemann found the largest differences to 

lie in the head/shaft ratio of the terminal segment of the aedeagus. He reported 

ratios of 0.5, 0.25 and 0.38 for blister gallers in Texas and Oklahoma from C. 

laevigata, C. reticulata, and C. occidentalis, respectively. My measurements on 

blister galler specimens yielded mean estimates of 0.50, 0.33, and 0.33 for the 

same ratios. The former two were from Texas and the latter was from Maryland 

and Virginia. These means are similar to Riemann's except for specimens from 

C. reticulata. The differences between blister gallers from C. laevigata and C. 

reticulata in my samples are significantly different from each other (see foot note 

of Table 1-12). I also measured blister gallers from Arizona, where only Celtis 

reticulata is available. The mean ratio and range are similar to the blister gallers 

from Texas, though the sample size of Arizona population is small (Table 1-12). 

No other significant morphological differences between blister gallers from 

different host plants were found. 

DISCUSSION AND CONCLUSIONS 

Evidence from morphology, allozymes and life histories strongly confirms 

that the petiole, bud, twig and leaf gall makers each constitute at least one species 

distinct from the others. 

Within the bud gallers, allozymes show little geographic variation, even 
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between allopatric gall morphs, which argues against the separate species names, 

P. celtidisgemma Riley (glabrous bud gall) and P. pallida Patch (hairy bud gall) 

advanced for these morphs by some authors. However, the gall morphs are 

associated with differences in wing pattern and host affiliation. Within the petiole 

galls, there is significant allozyme differentiation among geographic populations 

on different hosts. The possibility that allopatric populations of the petiole and 

bud gallers are specifically distinct remains open. 

The members of the leaf gall making complex are very closely related and 

hard to distinguish. However, several lines of evidence indicate that they are at 

least partially reproductively isolated, and quite possibly separate species. First, 

sympatric gall types always show statistically significant differences in allozyme 

frequencies. In the case of the blister gall, the differences are marked enough, 

and consistent enough across geography, to argue by themselves for strong 

reproductive isolation, supporting the hypotheses of Crawford (1914) and Tuthill 

(1943). Second, the rearing experiment, in demonstrating that gall shape variation 

between isofemale progenies is both all-or-none and associated with body size, 

provides evidence at least strongly consistent with a genetic, species-specific basis 

for that trait. Third, pairs of sympatric gall morphs examined in detail differ 

substantially in the timing of adult appearance and/ or gall formation as well as 

body size. Though more evidence is needed, it is probable that in addition to the 

blister ga.ller,, the thTee species named by Riley but yncmymized by others (e.g. 

Crawford, 1914; Tuthill, 1943) , i.e. P. ,c,eUidisumb.il.icus (disc g er , P. 
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celtidisglobulus (glabrous nipple galler) and P. celtidisasterisca (star galler), should 

be revived. 

Allozyme variation between sympatric blister galls from C. laevigata and C. 

reticulata is small, which casts doubt on Riemann's hypothesis that blister gallers 

on different hosts represent different species. In contrast, significant 

morphometric differences in the male genitalia, corroborating Riemann's 

observation, seem to support that hypothesis. Since morphometric variation is 

subject to environmental effects including host differences, however, it is not clear 

whether the observed differences have a genetic basis. Reciprocal host transplant 

experiments are needed to answer this question, and the species issue remains in 

doubt. 

Conclusions about the status of several additional described nipple gall 

makers, including P. celtidispubescens, P. rohweri, P. celtidisglobulus, P. 

celtidiscucurbita and P. celtidiscucurbita var."?", can not be made, since they were 

not included in this study. 

Further studies using other techniques and more extensive and intensive 

geographical sampling are needed to fully resolve the species problem among leaf 

gall makers. One constraint of the cellulose acetate gel electrophoresis used here 

is that the small size of the gel does not allow enough migration distance to 

separate alleles of very similar mobility. 
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KEY TO SPECIES OF PACHYPSYLLA STUDIED 

1 Vertex and thoracic dorsum not shining, covered with conspicuous, short 

stiff pubescence ....................................... 2 

Vertex and thoracic dorsum glabrous, with only sparse, minute 

pubescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

2(1) Body size large (5-6 mm); forewing narrowly rounded at the apex, clear 

with maculation mainly apically; galls spherical and large (1-3 cm) on 

petiole, usually polythalamous . . . . . . . . . . . . . . venusta Osten-Saken 

(petiole gall maker) 

Body size small to moderate (2-4 mm); forewing broadly rounded at the 

apex, mottled and spotted throughout, with a clear subapically oblique 

band; galls on leaf-blade of various shapes, monothalamous or 

polythalamous ........................................ 3 

3(2) Female abdomen; male forcep tip roof-like, side margins parallel, straight 

in lateral view; nymphs found in side cells of other leaf-blade galls; 5th 

instar nymphs with yellow wing pad . . . . . . . . . . . . . . . . . . . . . . . . . . 

............................ cohabita sp.n Yang and Riemann 

(leaf inquiline psyllid) 

Female abdomen brown; male forceps in lateral view gradually tapering 

in apical half, tip pointed, side margins convex; nymphs found in single 

cell galls or in center cell of multiple-cell galls, 5th instar nymphs with 

brown wing pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
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4(3) Gall on the upper side of leaf, raised or convex .............. . 5 

Gall on the upper side of leaf concave, forming a depression . . . . . 6 

5( 4) Galls inconspicuous, blister like, elevated on both upper and under sides 

of the leaf . .. ........................... celtidisvesicula Riley 

(leaf blister gall maker) 

Galls rounded, raised on the upper side; star-shaped or flower shaped on 

the under side . . . . . . . . . . . . . . . . . . . . . . . . . . celtidisasterisca Riley 

(leaf star gall maker) 

6( 4) Galls disc-like or button-like, much flattened; upper depression with an 

outer rim and the central portion slightly raised with a median spine; 

under side wart-like, with a depression at middle . . . . . . . . . . . . . . . . 

celtidisumbilicus Riley 

(leaf disc gall maker) 

Galls nipple-like, much rounded; upper side with depression and under 

side rounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

7(6) Galls glabrous; upper side forming a cup-like depression with an outer 

rim; under side rounded, nearly as long as wide or wider than length, 

apple-like, with a central depression . . . . . . . . . celtidisglobulus Riley 

(leaf glabrous nipple gall maker) 

Galls pubescent on the apical portion of the under side, but hairs easily 

rubbed off, giving glabrous appearance; upper side a depression with 

central spine but no outer rim; under side nipple-like, longer than wide, 
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without obvious central depression .......... celtidismamma Riley 

(leaf hairy nipple gall maker) 

8(1) Pterostigma prominent; wings with a smoky band along the anal and 

apical margins and extending along veins toward base; galls oblong-oval 

in shape on one side of the twig, monothalamous 

celtidisinteneris Mally 

( twig gall maker) 

Pterostigma not obvious; forewing homogeneous or maculated not as 

above; forming irregularly round galls on bud ................. 9 

9(8) Forewing uniformly brown; gall glabrous on bud, usually polythalamous 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . celtidisgernma Riley 

(glabrous bud gall maker) 

Forewing with light brown in apical half extending to some basal regions; 

gall densely pubescent on bud, usually polythalamous . . . . . . . . . . . . 

........................................... pallid a Patch 

(hairy bud gall maker) 
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Chapter II 

The evolution of inquilinism in hackberry leaf galling psyllids: 

Are multiple individuals within the same gall conspecific? 
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INTRODUCTION 

The organisms and interactions that occur in a gall are often more diverse 

than one might expect. A gall very often represents a complex community rather 

than a microhabitat for a single gall former. Some oak galls, for example, support 

as many as 22 species of insects (Askew, 1961), comprising the original gall 

former, inquilines and their parasites. Contemporary studies have shifted 

emphasis from rearing and identifying the emergent insects of a gall to 

understanding the ecological relationships of the gall community (Wiebes-Rijks 

and Shorthouse, 1992) and their evolutionary origin (e.g. Ronquist, 1994 ). 

However, most such works have focused on major galling groups, e.g. Cynipidae 

(e.g. Askew, 1961; Brookfield, 1972; Shorthouse, 1973; Washburn and Cornell, 

1979; Abe, 1992) and Cecidomyiidae (e.g. Askew and Ruse, 1974; Roskam, 1979, 

1986; Roskam and Van Uffelen, 1981; Shorthouse and West, 1986). 

Only a few studies have examined the relationships of inhabitants of psyllid 

galls (e.g. Jensen, 1957; Walton, 1960; Moser, 1965; Hodkinson and Flint, 1971) 

and all concentrated on the natural enemies of the gall formers. No inquilines 

have been reported in psyllids except Riemann's (1961) observation on hackberry 

psyllids, Pachypsylla, in his unpublished dissertation. Present research tests 

Riemann's and related hypotheses on the potential inquilinism in Pachypsylla, and 

discusses the evolution of this trait. 
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BACKGROUND 

Gall Inquilines 

The term "inquiline" comes from the Latin word inquilinus meaning 

temporary inhabitant or guest (Brown, 1956, pp. 439 & 387) and has been broadly 

used. For instance, a search of the Life Science Collection on CD-Rom 

(Cambridge Scientific Abstracts, Bethesda, MD) found 57 papers on "inquilines" 

between 1982 and 1993. The "inquiline" in these research projects ranged from 

va rious kinds of organisms in galls, to social parasites in Hymenoptera (e.g. 

Bourke and Franks, 1991; Reed and Akre, 1983), to crickets (e.g. Henderson ancl 

Akre, 1986; Bolton, 1986), beetles (e.g. Howden and Gill, 1988) ancl worm lizards 

(e.g. Riley et al., 1986) in ant nests, and to co-occurring fishes in coral reefs 

(Spiegel, 1980). For the purposes of this study, the term will be restricted to gall 

inquilines unless otherwise indicated. 

While reports of inquilinism are rare in psyllicls, inquilines are frequent in 

other galling groups. Gall inquilines are gall inhabitants that feed on ga ll ti ssues, 

without directly damaging the gall-inducer, but are unable to induce gall s 

themselves independently (Skuhrava et al., 1984; Shorthouse and West, 1986; 

Shorthouse, 1991; Wiebes-Rijks and Shorthouse, 1992). Although inquilines can 

be viewed as parasites of gall tissue, their ecological relationship to the original 

gall former is not clear, and should not be assumed to be parasitic. Meyer ( 1987, 

p.177) defined inquilines as "insects living commensally in the ga ll cortex," 

implying that they do little harm to the original gail inducer. The inquiline 
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Synergus pallicomis in galls of the cynipid Cynips quercusfolii is an example (Askew, 

1961). However, other studies on cynipid galls have demonstrated that inquilines 

have negative effects on gall inducers by food deprivation, or even by killing the 

host at an early stage of development of the gall (Evans, 1965, 1967; Shorthouse, 

1973, 1980; Washburn and Cornell, 1981). For example, the inquiline Periclistus 

kills the gall former Diplolepis at oviposition (Shorthouse, 1980). 

In other homopterans, gall inquilines have been reported in the aphids 

genus Eriosoma (Akimoto, 1981, 1988). Akimoto hypothesized that facultative 

inquilinism is a pre-adaptation for obligate inquilinism. He postulated that the 

latter arose by dispersal beyond the range of the primary host. This could result 

in strong selection for invasion of galls formed by related species, if the 

dispersants could not form their own galls on the available hosts. Subsequent 

specialization for this habit might preclude the re-acquisition of gall induction, 

even on re-encounter with the ancestral host. 

Occurrence of multiple individuals in Pachypsylla leaf galls 

The number of nymphs within a single hackberry psyllid gall varies from 

one to 17 and probably more, depending on the gall type and population. Petiole 

and bud galls are usually polythalamous, that is, with multiple individuals in the 

same gall, and each is confined to a separate chamber. Twig galls are usually 

monothalamous, that is, with only one individual per gall. 

The situation in leaf gall makers is more complicated. Usually there is only 
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one individual inside a gall, but sometimes, particularly in the nipple gall in 

Maryland and vicinity, there can be multiple individuals, each enclosed in a 

separate cell. The proportion of multiple-cell galls and the number of cells within 

one gall vary between gall types and localities. 

There are no obvious differences among individuals and cells within the 

same petiole or bud gall. In contrast, within multiple-cell leaf galls one can 

generally distinguish between a center cell, presumably the individual that initiated 

the gall, and one or more "side cells." This distinction raises a series of questions. 

Are multiple individuals within the same gall conspecific? Does the 

differentiation between the center and side cells within the same leaf gall suggest 

that there is more than one species? Do they both contribute to gall production? 

Do the side cell and center cell individuals differ in performance and 

survivorship? What are the ecological relationships between the center and side 

individuals? What is the adaptive significance of having monothalamous or 

Polythalamous galls? If the side cell individual is a true inquiline, how did it 

evolve? This study was designed to answer some of these questions. 

Two interpretations of the species status of side cell individuals within 

Pachypsylla leaf galls have been offered. Moser (1965) observed multiple cells in 

leaf hairy nipple galls on Ce/tis occidentalis in New York State. He called the side 

cell a "marginal gall" and considered the side cell nymph to be conspecific with the 

blister gall nymphs, the only other leaf gall that occurred in that area. 

Riemann (l96l) found the side cell individuals in several different leaf gall 
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types in Texas and considered the side cells species to be undescribed. He 

regarded the side cell nymphs, across different gall types, to be the same species 

but not conspecific with the various center cell species. He hypothesized that the 

side cell species was unable to induce a gall and is an inquiline that became 

incorporated into the gall by feeding next to the gall maker during gall initiation 

in the spring. He also suggested that the inquiline sometimes killed the gall 

maker by expanding its own cell too much. 

In my initial observations, there were consistent color differences between 

the fifth instar nymphs from center cells and side cells, especially in wing pad 

color. The center cell nymph always has darker wing pads, which are usually 

brown, whereas the side cell nymph always has light colored wing pads, which 

usually are yellow. The nymphs from mono-cell galls and from center cells within 

multiple cell galls are either brown in general color with green or red color in the 

intersegmental membranes while the side cell nymphs are greenish yellow in 

general body color without differentially colored intersegmental membrane. 

Field observations and lab rearing results also suggests that first-instar 

nymph and adult coloration are associated with cell position, at least in the 

glabrous nipple gall and the star gall in the Maryland area. Side cell nymphs in 

the first instar are white, sometimes with dark maculation, and adult females have 

a green abdomen. Center cell individuals have yellow first instar nymphs and the 

adult female has a dark abdomen. 

These observations indicate that there is considerable variation between 
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side and center individuals besides the position in the gall and suggest that side 

cell nymphs may be a different species than center cell nymphs. 

QUESTIONS ADDRESSED 

Two questions were asked in this study: 

1. What is the nature of side cell individuals within a leaf gall? 

The following hypotheses are contrasted: 

A. The null hypothesis is that the side and center cell individuals are 

the same species. 

B. Moser's hypothesis predicts that in multiple cell nipple galls, side 

cells are "marginal galls" that contain individuals of the co-occurring 

blister gall maker that have become incorporated into the nipple 

galls. 

C. Riemann's hypothesis predicts that side cell individuals represent a 

separate species, that does not have the ability to form its own gall. 

2. Are side cell individuals from different types of leaf galls conspecific? 

Riemann's hypothesis is that there is only one side cell species regardless 

of the "host" species. There are two other possible hypotheses 1) that each 

kind of leaf gall has a separate inquiline species or 2) that the inquiline is 

the same species as the host. 

Samples of side cell individuals from two types of nipple galls, glabrous and 
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hairy, were examined morphologically and electrophoretically to test these 

hypotheses. A rearing experiment was designed to test the ability of side cell 

individuals to induce galling. Dependency of the side cell individuals on the 

center individual was further investigated by destroying the center individual at 

different stages of gall initiation. 

MATERIALS AND METHODS 

Samples for electrophoretic and morphological studies 

Center versus side-cell nymphs from the two types of nipple galls in 

Maryland were compared to each other and to those from single-celled galls of 

other co-occurring leaf gall types using allozyme, morphological, and life history 

characters to assess possible species differences. 

Nymphs were examined from the hairy nipple gall and glabrous nipple gall 

from three populations in Maryland in 1992, plus two other types of galls that 

commonly co-occur with these nipple galls. These included hairy nipple galls and 

blister galls from Catoctin Mountain (CMt) in northern Maryland (population #1-

4 in Table 2-1), and glabrous nipple galls and star galls from both the National 

Agricultural Library (NAL) population in Beltsville (population #5-8 in Table 2-1) 

and the Branchville Road (BB) population in Berwyn (population #9-12 in Table 

2-1). In both locations, the host is Ce/tis tenuifolia. The NAL population occupies 

a tree about 12 meters high located beside a small graveyard in the middle of an 

open lawn. Few seedlings were found near it but there is another tree 3 m high, 
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500 m from it. The BB population contains many hackberries, from small 

seedlings to tall trees, in a residential neighborhood. The two populations are 

about 5 km apart. The CMt population is located at the Poplar Grove campsite 

in Catoctin Mountain Park where trees and seedlings of C. occidentalis are 

abundant. This population is at about 450 m elevation and about 85 km from the 

BB and NAL populations. 

The sympatric non-nipple gall is the blister gall, which never has multiple 

cells and often co-occurs with the hairy nipple gall, and the star gall, which often 

co-occurs with the glabrous nipple gall. Galls were collected in the fall of 1992 

and 1993 from at least two trees in BB and CMt and one tree in NAL. I dissected 

each gall, separated the side cell nymphs from the center cell nymph, and 

collected the nymphs from mono-cell galls. These nymphs were either frozen for 

later electrophoretic and morphological studies, or reared in small glass vials to 

obtain the associated adults for morphological comparisons. 

Electrophoretic and morphological methods 

Three to twenty-one nymphs from each cell position in each locality were 

analyzed by electrophoresis (Table 2-1 ). Five to twenty individuals of each 

category were examined for the morphological comparison. Electrophoretic, 

morphological, and data analytical methods are as described in Chapter I. 

Allozyme frequency data for samples from the same gall type and cell position 

were combined if they did not differ significantly. 
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Rearing experiments 

Two experiments were conducted in the spring of 1993 to test the inquiline 

hypotheses. The first experiment tests whether the side cell nymphs can form 

galls, and also provides further data on color differences between center and side 

cell individuals. Fertilized females were collected from the NAL and BB 

populations and confined in cages on hackberry seedlings in the lab. This 

experiment was carried out at the same time and on the same plants as described 

in Chapter I. 

There were three treatments: 1) cages containing a single brown abdomen 

female, presumably a center cell individual (these are the same females described 

in the rearing experiment in Chapter I); 2) cages containing a single green 

abdomen female, presumably a side cell individual; and 3) cages containing one 

brown plus one green abdomen female. In treatment 3, both "large" ( > 3mm) and 

"small" ( <3mm) brown abdomen females were used (in separate replicates), to 

ensure inclusion of both star and nipple galls, as described in Chapter I. Control 

bags contained no insects. 

Each replicate was reared in a separate bag, but at least one replicate of 

all treatments and one control were reared simultaneously on the same seedlings. 

Thus, each seedling had at least six cages, each contain: a single large brown 

abdomen female, a single small brown abdomen female, a single green abdomen 

female, a pair consisting of one large brown abdomen plus one green abdomen 

female, one small brown abdomen plus one green abdomen female, or no psyllid 
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at all. The number and timing of the replicates set up, shown in Table 2-5, 

corresponds to that previously described (Table 1-9). Most seedlings used were 

C. tenuif olia, except that one batch of insects was reared on C. occidentalis 

seedlings. 

Females were removed from the cages after ten days and frozen at -80°C, 

and the color of nymphs found was recorded. Gall formation or lack thereof was 

recorded a month after infestation. Galls were dissected in September to examine 

cell numbers within each gall. 

Riemann's hypotheses predicts that treatment 1 will have yellow nymphs 

and mono cell galls only, treatment 2 will have white nymphs and no galls, and 
1 ·1, 
I I 

treatment 3 will have white and yellow nymphs, and both mono cell and multiple I/! 
I !! 
I 

cell galls. 

Destruction experiment 

The second experiment tests the dependency of side cell on center cell 

nymphs. Aggregates of newly hatched nymphs were located in the field and the 

center nymph experimentally destroyed. Destruction was conducted under a 

dissecting microscope fixed on a plastic manipulation and recording platform, 

which could be either fastened on a tripod or suspended from the shoulders on 

straps, leaving hands free for dissection and recording. Insect pins were used to 

pick the center cell nymph out of the leaf. 
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Treatments were: 1) center cell nymphs destroyed early, i.e., before any 

nymphs were enclosed in the gall; 2) center cell nymphs destroyed after the center 

cell individual was enclosed in the gall but the side cell nymphs were still exposed; 

3) center cell nymphs destroyed when both the center and side cell nymphs were 

fully enclosed; 4) control, in which galls in developmental stages corresponding to 

the first three treatments were left undisturbed. Predictions were that treatment 

4 would develop normally, galls of treatment 1 would not develop and side cell 

nymphs would die, while galls in treatment 2 and 3 might continue their 

development and side cell nymphs might survive. 

Experiments were initiated during four time intervals in late May, in the 

NAL population. Leaf gallers were abundant, and several nymphal aggregations 

in different gall development stages could be found even within a single leaf. 

Each replicate, consisting of two or more treatments, was performed on a single 

leaf when possible, or otherwise on different leaves on the same twig. The 

experimental leaves were numbered and marked with blue plastic tape on the twig 

right below where the petiole attached. The position of each gall on the leaf was 

sketched on paper when destruction was carried out, and the development (size) 

of the gall was measured immediately and again two weeks, two months, and four 

months after destruction. The total number of replications for each treatment, 

which was determined in part by the difficulty of finding galls in all fou r 

developmental stages, ranged from 16 to 30. 
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Female phenology 

To compare the phenology of center versus side cell females, females were 

collected in the NAL population every five days in spring of 1993, from April 15 

to May 15. Females found on the plant were randomly collected from different 

branches. About 50 to 70 females were collected each time, and the numbers of 

brown abdomen and green abdomen individuals recorded, to determine the 

change in proportion of the two morphs over time. 

RESULTS 

Electrophoretic data 

Allozyme frequencies in center cell nymphs from multiple cell galls and 

nymphs from mono-cell galls of the same gall type in the same population were 

not significantly different (Table 2-2, contrast Al-A3), so these data were pooled. 

I also pooled the two populations (NAL and BB) of combined mono and center 

cell nymphs of glabrous nipple gall makers (Table 2-2, contrast B 1 ), two 

populations (NAL and BB) mono cell nymphs of star gall makers (Table 2-2, 

contrast B3), and two populations (NAL and BB) of side cell nymphs from 

glabrous nipple galls (Table 2-2, contrast B2), for the same reason. There were 

six populations in all after pooling (Table 2-3). 

Within both the glabrous and the hairy nipple gall samples, there are strong 

frequency differences between side cell nymphs and center cell plus mono cell 

nymphs (Table 2-4, contrast Cl-C2). The most pronounced differences are at the 

54 



malic enzyme locus (Table 2-3). 

There are also marked differences in frequency between the side cell 

samples from the hairy nipple gall and sympatric mono cell blister gall (Table 2-4, 

contrast Dl) and between the side cell individuals from the glabrous nipple gall 

and sympatric mono cell star gall (Table 2-4, contrast D2). Thus, the side cell 

individuals are not likely to be conspecific with either of these co-occurring gall 

types. 

Allele frequencies in side cell individuals from the two nipple gall types are 

significantly different from each other (Table 2-4, contrast El). However, these 

samples are from populations -85 km apart, in very different habitats; the degree 

of differentiation between them is typical of the differences within gall morphs 

between the same two localities. A distance Wagner tree based on Rogers' 

distance for the six pooled populations grouped the two side cell taxa from 

different nipple galls together, rather than with the center cell populations from 

the same gall (Fig. 2-la). However, UPGMA analyses did not group the side cell 

samples taxa with each other or with center cell samples from their respective gall 

types (Fig. 2-lb; see also Chapter III). 

Single female rearing experiment 

None of the offspring of the eighteen green abdomen females formed 

galls, whereas offspring of most brown females caged alone did form galls (Table 

2-5). No galls were found in the control bags. The progeny of brown females 
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caged alone produced only single cell galls. When brown and green abdomen 

females were caged together, both single and multiple cell galls were formed, 

except that in the two cages in which the green female died early in the 

experiment, only single cell galls were formed. The results strongly suggest that 

the side cell individual is an obligatory inquiline which alone could not induce a 

gall. 

Destrnction experiment 

Some of the treated leaves were dropped before the last examination, 

reducing the number of observations in each category at the last stage from 16-30 

to 3-13. While galls in which the center nymph was left intact until the third stage 

mostly completed normal development (>91%, n=23), destruction of the center 

nymph at any of the three stages resulted in significantly smaller galls than the 

corresponding control (p < 0.01, t-test). Gall size is plotted against observation 

date for each treatment in Figure 2-2. While one may argue that the differences 

in gall size were due to gall damage when the center individual was destroyed, this 

explanation is not valid in the cases where the center individual was destroyed at 

the first stage before it was enclosed by the gall. 

None of the inhabitants of the galls that had their center cell destroyed at 

the first stage survived while their undisturbed controls developed until emergence 

(Figure 2-2 a). Leaves bearing the controls of the center cell nymphs that were 

destroyed at the first stage dropped from the tree before the last examination was 
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performed. In one case a dropped leaf was found on the ground. No 

measurement of this first control group in the fourth time period was taken (Fig. 

2-2 a). However, the leaf found on the ground had three galls and all had obvious 

psyllid emergence holes (1-3 holes each gall), suggesting that the insects survived 

until adulthood. Those galls with center cell individuals destroyed at the second 

and third stages kept developing until the adult stage, though the survivorship was 

lower (42.8% and 55.6%, respectively) than in their control (86.7% and 100%, 

respectively) (Figure 2-2, b and c). 

Timing of female appearance 

Leaf gall maker females were occasionally found in early April, but did not 

become abundant until mid April. On April 15, 1993, none of the females caught 

in the field had green abdomens (Figure 2-3). Ten days later (April 25), the 

proportion of green abdomen females increased to 10% and in the first two weeks 

of May, it rose and remained around 70%. 

Morphological comparison 

No clear distinctions in morphology were found between center and side 

cell individuals, apart from the initial differences observed in coloration of the 

female abdomen and wing pads of 5th instar nymphs. 
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DISCUSSION AND CONCLUSIONS 

Taken together, the results strongly support the hypothesis that, at least 

within nipple galls, side cell individuals represent separate species from central 

cell and mono cell nymphs. The allozyme frequency differences are dramatic, 

though not absolute, and rule out free interbreeding. They are supported by fixed 

differences in coloration in two life stages, and by life history differences in female 

flight time and gall induction ability. Strong allozyme frequency and coloration 

differences between side cell samples and sympatric blister or star gallers also 

permit rejection of Moser's (1965) hypothesis that side cells are "marginal" galls 

overgrown by a nipple gall. 

Grouping of the side cell inquiline populations from different nipple gall 

types in the distance Wagner tree is consistent with the hypothesis that these 

represent a single inquiline species. However, this finding is sensitive to choice 

of clustering method and the question needs further study (see Chapter III). 

The results of the rearing and destruction experiments fully support 

Riemann's hypothesis that the side cell individuals are true inquilines. Galls were 

never formed independently by progeny of side cell females, and side cell nymphs 

rarely survived in the field if the center cell nymph was removed before the gall 

was well established. Conversely, galls with side cells were never formed by 

progenies of center cell females alone; the nymphal habit of feeding next to a gall 

inducer is presumably unique to the side cell form. As would be expected if the 

inquiline nymphs need to feed close to already-initiated galls, the phenological 
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observations also suggests that the side cell females come back to the buds to 

mate and lay eggs later, on average, than brown abdomen females (Fig. 2-3). 

While side cell individuals cannot initiate a gall, whether they subsequently 

contribute to gall development is not clear. In cynipid galls, the species-specific 

morphology is sometimes altered by the presence of inquilines (Evans, 1965; 

Askew, 1984; Meyer, 1987). Although one cannot in general be sure whether 

there are side cell individuals in a Pachypsylla leaf gall without dissection, it is 

sometimes possible to distinguish mono-cell galls from multiple cell galls by 

appearance. Especially in the glabrous nipple gall, the mono-cell gall is usually 

perfectly rounded, while protrusions on the gall margin are sometimes evident, 

though not always, when side cells are present. This observation, and the fact that 

the inquilines are enclosed in separate cells, suggests that the side cell individual 

can modify gall development to some degree. 

From what ancestral habit did Pachypsylla inquilinism evolve? The 

inquiline falls well within the leaf gall makers (Fig. 2-1, see also Chapter III), but 

its exact phylogenetic position is not certain - the differences among leaf gallers 

are small, with no fixed allelic differences, thus phylogenetic relationships at this 

level are not well resolved. However, it seems quite clear that the inquiline is 

derived from an ancestor which made an enclosed gall. The very few other gall 

inquilines reported in Homoptera also seem to be derived from gall formers 

(Akimoto, 1988). The same is true for at least some inquilines in other groups, 

such as cynipid wasps and cecidomyiid flies (Askew, 1984; Ronquist, 1994). 
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However, it is not yet clear whether all gall inquilines have this origin. 

The side cell population represents one of the closest ecological 

interactions with a congeneric gall-inhabiting species and may offer the 

opportunity to study the early stages in the evolution of inquilinism. The 

implication of this discovery for the attempt to delimit species in Pachypsylla is 

that one cannot assume, without inspecting the nymphs, that adults emerging from 

the same gall are conspecific. This may help explain part of the lasting confusion 

about species recognition in this genus. 

The fitness effects of the Pachypsylla inquiline have not yet been measured, 

but anecdotal evidence suggests a detrimental effect. Riemann (1961) reported 

that the center cell nymph can be killed by expansion of the side cells. 

How common is obligate inquilinism and under what circumstances is the 

shift to this habit favored? In Homoptera, it appears to be rare, though if 

homopteran inquilines are typically as similar to their hosts as in Pachypsylla, there 

could be more undiscovered cases. Apart from Pachypsylla, the only obligate 

inquiline that I am aware of is the aphid Eriosoma yangi, although a number of 

aphids seem to be facultatively inquiline, in that fundatrices will invade and take 

over each others' galls, particularly in cases where the gall forms at some distance 

from the site of induction. Inquilinism may be substantially more common in 

some other galling groups. In cynipids, for example, inquilinism seems to have 

multiple origins and one tribe Aulacini is dominated by this habit, though the 

monophyly of this tribe has been questioned (Askew, 1984 ). Recent studies by 
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Ronquist (1994) supported the hypothesis of the monophyletic origin of cynipid 

inquilines. 

The adaptive origins of inquilinism are unclear. The scenario of the 

evolution of inquilinism by host shift in Eriosoma (Akimoto, 1988) seems doubtful 

for Pachypsylla, given that the inquiline seems to have a broader host plant range 

than the individual gall forming species. An alternative explanation, not invoking 

unique historical circumstances, is that inquilinism represents a strategy for 

avoiding high mortality risk associated with gall initiation. Causes for this might 

include gall failure due to phenological mismatch with host development, and 

predation or desiccation during a longer period of exposed feeding. This 

hypothesis remains to be tested. 
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Chapter III. 

Phylogeny and the evolution of galling position in Pachypsylla 
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INTRODUCTION 

In this chapter, I examine phylogenetic relationships within Pachypsylla, 

using electrophoretic and morphological characters. Representatives of the two 

other genera in the tribe Pachypsyllini are used as outgroups. 

A phylogeny is necessary for any attempt to understand the evolutionary 

origins of galling diversity in Pachypsylla. Several questions from previous 

chapters are examined here. The hypothesis that the various leaf gall types are 

separate species (Chapter I), supported by significant frequency differences among 

sympatric samples, would gain support if geographically separate populations of 

the same morph were grouped together in a phylogeny. The hypothesis that side 

cell individuals from different leaf gall types in different localities represent a 

single origin of inquilinism, perhaps a single species (Chapter II), would likewise 

be strengthened if these populations grouped together. A phylogeny can also help 

answer such questions as whether the inquiline arose from a galling ancestor, and 

whether its origin preceded, and could hence have helped bring about, the 

differentiation of leaf gall morphs. 

A fourth question which can be addressed by a phylogeny concerns the 

evolution of the range of plant parts attacked by different Pachypsylla species, the 

greatest found in any group of closely related psyllids. What was the ancestral 

galling position, and did the others arise by stepwise shifts to physically adjacent 

or similar niches? Within an analogous complex of gall forming sawflies in the 

subfamily Nematinae (Tenthredinidae), it has been suggested that gall formers are 
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derived from a stock of free-living sawflies with a probable phylogenetic trend 

from free feeding, to leaf folding, to leaf galling to petiole and bud galling, to 

shoot galling (Smith, 1970; Price, 1988, 1992). The hypothesis that gall position 

in Pachypsylla follows a similar trend predicts that the leaf gallers should be 

phylogenetically basal, the petiole galler branches off next, and the bud and twig 

gallers form the most recent pair of sister groups, as suggested by their 

morphological and life history similarities. 

BACKGROUND 

In addition to allozyme and morphological characters, these studies 

incorporated information on chromosome number reported by Riemann (1966) 

for various species of Pachypsylla, including P. celtidisasterisca, P. celtidispubescens, 

P. celtidismamma, P. celtidisvesicula and five undetermined species, and 

Tetragonocephala flava. Riemann found that most species of Pachypsylla (leaf gall 

makers and twig galler) and T. flava have 2N chromosome numbers of 25 d and 

26 9, and suggested that these represented the ancestral chromosome numbers in 

these 2 related genera. The lower chromosome numbers in the petiole galler P. 

venusta (2N = 23 d, 24 9) and the bud galler P. celtidisgemma (2N = 22 d , 22 9) 

are derived, presumably by chromosome fusion. He further argued that the XY 

sex mechanism of the latter species was derived from an XO system in an 

ancestral Pachypsylla. The large size of the sex chromosomes suggests that this 

occurred as the result of the X chromosome fusing with one of the larger 
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autosomes. In this case the combined X and autosome would become the new X 

while the homologous autosome would become a Y chromosome. 

MATERIAL AND METHODS 

Samples and electrophoretic methods: 

As described in Chapter I, twenty populations (after pooling) of nymphal 

samples of Pachypsylla were included as ingroups (Table 1-6). 

A collecting trip to Asia was made in the summer of 1992 to obtain 

specimens of the outgroup Celtisaspis, purported to be closely related to 

Pachypsylla. Adults and last instar nymphs of the lerp-forrning Celtisa.\pis 

beijingana were collected by me and F. Li in June and July 1992 from Beijing and 

Shengyang, China. Only the first ins tar nymphs of Celtisaspis japonica were found 

in Seoul and Daegu, South Korea in August 1992. Since adults and the last instar 

nymphs were used for electrophoretic analyses in Pachypsylla, the first instar 

nymphal samples from Korea were not included in the electrophoretic analyses. 

Only the population of Celtisaspis from China was used. Tetragonocephala flava 

was collected by C. von Dohlen from Florida Canyon, Arizona in the June of 

1993. A total of 22 populations of nymphal samples were then analyzed, including 

20 ingroups and 2 outgroups. 

Electrophoretic methods were those described in Chapter I. Three of the 

15 loci were monomorphic inPachypsylla, but showed differences in the outgroups. 

The other 12 showed differences among gall types. 
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Morphological methods: 

Characters were observed both under optical and scanning electronic 

microscopy. The methods were described in Chapter I. Characters were coded 

numerically. Terminology followed Brown and Hodkinson (1988) in adult 

morphology and White and Hodkinson (1982) for nymphal morphology. 

Fourteen tax.a were analyzed, including populations from all four gall 

position groups and two outgroups (Table 3-1), and from a variety of geographic 

localities (see Table 1-3). These included eight leaf gall populations, a petiole gall 

population, two bud gall populations ( one each of the glabrous and hairy 

morphs), and a twig gall population. The leaf gall populations included two types 

of leaf hairy nipple gallers and their inquilines, the leaf star galler, the leaf disc 

galler, and two leaf blister gallers. 

Thirty-three morphological characters (Table 3-1 and 3-2, characters 1-33) 

were coded, from both adults and fifth instar nymphs. There are seven head 

characters, six thorax characters, five and four male and female genitalic 

characters, respectively. Eleven characters were coded from last instar nymphs. 

Among the thirty-three characters, four had multiple states, while the others were 

binary. 

Many possible characters were examined but rejected because of highly 

overlapping variation among tax.a. For example, the presence of caudal spurs is 

an apomorphic character inPachypsylla, but there is considerable variation in their 

number and arrangement (Figure 3-10), and in many instances there are 

66 



differences in these structures between sides of the same specimen. Therefore , 

this and similar characters were excluded from my analysis. 

Chromosome data 

Male and female chromosome numbers from Riemann's reports were 

coded as separate characters (Table 3-1, char. 49-50; Table 3-2, char. 131-132). 

Both characters were assigned three states, coded as the 2N number minus 20, e.g., 

the condition 2N =25 is coded as state "5." 

Life history data 

Three characters encode life history information (Table 3-1, char. 51-52; 

Table 3-2, char. 133-135). These include number of generations per year (state 

1 = univoltine, state 2 = bivoltine or multivoltine), overwintering stage (state O 

= egg, state 1 = nymph, state 2 = adult), and female oviposition time relative to 

plant development in the spring (state O = in very early spring before bud 

swelling, as in the petiole gall maker; state 1 = between bud swelling and full leaf 

extension, as in the leaf gall makers; and state 2 = after the new year's twigs are 

formed - the twig and bud gall makers lay eggs on these twigs or their axillary 

buds.) 

Phylogenetic analyses 

(1) Electrophoretic data: 
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Phylogeny estimation from the electrophoretic data used both distance and 

discrete character-based methods. Distance analyses employed the distance 

Wagner and UPGMA routines in Biosys-1 (Swofford and Selander, 1981) using 

Rogers' distances for both algorithms as well as Nei's distance for UPGMA. 

For discrete character analysis, the first approach treated each locus as a 

character and the alleles as unordered states (Table 3-1, char. 34-48) (Mickevich 

and Mitter, 1981). For polymorphic loci, all alleles with frequencies of 0.2 or 

more were assigned as states of that character (locus). When there was more than 

one such allele, the character was coded as polymorphic (ambiguous) (Table 3-1, 

char. 34-48). The second approach treated each allele as an independent 

character scored as present or absent (Table 3-2, char 34-130) (Mickevich and 

Johnson, 1976). An allele was scored as present in a population if its frequency 

Was 0.05 or greater. A drawback to this coding is that sampling error can result 

in false scoring. A sample of 30 individuals is necessary to detect an allele with 

frequency above 0.05 with a probability greater than 0.95 (Swofford and Berlocher, 

1987). Only five samples in the data are this large. However, the most variable 

group is the leaf gall makers, in which sample sizes are relatively large. 

(2) Morphological data: 

Most parsimonious trees for discrete allozyme characters, morphology and 

combined characters were generated using PAUP 3.1.1 (Swofford). The random 

addition sequence option for heuristic search was used in Paup, with replications 
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set at 1000. Analyses were performed both on equally weighted characters, and 

following the successive weighting of Farris (1988), using the rescaled consistency 

index. 
Unrooted trees were rooted using C beijingana and T. flava as the 

outgroups. A strict consensus tree was calculated when more than one most 

Parsimonious tree was found. Evolution of individual characters was analyzed 

using MacClade (ver. 3, Maddison and Maddison, 1992). 

In the analysis of morphological data, multistate characters were treated 

both as entirely ordered, and with orderings assigned to four characters (#s 1, 3, 

24
• and 27) in which a morphocline seemed plausible on inspection. 

(
3
) Combined evidence from morphology, allozyme, karyotype and life history: 

While twenty-two populations were scored for allozymes, only 14 

Populations were scored for morphology. When combining these two data sets, 

fourteen populations, matched in geographic region to the morphology samples, 

Were ext racted from the allozyme data set. 

The first approach combined morphological data, allozyme data (with each 

locus as single character), and the two karyotypic and three life history characters, 

With all characters unordered. The second approach is similar except that each 

electrophoretic allele was treated as a separate character, as described above. 

Both these analyses were also carried out with the karyotype character treated as 

Ord h d . . erect, that is, with the bud and petiole gallers assumed to s are a re uct10n rn 

chrom 
osome number. 
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RESULTS 

Pachypsylla phylogeny: 

(1) Trees based on electrophoretic data: 

No matter which coding methods were employed (frequencies or discrete), 

which genetic distance measures were applied to the frequency data (Nei's or 

Rogers'), and which grouping methods were used for genetic distances (UPGMA 

or Distance Wagner), the multiple populations within each galling position group 

were always joined together (Fig. 3-2 to 3-5). The results confirm that the leaf 

gall makers, the petiole gall makers, the bud gall makers and the twig gall makers 

each form a monophyletic group. 

Parsimony analysis treating loci as characters yielded unresolved 

relationships among the four major gall position groups. Under the other two 

phylogenetic approaches, distance methods using Rogers' distance and parsimony 

analysis with alleles as characters, the leaf gall makers are the sister group of the 

other three, and among the latter, the twig galler and the bud galler together are 

the sister group to the petiole galler. The UPGMA phenograms give a somewhat 

different picture, with the petiole galler as basal, and the outgroup 

Tetragonocephala falling within Pachypsylla, adjacent to the leaf gallers. 

Among the leaf gall makers, the genetic distances are very small (Nei's 

distances < 0.1), which suggests that the leaf gall makers are recently diverged. 

Relationships within the leaf gallers vary considerably with the type of analysis and 

cannot be considered well resolved. When loci are used as discrete characters, the 
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leaf gall makers are completely umesolved. The strongest suggestion of a 

grouping is the clustering of the blister gallers in both the distance Wagner and 

UPGMA analyses (Fig. 3-2 and 3-3). This does not bold, however, when alleles 

are treated as independent presence/absence characters. Similarly, the inquilines 

from the two types of nipple galls are joined together in most analyses, but not 

under UPGMA on Nei's distance. 

(2) Cladograms based on morphological data: 

Three equally parsimonious trees with a length of 45 steps (Fig. 3-6 a-c) 

were found when all characters were treated as unordered and equally weighted 

(CI=0.91, RI=0.94). Successive weighting yielded the same results. These trees 

differ only in an exchange of positions between the leaf star and blister gallers, 

and resolution of the latter. The strict consensus tree (Fig. 3-6 d) shows 

umesolved nodes within the leaf gall makers, the only groups recognized being the 

two inquilines from nipple galls, and these plus the nipple and disc gallers. 

Treating the four morphocline characters as ordered also resulted in three 

trees (length 49, CI= 0.84, RI= 0.90) and no change of the topology after 

successive weighting (Fig. 3-7 a-c). Two of these trees were the same as those 

found with all characters unordered (Fig. 3-7 a and b ). The other differs in 

grouping the petiole gall maker with the leaf gallers (Fig. 3-7 c ). 

As in the electrophoretic data, populations of the same gall position were 

always grouped together. The bud and twig gall makers were always grouped 
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together. The petiole gall maker is grouped either with the twig and bud gallers, 

or with the leaf gall makers. Two potential apomorphies, which are unambiguous 

only if the characters are ordered by morphoclines, place the petiole galler with 

the leaf gallers. One is surface texture of the vertex with deep wrinkles and short 

setae ( character 1, Fig. 3-8 a and b ), and the other is surface texture on the genae 

bumpy with deep wrinkles ( character 3, Fig. 3-8). The petiole gallers share four 

potential apomorphies (in characters 11, 24, 26 and 31) with the bud and twig gall 

makers, but all are ambiguous, whether or not morphoclines are used. 

(3) Trees based on combined evidence from morphology, allozymes, karyotype and 

life history: 

Ten equally parsimonious trees (length=99, CI=0.93, RI=0.93) were found 

for the combined data under locus-as-character coding for allozymes with all 

characters unordered and equally weighted. Five trees are found (length= 190, 

CI= 0.74, RI= 0.77) when alleles-as-characters coding is used instead. These 

results are not changed when chromosome number is treated as an ordered 

character. The strict consensuses for these two sets of trees differ from each other 

only in that the second is more resolved (3-9 a), and differ little from the 

consensuses for the corresponding analyses of either allozymes or morphology 

alone (Figs. 3-4, 3-5, 3-6d). In both, the four gall positions are monophyletic, the 

bud and twig gallers are sister species, and the inquilines are both monophyletic 

and related more closely to the nipple and disc gallers than to the other leaf 
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gallers. 

DISCUSSION AND CONCLUSIONS 

Monophyly and diversity of gall position groups 

The results strongly support the monophyly of gall position groups. In all 

analyses, all populations with the same galling positions were grouped together. 

Diversity within the twig, petiole and bud gallers is low. Petiole gall 

populations from Ce/tis occidentalis (Maryland) and C. laevigata (Texas) are 

grouped to the exclusion of that from C. reticulata (Arizona) in analyses of the 

electrophoretic data that resolve them, but the frequency differences among these 

are small (see Chapter I). Allozyme variation among geographic populations of 

bud gallers is non-significant, and the glabrous bud gallers are not grouped to the 

exclusion of the hairy bud galler, as might have been expected if these are 

different species (see Chapter I). 

Character variation among populations of leaf gallers is somewhat greater, 

but there is little clear phylogenetic information and the analysis permits few 

inferences about the species status or relationships among the gall forming 

morphs. Several analyses group the blister gall populations together, supporting 

the hypothesis that these constitute a distinct species (see Chapter I), but this does 

not always happen (Fig. 3-5). The two populations of the glabrous nipple galler, 

the other morph represented by more than one sample, are never grouped 

together. Relationships among different morphs vary considerably with data set 

73 



and analytical method. 

Perhaps the best-supported conclusion within the leaf gall complex is the 

grouping of the inquilines from two types of nipple galls, seen in all phylogenetic 

(as opposed to phenetic) analyses of both allozymes and morphology. This finding 

is at least consistent with there being only a single inquiline species. The position 

of this inquiline with respect to the true gall formers is unsettled, but it is very 

clearly inside the leaf galler complex, and undoubtedly evolved from an ancestor 

that formed an enclosed gall like that of all other extant Pachypsylla species. A 

similar conclusion, of monophyletic origin from a galling ancestor, was reached in 

a recent phylogenetic study of 

a set of cynipid inquilines (Ronquist, 1994). 

Evolution of gall position 

The phylogenetic results are consistent with, though they do not 

conclusively support, the hypothesis that evolution shifts in galling position have 

proceeded between adjacent plant tissues, i.e., from leaf to petiole to bud to twig. 

In all analyses in which the positions of the twig and bud galler are resolved, these 

species are sister groups as the hypothesis predicts (despite the contradictory 

evidence from chromosome number noted by Riemann [1961]). The petiole galler 

is ambiguously placed in some analyses, grouping with either the leaf galler or the 

bud and twig gallers. However, the latter placement, predicted by the hypothesis, 

is always favored in analyses yielding a single resolution. Finally, given the results 
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of this analysis, plus the fact that all other members of tribe Pachypsyllini ( and 

indeed most psyllids) are leaf feeders, the ancestral galling site in Pachypsylla is 

almost certainly the leaf blade. On any of the trees with full resolution among the 

four g 11· l d. · · a mg positions, assignment of any other ancestra con 1t1on requires an 

Instance of parallel evolution in this trait. 
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Chapter IV. 

Phylogenetic relationships of Pachypsyllini in Spondyliaspidinae 

and evolution of lerp and gall formation in Spondyliaspidinae 
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1NTRonucTION 

This study presents the first quantitative cladistic analyses of psyllid 

phylogeny. Although some Hennigian cladograms have been published (e.g. 

Bollis, 1976, 1987; Brown and Hodkinson, 1988; Hollis and Broomfield, 1989), 

these analyses have been limited in scope. The most comprehensive phylogenetic 

hypothesis yet advanced is that of White and Hodkinson (1985), which included 

all of the major groups of the Psylloidea. However, since their paper did not use 

current computer algorithms and did not present a data matrix, there remains 

confusion a d 'f' · · h · As a n controversy over phylogeny and class1 1cat10n mt 1s group. 

start toward an intended long-term re-analysis of psyllid phylogeny, this study 

focuses on the systematics of Spondyliaspidinae, with special reference to 

PachYPsyllini. 

There are three objectives in this paper. The first is to test the monophyly 

of PachYPsyllini and to estimate the phylogenetic relationships of its constituent 

genera. The second objective is to test hypotheses on the placement of 

PachYPs 11· · · 1· 'd ' G · 1 d d · Wh1'te Y 1ru within the subfamily Spondy 1asp1 mae. enera me u e m 

and Bodkinson's cladogram and related controversial taxa are sampled. The third 

goal is to look for phylogenetic trends of gall and 1erp formation in 

Spondyliaspidinae by mapping these traits on the phylogeny. Most members of 

th' . 
is subfamily exhibit one or both of these forms of concealment m the nymphal 

stage, 
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BACKGROUND 

Systematics of Pachypsyllini 

Pachypsylla and its relatives Celtisaspis and Tetragonocephala comprise the 

tribe Pachypsyllini of the Spondyliaspidinae. The monotypic genus Uhleria was 

included in Pachypsyllini by Crawford (1914). However, the description of its type 

species Uhleria mira was based on a single adult specimen for which both genitalia 

and locality data were missing. Heslop-Harrison (1954) believed it to be 

introduced from Australia but offered no opinion on its placement. Taylor (1960) 

treated it as a synonym of the Australian genus Lasiopsylla, a member of 

Spondyliaspidini in Spondyliaspidinae. This species was not included in my study. 

Analysis of the works of previous authors suggests that the following 

characters define the Pachypsyllini: (1) vertex of adults quadrate, flat and large, 

(2) adult head very strongly deflexed, (3) adult pronotum vertical, ( 4) dorsal 

surface of abdomen lacking distinct sclerites in the nymph, (5) circum-anal pore 

ring of nymph absent (Crawford, 1914; Tuthill, 1943; White and Hodkinson, 1985). 

However, some of these characters are also shared by other taxa in the 

Spondyliaspidinae. Therefore, it was not clear initially which characters are 

synapomorphies for Pachypsyllini. 

All three genera of Pachypsyllini feed on Celtis subgenus Euceltis, and all 

are concealed feeders in the nymphal stages. Background information on the 

classification of Pachypsylla was given in Chapter I. The systematic and biological 

background on Tetragonocephala and Celtisaspis is given here. 
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(l) Tetragonocephala 

Crawford (1914) described the new genus Tatragonocephala to include the 

singles . 
pec1es T. flava, based on a single "male" specimen collected at Brownsville , 

Texas. Although the species has been collected in many locations, it remains the 

only included species of Tetragonocephala. He placed this genus together with 

Pachypsyfla and Uh!eria in the tribe Pachypsyllini of the Psyllinae. Tuthill (1943) 

agreed that Tetragonocephala is closely related to Pachypsylla although it lacks one 

of the essential characters of Psyllinae, i.e., spines on the basal segment of the 

metatarsus. He described more specimens from Texas, Arizona, and from Mexico. 

Tuth"l · 11 pomted out that the type specimen designated by Crawford was a female 

rather than a male and designated a male from Brownsville, Texas, as the allotype. 

The reason a psyllid expert like Crawford could make such a mistake is 

that the species has bizarre female genitalia. Unlike most other psyllids, T. /lava 

has a rounded dorsal valve instead of a triangular pointed one (Fig. 3-1). The 

dorsal l · d l · · d · va ve 1s exaggeratively enlarged and the cau a margm 1s covere with 

dense long hairs. 

Tuthill also attributed a nymph described by Ferris (1926) to T. flava. 

F~· . 
ns reported that the 5th instar nymph was found m small wax cells on leaves 

of Ce/tis reticulata at Marathon, Texas. No additional biological information was 

Provided until Riemann (l958) found several populations of Tetragonocephala in 

V • • 
anous parts of Texas on both Ce/tis reticulata and C laevzgata. He reported that 

it occurred in waxy cells similar to those described by Ferris. He reared adults 
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from the nymphs and confirm that they belong to Tetragonocephala flava, which 

he predicted probably has more than one generation, unlike its univoltine relative 

Pachypsylla. 

In 1990, an outbreak of T. flava occurred in the southern United States on 

Celtis laevigata (R. Brown and J. Moser, personal communication). The 

population apparently has been reduced to low levels since then. In 1992, a 

population of T. flava was found in Arizona on C. reticulata. I reared material 

from this population in the lab on seedlings of C. occidentalis and C. tenuifolia at 

20-25°C and found that the generation time from egg to adult was about a month, 

that individuals have varying growth rates and that the generations overlap. They 

seemed to be able to survive even when plant quality was poor since they 

persisted even when all the leaves on the host were drying. 

(2) Celtisaspis 

The genus Celtisaspis was described by Yang and Li (1982) in China to 

accommodate seven Asian Ce/tis-feeding psyllids, two of which had been 

previously assigned to Pachypsy/la. The first member of Celtisaspis was a nymph 

described by Boselli (1929) from China. It feeds on Celtis sinensis, also a member 

of the subgenus Euceltis, and forms both lerps and galls. Miyatake (1968, 1980) 

subsequently described two species, Pachypsy/la japonica ( =Celtisaspis japonica) 

and P. usubai ( = Celtisaspis usubai), from Japan on Celtis sinensis var. japonica and 

gave detailed biological information. Kown (1983) described P. japonica from 
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Korea on th . . 
e same host. Takagi and Miyatake (1993) later recorded P. japonica 

from cl· 
e tzs bungeana jessoensis, which is also a member of the subgenus Euceltis. 

Ce!tisas · . 
ifJZS Japonica was the first lerp-forming psyllid known in Japan. It is 

biv I · 0 
tme whereas C. usubai is univoltine. Both of them overwinter in the egg 

stage. In C. japonica only the first generation forms both Ierps ( dome-shaped) and 

galls (horn-like) whereas the second generation forms lerps only. C. usubai forms 

both ro d . un lerps and pit galls. 

Yang and Li (1982) described five species of Celtisaspis from various 

regions f C 0 hina. Three of them, namely C. guizhouana, C. zhejiangana, C. 

liaonin . 
gana, form horn-like galls and lerps at the same time. Previous studies 

reported that C. sinica produces slight pit galls and white oyster lerps. C. 

beljzna . 
0 ana forms lerps only (Yang and Li, 1982) but my observat10ns suggest that 

the nymphs also cause deformation of the leaves on which they form lerps. Yang 

and Li l · · · b d 'd reported the host species of c. sinica to be Ce tzs smenszs ut 1 not 

specify h · · · · · Ch· w 1ch species of Celtis others feed on. Durmg my collectrng tnp m ma, 

Li anct I found Celtisaspis beijingana on both Celtis sinensis and C. bungeana. 

Yang and Li considered Celtisaspis to be closer to Tetragonocephala than 

Pach l 
'YPsylla since the former two genera have longer genal cones, onger antennae, 

an· . 
Ind1stinct pterostigma, a short rounded female dorsal valve and have the lerp-

for · 
ming habit. They agreed with Heslop-Harrison (1954) that all three genera 

Should be placed in Spondyliaspidinae rather than Psyllinae. 
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Systematics of Spondyliaspidinae 

The Spondyliaspidinae, later elevated to family rank (White and 

Hodkinson, 1985), was described by Schwarz (1898) for the Australian lerp­

forming genus Spondyliaspis but no definition of the subfamily was given. Heslop­

Harrison (1949, 1951, 1954, 1958 and 1959) reviewed the higher classification of 

world psyllids and first properly defined the Spondyliaspidinae. He distinguished 

them from the Psyllinae by the following characters: bipartite male proctiger; 

presence of anteoccipital lobes; tubular or quadrate genae that possess a single, 

large, peg-like seta; stout antennae; and infrequently the presence of meracanthal 

spurs (Heslop-Harrison, 1958). Thirteen genera were included; they are from 

Australia, New Zealand, Central and North America and the Inda-Malayan 

Archipelago (Heslop-Harrison, 1954). 

Most authors since Heslop-Harrison have recognized the group, although 

there has been some dispute on its definition and boundaries. Four subfamilies 

of Spondyliaspididae were contained in White and Hodkinson's system, namely 

Arepuniinae, Euphalerinae, Pachypsyllinae and Spondyliaspidinae, based on both 

nymphal and adult characters. However, these four subfamilies are polyphyletic 

in their phylogeny (Fig. 4-1). Taylor (1990) transferred the tribe Ctenarytainini 

from Aphalarinae to the Spondyliaspidinae based on the similarity of adult 

morphology. Burckhardt (1991) pointed out that some of the clades in White and 

Hodkinson (1985) were defined by either plesiomorphic or homoplasious 

characters and required reexamination. He defined Spondyliaspidini, included 
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Ctenaryta· . 1m as a junior synonym and excluded Euphalerini from the 

Spondylias "d. 
PI mae (Table 4-1 ). His earlier paper (Burckhardt, 1987), based on the 

structur 
e of larval tarsal arolia, placed the Arepuninae outside of the 

Spondylia "d · . 
spi mae m the Aphalaroidinae. These actions left only two tribes in the 

Spondyliaspidinae, i.e. the Spondyliaspidini and the Pachypsyllini. Although 

Burckhardt (1991) defined Spondyliaspidini and provided constituent genera, he 

did not defin "th · · · h 11· · · d f" · · e e1 er Spondyhasp1dmae or Pac ypsy 1rn m a e 1mt1ve manner. 

Thus, a clear phylogenetic definition for this subfamily is needed. 

Th_e Doc,;.:, 
~on of Pachypsyllini within Spondyliaspidinae 

From host plants and biogeography, one might question whether 

PachyPsy111·m· 
belong in Spondyliaspidinae. All other Spondyliaspidinae are 

endemj . 
c to the southern Hemisphere, mostly Australia, and feed on Myrtaceae, 

lllostJy Eucalyptus. Members of Pachypsyllini occur in the Holarctic, and develop 

0n Celt" 
zs spp. (Ulmaceae ). 

Recent authors nonetheless agree that Pachypsyllini is correctly placed in 

Spondyliaspidinae (Klimaszewski, l964; Loginova, 1964; Becker-Migdisova, 1973; 

White d h h b an Hodkinson, 1985; Burckhardt, 1991). However, t ere as een no 

rigorou · · f 
s phylogenetic test of this proposition, and the exact pos1t10n o the 

p 
achyPsy111·m· 

m the subfamily is uncertain. White and Hodkinson regarded 

PachyPsyllini as . t t v'hel''omm!!a which is a member of their a sis er group o r, ,, rUJ , 

PoIYphyletic Euphalerinae within the Spondyliaspididae ( = Spondyliaspidinae) 
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sensu Wb· 
Ite and Hodkinson. In contrast, Burckbardt (1991) placed Pachypsyllini 

as the sister group of the Spondyliaspidini, in which he included Phellopsylla. 

l-Ieslop-Harrison (1949) in his discussion of the strong linkages between many 
a . 
nunal and plant groups of Australia and Southern America, stated that 

Ctena,yt . 
azna, a small genus in Australia, New Zealand and the South Pacific 

Islands "h . 
' as its nearest relatives in the anomalous genera Pachypsylla Riley, 

Tetrao0 0 nocephala Craw. of Central and Southern North America." These 

hYPotheses are tested by reconstruction of the phylogenetic relationships of 

Pach}'ps 11· . 
Y 1ru and other Spondyliaspidinae in this study. 

~feeding (lerp- and gall-forming) in Spondyliaspidinae 

The Pachypsyllini resembles other Spondyliaspidinae in constructing lerps 

and gaU . . 
s, Unlike nearly all other North Temperate psyllids. The majority of 

PSYllids a f . b h 
re ree-living. However, at least two types of shelter construct10n Y t e 

nYnlphaJ stages have evolved, 1erp formation and gall induction. These habits 

illustrat . d 
ea Widespread evolutionary tendency in sternorrhynchous Homoptera an 

10 
a nu b · · 1 d · b ·1 m er of other insect groups, i.e., the ongm of a concea e , 1mmo 1 e way 

Of life fr 
om more or Jess free-living forms. 

A lerp is a case constructed from a carbohydrate secretion from the anus 

of PsylJid nymphs (honeydew) which hardens upon exposure to the air (Dobson, 

1851. W . 
, hite, 1972). It has been reported that in some psyllids, e.g. Celtisaspis 

ltsuba· 1 d" h ' d wax z and M acrohomotoma sp., the lerp is a mixture of ana isc arge an 
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filaments which is similar to the test of the armoured scale Conchaspis (Takai and 

Miyatake, 1993). Each lerp is inhabited and constructed by a single nymph and 

usually occurs on the leaves. The structure of the lerp is constant within species 

(Morgan, 1984). Most lerps look rather like the shells of a bivalve but some have 

the appearance of oyster scale insects, and some form a horizontal tube. 

Lerps have generally been accorded a protective function, as a barrier 

against predator and parasite attack, a reflective shield against radiation, or a 

means of avoiding desiccation (White, 1970). Most lerp formers occur in the dry 

regions of Australia, feeding on Eucalyptus. White (1970) worked on the feeding 

biology of the lerp-forming Cardiaspina densitexta on Eucalyptus in Southern " I 
:! 

Australia, where the relative humidity frequently drops to 10-15% in the summer. 

He found that the mouthparts of the nymphs are always inserted through a stoma 

and that there is almost no air movement under the lerp. There is a remarkable 

increase in humidity from water vapor transpired by the leaf beneath this 

structure. The high humidity within the lerp increases the probability that the 

stomata beneath the lerp will stay open, while elsewhere on the leaf they remain 

closed to reduce transpiration. 

Galls are generally interpreted as abnormal growth of plant tissues caused 

by various organisms that irritate the plant and possibly lead to the production of 

a growth hormone (Meyer, 1987). Most galls of psyllids are formed by the feeding 

of the nymphs. Partial galls, such as pit galls or rolled leaf galls, can be 

distinguished from complete, enclosed galls, which are exemplified by those of 
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Pachypsylla species. These broad categories of gall types may represent different 

degrees of evolutionary advancement. The phylogenetic conservatism 

exemplified in the retention of ancestral concealment forms in the Pachypsyllini 

may be mirrored in the evolution of gall variation within Pachypsylla. In an 

analogous gall forming group of insects, the sawfly subfamily Nematinae, it has 

been suggested that gall formers are derived from a stock of Nematus-like free-

living sawflies, with a probable evolutionary sequence from free feeding, to leaf 

folding, to leaf galling to petiole and bud galling, to shoot galling (Smith, 1970; 

Price, 1988, 1992). Evidence consistent with a similar trend in gall position in 

Pachypsylla was presented in Chapter III. 

Hodkinson (1984) proposed that Pachypsyllini illustrate another 

evolutionary trend in the form of psyllid concealment, from lerp construction to 

gall formation as in Pachypsylla. In contrast, Moore (1970), in a phylogenetic 

study of Glycaspis (Spondyliaspidini) hypothesized a sequence in which galls came 

first then gave rise to flat lerps, to round lerps, to oval lerps, to rectangular lerps, 

and finally to no lerps. To test the existence and generality of such hypothesized 

trends, it will be necessary to identify the nearest relatives of Pachypsyllini among 

the Spondyliaspidinae. 

MATERIALS AND METHODS 

Sampling of taxa: 

Twenty-seven species in 16 genera were analyzed (Tables 4-1, 4-3 ), 
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including all three genera of Pachypsyllini. Within Pachypsylla, four species 

representing three major galling position groups were sampled, including a leaf 

blister gall maker, P. celtidisvesicula, a hairy nipple gall maker, P. celtidismamma, 

a petiole gall maker, P. venusta, and a glabrous bud gall maker, P. cletidisgemma. 

To estimate major lineages in Spondyliaspidinae, representative genera of the 

major groups according to White and Hodkinson (1985), as well as other genera 

included in the subfamily by Burckhardt (1991), were studied (Fig 4-1, Table 4-1). 

These taxa are Creiis, Spondyliaspis, Cardiaspina, Glycaspis, Colophorina, 

Euphalerus, Phellopsylla, Retroacizzia, and Arepuna sensu White and Hodkinson 

(see Table 4-1). The trees were rooted by including representative genera of 

other subfamilies of Psyllinae, namely, Trigonon, Acizzia, Heteropsylla, Psylla and 

Russelliana. One to three species of each genus were sampled. Five to 30 

specimens, slide mounted or pinned, were examined, except that for some only 1 

to 4 specimens were available (Appendix 4-1). Phellopsylla was sampled in order 

to contrast White and Hodkinson's hypothesis that Phellopsylla, placed in their 

taxon Spondyliaspididae: Euphalarinae, is the sister group to Pachypsyllini, versus 

Burckhardt's inclusion of Phellopsylla in his Spondyliaspidini. Ctenarytainini was 

included to test White and Hodkinson's (1985) exclusion of this tribe from their 

Spondyliaspididae, versus Taylor's (1990) and Burckhardt's (1991) inclusion of it 

in that taxon. Similarly, Arepuna ( = synonym of Russeliana) is included to test 

White and Hodkinson's inclusion of this genus in Spondyliaspidini, in contrast to 

Burckhardt's exclusion of the genus from that tribe. 
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Morphological methods: 

Adult and 5th instar nymphal morphological characters were examined in 

pinned and slide-mounted specimens. Specimens were obtained from material 

collected by the author and colleagues, from the psyllid collection of U.S. National 

Museum of Natural History, Smithsonian Institution (USNM) and from loaned 

specimens (Appendix 4-1). Slides were prepared from dry or deep-frozen 

specimens which were dissected under the stereomicroscope after treatment with 

KOH. Parts were slide mounted in Canada Balsam. Some slides borrowed from 

the Australian National Insect Collection were originally mounted in polyvinyl 

lactophenol (see Appendix 4-1). 

Characters that were used to define groups of Spondyliaspidinae in White 

and Hodkinson's (1985) cladogram were carefully examined. Most were included 

in my analyses; however, the treatment is different. White and Hodkinson tend 

to treat what are logically the alternative states of a single character as 

independent, presence/absence characters. For instance, their character 71 is 

"pterostigma reduced" while character 72 is "pterostigma absent or very reduced", 

each with two states (present and absent). The pterostigma in my analyses was 

treated as a single character (#13) with two states, "obvious" versus "absent or very 

reduced." Other similar examples include adult metatarsus segment I with one or 

no spines ( their characters 78 and 79; my character 16) and wing apex shape ( their 

characters 63-65; my character 11). 

Forty-five characters were used, including 10 adult head characters, 7 adult 
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thorax characters, 5 male genitalic characters, 4 female genitalic characters and 

19 nymphal characters (Tables 4-2, 4-3). Twenty-eight characters were binary, 

while the remaining eighteen had multiple states. 

Terminology follows Brown and Hodkinson (1988) for adult characters, and 

White and Hodkinson (1982) for nymphal characters. 

Morphological data analyses: 

Morphological characters were coded numerically. Polymorphism within 

a terminal taxon was coded as ambiguity (e.g. character 14). In an initial analysis, 

with all characters unordered and no outgroups specified, the two species of 

Russelliana grouped with the four taxa of Psyllinae. In subsequent analyses, these 

six taxa were designated as outgroups. Characters were first treated as all 

unordered and of equal weight. Successive weighting according to the rescaled 

consistency index was then applied (Farris, 1988). In a separate analysis, 

transformation series were assigned for multistate characters 3, 4, 5, 6, and 7, as 

discussed below. Equal weighting was followed by successive weighting as before. 

Transformation series were erected only for characters in which a 

morphocline seemed clearly plausible. Character 3 describes irregular depressions 

or fovea on the vertex, which are always present in psyllids (Brown and 

Hodkinson, 1988). Usually these appear as a pair, one on each side of the vertex, 

with different degree of expression in different taxa, sometimes obvious and 

sometimes not. In Trigonon longicomis, the depression appears as a vertical curve 
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bearing two pits or indentations on each side. In Phyllolyma th . d . 
' ree m entations 

were seen. The number of obvious indentations which varied fro 
' m zero to three 

was treated as a stepwise transformation series. 
, 

In psyllids, the genae are often swollen to form genal processes or cones 
, 

which provide useful characters (Brown and Hodkinson 1988). Character 4, which 

encodes the length of the genal cones compared to the length of the vertex, is 

treated as a linear transformation series. 

Character 5 describes variation in the shape of the occipital foramen, a 

previously overlooked feature. The apparent shape varies with the viewing angle, 

but is constant within genera when the head is positioned horizontal to the vertex. 

Three shape categories were recognized (Fig. 4-2). The apparent intermediacy of 

type b between types a and c was encoded in the transformation series a-b-c. 

The antennae of psyllids show different degrees of modification. Character 

6 encodes the length of the antennae standardized by the width of head including 

eyes, and is treated as a four-state linear transformation series ranging from 0.7 

to 2.0. 

Most psyllid antennae have ten segments. The basal two segments are 

usually the shortest and the third the longest. In Pachypsylla the tenth segment 

is the shortest. Character 7 encodes the length of antennal segment X to 

compared to that of segment I, and is treated as a linear transformation series. 

The phylogenetic significance of one character, the apical spines (saltatorial 

spurs, character 14), might be questioned. The number of these spines is variable 

90 

-



Within species, sometimes even within one individual, and there is overlap between 

species. Hollis (1984), in his revision of Afrotropical Triozidae, did not consider 

the apical tibial spurs a good phylogenetic character since they have arisen more 

than once. In contrast, Brown and Hodkinson (1988), in their study of 

Panamanian psyllids, considered the number and position of these spurs to be an 

important character in the higher taxonomy of the Psylloidea. White and 

I-Iodkinson's analyses divided the number of spines into two groups, more than 6 

or less Th · · d D · · · b'l' · e same method of coding was used m this stu y. esp1te 1ts vana 11ty, 

th· 
IS character had a retention index of 0.75, about average. Therefore, it was 

retained in the analysis. 

Phylogenetic reconstruction was carried out first in Hennig86 ver. 1.5 

(Farris, 1988) and then in PAUP ver 3.1.1 (Swofford, 1993) based on the 

Parsimony criterion. In PAUP, the random addition sequence option for heuristic 

search Was used, with replications set at 1000. Additional character analyses were 

Performed using MacClade ver. 3 (Maddison and Maddison, 1992). 

Life h' . . . . 
~ mformation, character codmg and hxvotheses testmg. 

Relatively little attention has focused on the life history and ecology of the 

PsyIIoidea as compared to other sternorrhynchous homopterans such as aphids and 

scale insects. The relevant literature is widely scattered and has not been 

comprehensively reviewed. 1 compiled the available information on the feeding 

habits for each genus included in the phylogenetic analysis. These data are 
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presented in Results. 

To reconstruct the evolutionary history of concealment forms on the 

cladogram, the variation in habits must be coded as character states. The best 

way to do this is not obvious. Therefore, two approaches were taken. The first 

coding method (Table 4-4, coding 1) is a simplified contrast among three 

conditions treated as states of a single character, namely, free-living (F or 0), lerp­

forming (Lor 1), and gall-making (G or 2). This coding is the simplest rendering 

of the hypothesis of Hodkinson described earlier, in which lerp forming is 

postulated to be intermediate between free living and full concealment as in galls. 

Species that do not form galls or lerps, even if they produce ample wax or 

flocculent, were coded as free-living, and no distinction was made between partial 

and enclosed galls. Celtisaspis beijingana, which forms both lerp and gall, was 

coded as polymorphic (ambiguous). 

The second approach coded lerp-forming and gall-making as independent 

characters, which seems appropriate because these concealment forms are 

structurally non-homologous and can be found together in the same species. For 

gall formation, it is postulated that partial gall-forming (P or 1) is phylogenetically 

intermediate between enclosed gall-making (G or 2) and no host modification (N 

or O) (Table 4-4, coding 2). For lerps, it is postulated that production of abundant 

wax and honey dew flocculence (W or 1) is an intermediate stage in the evolution 

of structured lerps (L or 2) from free living (N or 0), defined as production of 

neither lerp nor flocculence (Table 4-4, coding 3). 
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To test the hypotheses embodied in them, these codings were superimposed 

on the phylogeny of Figure 4-3 (tree b), inferred from morphological characters 

excluding feeding habits, to determine the minimum number of evolutionary 

changes required by each. The number of steps required under the postulated 

Ordering . was contrasted to that under all possible other ordering. These 

calculaf ) ions were done using PAUP ver. 3.1.1 (Swofford 1993 and MacClade ver. 

3 
(Maddison and Maddison 1992). 

To test statistically whether there is any phylogenetic component to the 

distribution of concealment types, a randomization approach was used (Faith and 

Cranston 1991; Liebherr and Hajek, 1990; Maddison, 1990). The inferred number 

of independent origins of concealment types was contrasted to a null distribution 

Obt ' 
ained by 1000 random reassignments of the character states to taxa on the 

cladogram, generated by the PC Pascal program "MMMAT' (G. Roderick, 

Unpublished). The minimum required number of origins of concealment types 

(treated as unordered character states) under each randomization was calculated 

in PAUP 

RESULTS 

~logenetic relationships 

When all characters were treated as unordered, three most parsimonious 

tre d · · d es (Figure 4-3) were found, with a length of 124 steps an a consistency rn ex 

( CI) and retention index (RI) of 0.55 and o. 78, respectively. The same three trees 
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are found by successive weighting. The strict consensus of these, shown in Figure 

4-3 ( d), is identical to the Adams and 50% majority rule consensus trees. The 

three most parsimonious trees differ only in the way the two species of Creiis are 

related to Cardiaspina. As in the earlier analysis of Pachypsyllini (Chapter III), 

relationships among the Pachypsylla leaf gall makers are unresolved. 

When the five characters (3-7) for which morphocline transformation series 

were hypothesized were treated as ordered, 164 equally parsimonious trees with 

a length of 134 steps were found with CI = 0.51 and RI = 0.75. Among these are 

the three trees found for unordered characters. The strict consensus tree is shown 

in Figure 4-4. There is considerably less resolution than in the unordered analysis 

(17 groups resolved versus 24). Ambiguities in addition to those appearing in the 

unordered analysis include the positions of Spondyliaspis, Euphalerus sp. and 

Acizzia. Successive weighting reduced the number of trees to ten, all included in 

the original 164 but none identical to any tree found with unordered characters. 

Their strict consensus tree is shown Figure 4-5. This tree is nearly as resolved as 

that for the unordered analysis, except for the position of Spondyliaspis, and 

disagrees only slightly, in the position of Euphalerus sp. A. 

Lerp and gall forming biology in the Spondyliaspidinae 

The literature search on feeding habits produced the following summary for 

the genera included in the phylogenetic analysis. 

(1) Pachypsylla is a North American enclosed gall former, feeding exclusively 

94 



(2) 

feeding on hackberry Celtis subgenus Eucelti.s. The plant tissues attacked 

include the leaf blade, petiole, bud, and twig, each by different species 

(Osten Sacken, 1861; Riley, 1876-1890; Tuthill, 1943). 

Tetragonoceplzala is found in the southern United States and northern 

Mexico feeding on Celti.s subgenus Eucelti.s. This monotypic genus forms 

(3) 

a round white lerp on the leaves (Crawford, 1914; Riemann, 1958). 

Ce!tisaspi.s is distributed in Asia (Japan, Korea and China) and also infests 

(4) 

(5 ) 

(6) 

CI · e !ts subgenus Eucelti.s. Nymphs feed on the undersides of hackberry 

leaves, producing partia l (pit or horn-shaped) ga lls or sometimes just 

mconspicuous deformation of the leaf, and are always concealed within 

le rps (Boselli, 1929; Miyatake, 1968, 1980; Yang and Li, 1982; Kwon, 1983). 

P/zeflopsyl!a, originally described as Thea, is an Australian Eucalyptus 

fee de r. Species of Phellopsylla are found under smooth barked eucalypts, 

fee ding o n the bark and excreting long white waxy fil aments a t va rious 

levels on the main trunk, usually under pieces of dried ba rk still loose ly 

a ttach ed, up to the terminal branchlets (Taylor, 1990). 

Plzyl!olyma is a Eucalyptus feeder in Australia, forming white round lerps 

on the te rmina l branchJets or bivalve lerps inserted into the margins of til e 

leaves. T he white round Jerps are unwoven and fragile. In some cases, 

more than one species may occupy the same site (Morga n, 1984; Taylor, 

1990). 

Crehs· forms oyster-shaped 1erps on the leaves of Eucalyptus in A ustralia 
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(7) 

(Froggatt, 1900; Morgan, 1984 ). 

Spondy!iaspis forms brown shell-like lerps on Eucalyptus leaves in Australia 

(Morgan, 1984; Carver, 1987) 

(8) 
Cardiaspina is one of the most divergent Spondyliaspidinae (Taylor, 1960, 

l962). It is an Eucalyptus feeder. Different species form various kinds and 

colors of lerps (Cambell, 1964; Crawford, 1911; Morgan, 1984; Taylor, 

l989, 1992; White, 1970). 

(9) 
Glycaspis is a large Australian group that forms either lerps or galls on 

Eucalyptus. Moore (1970) divided the genus into three subgenera, of which 

Boreioglycaspis was raised to the generic level by Burckhardt (1991). The 

00) 

remaining subgenera are Synglycaspi.s, which builds round, oval, or 

rectangular lerps, and Glycaspis, which makes galls, flat lerps or round lerps 

(Moore 1970). 

Ctenarytaina is an Australian/ Asian/ Pacific genus. All the known species 

are free-living, feed on shoots of Eucalyptus, and produce viscous globules 

and flocculent threads. One species, C longi.cauda, was found feeding 

among young leaf buds that were still closely folded, and it exuded thin 

White threads (Morgan 1984; Taylor, 1987; Carver, 1989). 

(11) c ( olophorina occurs in Southern Africa on Cassia petersiana Legurninosae ). 

The nymphs are covered with fine wax particles, and live and develop 

between pairs of unopened leaflets which form a globular pouch (Capener, 

1973). 
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.... 

(l
2

) Euphalerus is a heterogeneous legume-feeding group found in both the 

New World and the Old World. Both gall-making and "nest-constructing" 

( ==lerp-forrning?) species are found (Russell, 1971). 

(l3) Russelliana ( == Arepuna sensu White and Hodkinson) is a free-living South 

American group feeding on Solanaceae (Tuthill, 1959). 

(l
4
) Heteropsylla is a New World legume-feeding and free-living genus 

(Crawford, 1914; Beardsley, 1987). 

(15) 
Acizzia is a free-living and legume-feeding genus typical of the warmer 

regions of the Old World, Africa, Arabia, India and Australia (Morgan, 

1984; Carver, 1987; Heslop-Harrison, 1949). 

(l
6
) Tngonon is a small Austral-Oriental genus with unknown feeding habits 

(Crawford, 1920). 

(l?) Psy!!a s. str. is a Holarctic genus, members of which are free-Jiving on 

Betulaceae and Carpinaceae (Crawford, 1914; Hodkinson, 1988). 

The ev I . . 
~ut1on of concealed feeding in psylhds 

In the first coding method (Table 4-4, coding 1), under which 1erps and 

galls a · · h d · t d d · re treated as part of a single transformat10n senes, t e pre 1c e or ermg, 

Rt-G, requires 4 steps, the same as does no ordering at all, while the alternatives 

RG-L and L-F-G require 7 and 5 steps, respectively. Under all three 

transformation series as well as no ordering, significantly fewer steps are required 

than for the same data randomized on the tree (p<O.OOOl). 
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Under the second coding, galls and lerps were treated independently. For 

galls the d. . . 
' pre 1cted ordenng, N-P-G, reqmres 3 steps, as does the alternative N-G-

P, but the alternative P-N-G requires the minimum possible, 2 steps. Thus, the 

Predictio · 
n 1s not supported. For lerps, the predicted ordering N-W-L requires 6 

steps on 
' e more than the alternative N-L-W, which requires 5. For both lerps and 

galls, significantly fewer transformations are required than under the null 

hyPoth · · 
esis of mdependence of phylogeny (randomization test, p < .05 and p < .001, 

respectively). 

D1scu 
SSION AND CONCLUSIONS 

The phylogenetic analyses confirm that the Pachypsyllini are a 

rnonoph J • h · · Y et1c group. Tetragonocephala and Celtisaspis form a clade w 1ch 1s the 

sister gr · Wh" d H dk' ' oup to Pachypsylla. This result is congruent with 1te an o mson s 

(1985) conclusion. However, the characters defining the group are somewhat 

differe 11 · · · Wh · nt. Three characters were presented as defining the Pachypsy 1ru m 1te 

anct Bodkinson's phylogeny, namely, anteoccipital lobes absent (their char. 53), 

rhin- · 
anum absent from seg. v (their char. 58), and dorsal surface of abdomen 

lacking d' . · h 1 · 
1stmct sclerites (their char. 126). The second character 1s omop as1ous 

and Probably plesiomorphic within the Psylloidea (Burckhardt, 1991). The first 

and third characters are true synapomorphies ( characters 10 and 33 in my 

analyses). In my analysis another character was found that also defines the group, 

98 



i.e. the presence of the nymphal trochanters (character 30). 

Since the hypothesized morphoclines decreased rather than enhanced tree 

resolution, presumably because they increased character conflict, I place more 

credence in the analysis using only unordered characters. The three trees 

obtained with the latter differed only in the position of the two Creiis species; the 

monophyly of Creiis needs further testing. For comparison with White and 

Hodkinson's results, tree (b) in Figure 4-3, which grouped the two Creiis species 

together, was chosen. This tree differs from White and Hodkinson's (1985) 

cladogram in many places. The main differences are as follows: 

(1) Phellopsylla is not the sister group to Pachypsyllini in my analyses. Instead, 

it and Phyllolyma together are the sister group of the rest of 

Spondyliaspidinae sensu Burckbardt and are a group within 

Spondyliaspidinae sensu White and Hodkinson. One character uniting 

Phellopsylla and Pachypsyllini in White and Hodkinson's tree is the 

bipartite male proctiger. This character is hard to see. Burckhardt (1991) 

reported that the second segment is present in Phellopsylla, but is reduced 

and membranous. Examination of the specimens available to me yielded 

no suggestion of the presence of a second segment. Therefore, I coded the 

proctiger in these groups as unipartite. Changing the coding to bipartite, 

to agree with Burckhardt's and White and Hodkinson's codings, did not 

change the results. More observations are needed to determine which 

coding is correct. 
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(3) 

(2) 
Euphalerus nidifix is the sister group to all other Spondyliaspidinae sensu 

White & Hodkinson in my analysis, whereas in White and Hodkinson's 

cladogram, it is next to Phellopsylla and in the middle of the 

spondyliaspidid clade. Euphalerus was a polyphyletic taxon on White and 

Hodkinson's cladogram; different species of the genus were in different 

clades of Spondyliaspidinae. Burckhardt (1991) removed Euphalerini sensu 

White and Hodkinson from Spondyliaspidinae since it has a larval tarsal 

arolium with a pedicel and a visible unguitractor. In my analyses, the 

arolia and unguitractor are absent in all species above Colophorina and 

Euphalerus, whereas all others have them. Euphalerus sp. A sensu White 

and Hodkinson shares more character states, though plesiomorphic, with 

Co!ophorina than with E. nidifix. It is not likely that Euphalerus sp. A is 

congeneric with E. nidifix. As suggested by D. Hollis (per. comm.) and 

White and Hodkinson's tree, Euphalerus sp. A. might turn out to be a 

Sp . 
ec1es of Colophorina, although these are not always grouped together. 

Ctena,ytaina branches off above (Phellopsylla + Phyllolyma), well within the 

Spondyliaspidinae. It was excluded from the Spondyliaspidinae and placed 

in Euphyllurinae (Aphalaridae) by White and Hodkinson. This hypothesis 

is not conclusively ruled out by my study, since no other members of 

Euphyllurinae were sampled, but my results support instead the views of 

Taylor (1990) and Burckhardt (1991). Taylor (1990) transferred 

Ctenarytainini to the Spondyliaspidinae based on the similarity of adult 
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characters with other spondyliaspidines. He also pointed out that the only 

significant differences between Ctenarytainini and Spondyliaspidini are the 

presence of a caudal plate and lanceolate setae in the larvae. Burckhardt 

(1991) further noted that Ctenarytainini have the spondyliaspidine nymphal 

aroliurni, i.e., membranous without pedicel and visible unguitractor, and 

rejected the free-living habit of Ctenarytainini as grounds for removal from 

Spondyliaspidini, since concealment habits are quite homoplasious. 

( 4) The relationships within the Creiis + Cardiaspina + Glycaspis + 

Spondyliaspis clade are completely different between my tree and White 

and Hodkinson's. 

My results also cast doubt on the monophyly of Spondyliaspidini sensu 

Burckhardt, part of which forms the sister group to Pachypsyllini. Further 

sampling of Spondyliaspidini and Ctenarytainini sensu White and Hodkinson and 

Taylor is needed to test this finding. 

Heslop-Harrison (1949) suggested that the Australian psyllids originated in 

part, during early Tertiary times, as immigrants from Antarctica, and in part 

through. He assigned psyllid fossils of that age from Tasmania, presumably a 

major corridor between these two continents, to the genus Ctenarytaina Ferris and 

Klyver. The relatively basal position of Ctenarytaina in my cladogram of the 

Spondyliaspididae, a largely Australian group, is consistent with Heslop-Harrison's 

view. 
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The evolution of concealed feeding in psyllids 

The analysis of concealment habits under coding method #1 supported 

Hodkinson's postulate that lerps tend to precede galls in spondyliaspidine 

phylogeny. Within galls and lerps considered separately, however, there is no 

support for the idea that partial galls or lerps represent a phylogenetically 

transitional stage from free living. These tests, it must be stressed, are heuristic 

only. No statistical test was applied, and the data are very incomplete. Outgroup 

sampling and life history information 1s sparse, and even within 

Spondyliaspidinae, numerous genera and species are unrepresented in the analysis. 

Despite limited data, however, there is strong support for the more general 

postulate that concealment forms characterize phylogenetic groups. Thus, we can 

reject the alternative hypothesis that these features reflect only rapid and variable 

adaptation to local environmental conditions, appearing and disappearing with no 

phylogenetic pattern. It will therefore be of interest to look further into possible 

evolutionary trends in, and consequences of, those habits. 

In a survey of gall-inducing families among arthropods, Roskam (1992) 

distinguished two patterns in the taxonomic distribution and host associations of 

gallers. In major groups (families) of gall inducers, e.g. Cecidomyiidae, most 

members are gall makers and their host plants include diverse angiosperms. 

These are likely to have evolved from an ancestor that already possessed the gall­

inducing ability in an early period of angiosperm radiation. In contrast, minor 

galling groups, such as Curculionidae, Tenthredinidae, Cephidae, Gelechiidae, 
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Tephritidae, and Agromyiidae, have only a few exceptional members making galls. 

These represent la te radiations confined to particular plant genera. In Roskam's 

view, homopteran and thrips gall inducers are intermediate between these two 

groups. The numerous galling members are scattered among non-galling ones and 

across many plant groups. His interpretation is that sap-feeding offers 

homopterans considerable opportunities for manipulating host plant; as a 

consequence, gall inducers evolved independently many times from sap feeders, 

over a long geological time span. 

Roskam's explanation seems plausible. Galling psyllids occur in various 

clacies. The phylogenetic pattern may not be demonstrated at higher levels but 

is evident in closely related groups. Burckhardt (1991) suggested tl1 at 

diversification of Spondyliaspidini may have occurred, together with th at of their 

myrtaceous hosts, during the mid-Eocene. The earliest fossil Psylloidea come 

from the middle (Handlirsch, 1925; Klimaszewski , 1993a) and upper Jurass ic 

per iods (Becker-Migdisova, 1949, 1985). If this is true, Spondyliaspidini is 

re la tively young compared to other major galling insect groups and other psyllid 

clades. By the O ligocene the eucalypts and acacias became importan t elements 

in the vegetati on of Australia, which became increasingly arid. Fire resistance 

probably played an important role in the high diversity of present-day Australian 

Myrtaceae. In conjunction with host-plant speciation, development of lerp and 

ga ll concealment might have furthered spondyliaspidine diversification by 

protecting them from environmental extremes. 
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There are many hypotheses on the adaptive value of gall formation. Price 

et al. (1986, 1987) recognized six explanations. These include the "nonadaptive" 

hypothesis, the "mutual benefit" hypothesis, the "plant protection" hypothesis, the 

"nutrition" hypothesis, the "microenvironment" hypothesis, and protection from 

enemies. They rejected the first three hypotheses since galls clearly benefit the 

gall forming insect, not the plant. 

The relative importance of these alternative effects, for psyllid gallers, is 

unclear. Many studies have suggested that galls do not protect psyllids from 

natural enemies (Smith, 1970; Askew, 1980; Washburn & Cornell, 1981). They 

may even increase susceptibility to enemies which seek out aggregations of hosts. 

The "microenvironment" hypothesis, that galls serve to protect psyllids from 

climatic extremes such as desiccation, seems plausible, in the absence of evidence 

to the contrary. There is also evidence consistent with the hypothesis that gall 

formation improves psyllid nutrition. It has been found that in the nipple galls 

formed by Pachypsylla celtidismamma on Celtis, lipid material is abundant basal 

to the central depression, and carbohydrates are also present (Beisler, 1989; 

Beisler and Baker, 1992). However, the importance of these supplies to the 

nymphs has not been studied. 

Heslop-Harrison (1949), in his discussion of a free-living species, 

Ctena,ytaina eucalypti, and its close association with lerp formers suggested that 

lerp-making habits may function as a way of surviving in sticky or gummy 

surroundings. Although C. eucalypti is not a lerp maker, it shares many peculiar 
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structures with true lerp makers. Heslop-Harrison believed that some of these 

peculiarities are undoubtedly closely associated with the lerp-making habits. This 

suggests a variant of the microenvironment hypothesis for evolution of lerps, 

contrasting to avoidance of desiccation, the focus of previous theories. The 

flocculence or lerp seems to provide a way of carpeting that may serve both 

functions. In fact, observation of the lerp forming Celtisaspis and Tetragonocephala 

found that the lerp actually encloses the nymph even on the under side. If the 

lerp is formed solely to avoid desiccation or even natural enemies, one would not 

expect the lerp to cover the underside of the psyllid body beneath the leaf. This 

feature in Pachypsyllini lerp-formers, not gummy eucalyptus feeders, may be 

explained as a primitive characteristic maintained from the Eucalyptus-feeding 

ancestors. More careful observations are necessary for testing the hypotheses. 

The basal groups of Spondyliaspidinae, i.e. Ctena,ytaina, Phellopsylla and 

Phyllolyma, are either free-living or lerp-forming. The free-living species produce 

copious amounts of flocculence, and tend to be cryptic. Ctenarytainini live among 

leaf buds, within rolled leaves caused by spiders or caterpillars, under deserted 

lerps of Spondyliaspidini, and even inside sawfly leaf mines (Taylor, 1990). 

Phellopsylla hide under bark and cover the space with fair amount of wax 

(Froggatt, 1990). Even the Ierp-formingPhyllolyma produce primitive lerps similar 

to some Glycaspis species although it is more like a sugary encrustation than the 

true lerps of Cardiaspina and Lasiopsylla (Morgan, 1984; Froggatt, 1990; Taylor, 

1990). This suggests that these taxa are intermediate between the free-living and 
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true lerp-forming groups. 
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Appendix 4-1. Specimens examined* for the Study of Pachypsyllini/ 
Spondyliaspidinae Phylogeny. 

Pachypsyllini Becker-Migdisova 
Pachypsylla Riley [see Table 1-3, USNM, MMY] 
Tetragonocephala Crawford [10 dry USNM, 20 d'+ 9 + n MMY] 
Celtisaspis Yang & Li [1 dry USNM, 15 d'+9+n MMY, 5 dry FSL] 

Spondyliaspidini Schwartz 
Cardiaspina Crawford 

C. albitexturata Taylor [2 slds, nymph+ d'+ 9, DH; l d' + 19 dry prtp, 
USNM] 

C. vittafonnis [l sld, d'+ 9, DB] 
Creiis Scott 

C. tecta [l sld, d', DB] 
C. longipennis (Walker) [2d'+29 lerps, KLT; d'+ 9 +n, 3 slds, ANIC] 

Glycaspis Taylor 
G. (Glycaspis) baileyi Moore [1 sld, nymphs+ d' + 9, DH; 3d' +3 9 

lerps, KLI] 
G. (Synglycaspis) aggregata Moore [1 sld, d', DH; 2 slds, d' + 9, DB] 
G. (Synglycaspis) planitecta [l sld, d', DB] 

Phellopsylla Taylor 
P. sp. [2d' + 2n, 4 slds (3plvp ), ANIC] 
P. sp. [ 49 + many n, in ale, GT] 

Phyllolyma Walker 
P. (=Cometopsylla) rufa (Frog.) [2d', 2 slds, ANIC] 
P. sp. [ d' + n, 2 slds (plvp ), ANIC] 
P. sp. [a+n, GT] 

Spondyliaspis Signore! 
S. plicatuloides (Froggatt) [ d' + 9 + n, 3 slds, ANIC] 

Ctenarytainini White & Hodkinson (1985) = Spondyliaspidinae 
Ctena,ytaina Ferris & Klyver 

Others 

C. eucalypti (Markell) [3 slds ( d', 9 ,n), DH; 1 sld, nymph, DB; 5 dry, 
USNM; 2d', 2 slds (plvp ), ANIC] 

Arepuna Tuthill = Russelliana (Aphalaroidinae) 
Acizzia Heslop-Harrison 

A. uncatoides (Ferris and Klyver 1932) [3 slds ( d', 9 ,n), USNM 
(Brown's collection)] 

Colophorina Capener (Euphalerinae sensu Hollis ms) 
C. cassiae Capener [1 dry ( d'), DH] 

Cometopsylla Froggatt = Phyllolyma (Spondyliaspidinae) 
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Euphalerus Schwartz (Euphalerinae) 
E. sp. A(=? Colophorina) [3 slds (d,9,n), DH] 
E. nidifex Schwarz 1940 [ d+ 9 117 dry NE, 14 dry NT, 

lerps + nymphs USNMJ 
Heteropsylla Crawford 1914 

H texana Crawford 1914 [6+ slds, d+ 9n, USNM] 
Russelliana (syn. Arepuna Tuthill) = Aphalaroidinae 

R adesmiae [4 slds, d+ 9 prtp, DB] 
R fabianae [4 slds, d+ 9 prtp, DB] 

Trigonon Crawford 1920 
T. longicomis (Crawford 1919) [ 4 dry (3d,29), USNM Tuthill 

collection J 

* Acronyms: 1) prtp: paratypes, slds: slides, dry: pinned specimen; 2) ANIC: 
Australian National Insect Collection, DB: Daniel Burckhardt, Geneva Museum, 
DH: David Hollis, National Museum of Natural History, London, FSL: Fasheng 
Li, Beijing Agricultural University, China, KLT: Keith L. Taylor, CSIRO, MMY: 
Man-Miao Yang, USNM: U.S. National Muesum of Natural History; YJK: Yong 
Jung Kwon, South Korea; 3) Biogeographic regions: NE: Neartic, NT: Neatropic, 
ET: Ethiopian, OR: Oriental, PA: Paleartic, AU: Australian. 
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Table 1-1. Species entities described in Pachypsylla (Homoptera: Psylloi<lea). 

SPECIFIC GALL POSITION HOST PLANT 
EPITHET AND SHAPE CELT!S*** 

celtidismamma* + leaf occidentalis 
(Riley 1876) mammiform (laevigata) 

(temaf olia) 

celtidispubescens leaf reticulata 
Riley 1890 mammiform laevigata 

celtidisglobulus + leaf sp. 
Riley 1890 mammiform 

celtidiscucurbita leaf sp. 
Riley 1890 mammiform 

celtidiscucurbita var? leaf sp. 
(Riley 1890) mammiform 

sp. leaf laevigata 
Riemann 1961 *H mammiform 

rohweri leaf reticulata 
Cockerell 1910 mammiform 

celtidisminute leaf ? 
Mally 1894 ? 

celtidisasteriscus + leaf laevigata 
Riley 1890 star-shaped reticulata 

tenuif olia 
(occidentalis) 

~-- = :_ ___ :. _;_= _._._- ~-~"~---=-::=..::..=.-:=. 

DISTRIBUTION OVER-
WINTER 

AZ CO CT IA IL ID IN KS adult 
MD MN NE NJ NY NC OH 
OK TX UT VA DC CANADA 

MS TX OK CO adult 

MSMO adult 

MOIA adult 

MOTX adult 

TX adult 

CO TX OK adult 

IA KS adult 

MD MS IA OK TX VA MO adult 
LA 



I-' 
I-' 
N 

Table 1-1 ( cont.). Species entities described in Pachypsylla (Homoptera: Psylloidea). 

SPECIFIC GALL POSITION HOST PLANT 
EPITHET AND SHAPE CELTIS*** 

c el t idisumbi Ii cus leaf sp. 
Riley 1890 wart-like 

depressed at middle 

celtidisvesicula* + leaf occidentalis 
Riley 1884 blister-like (reticulata) 

(laevigata) 

new sp. 1 leaf laevigata 
Riemann 1961 **+ blister-like 

new sp. 2 leaf reticulata 
Riemann 1961 **+ blister-like 

new sp. 3 leaf reticulata 
Riemann 1961 **+ blister-like laevigata 

new sp. 4 leaf reticulata 
Riemann 1961 **+ variously modified laevigata 

ass. w / others 

venusta * + petiole occident a/is 
Osten-Sacken 1861 spherical laevigata 

reticulata 
tenuifolia 

trident ala petiole sp. 
Patch 1912 

___ :.__ __ :..:.._= _ -_---=-=-=-=--== 

DISTRIBUTION OVER-
WINTER 

IA MS MD VA MO AR adult 

AZ CT IL IA KS LA MD MS adult 
NE NY OH OK VA 

TXOK adult 

TX NMAZOK adult 

TX adult 

TX adult 

CO CT IA ID KS MD MS NJ 5th instar 
NM NC OH TX TN VA nymph 

co ? 
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Table 1-1 ( cont.) . Species entities described in Pachypsylla (Hornoptera: Psylloidea). 

SPECIFIC GALL POSITION 
EPITHET AND SHAPE 

celtidisgrandis petiole 
Riley 1876 

celtidisgemma * + bud 
Riley 1885 irregularly round 

celtidisinteneris * + twig 
Mally 1894 obolong-oval 

ungulata twig 
Caldwell 1938 obolong-oval 

dubia* ? 
Patch 1912 

pallida* bud 
Patch 1912 irregularly round 

covered with dense hairs 

tropicala ? 
Caldwell 1944 

* Species recognized by Tuthill (1943) . 
+ Species recognized by Riemann (1961). 

*'' Unpublished Ph.D. dissertation. 
*'' '' Host plants in parantheses are probably erroneous records. 

HOST PLANT 
CELT/S*** 

? 

occidetalis 
laevigata 

retiwlata 
tenuif ofia 

occidentalis 
tenuif olia 
laevigata 
retiwfata 

sp. 

sp. 

reticulata 

? 

DISTRIBUTION OVER-
WINTER 

IA ? 

CT IA KS MD MO MS NY NJ 5th instar 
OH OKTX VA DC nymph 

MD IA IL OH KS TX VA 5th instar 
nymph 

OH 5th instar 
nymph 

TX ? 

AZNMTX ? 

MEXICO ? 
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Table 1-2. Synopsis of hackberry psyll i<l gall types, Paclzypsylla (Homoptcra: Psylli<lae), their distribution and association with host species. 

GALL TYPES ASSOCIATED DISTRIBUTION ASSOCIATED 
SPECIES NAMES HOST PLANT* 

PETIOLE GALL P. venusta (Osten-Saken 1861) All over the hosts ranges, northeast to C. occide11talis 
P. tridentata Patch 1912 CT, southwest to AZ, UT, southeast to C. te11uif olia 
P. celtidisgrandis Riley 1876 Georgia, northwest to ID. C. /aevigata 

C. reticulata 

GLABROUS BUD GALL P. celtidisgemma Riley 1885 Central and eastern U.S. C. occide11talis 
C. te11uif olia 
C. /aevigata 

HAIRY BUD GALL P. pallida Patch 1912 AZ, NM, OK C. reticulata 

TWIG GALL P. celtidisintemeris Mally 1894 Reported from central and eastern U.S. C. occidentalis 
P. u11gulata Caldwell 1938 C. tenuif o/ia 

C. laevigata 
C. reticulata 

REGULAR BLISTER GALL P. celtidisvesicula Riley 1884 Northeastern U.S., as for C. occidentalis C. occidentalis 
without upper central spine 

new sp. 1 Riemann 1961 ** TX C. /aevigata 

new sp. 2 Riemann 1961 ** TX, NM, AZ, OK C. reticulata 

BLISTER GALL ? LA C. laevigata 
with upper central spine VA ( C. tenuif olia) 

ROUGH BLISTER GALL new sp. 3 Riemann 1961 ** TX C. reticulata 
without upper central spine (C. laevigata) 

DISC GALL P. celtidisumbilicus Riley 1890 MD, VA, AR, MO, IA, MS C. occidentalis 
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T able 1-2. ( cont.) Synopsis of hackberry psyllid gall types, Pachypsylla (Homoptera: Psyllidae ), their distri bution and association with host species. 

GALL TYPES ASSOCIATED DISTRIBUTION ASSOCIATED 
SPECIES NAMES HOST PLANT* 

HAIRY NIPPLE GALL P. celtidismamma (Riley 1876) Widely distributed in eastern North C. occidcntalis 
America, north to Ontario, south to NC, 
east to CT, NY, west to NE, KS, OK. 

P. rohweri Cockerell 1910 CO, TX, OK C. reticulata 

P. celtidispubescens Riley 1890 Southwestern U. S., e.g. TX, OK, CO, C. reticulata 
MS. 

GLABROUS NIPPLE GALL P. celtidisglobulus Riley 1890 Northeastern U.S., e.g. MD, VA, MO, C. tenuif olia 
MS. 

P. celtidiscucurbita Riley 1890 

P. sp. Riemann 1961 ** (probably= Southern U.S., e.g. MO, TX. C. /aevigata 
P. celtidiscucurbita var. ? R iley 1890) 

STAR GALL P. ce/tidisasterisca Riley 1890 Southern U.S., e.g. TX, MO, LA. C. /aevigata 
with upper central spine C. reticulata 

STAR GALL P. ce/tidisasterisca Riley 1890 Northeastern U.S ., e.g. MD, VA. C. tenuif olia 
without upper central spine ( C. occidentalis) 

UNKNOWN P. tropicala Caldwell 1944 Mexico unknown 

P. dubia Patch 1912 TX unknown 

INQUILINE new sp. 4 Riemann 1961 ** in TX and may be widespread in all gall C. laevigata 
types except occide1Ztalis blister gall. C. retiwlata 

C. occide1Ztalis 
C. te1111if olia 

* host in parentheses = occasional observation. 
** based on unpubli shed dissertation of Riemann (1961). Proposed species here numbered arbitrarily. 



Table 1-3. 
Localities from which samples of populations of different Pachypsylla gall types 
from various host plants were obtained for protein electrophoretic, life history 
and morphological studies. 

LEAF ST AR GALL (LS) 

Localities sampled1 

MD: BB2.b, NAL2.t>, PG•, PRP•, SI" 

VA: WBP" 
GFV2,a 

TX: Aus· 

(C. tenuifolia). 
(C. laevigata); 
(C. occidentalis). 
(C. laevigata). 

LEAFG 
LABRous NIPPLE GALL (LNg) MD: BB2,b, DEAL·, NAL2

.b, PRP', PG·, SI· 

LEAp l-IA.IRY NIPPLE GALL (LNh) 

LEAF DISC GALL (LD) 

LEAF BLISTER GALL (LB) 
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VA: GFV2
.b 

WBP• 
AR: FAY" 
LA: ALX• 

MD: BB•, CMt2
·b 

VA: GFV• 
OH: OARDC2·• 
AR: FAY2·• 

MD: GFV2.t> 

AR: FAY• 

(C. tenuifolia). 
(C. occidcntalis); 
(C. laevigata). 
(C. occidentalis) . 
(C. laeviga ta). 

(C. occidentalis). 
(C. occidentalis). 
(C. occidentalis) . 
(C. occidentalis). 

(C. occidentalis). 
(C. occidentalis). 

MD: CMt2·b (C. occidentalis). 
VA: GFV2·b (C. occidentalis) . 
OH: BA yi.t> (C. occidenlalis). 
AR: FA y• (C. occidentalis). 
LA: ALX• (C. Jaevigata). 
TX: AVS2.b, BFL2.c, PMT2,c, ZKR2,c 

(C. Jaevigata). 
BFL2·C, PMT2.c, ZKR2.c 

(C. reticulat a). 
AZ: TUC2.a (C. reticulata)_. 
ID· PCT (C. occidental1s). 
ND: FRGc (C. occidentalis). 



Table 1 
·3. ( cont.) 

Gall~ 

PETIOLE GALL (P) 

GLABRous BUD GALL (Bg) 

HAIRY BUD GALL (Bh) 

TWJ G GALL (T) 

Localities sampled 1 

MD: BB2.b, SI2.a 

Hus2 
.. 

TX: AUS2·c 

AZ: TUc2·c 

(C. tenuifolia); 
(C. occidentalis). 
(C. laevigata). 
(C. reticulata) . 

MD: BBc, HUS2.a, NAL2·c, PG• 

VA: GFV2.b 

LA: ALXC 

OK: BSP2·c 

OK: BSP2·c 

(C. tenuifolia). 
(C. occidentalis). 
(C. laevigata). 

(C. Jaevigata?). 

(C. laevigata?) 

I A. 
cronyrns for 

/\.tb: B each population used: 

OJ-i: 

A.I<: 
lb: 
Nn. 
LA:. 
O.l<:; 
Tx: 

BB- Branchville, Berwyn; CMt- Catoctin Mountain Park, Thurmont; DEAL­
Li~~adwater R~., Churchon; HUS- Hughes Rd, Seneca; NAL- National Agricu!tura/ 
p ary, Beltsville; PG- Schoolhouse pond, Upper Marlboro; PRP- Patuxent River 
G ark, Upper Marlboro· SI- Smithsonian Environmental Research Center, Edgewater. 
B_FV. Great Falls, McLean- WBP- George Washington's Birthplace, Washington 

1rthplace. ' 

DBA y_ South Bass Is. Put-in-Bay OARDC- Ohio Agricultural Research and 
eve Jo ' ' 

F Pment Center, Wooster. 
p A y_ FayetteviIIe 
F CT. Pocatello. · 

RG. Fargo. 

_is\X- C~J_e Street, Alexandria. 
A' · Boi11~g Spring State Park, Woodward. . .. 

_Us. Austm city; BFL- Brackenridge Field Lab of Univ. of Texas at Austin, ZKR-
Zilker p k . nza1 
TU ar , Austm; PMT- Palmetto Park, Go es. 

2 P C- Santa Rita Mts, Tucson. 
0Pulation 

a s sampled for morphological study. 
Only 

b l3 aduJt sam 
c 

0
t11 aduJt pies used for electropl10retic study. 

0 l and n h · d n Y nyrn h Ymp al samples used for electrophoret1c stu Y· 
P al sam 1 · d P es used for electrophoret1c stu y. 
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Table 1-4. Enzyme loci scored for analysis of Pachypsylla. 

ENZYME E. C. # LOCUS 

F ructose-1,6-Diphosphatase 3.1.3.11 FDP 

Fumarate Hydratase 4.2.1.2 FUM 

G lyceraldehyde-3-Phosphate 1.2.1.12 G3PDH 
Dehydrogenase 

Glycerol-3-Phosphate 1.1.99.5 GPDH 
Dehydrogenase 

Isocitrate Dehydrogenase 1.1.1.42 IDH-1 
IDH-2 

Lactate Dehydrogenase 1.1.1.27 LDH 

Malate Dehydrogenase 1.1.1.37 MDH-1 

MDH-2 

Malic enzyme 1.1.1.40 ME 

Peptidase 3.4.11 PEP-1 

Phosphoglucomutase 2.7.5.1 PGM 

6-phosphogluconate Dehydrogenase 1.1.1.44 6PGDH 

Phosphoglucose Isomerase 5.3.1.9 PGI 

Triose Phosphate Isomerase 5.3.1.1 TPI 

BUFFER VOLTAGE RUN TIME 

Tris-Citrate O.lM pH 8.2 180 1 hr 

Tris-glycine 0.025M pH 8.5 180 1 hr 

Tris-Citrate O.lM pH 8.2 180 1.5 hr 

Phosphate 0.02M pH 7.0 180 1 hr 

Tris-Citrate O.lM pH 8.2 180 1.5 hr 

Tris-Maleate-EDTA-MgCl2 0.05M pH 7.8 180 35 min 

Tris-Maleate 0.015M pH 7.2 180 1.5 hr 

Tris-Maleate-EDTA-MgCl2 0.05M pH 7.8 180 35 min 

Tris-Maleate 0.05M pH 7.8 180 1.5 hr 

Tris-Glycine 0.025M pH 8.5 180 45 min 

Citrate Phosphate O.OlM pH 6.4 180 1.5 hr 

Tris-Maleate-EDTA-MgCl2 0.05M pH 7.8 180 1.5 hr 

Citrate Phosphate 0.01M pH 6.4 180 1hr 10 min 

Tris-Citrate O.lM pH 8.2 180 1 hr 
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Tablt 1·5 (cont.) 

·· · ··-····· ··· · ··- --·-····-··-·-· · ·--· ---- ·· -···----------- --·-- ------- --- -----·-----------·--·-
Popul1tton• 

-- --·---··--··- ·-· ·· ·- ··-----·- ··--- ·- ·· ·-· ··-·-· ·---· ----- -- ·--- ·--·-·---··--··· --··-- ·-··-· ·--· ··················- -- ---····· 
4 5 6 7 8 9 10 11 12 1J 14 15 16 17 18 19 20 21 

LMh LS LD LB , .. LNh LB LNh LS LN• LS LM• LS "' LS "• lS LNg LMg LS LMg 
Locus (CfV) (GfV) (G FV) (CfV) (GfV) CCM t) CCJH) (88) (88) CBB> (MAL) {MAL) (PRP) (PRP) (PC) (PG} (SI) (SI) (OEALE) (\IBP} (WP) 

--·---·-· ····· ······ ············---------·---·------·······-----·----- -----·-·-· ···· ·-----·-·--- ·-··-···· · ···· ...... ·····- ····--- · · · ---··· ·- ·· 
IOH·t 
(Ml 21 29 22 22 8 6 ,, 3 8 12 5 ,, 8 8 6 8 8 8 8 8 8 
A .000 .000 . 000 .000 . 000 .000 .000 .000 . 000 .000 . 000 .coo . 000 .000 .000 .000 .000 .000 .000 .000 .000 
8 . 190 .362 .023 . 068 .063 . 000 .000 .000 . 125 .000 .200 .000 .000 .000 .250 .000 . 188 .000 .063 . 188 . 000 
C .500 .224 .159 .864 .250 .250 .727 . t67 . 313 .042 .000 .000 .250 .125 .250 . 000 .J1J . 063 .063 .063 . 000 
0 .000 . 000 .000 .000 . 000 . 000 .000 .167 .000 .083 . 200 .000 .000 .000 . 000 .125 .000 .063 .000 .000 .000 
E .310 . ,1, .795 .045 .625 .667 .273 .667 .500 .873 .600 1. 000 .688 .875 .500 .m .500 .875 .875 .730 1.000 

' . 000 .000 .000 .000 .000 .000 .000 . 000 .000 . 000 . 000 .000 . 000 .000 .000 .000 .000 .000 .000 . 000 .000 

' .000 .000 .023 .023 .063 . OBJ .000 .000 .063 .000 . 000 .000 .063 .000 .000 .000 .ODO .000 .000 .000 .000 
IO H-2 
(M) 23 31 24 19 10 6 ,, 3 8 12 5 12 8 8 6 8 8 8 8 8 8 
A .000 .000 .000 .000 .000 .000 . 000 .000 .000 .coo .000 .000 .000 .000 .000 .000 .000 .000 .000 . 000 .000 

' .000 .000 .000 .000 .000 .000 .000 .000 .000 .ODO .000 .0,2 .000 .000 .000 .000 .000 .000 .000 .000 .000 
C .000 .016 .000 .000 . 000 .000 .000 .000 .063 .04Z . 000 .000 . 125 .DOO .167 .06J .125 .000 .063 . 000 .000 
D 1.000 .984 1.000 1. 000 1. 000 .917 1.000 .833 .938 .958 1.000 . 917 .875 1.000 .833 .875 .873 1.000 .938 1.000 1.000 
E .000 .ODO . 000 . 000 .000 . 000 .000 .000 .000 .000 .000 .042 .000 .ODO .000 .063 . 000 .000 .000 .000 .000 

' . 000 .000 .000 .ODO .000 .000 .000 .000 . 000 .000 .000 .000 .000 .coo .000 .000 .000 .000 .000 .000 . 000 

' .000 . 000 .000 .ODO .000 .083 .000 . 167 . 000 .000 .000 .000 ,000 .000 .000 .000 .000 .000 . 000 .000 . 000 
H .000 .000 . 000 .ODO .000 .000 . 000 .000 . 000 .000 . 000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

)o'!)H-1 
(M) 5 13 3 2 3 7 7 3 7 ,, 5 12 2 2 6 8 8 8 8 8 8 
A .000 .000 ,000 .000 .000 . 000 .071 .000 .000 . 091 .000 ,042 .000 .250 .000 . 188 .000 .000 . 188 .000 .000 

I--' B . 000 .038 .167 .500 .000 .214 .429 . 000 .214 .045 . 100 .208 .000 .250 .000 .1 25 .063 .063 .063 .000 .125 
N C . 000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .t2S .000 .000 .125 .000 .000 
I--' D 1. 000 .923 .8JJ .500 1.000 .786 .500 1.000 .786 .818 .900 .667 1.000 .500 1.000 .438 .938 .938 .625 1.000 .87'5 

.000 .000 .000 .000 .ODO .000 .000 . 000 .000 .000 .000 ,000 .000 .000 .000 .125 .000 .000 .000 . 000 . 000 

.000 ,036 .000 .000 .000 .000 . 000 .000 .000 . 0<5 .000 .OBJ .000 . 000 .000 .000 .000 .000 .000 .000 .000 
.000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . 000 .000 .000 
.000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . 000 .000 .000 .000 .000 .000 . 000 .000 . 000 .000 
.000 .000 .ODO .000 . 000 .000 .000 . 000 .000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

KlK·2 
(M) 7 12 8 7 6 9 12 3 8 12 5 12 6 8 5 8 8 8 8 6 8 
A .000 .125 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

1 . 000 . 875 1.000 1.000 1.000 1.000 1.000 1 . 000 1.000 1.000 1. 000 .917 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 
.000 .000 .000 .000 .000 . 000 .000 .000 .000 .000 .000 .083 .000 . 000 .000 .000 . 000 .000 . 000 .000 .000 
.000 .000 .000 .000 .000 .000 .000 .000 .coo . 000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .ODO .000 .000 .000 .000 . 000 .000 .000 .000 .000 .000 
.000 .000 .000 .000 .000 .000 .000 .000 . 000 .000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 . 000 . 000 
. 000 .000 .000 .000 .000 .000 .000 .ODO .000 .000 .000 .ODO .000 .000 . 000 .000 .000 .000 .000 .000 .000 

H .000 . 000 .000 .000 . 000 .000 .000 .000 .000 .000 . 000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
I .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .ODO .ODO .000 .000 .000 .000 .000 .000 . 000 . 000 

6PGOH 

"' 10 18 " 9 6 8 5 2 8 9 5 9 8 7 6 8 8 8 8 8 8 
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.050 .028 .000 .000 .000 .000 .000 . 000 .000 .000 . 000 .000 .ODO .000 .000 .000 .000 .000 .000 .000 . 000 
.050 .000 .000 .000 .000 .000 .000 .000 .000 .ODO ,000 .000 .000 .000 .000 .000 . 000 .000 .000 .000 .000 
.850 .861 .8'57 .611 1.000 .938 . 500 1 .000 1.000 1.000 1. 000 1.000 .9)8 1.000 .BJ) .938 .938 1.000 1.000 1.000 .938 
.000 .000 .000 .000 . 000 .000 .200 .ODO .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
.000 .056 .0 71 . 222 .000 .000 .,oo . 000 .000 .000 .000 .000 .063 .000 . 167 .000 .000 .000 .000 _ooo .063 
.050 .056 . 036 .167 .000 .06) . 000 .000 .000 .000 . 000 .000 .000 . 000 .000 . 063 .063 . 000 . 000 .000 .000 
.000 . 000 .036 .000 .000 .000 .000 . 000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

LOH 
(M) 2) " 25 24 8 9 12 3 8 12 5 12 8 8 6 8 8 8 8 8 8 

.000 .000 .ODO .000 .ODO .000 .000 .000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
,000 .000 .000 .000 .000 .056 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .ODO . 000 
.261 .371 .O<O . 188 . 188 .056 .042 .000 .063 .000 .000 .000 .000 .125 .000 .063 .000 . 000 .063 . 125 .000 
.500 .500 .880 .604 . 730 .m .792 . BJJ .730 .873 .900 . 958 1,000 .875 .917 .938 .730 .938 .873 . 813 .688 .,1, .081 .060 .146 .063 .000 .083 .167 .000 .042 . 000 .000 .000 . 000 .000 .000 .000 .063 .000 .063 . 063 
.065 ,Oli8 .020 . 042 . 000 .1 11 .OBJ .000 . 188 .083 . 100 .042 . 000 .000 .000 .000 .250 .000 .063 .000 . 250 
.000 .000 .000 .021 .000 . 000 .000 .000 .000 .000 .coo .000 .000 .000 .083 .000 .000 .000 . 000 .000 . 000 

-··· · ·····-···········-·············· · ·· · -· · ···-·······-····· · ··· · ···-··-····- · ··· · · · ······-------------------· --- · ·· ···· · ···- ·····-···--· ·· · ·-··---- --- --· · ·- · 
• ue uble 3 for 1cronyms for gal t types ind popul1tlons. 
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Tablt 1·6 . (cont . ) 
·· ······ ····· ·········· ·········· ···· ·· ··· -·· ·· ···-· ······ ··· · ·· ·· ·-· · ·· -······ ··· ·· ··· · · ··· ·· 

Popul et I oo .. 
························ ···· ·············· · ·· ··· ·· ········-······-· · ······ ·· ············· 

Locus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Locus 16 17 18 19 20 21 22 
Call type LMh (i:t+c) Uth(sd) LWgCm+c) LJlg(cn) Ulg(sd) LS(m} LIC•) LBC•) LBC•> LB Cm) LB{m) LO ( m) p p p G1l ltypc 89 89 89 Bh T LRP LRP 
Local fty CHr CH? JI.U•SB GfV JtAL•BB NAUB8 OH CfV OH•JID• ID TX TX GFV TX BB AZ Loul ity LA MAL•B8 VA OK OK AZ CHI 
Host sp. C.o. C.o. C.t. C.o . C.t . C.t. C.o. C.o. C.o. C.l. C.r. C.o. C.l. C. t. c.r. Hos t sp. C, I. C.t. C.o . Cl? Cl? Cr c, 
· · --····--·· · ··· -· -··-·-· -···--··· · ·-···--·-- · --· · ···· · ··- · -· · · · · ·-· · ····- · ···· · · · ··· · · ················· · ······ · ·- · · ·····----· .... . .. 
FOP FOP 
(N) 2J 18 27 ' 16 20 8 10 3 46 45 29 9 9 5 ( N) 6 5 J 12 8 5 10 
A .000 .000 . 000 .000 .000 .000 .000 .000 . 000 .000 . 000 . 000 . 000 ,000 .000 A , 000 .000 .000 .000 . 000 .000 1.000 
8 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1. 000 1. 000 1.000 1.000 1.000 1.000 1.000 B t .000 1. 000 1.000 1.000 1.000 1. 000 .000 

TPI !Pl 
(N) 2J 18 27 16 16 16 12 20 e 40 39 37 9 9 5 (N) 6 5 4 13 9 10 10 
A .000 . 000 .000 . 000 . 000 .OJI .000 .000 .000 .000 .000 . 000 .000 .000 .000 A .000 .000 . 000 .000 . 000 . 000 .000 
a 1. 000 1. 000 1.000 1.000 .969 .969 1.000 1. 000 1.000 .988 1. 000 1. 000 . 000 . 000 .000 a .000 .000 .500 . 000 .000 1.000 1.000 
C . 000 .000 . 000 .000 .ODO .000 .000 .000 .coo .000 .000 .000 .000 .000 .000 C .000 .000 .000 .000 1.000 .000 .000 
D . 000 . 000 .000 .000 . 000 . 000 .000 .000 .000 .013 .000 .000 1. 000 1.000 1.000 D .ODO .000 .000 .000 .000 .000 . 000 
E .000 . 000 . 000 . 000 . 031 . 000 . 000 .000 .000 .000 .000 .000 .000 . 000 .000 E 1.000 1.000 . 500 1. 000 .000 .000 .000 

C3POH GJPOH 
(M) 23 18 27 ' 16 22 10 12 6 34 32 29 9 9 5 ( N) 5 4 4 e ! 10 10 
A .000 .000 .000 .000 .000 .000 .000 .000 . 000 .000 .000 .000 .000 . 000 .000 A .000 . 000 .000 .000 .000 .000 1.000 
8 t . 000 1 . 000 1.000 1.000 1.000 1.000 1.000 1.000 1 . 000 t .000 t . 000 1.000 1.000 1.000 1 . 000 a t.000 1.000 1.000 1. 000 1 .000 1.000 . 000 

IDH-1 IOH-1 
(M) JO 1! 39 16 22 27 18 22 14 42 45 41 9 9 5 (M) 6 5 4 12 9 10 e 

A .000 . 000 .000 .000 .000 .000 . 000 .000 . 000 . 000 .000 .000 . 000 . 000 . 000 A . 000 .000 . 000 .000 .000 .000 , Jr.; 
a .000 .000 .000 . 000 .000 . 000 .000 .000 .000 . 000 .011 .000 .000 .000 .000 a .000 .000 .000 . 000 .000 . 000 .625 
C .000 .000 .000 .000 . 000 .204 . 000 .000 .000 .000 .044 . 000 .000 . 000 .000 C . 000 .000 .000 . 000 .m .000 .000 
D .233 .389 .103 .000 . 023 .204 .9n .932 .71!6 1 .000 . 922 .134 1 .000 1 . 000 1. 000 D .000 .000 .000 . 000 .000 .000 .000 
E . 767 . 611 .872 .er.. .932 .500 . 02! .068 .000 .000 . 000 . 756 .000 .000 .000 E 1. 000 1.000 1 .000 1. 000 .000 .000 .000 
F .000 .000 .026 . 125 .000 . 093 . 000 .000 . 214 .000 .022 . 110 .000 .000 .000 ' .000 .000 .000 .000 .222 1.000 .000 
G .000 .000 . 000 .000 .045 .000 .000 .000 .000 . 000 . 000 . 000 .000 . 000 .000 G .000 .000 .000 . 000 . 000 . 000 .000 

\OM·2 IDH-2 
(M) 29 21 39 12 22 27 15 5 14 42 42 39 3 7 2 "' 5 4 2 5 7 10 10 

A .000 .000 .000 .000 .000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 A .000 .000 .000 .000 .000 .000 1.000 
8 .000 .000 . 000 .000 .000 .000 . 000 . 000 .000 .000 . 000 . 000 . 000 . 000 . 000 • .000 .000 .000 .000 . 000 1 .000 .000 
C ,000 .000 .026 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . 000 . 000 C .000 .000 . 000 .000 .000 .000 . 000 
0 1 .000 1.000 .9t..9 \.000 1.000 \. 000 1.000 1.000 1.000 1. 000 ,988 1.000 .000 .000 . 000 D .000 . 000 .000 . 000 . 000 .000 .000 
E .000 .000 .026 .000 .000 .000 ,000 . 000 .000 .000 .000 .000 . 000 .000 .000 E .000 .000 .000 . 000 . 000 .000 .000 

,...... ' . 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . 000 .000 . 000 f .000 .000 .000 . 000 .000 .000 .000 
G . 000 . 000 .000 .000 .000 .000 .000 .000 .000 . 000 . 012 . 000 1 .000 1. 000 1.000 G 1.000 1.000 1. 000 1.000 1.000 .000 .000 

N l'!lH·J• HOH · 1* 
+:>, ( N) 2! 21 33 16 19 16 13 10 8 38 37 37 9 9 5 ( N) 6 4 4 11 7 6 6 

A .000 .000 .061 .000 .000 .063 .000 .000 .000 . 000 .014 .000 .000 .000 .000 A . 000 .000 .000 .000 .000 .000 . 000 

• .071 .OZ4 .152 . 188 . 158 .219 .346 .100 . 063 .000 .068 , 054 ,000 .000 .000 • .167 .250 . 125 .045 . 000 .000 .000 
C .036 .04! .000 . 000 .000 . 000 .000 .000 . 000 .000 . 014 .000 . 000 . 000 .000 C .000 .000 .000 .000 .000 .000 . 000 
D .8r.i . 405 . 742 .813 .632 . 719 .654 . 900 . r.;o .934 .824 .89Z .333 . 222 .400 D .833 . r..o . !75 .955 . 143 ,000 . 000 

' .000 .119 .000 .000 .079 . 000 . 000 .000 .000 . 000 . 000 . 000 . 000 .000 .000 ' . 000 .000 .000 .000 .000 .000 .000 
f .018 .381 .030 .000 .079 .000 . 000 . 000 .188 .066 .081 . 054 . 000 . 000 . 000 ' .000 . 000 .000 . 000 .000 .000 .000 
G .000 . 02, .015 . 000 .053 .000 . 000 .000 .000 .000 . 000 . 000 . 000 . 000 . 000 G . 000 . 000 .000 .000 .000 1.000 1.000 
H .000 . 000 .000 . 000 .000 .000 . 000 . 000 .000 .000 .000 .000 . 000 .000 .000 H .000 .000 .000 .000 .857 .000 . 000 
I .coo .000 .000 .000 .000 .000 . 000 .000 .000 .000 .000 .000 .667 .778 .600 I .000 . 000 .000 .000 . 000 .000 .000 

HOH·Z HDH -2 
(N) 26 18 39 14 22 27 14 20 14 46 45 39 8 9 5 ( N) 6 5 4 12 8 8 ! 
A .000 .000 .000 .000 . 000 .000 .000 . 000 .000 .000 . 000 . 000 .000 .000 .000 A .000 .000 . 000 . 000 . 000 1.000 1. 000 
a . 000 .000 .000 .000 .000 .000 .000 . 000 .000 . 000 . 000 .000 . 000 . 000 . 000 8 . 000 .000 . 000 .000 .000 .000 .000 
C 1.000 t .ODO 1.000 1. 000 1.000 1. 000 1.000 1.000 1. 000 1.000 1 .000 1.000 1.000 t.000 1.000 C 1. 000 1.000 1. 000 1.000 1.000 .000 .000 

6PCOH 6PCiOH 
(N) 28 21 39 12 22 27 16 1! 14 46 45 36 9 9 5 ( N) 6 5 4 13 9 10 10 
A .000 . 024 .000 .000 .000 .000 . 000 .000 .000 .000 . 000 . 000 . 000 .111 . 000 A .000 .000 ,000 . 000 .000 .600 .000 
a . 0 18 .024 . 000 . 000 .000 .000 .000 .000 .071 . 043 .011 . 000 .889 . 722 1 .000 • .000 .000 .000 .000 .000 . 350 .000 
C .018 .000 .000 . 000 .000 .000 .000 .000 .036 . 01 1 .000 . 000 .ODO .000 .000 C .000 .000 . 000 .000 1.000 .050 .000 

·O .839 .952 . 987 1 .000 .!41 . 870 .813 .444 . 536 . 924 .933 . 76' .111 .167 .000 D . 000 . 000 .000 .000 .000 .000 .000 
E . 000 . 000 .000 .000 . 068 .019 .OJ\ .278 .000 . 000 .000 . 000 .coo .000 .000 E .000 ,000 .000 . 000 .000 . 000 . 000 
f .071 .000 .on .000 .091 .111 .156 .278 . 321 . 022 .OS6 . 028 . 000 .000 .000 F .250 . 000 . 000 . 000 .000 .000 . 000 
G .054 .000 .coo .000 .ooo . 000 .000 . 000 .036 .000 . 000 . 125 .000 .000 .ooo G .000 .000 . 000 . 000 .000 .000 1.000 
H . 000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 .OBJ .000 .000 .000 H . 750 1 .000 1.000 1 .000 .000 .000 . 000 

LOH• LOH* 
(N) JO 21 38 16 22 27 17 20 14 46 43 41 2 2 1 (N ) 6 5 3 12 6 ! 10 

. 000 . 000 .000 . 000 .000 .000 .000 .000 .000 .000 .000 .000 1 .000 1 .000 1.000 A .000 .000 .000 .000 . 000 .000 .200 

.000 .000 . 000 . 000 .coo . 000 . 000 .000 . 000 .000 .000 . 000 .000 .000 .coo 8 .000 .000 .000 .000 . 000 .000 .aoo 

.033 .095 . 000 .094 .068 . 000 .118 . 350 .250 .022 . 000 .012 . 000 . 000 .000 C .000 .000 .000 .000 . 000 .000 . 000 

.!33 .881 .868 .813 .932 .!33 .!24 . 5r.; . 500 .!26 .!49 .988 .000 . 000 .000 D 1.000 1.000 1.000 1.000 1.000 . 938 . 000 

.133 .024 .092 . 063 . 000 .019 .000 .000 . 143 .0!7 .061 . 000 .000 . 000 .000 E .000 .000 .000 .000 .000 .000 .000 

. 000 . 000 .039 . 000 . 000 .148 .059 . or.. . 107 . 054 .058 . 000 . 000 .000 .000 f .000 .000 .000 . 000 .000 .063 .000 

.000 .000 . 000 . 031 .000 . 000 . 000 . 000 .000 . 011 . 000 . 000 .000 .000 .000 G . 000 .000 .000 . 000 . 000 . 000 .000 
• 000 .000 . 000 .000 . 000 .000 .000 .000 .000 .000 .012 . 000 .000 .000 .000 • .000 . 000 . 000 . 000 .000 .000 .000 
········--·······-···· ·· · ············ · ··· ······· ····· ··· ----· · ··· · ··· -· · · ·-···· · ·· ····· · ·· · ···-········· ····· ·· · · ·· --

Mobi l it y of the a l leles in thtst loci does not follow tht 1l?"11bet 011c t ly . Actual mobility rank frar. fut to slow: 
PGH: ABCOEJftCH IL; HE: AHBCOIEJfK; PEP·1: ABCOElfCiM; HOH · 1: ABCOEFHI G; LOH: ABCOIEfGH. 
Population IICl"'onyTl\1 fo l low t1bl e 1· 3 . Host plant spec iu following •7 • 1rt U"ICtrt1ln In some Okl1hOl'M popu l at ion,. 



Table 1-7. X
2 

tests for differences in allele frequency among nymphal populations 
of bud and petiole gall makers, all loci. 

Contrast Contrast* 
number 

*. 
* * . 
* * *. 
NS: 

AO all four populations of bud galls 
(glabrous and hairy types) 

AOO all three populations of 
glabrous bud galls 

Al glabrous bud gall (MD) vs. 
glabrous bud gall (VA) 

A2 glabrous bud gall (MD) vs. 
glabrous bud gall (LA) 

A3 glabrous bud gall (MD) vs. 
hairy bud gall (OK) 

A4 glabrous bud gall (VA) vs. 
glabrous bud gall (LA) 

A5 glabrous bud gall (VA) vs. 
hairy bud gall (OK) 

A6 glabrous bud gall (LA) vs. 
hairy bud gall (OK) 

BO all 3 populations of petiole galls 

Bl petiole gall from MD(BB) vs. 
TX(BFL) 

B2 petiole gall from MD(BB) vs. 
AZ 

B3 petiole gall from TX(BFL) vs. 

AZ 

Population acronyms follow table 1-3. 
0.01 ~ p ~ 0.05. 
P < 0.005. 
non-s ignificant, p > 0.05. 
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Chi- degrees Signifi-
square of ca nee 

freedom level 

59.88 24 *** 

23.35 12 NS 

9.69 4 NS 

4.30 5 NS 

11.11 5 NS 

12.6 6 NS 

17.3 6 ** 

15.43 7 NS 

87.42 14 *** 

21.18 6 *** 

52.89 7 *** 

38.01 6 *** 



T able 1-8. Body size measurement of Pachypsylla gall makers from various gall types. Matrix at the 
bottom shows pairwise comparisons between means of leaf gall makers using Tukey-Kramer method 
(Sokal and R ohlf, 1981). The absolute pair average mean differences are given below the diagonal 
while minimum significant difference (MSD) value are given above the diagonal. Differences larger 
in absolute value than their MSD value are significant at the 0.05 level and are marked with an 
asterisk. 

Gall types Non-leaf galler Leaf galler 

Petiole Glabrous Disc Hairy Glabrous Star Blister 
gall bud gall nipple nipple gall gall 

gall gall gall 

Number of 14 15 42 59 54 99 98 
individuals 

Mean 6.02 3.25 3.83 3.34 3.27 2.98 2.65 

Body Minimum 5.50 2.90 3.10 2.70 2.70 2.4 1.9 
size 

Maximum 6.40 3.60 4.40 4.10 3.50 3.6 3.3 

Standard 0.07 0.06 0.05 0.05 0.03 0.03 0.04 
E rror 

Disc 
gall - 0.172 0.175 0.158 0.040 

Ranked Hairy 
gall nipple 0.489* - 0.161 0.140 0.140 
size gall 

Glabrous 
nipple 0.559* 0.070 - 0.144 0.143 

gall 

Star 
gall 0.85* 0.360* 0.291 * - 0.120 

Blistr 1.184* 0.695* 0.625* 0.344* -
gall 
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Table 1-9. X2 tests for allele frequency differences among populations of leaf gall makers, all loci. 

Contrast Contrast* 
number 

*· 
***· 
NS: 

co all 5 leaf gall types from GFV (adults) 

Cl blister vs. hairy nipple gall (GFV) 

C2 blister vs. glabrous nipple gall (GFV) 

C3 blister vs. star gall (GFV) 

C4 blister vs. disc gall (GFV) 

cs hairy vs. glabrous nipple gall (GFV) 

C6 hairy nipple vs. star gall (GFV) 

C7 hairy nipple vs. disc gall (GFV) 

C8 glabrous nipple vs. star gall (GFV) 

C9 glabrous nipple vs. disc gall (GFV) 

ClO star vs. disc gall (GFV) 

DO all 3 leaf gall types from GFV (nymphs) 

Dl blister vs. glabrous nipple gall (GFV) 

D2 blister vs. disc gall (GFV) 

D3 glabrous nipple vs. disc gall (GFV) 

El hairy nipple vs. blister gall (CMt) 

Fl glabrous nipple vs. star gall (MD) 

Gl blister galler (TX) on 
Ce/tis /aevigata vs. Ce/tis reticulata 

Population acronyms follow table 1-3. 
P < 0.005. 
non-significant, p > 0.01. 
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Chi- degrees Sign iii-
square of cance 

freedom level 

48.77 8 *** 

58.96 14 *** 

280.43 56 *** 

88.05 14 *** 

78.23 12 *** 

35.57 11 *** 

46.16 13 *** 

82.74 13 *** 

45.00 13 *** 

18.84 7 *** 

78.81 13 *** 

261.24 24 *** 

107.83 10 *** 

30.86 10 *** 

200.93 14 *** 

86.16 12 *** 

48.66 17 *** 

20.95 15 NS 
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Table 1-10 F . 
sampl ) f · r~quencies of major alleles in IDH-1 in adults (1991 

es rom blister galls versus hairy nipple galls. 
-

Great Falls Catoctin Mt. Wooster 

Allele 
Virginia Maryland Ohio 

Blister 
Hairy Hairy Hairy 

EB 
Nipple Blister Nipple Blister Nipple 

.86 .50 .73 .25 .75 .25 

.05 .31 .27 .67 .13 .69 
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Table 1-11. Numbers and types of gall formed by progenies of individual females in rearing 
experiment. One large and one small female were caged on each seedling. Empty cells 
represent no galls of that type. 

PPOPU- HOST SEED- LARGE SIZE** SMALL SIZE** 
LATION (DATE OF LING FEMALE(> 3mm) FEMALE ( < 3mm) 

* RELEASE) # 
NIPPLE STAR NIPPLE STAR 
GALL GALL GALL GALL 

1 3 

Celtis 2 50 30 
tenuifolia 

(5/13) 
3 8 14 

4 15 29 

NAL 5 14 

31 8 

Cell is 32 9 

tenuifolia 
(5/24) 

33 8 

34 

11 

Celt is 12 

tenuifolia 13 15 15 
(5/17) 

14 6 

BB 15 13 8 

21 10 10 

Ce I tis 22 

occidental is 23 

(5/23) 24 

* NAL: National Agricultural Library, Beltsville, Maryland; 
BB: Branchville Rd., Berwyn, ~a~yland: . . 

2 B d · I d trong assoc1at1on with type of gall made (2X2 contmgency test, X o y size revea e s ** 

== 5.5, p < 0.01) . 
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Table 1-12. Head/shaft ratio of the terminal segment of male aedeagus in blister gall makers of 
Pachyp!iylla on different hosts. 

* 

Head/shaft ratio 
Host Number of 

individuals Mean Minimum Maximum Standard 
Error 

Celtis laevigata 
(TX)* 9 a.so 0.35 0.65 0.038 

Ceilis reticulata 
(TX) * 12 0.33 0.24 0.44 0.029 

Ccltis rcti cu lata 
(AZ) 4 0.33 0.32 0.37 O.D28 

Celt is 
occidentalis 10 0.33 0.31 0.37 0.007 

(MD) 

The ratios between blister gallers from C. laevigata and C. reticulata from Texas differed from 
each other significant ly (t-test, t = 3.59, df = 19, P < 0.01). 
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Table 2-1 • •. . •• .. . n 1992 "" 1993 " ny,,,h• fr~ d, ffecen< cell ''""""' ,m ;n sadM . . . . . . . . . ..... : '°""" fo' " ll <ype• and "''" l a< ; '"' f o ll"' 1abl , 1-3 go ll ""' 
collected .i Allele frequencies of . 

i:::, 1i· ,)::, ... :i: .... -::: ..... :i:· .... ;······ ',""''"; ·······;·······;······;;-: ..... 1,::.. · ;; 
Cell po, • mo= (CM<) (CM<) (CM<) ( L"9 LNO L"9 LS L"9 L'9 l'9 lS center side NAL) (NAU (NAU (NAL) (BB) (BB) (BB) (BB) 

- ---- ------- mono mono center side mono mono center side mono 
------------------------------------------------------

-. -.. ---- . ---
PGH 

(N) 

A 
B 
C 
D 
E 
F 
G 
H 
I 

PGI 
(N) 

A 
B 
C 
D 
E 
F 
G 

GPDH 
( N} 

A 
B 
C 
D 

HE 
(N) 

A 
B 
C 
D 
E 
F 

FUM 
(N) 

A 
B 
C 
D 
E 
F 

PEP -1 
(N) 

A 
B 
C 
D 
E 
F 

FDp 
(N) 

A 
B 

lPI 
(N) 

A 
B 
C 
D 
E 

16 
.000 
.ooo 
.031 
.344 
.031 
.563 
.ooo 
.031 
.ooo 

16 
.ooo 
.ooo 
.938 
.ooo 
.063 
.ooo 
.ooo 

12 
.ooo 
.ooo 

1.000 
.ooo 

16 
.ooo 
.ooo 
.ooo 

1 .ooo 
.ooo 
.ooo 

16 
.ooo 
.ooo 
.ooo 
.969 
.ooo 
.031 

7 
.ooo 
.429 
.571 
.ooo 
.ooo 
.ooo 

12 
.ooo 

1 .ooo 

12 
.ooo 

1.000 
.ooo 
.ooo 
.ooo 

14 
.000 
.000 
.000 
• 179 
.000 
.607 
.000 
.214 
.ODO 

14 
.000 
.000 
.964 
.000 
.036 
.000 
.000 

11 
.000 
.000 

1.000 
.000 

14 
.000 
.000 
. 000 
.964 
.000 
.036 

14 
.000 
.000 
. 000 

1.000 
.000 
.000 

5 
. 100 
.200 
.600 
. 000 
.100 
.000 

11 
.000 

1.000 

11 
.000 

1.000 

21 
.000 
.ODO 
.000 
.024 
.000 
.786 
.000 
.119 
.071 

21 
.000 
.000 

1 .000 
.000 
.000 
.000 
.000 

18 
. 000 
.000 

1.000 
.000 

21 
.000 
.000 
.000 
.286 
.119 
.595 

21 
.000 
.000 
.000 
.905 
.ODO 
.095 

12 
.000 
.250 
.625 
.042 
.083 
.000 

18 
.ODO 

1.000 

18 
.000 

1.000 

18 
.ooo 
.000 
.ODO 
.222 
.028 
.639 
.028 
.083 
.000 

18 
.000 
.028 
.972 
.000 
.000 
.000 
.000 

17 
.000 
.029 
.971 
.000 

18 
.056 
.ODO 
.ODO 
.917 
.ODO 
.028 

17 
.000 
.000 
.ooo 
.912 
.000 
.088 

14 
.000 
.000 

1.000 
.000 
.ooo 
.000 

8 
.000 

1.000 

12 
.ooo 

1.000 

17 10 13 

.ODO .ooo .ooo 

.000 .ooo .000 

.ODO .ODO .ODO 

.176 .zoo .ooo 

.088 .000 .000 

.647 .700 .923 

.029 .ooo .ooo 

.059 .100 .077 

.ooo .ooo .000 

17 10 13 

.ooo .ooo .ooo 

.ODO .ooo .ooo 

.824 .900 1.000 

.088 .ooo .ODO 

.088 .100 .ooo 

.000 .ODO .000 

.000 .ooo .ooo 

17 10 13 

.ooo .ooo .ooo 

. 088 .250 .ooo 

.912 . 750 1.000 

.000 .ooo .ooo 

20 13 16 

.075 .038 .ooo 

.ooo .ooo .ooo 

.ooo .ooo .ooo 

.900 .885 .531 

.ooo .ooo .031 

.025 .077 .438 

17 10 13 

.ooo .ooo .ODO 

.ooo .050 .ooo 

.000 .ooo .ooo 

.971 .950 1.000 

.ooo .ooo .ooo 

.029 .ODO .ooo 

9 4 7 

.ooo .ooo .ooo 

.111 .125 , 143 

.778 .875 .857 

.ooo .ooo .ooo 

.111 ,000 .ooo 

.ooo .ooo .ooo 

14 7 10 

.ODO .ooo .ooo 
1,000 1.000 1.000 

14 7 10 

.ooo .ooo .ooo 
1.000 1.000 1.000 

.ooo .ooo 

11 
.ooo 
.ooo 
.ODO 
.045 
.ooo 
.955 
.ooo 
.ODO 
.ooo 

13 
.000 
.ooo 
.846 
.ooo 
.077 
.ooo 
.OT! 

13 
.077 
.077 
.846 
.ooo 

16 
.ODO 
.ooo 
.ooo 
.844 
.031 
.125 

13 
.ooo 
.ooo 
.ooo 
.962 
.ooo 
.038 

11 
.ooo 
, 182 
.818 
.ooo 
,000 
.ooo 

11 
.ooo 

1.000 

8 
.ooo 

1.000 
.ooo 
.ooo 

3 
.ooo 
.ODO 
.000 
.ODO 
.167 
.667 
.000 
.167 
.000 

3 
.ooo 
.ooo 
.833 
.ODO 
.167 
.ODO 
.ooo 

3 
.ooo 
.ooo 

1.000 
.ooo 

3 
.ooo 
.ooo 
.ooo 

1.000 
.ooo 
.ooo 

3 
.ooo 
.ooo 
.ooo 

1.000 
.ooo 
.ooo 

3 
.ooo 
.ooo 
,667 
.ooo 
, 167 
.167 

3 
.ooo 

1.000 

3 
.ooo 

1.000 
.ooo 
.ooo 

3 
.ODO 
.ODO 
.000 
.ooo 
.000 

1.000 
.000 
.ooo 
.ooo 

3 
.ooo 
.ooo 

1.000 
.ooo 
.ooo 
.ooo 
.ooo 

3 
.ooo 
.ooo 

1 .ooo 
.ooo 

3 
.ooo 
.ooo 
.ooo 

1.000 
.ooo 
.ooo 

3 
.ooo 
.ooo 
.ooo 

1.000 
.ooo 
.ooo 

2 
.ooo 
.ooo 

1.000 
.ooo 
.ooo 
,000 

3 
.000 

1.000 

3 
.ooo 

1.000 
.ooo 
.ooo 

6 
.ODO 
.000 
.ODO 
.000 
.ODO 
.833 
.000 
.167 
.000 

6 
.000 
.ooo 

1.000 
.000 
.ooo 
.ODO 
.000 

6 
.ODO 
.ooo 
.917 
.083 

6 
.000 
.ODO 
.000 
.667 
.000 
.333 

6 
.ooo 
.000 
.ooo 

1.000 
.ooo 
.000 

5 
,000 
.ooo 

1.000 
.ooo 
.ooo 
.ooo 

6 
,000 

1.000 

6 
.ODO 
.917 
.ooo 
.000 
.083 

11 
.000 
.000 
.000 
.136 
.045 
.773 
.045 
.000 
.000 

11 
.ooo 
.000 
.955 
.ODO 
.000 
.045 
.000 

11 
.091 
.000 
.909 
.ooo 

11 
.000 
.ooo 
.000 
.955 
.045 
.ooo 

11 
.000 
.000 
.ooo 
.909 
.ooo 
.091 

11 
,000 
.045 
.955 
.ooo 
.ooo 
.ooo 

9 
,000 

1 .ooo 
8 

.063 

.938 

.ooo 

.ooo 
, 000 

.000 .000 .ODO .ooo 

. 000 . 000 .ooo .ooo .ooo .ooo 

.000 .000 .000 .ooo .ooo .ooo .ooo ,000 .ooo 

-- ---- ------ ----------- ---------------------- ---- ------- ---- -- -------- -------- -- --- -
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Si 

Table 2-1. (cont.) 
-------------------------------------------------------------------------------------------------------

Population 
----------------------------------------------------------------------------------------------

1 2 3 4 5 6 7 8 9 10 11 12 

Gall type LNh LNh LNh LB LNg LNg LNg LS LNg LNg LNg LS 

Locality (CMt) (CMt) (CMt) (CMt) (NAL) (NAL) (NAL) (NAL) (BB) (BB) (BB) (BB) 

Cell pos." momo center side mono mono center side mono mono center side mono 

-------- -- ---------------------------------------------------------------------------------------------
G3PDH 

(N) 12 11 18 10 14 7 10 11 3 3 6 11 

A .000 .000 .000 .000 .ooo .000 .000 .000 .000 .000 .000 .000 

B 1.000 1.000 1.000 1.000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 

IDH-1 
(N) 16 14 18 18 20 13 16 16 3 3 6 11 

A .ooo .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

B .ooo .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

C .ooo .000 .000 .000 .000 .000 .000 . 188 .000 .000 .000 .227 

D .250 .214 .389 .972 . 125 .077 .031 .219 .000 .167 .000 .182 

E .750 .786 .611 .028 .850 .923 .938 .500 .833 .833 .917 .500 

F .ooo .000 .000 .000 .025 .000 .000 .094 .167 .000 .000 .091 

G .ooo .000 .000 .000 .000 .000 .031 .000 .000 .000 .083 .000 

IDH-2 
(N) 16 13 21 15 20 13 16 16 3 3 6 11 
A .ooo .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
B .ooo .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
C .ooo .000 .000 .000 .000 .077 .000 .000 .000 .000 .000 .000 
D 1.000 1.000 1 .000 1.000 .950 .923 1 .000 1 .000 1 .000 1.000 1 .000 1.000 
E .ooo .000 .000 .000 .050 .000 .000 .000 .000 .000 .000 .000 

MDH· 1 
(N) 15 13 21 13 17 10 13 8 3 3 6 8 
A .ooo .000 .000 .059 . 100 .000 .000 .000 .000 .000 . 125 

.000 
B .067 .077 .346 .206 .050 . 115 .250 . 167 . 167 .250 . 188 
C .024 

.067 .000 .048 .000 .ooo .000 .000 .000 .000 .000 .000 .000 
D .867 .885 .654 .735 . 750 .654 . 750 .833 .667 .583 .688 
E .405 .ooo .000 . 119 .000 .000 .000 . 115 .000 .000 .000 .000 .000 
F 
G 

.ooo .038 .381 .000 .ooo .050 .077 .000 .000 .167 .083 .000 

MDH-2 
.ooo .000 .024 .000 .000 .050 .038 .000 .000 .000 .083 .000 

(N) 12 14 14 20 13 16 16 3 3 6 11 
18 A .ooo .000 .ooo .000 .000 .000 .000 

B .000 .000 .000 .000 .000 

C 
.ooo .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

6PGDH 
1 .ooo 1.000 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

00 15 13 16 20 13 16 16 3 3 6 11 
A 21 

B 
.ooo .000 .024 .000 .ooo .000 .000 .000 .000 .000 .000 .000 

C 
.033 .000 .024 .000 .ooo .000 .000 .000 .000 .000 .000 .000 

D 
.033 .000 .000 .000 .ooo .000 .000 .000 .000 .000 .000 .000 

E 
.867 .808 .952 .813 .975 1 .000 .781 .875 1.000 1.000 1.000 .864 

F 
.ooo .000 .000 .031 .ooo .000 .094 .031 .000 .000 .000 .000 

G 
.067 .077 .000 . 156 .025 .000 .125 .094 .000 .000 .000 . 136 

LOH 
.ooo . 115 .000 .000 .ooo .000 .000 .000 .000 .000 .000 .000 

(N} 16 19 13 16 16 3 3 6 
A 14 21 17 11 

B 
.ooo .000 .000 .000 .ooo .000 .000 .000 .000 .000 .000 .000 

C 
.ooo .000 .000 .000 .ooo .000 .000 .000 .000 .000 .000 .000 

D .031 .036 .095 . 118 .ooo .000 .063 .000 .000 .000 .083 .000 

E 
.875 .786 .881 .824 .763 .962 .938 .813 1 .000 1.000 .917 .864 

F 
.094 .179 .024 .000 .158 .038 .000 .000 .000 .000 .000 .045 
.ooo .000 .000 .059 .079 .000 .000 .188 .000 .000 .000 .091 

--------------------------------- -------------------------- --------- -- -- -- - --
" Cell Pos ition within an individual gall. 
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Table 2-2. x2 . >nake,s in th tests fo, allele frequency diffe,ences between nymphal populatwns of leaf gall 

e same cell positions all loci 
' 

=--
Contrast Contrast* 

Chi- degrees Signifi-

number 
square of cance 

freedom level 

6.69 10 NS 

Al Hairy nipple gall: 

r--- mono vs. center cell (CMt) 13 NS 
14.90 

A2 Glabrous nipple gall: 

t---~mono vs. center cell (NAL) 
5.60 5 NS 

A3 Glabrous nipple gall: 

t--- mono vs. center cell (BB) 

Bl Glabrous nipple gall (mono + center cells): 
35.69 33 NS 

--- _l"IAL vs. BB 

B2 Glabrous nipple gall (side cell): 
10.28 9 NS 

---· NAL vs. BB 
10.67 11 NS 

B3 Star gall (mono cell): 

~ NAL vs. BB 

*· N Populat" S: non . 1?n acronyms follow table 1-3. 
-sign di cant, p > 0.01. 
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Tab~e 2-3. A . . positions _lle_le fr~uenc1es (after pooling) of n~s from different cell 
allele tr' ~ithin :,,ar1ous gal l types collected in 1992 and 1993. Major 
Under linedeq ency differences between side cell and center cell nymphs are 

• Acronyms for gall types and populations follow Table 1-3. 

-- -- -- ---- ----------------------- ------- ------- -----
Population 

----·-- ---- ------------------------------------ ---------- -5 6 

Gall t ype 
Locality 
Cel l pos .* 
---

PGM 
(N) 

C 
D 
E 
F 
G 
H 
I 

PG! 
(N) 

C 
D 
E 
F 
G 

GPDH 
(N) 

A 
B 
C 
D 

ME 
CN) 
A 
D 
E 
F 

FUM 
(N) 

B 
D 
F 

PEP - 1 
(N) 

A 
B 
C 
D 
E 
F 

FDp 
(N) 

A 
B 

TPI 
CN) 
A 
B 
E 

LNh 
(CMt) 

m+-c 

30 
.017 
.267 
.017 
.583 
.000 
.117 
.000 

30 
.950 
.000 
. 050 
. 000 
.000 

23 
.000 
.000 

1.000 
.000 

30 
. 000 
. 983 
. 000 
.017 

30 
.000 
.983 
.017 

12 
.042 
.333 
.583 
. 000 
. 042 
.000 

23 
.000 

1.000 

23 
. 000 

1.000 
.000 

2 
LNh 
(CMt) 
side 

21 
.000 
.024 
.000 
.786 
.000 
. 119 
.071 

21 
1. 000 

, 000 
.000 
.000 
.000 

18 
.000 
.000 

1.000 
.000 

21 
.000 
.:1§2 
• 119 
.595 

21 
.000 
.905 
.095 

12 
.000 
.250 
.625 
.042 
. 083 
. 000 

18 
.000 

1. 000 

18 
.000 

1.000 
.000 

3 4 
LB LNg LNg LS 
(CMt) (NAL+BB) (NAL+BB) (NAL+BB) 
mono m+-c side mono 

18 
.ooo 
.222 
,028 
.639 
.028 
. 083 
.000 

18 
.972 
.ooo 
.000 
.ooo 
,000 

17 
.ooo 
.029 
.971 
.000 

18 
. 056 
.917 
.ooo 
_,.91§ 

17 
.ooo 
.912 
.088 

14 
.ooo 
.000 

1.000 
.ooo 
.ooo 
.ooo 

8 
, 000 
.000 

12 
.ooo 

1.000 
.ooo 

33 
.ooo 
.152 
.061 
.697 
.015 
.076 
.ooo 

33 
.864 
.045 
.091 
.ooo 
.ooo 

33 
,000 
• 121 
.879 
.ooo 

39 
.051 
.,_21.Q 
.ooo 
~ 

33 
.015 
.970 
.015 

18 
.ooo 
.083 
.806 
.ooo 
.083 
, 028 

27 
.ooo 
.ooo 

27 
.ooo 

1.000 
.ooo 
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19 
.ooo 
,000 
.ooo 
.895 
.ooo 
. 105 
.ooo 

19 
1.000 
.ooo 
.ooo 
,000 
.ooo 

19 
.ooo 
.ooo 
.974 
.026 

22 
.ooo 
.:2.@ 
.023 
~ 

19 
.ooo 

1.000 
.ooo 

12 
.ooo 
,083 
.917 
.ooo 
.ooo 
.ooo 

16 
.ooo 
.ooo 

16 
.ooo 
,969 
.031 

22 
.ooo 
.091 
.023 
.864 
.023 
.ooo 
.ooo 

24 
.896 
.ODO 
. 042 
.021 
.042 

24 
,083 
.042 
.875 
,ODO 

27 
.ooo 
;.§§2 
,037 
.,_W. 

24 
.ooo 
.938 
.063 

22 
.ooo 
. 114 
,886 
.ooo 
.ooo 
.ooo 

20 
.ooo 
.ooo 

16 
.031 
.969 
.ooo 



Table 2-3. (cont.) 

----- --- ------------- --- --------- -- ---- --------- -------------------

Gall type 
Locality 
Ce ll pos.* 

G3PDH 
(N) 

A 
B 

IDH-1 
(N) 

C 
D 
E 
F 
G 

IDH-2 
(N) 

C 
D 
E 

MDH-1 
(N) 

A 
B 
C 
D 
E 
F 
G 

MDH - 2 
(N) 

A 
B 
C 

6PGDH 
(N) 

A 
B 
C 
D 
E 
F 
G 

LDH 
(N) 

C 
D 
E 

1 
LNh 

(CMt) 
m+c 

23 
.000 

1.000 

30 
.000 
.233 
. 767 
.000 
.000 

29 
.000 

1.000 
.000 

28 
.000 
.071 
.036 
.875 
.000 
.018 
.000 

26 
.000 
.000 

1.000 

28 
.000 
.018 
.018 
.839 
.000 
. 071 
.054 

30 
.033 
. 833 
. 133 
.000 

Population 

2 3 
LNh LB 

(CMt) (CMt) 
side mono 

18 
.000 

1.000 

18 
.000 
.389 
.611 
.000 
.000 

21 
.000 

1.000 
.000 

21 
.000 
.024 
.048 
. 405 
. 119 
.381 
.024 

18 
.000 
.000 

1.000 

21 
.024 
.024 
.000 
.952 
.000 
.000 
.000 

21 
.095 
.881 
.024 
.000 

10 
.000 

1.000 

18 
.000 
.972 
.028 
.000 
.000 

15 
.000 

1 .000 
.000 

13 
.000 
.346 
.000 
.654 
.000 
.000 
.000 

14 
.000 
.000 
.000 

16 
.000 
.000 
.000 
.813 
.031 
. 156 
.000 

17 
.118 
.824 
.000 
.059 

4 5 6 
LNg LNg LS 

(NAL+BB) (NAL+BB) (NAL+BB) 
m+c side mono 

27 
.000 

1.000 

39 
.000 
• 103 
.872 
.026 
.000 

39 
.026 
.949 
.026 

33 
.061 
• 152 
.000 
.742 
.000 
.030 
.015 

39 
.000 
.000 
.000 

39 
.000 
.000 
.000 
.987 
.000 
.013 
.000 

38 
.000 
.868 
.092 
.039 

16 
.000 

1.000 

22 
.000 
.023 
.932 
.000 
.045 

22 
.000 

1.000 
.000 

19 
.000 
.158 
.000 
.632 
.079 
.079 
.053 

22 
.000 
.000 
.000 

22 
.000 
.000 
.000 
.841 
.068 
.091 
.000 

22 
.068 
.932 
.000 
.000 

16 

22 
.000 

1.000 

27 
.204 
.204 
.500 
.093 
.000 

27 
.000 

1.000 
. 000 

.063 

.219 

.000 

.719 

.000 

.000 

.000 

27 
.000 
.000 
.000 

27 
.000 
. 000 
.000 
.870 
.019 
.111 
.000 

27 
.000 
.833 
.019 
. 148 

-------------------------------------------------------------------

* Ce ll pos ition within an individual gall: m or mono= mono-cell; c= center 
cell; s ide= s ide cell. 
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Table 2-4. X2 tests for allele frequency differences between nymphs in different 
cell positions within the same gall type, side cell nymphs and other co-occurring 
mono cell gall types, and side cell nymphs from different gall types, all loci. 

Contrast Contrast* 
number 

Cl Hairy nipple gall (CMt): 
(mono + center) vs. side cell 

C2 Glabrous nipple gall (NAL+ BB): 
( mono + center) vs. side cell 

Dl CMt: Hairy nipple gall (side cell) 
vs. Blister gall (mono cell) 

D2 NAL+ BB: Glabrous nipple (side 
cell) vs. Star gall (mono cell) 

E l Side cell: Hairy nipple gall vs. 
Glabrous nipple gall 

* 
*** 

Population acronyms follow table 1-3. 
p < 0.005. 
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Chi- degrees Signifi-
square of cance 

freedom level 

87.95 13 ** * 

63.87 15 *** 

106.87 16 *** 

58.36 14 *** 

53.78 13 *** 



Table 2-5. Number and kinds of galls formed by progenies of single females in 
rearing experiments testing for inquilinism of side cell individuals in glabrous nipple 
gall and star galls from two Maryland populations. 

* 

** 

POP UL- HOST** SEED- BROWN GREEN 
A TION* (DATE OF LING ABDOMEN~ ABDOMEN~ 

RELEASE) # (CENTER CELL) (SIDE CELL) 

SIN- MULTI- SIN- MULTI 
GLE PLE GLE PLE 
CELL CELL CELL CELL 
GALL GALL GALL GALL 

1 3 

Ce/tis 2 54 

tenwfolia 3 22 
(5/13) 

4 18 

NA L 5 14 

31 8 

Ce/tis 32 6 

tenuifolia 33 7 
(5/24) 

34 

11 

Ce/tis 12 

te11111f olia 13 6 
(5/17) 

14 6 

BI3 15 8 

21 5 

Ce/tis 22 

occidentalis 23 
(5/23) 

24 

NA L: Natio nal Agricultural Library, Beltsville, Maryland; 
13B: Bra nchville Rd., Berwin, Maryland. 
C.t.: Ce/tis te1111ifolia; C.o.: C. occidentalis. 

*** Green abdomen female died early in experiment. 

137 

GREEN+ BROWN 
ABDOMEN~~ 

(CENTER+SIDE) 

SINGLE MULTI-
CELL PLE 
GALL CELL 

GALL 

10 6 

1 14 

19*** 

8 5 

7 5 

20 18 

12** 

9 6 
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Table 3-1. Character matrix for all evidences: morphological characters (1-33); allozyme data (34-48); 
karyotype (49-50); and life history (51 -52) coded from Table 1-6. Each locus is treated as single 
character. 

Pachy4.ALL (alle0.2) 1 1 2 3 4 5 6 7 8 9 1 0 11 12 1 3 

1 Hairy Nipple Gal l (center cel l) 3 1 2 1 0 1 0 0 1 1 1 1 1 

2 Hairy Nipple Gall (side cell) 3 1 2 1 0 1 0 0 1 1 1 1 1 

3 Glabrous Nipple Gall (center ce 3 1 2 1 0 1 0 0 1 1 1 1 1 

4 Glabrous Nipple Gall (side cell 3 1 2 1 0 1 0 0 1 1 1 1 1 

5 Star Gall (center cell) 3 1 2 1 0 1 0 0 1 1 1 1 1 

6 Blister Gall (center cell) MO 3 1 2 1 0 1 0 0 1 1 1 1 1 

7 Blister Gall (center cell) TX 3 1 2 1 0 1 0 0 1 1 1 1 1 

8 1 Oise Gall (center cell) 3 1 2 1 0 1 0 0 1 1 1 1 1 
9 I Petiole Gall 3 1 2 0 0 1 0 1 1 0 2 1 1 

10 Glabrous Bud Gall 2 1 \ 1 0 0 1 0 1 1 1 2 1 1 

11 \ Hairy Bud Gall 2 I 1 1 0 0 1 0 1 1 ? 2 1 1 

12 \ Twig Gall 2 1 1 0 0 1 0 1 1 ? 2 1 1 

13 \ Tetragonocephala 1 I 0 I 0 0 1 0 1 1 0 1 0 0 0 

1 4 \ Celtisaspis ' 0 I 0 I 0 0 I 2 I 0 1 I 1 0 I 1 0 
I 

0 1 

\1 
:i 
.\ I 

\ 
-\, 

\ 
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Table 3-1 (cont.). 

Pachy4.ALL (alle0.2) 2 

1 Hairy Nipple Gall (center cell) 

2 Hairy Nipple Gall (side cell) 

3 Glabrous Nipple Gall (center ce 

4 Glabrous Nipple Gall (side cell 

5 Star Gall (center cell) 

6 Blister Gall (center cell) MD 

7 Blister Gall (center cell) TX 

8 Disc Gall (center cell) 

9 Petiole Gall 

10 G\abrous Bud Gall 

11 Hairy Bud Gall 

12 Twig Gall 

13 Tetragonocephala 

14 Celtisaspis 

Pachy4.ALL (alle0.2) 3 

1 Hairy Nipple Gall (center cell) 

2 Hairy Nipple Gall (side cell) 

3 Glabrous Nipple Gall (center ce 

4 Glabrous Nipple Gall (side cell 

5 Star Gall (center cell) 

6 Blister Gall (center cell) MD 

7 Blister Gall (center cell) TX 

8 Disc Gall (center cell) 

9 Petiole Gall 

1 0 Glabrous Bud Gall 

11 Hairy Bud Gall 

12 Twig Gall 

13 Tetragonocephala 

14 Celtisaspis 

14 15 

1 0 

1 0 

1 0 

1 0 

1 0 

0 0 

0 0 

1 0 

1 1 

1 0 

1 0 

1 0 

0 0 

0 0 

27 28 

2 0 

2 0 

2 0 

2 0 

2 0 

0 0 

0 0 

2 0 

0 0 

0 1 

0 1 

1 1 

0 0 

0 0 

' ' 16 17 18 19 

0 1 1 1 

1 1 1 1 

0 1 1 1 

1 1 1 1 

0 0 0 1 

0 1 0 1 

0 1 0 1 

0 1 1 1 

0 0 1 1 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 0 

0 0 0 0 

29 30 31 32 

1 1 0 0 

1 1 0 0 

1 1 0 0 

1 1 0 0 

1 1 0 0 

1 1 0 0 

1 1 0 0 

1 1 0 0 

1 1 1 1 

1 1 1 0 

1 1 1 0 

1 1 1 1 

0 0 - -

I 0 0 - I 

20 21 22 23 24 25 26 

0 0 0 0 0 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 2 

0 0 1 0 1 1 2 

0 0 1 0 1 1 2 
0 0 1 0 1 1 2 

1 1 0 1 0 0 0 

1 1 0 1 2 0 0 

I 33 34 I 35 I 36 37 I 38 I 39 

PGM PGI GPCH /vE FUM PE Pl 

0 D/ F C C D D 8 /C 

0 F C C D/ F D 8 / C 

0 F C C D D C 

0 F C C 0 / F D C 

0 F C C D D C 

0 0/F C C D D C 

0 D/F C C D D C 

0 D/F C C D D 8 / C 

0 J K F A E/G 8 /C 

1 J/K J G J/K/Q C E 

1 J/K J G Q C E 
0 K H D H C F 

0 B J / Q C B F Q 
0 I L 

I 
F C I C I F G 
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Table 3-1 (cont.). 

Pachy4.ALL (alle0.2) 4 40 41 
RP TPI 

1 Hairy Nipple Gall (center cell) B B 

2 Hairy Nipple Gall (side cell) B B 

3 Glabrous Nipple Gall (center ce B B 

4 Glabrous Nipp.le Gall (side cell B B 

5 Star Gall (center cell) B B 

6 Blister Gall (center cell) MD B B 

7 Blister Gall (center cell) TX B B 

8 Disc Gall (center cell) B B 

9 Petiole Gall B D 

1 0 Glabrous Bud Gall B B/E 

1 1 Hairy Bud Gall B E 

12 Twig Gall B C 

13 T etragonocephala B B 

14 1 Celtisaspis \ A I B 

Pachy4.ALL (al\e0.2) 5 1 53 I 
ovioosi 

1 Hairy Nipple Gall (center cell) 1 

2 Hairy Nipple Gall (side cell) 1 

3 Glabrous Nipple Gall (center ce 1 

4 Glabrous Nipple Gall (side eel\ 1 

5 Star Gall (center eel\) 1 

6 Blister Gall (center cell) MD 1 

7 Blister Gal\ (center eel\) TX 1 

8 Disc Gall (center cell) 1 

9 Petiole Gall 0 

10 Glabrous Bud Gall 2 

1 1 Hairy Bud Gall 2 

12 Twig Gall 2 

13 Tetragonocephala ? 

14 1 Celtisaspis I ? 

I 42 
I 

43 
G3PDH IDH1 

B D/ E 

B D/ E 

B E 

B E 

B CID/E 

B D 

B D 

B E 

B D 

B E 

B E 

B C/F 

B F 

I A I A/B 

I 
44 45 46 47 48 49 50 51 52 

IDH2 MDH1 MDH2 6PGD l.DH M-KAR F-KAm voltine overwi 

D D C D D 5 6 1 2 

D D/ F C D D 5 6 1 2 

D D C D D 5 6 1 2 

D D C D D ? ? 1 2 

D BID C D D ? ? 1 2 

D BID C D D 5 6 1 2 

D D C D D ? ? 1 2 

D D C D D ? ? 1 2 

G D/Q C B A 3 4 1 1 

G D C H D 2 2 1 1 

G D C H D ? ? 1 1 

G H C C D 5 6 1 1 

B G A A/B D 5 6 2 ? 
A G I A I G A/B ? I ? 1 / 2 0 
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Table 3-2. Character matrix for all evidences: morphological characters (1-33); allozyme data (34-130); 
karyotype (131-132); and life history (133-135) coded from Table 1-6. Each allele is treated as single 
character. 

Pachy4.ALL (s.allele) 1 
I I 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Hairy Nipple Gall (center cell) 3 1 2 1 0 1 0 0 1 1 1 1 1 

2 Hairy Nipple Gall (side cell) 3 1 2 1 0 1 0 0 1 1 1 1 1 

3 Glabrous Nipple Gall (center ce 3 1 2 1 0 1 0 0 1 1 1 1 1 

4 Glabrous Nipple Gall (side cell 3 1 2 1 0 1 0 0 1 1 1 1 1 

5 Star Gall (center cell) 3 1 2 1 0 1 0 0 1 1 1 1 1 

6 Blister Gall (center cell) MD 3 1 2 1 0 1 0 0 1 1 1 1 1 

7 Blister Gall (center cell) TX 3 1 2 1 0 1 0 0 1 1 1 1 1 

8 Disc Gall (center cell) 3 1 2 1 0 1 0 0 1 1 1 1 1 

9 Petiole Gall 3 1 2 0 0 1 0 1 1 0 2 1 1 

10 Glabrous Bud Gall 2 1 1 0 0 1 0 1 1 1 2 1 1 

11 Hairy Bud Gall 2 1 1 0 0 1 0 1 1 ? 2 1 1 

12 Twig Gall 2 1 1 0 0 1 0 1 1 ? 2 1 1 

13 Tetrogonocephala 1 0 0 0 1 0 1 1 0 0 0 0 0 

1 4 \ Cel\isaspis \ 0 I 0 I 0 0 2 0 I 1 I 1 \ 0 0 I 0 I 0 1 

p achy4.ALL (s.allele) 2 1 15 16 I 17 18 ' 19 ' 20 21 22 23 24 25 26 27 

1 \ Hairy Nipple Gall (center cell) 0 I 0 1 1 1 0 0 0 0 0 1 1 2 

2 \ Hairy Nipple Gall (side cell) 0 I 1 I 1 \ 1 1 0 0 0 0 0 1 1 2 

3 \ G\abrous Nipple Gall (center ce 0 I 0 I 1 I 1 \ 1 0 0 0 0 0 1 1 2 

4 \ Glabrous Nipple Gall (side cell 0 I 1 1 \ 1 l 1 0 0 0 0 0 1 1 2 

5 \ Star Gall (center cell) 0 0 0 I 0 1 0 0 0 0 0 1 1 2 

6 Blister Gall (center cell) MD 0 0 1 0 1 0 0 0 0 0 1 1 0 

7 Blister Gall (center cell) TX 0 0 1 0 1 0 0 0 0 0 1 1 0 

8 Disc Gall (center cell) 0 0 1 1 1 0 0 0 0 0 1 1 2 

9 Petiole Gall 1 0 0 1 1 0 0 0 0 1 1 2 0 

10 G\abrous Bud Gall 0 0 0 0 1 0 0 1 0 1 1 2 0 

11 Hairy Bud Gall 0 0 0 0 1 0 0 1 0 1 1 2 0 

12 Twig Gall 0 0 0 0 1 0 0 1 0 1 1 2 1 

13 Tetrogonocephala 0 0 0 0 0 1 1 0 1 0 0 0 0 

14 \ Celtisaspis I 0 \ 0 \ 0 0 
I 

0 1 1 0 1 2 0 0 0 

14 

1 

1 

1 

1 

1 

0 

0 

1 

1 

1 

1 

1 

0 

0 

28 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 
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Table 3-2 (cont.) 

Pachy4.ALL (s.allele) 3 

1 Hairy Nipple Gall (center cell) 

2 Hairy Nipple Gall (side cell) 

3 Glabrous Nipple Gall (center ce 

4 Glabrous Nipple Gall (side cell 

5 Star Gall (center cell) 

6 Blister Gall (center cell) MD 

7 Blister Gall (center cell) TX 

8 Disc Gall (center cell) 

9 Petiole Gall 

10 Glabrous Bud Gall 

11 Hairy Bud Gall 

12 Twig Gall 

13 Tetrogonocephala 

14 Celtisaspis 

Pachy4.ALL {s.allele) 4 

1 Hairy Nipple Gall (center cell) 

2 Hairy Nipple Gall (side cell) 

3 Glabrous Nipple Gall (center ce 

4 Glabrous Nipple Gall (side cell 

5 Star Gall (center cell) 

6 Blister Gall (center cell) MD 

7 Blister Gall (center cell) TX 

8 Disc Gall (center cell) 

9 Petiole Gall 

1 0 Glabrous Bud Gall 

11 Hairy Bud Gall 

12 Twig Gall 

1 3 Tetrogonocephala 

1-i Celtisaspis 

29 30 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

0 0 

0 0 

43 44 
1-PGM J-PGM 

0 0 

1 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 1 

0 1 

0 1 

0 0 

0 0 

0 0 

31 32 33 34 

A-PGM 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
1 1 0 0 

1 0 1 0 

1 0 1 0 

1 1 0 0 
. 0 1 

0 0 

45 46 47 48 
K-PGM L-PGM C-PGI E-PGI 

0 0 1 1 

0 0 1 0 

0 0 1 0 

0 0 1 0 

0 0 1 0 

0 0 1 0 

0 0 1 0 

0 0 1 0 

0 0 0 0 

1 0 0 0 

1 0 0 0 

1 0 0 0 

0 0 0 0 

0 1 0 0 

35 36 37 38 
A-PGM B-PGM C-PGM 0-PGM 

0 0 0 1 

0 0 0 0 

0 0 0 1 

0 0 0 0 

0 0 0 1 

0 0 0 1 

0 0 0 1 

0 0 0 1 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 1 1 0 

0 0 1 0 

49 50 51 52 
F-PGI G-PGI H-PGI 1-PGI 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 1 1 0 

0 0 0 1 

1 0 0 0 

39 40 

E-PGM F-PGM 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

53 54 
J-PGI K-PGI 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 1 

1 0 
1 0 
0 0 

1 0 

0 0 

41 

G-PGM 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

55 
L-PGI 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

42 

H-PGM 

1 

1 

1 

1 

0 

1 

1 

1 · 

0 

0 

0 

0 

0 

0 

56 
A-GPO! 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

\ 
! 
t 
~ 
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Table 3-2 (cont.) 

Pachy4.ALL (s.a//ele) 5 57 58 59 60 61 62 63 64 65 66 67 68 69 70 
8-GPDt C-GPDt 0-GPDt E-GPDI- F-GPDI- G-GPDI A-ME 8-ME C-ME D-ME E-ME F-ME G-ME H-ME 

1 Hairy Nipple Gall (center cell) 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

2 Hairy Nipple Gall (side cell) 0 1 0 0 0 0 0 0 0 1 1 1 0 0 

3 Glabrous Nipple Gall (center ce 1 1 0 0 0 0 1 0 0 1 0 0 0 0 

4 Glabrous Nipple Gall (side cell 0 1 0 0 0 0 0 0 0 1 0 1 0 0 

5 Star Gall (center cell) 0 1 0 0 0 0 0 0 0 1 0 1 0 0 

6 Blister Gall (center cell) MD 0 1 0 0 0 0 1 0 0 1 0 0 0 0 

7 Blister Gall (center cell) TX 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

8 Disc Gall (center cell) 0 1 0 0 0 0 0 0 0 1 0 0 0 0 

9 Petiole Gall 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

10 1 Glabrous Bud Gall 0 0 0 0 0 1 0 0 0 0 0 0 1 0 

11 \ Hairy Bud Gall 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

1 2 \ Twig Gall 0 0 1 0 0 0 0 0 0 0 0 0 0 1 

1 3 \ Tetrogonocephala 0 I 1 0 I 0 0 0 0 1 0 0 0 0 0 0 

1 4 \ Celtisaspis \ 0 I 1 I 0 I 0 \ 0 \ 0 0 I 0 1 I 0 
I 0 I 0 0 I 0 

Pachy4.ALL (s.al\e\e) 6 1 I 
72 I 73 1 74 i 75 I I 

83 84 71 76 77 78 79 80 81 82 
I-ME J-M E K-ME A-FUM B-FUM C-FUM D-FUM E-FUM F-FUM G-FUM H-FUM B-PEP· C-PEP· E-PEP1 

1 \ Hairy Nipple Gall (center cell) 0 0 0 0 0 0 1 0 0 0 0 1 1 0 
2 \ Hairy Nipple Gall (side cell) ' 0 \ 0 I 0 I 0 I 0 0 I 1 I 0 I 1 0 0 1 1 1 
3 \ Glabrous Nipple Gall (center ce 1 0 I 0 \ 0 I 0 0 0 1 0 0 0 0 1 1 1 
4 Glabrous Nipple Gall (side cell 0 0 0 0 0 0 1 0 0 0 0 1 1 0 
5 Star Gall (center cell) 0 0 0 0 0 0 1 0 1 0 0 1 1 0 
6 Blister Gall (center cell) MD 0 0 0 0 0 0 1 0 1 0 0 0 1 0 
7 Blister Gall (center cell) TX 0 0 0 0 0 0 1 0 1 0 0 0 1 0 
8 Disc Gall (center cell) 0 0 0 0 0 0 1 0 0 0 0 1 1 0 
9 Petiole Gall 0 0 0 0 0 0 1 1 1 1 0 1 1 0 
10 Glabrous Bud Gall 1 1 1 0 0 1 0 0 0 0 0 0 0 1 
11 Hairy Bud Gall 1 1 1 0 0 1 0 0 0 0 0 0 0 1 
12 Twig Gall 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
13 Tetrogonocephala 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
14 Celtisaspis 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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Table 3-2 (cont.) 

Pachy4.ALL (s.allele) 7 85 86 87 88 89 90 91 92 93 94 95 96 97 98 
F-PEP1 G-PEP· H-PEP· I-PEP1 A-FOP B-FDP B-TPI C-TPI 0-TPI E-TPI A-G3Df B-G3Df A-IDH1 B-IDH1 

1 Hairy Nipple Gall (center cell) 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

2 Hairy Nipple Gall (side cell) 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

3 Glabrous Nipple Gall (center ce 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

4 Glabrous Nipple Gall (side cell 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

5 Star Gall (center cell) 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

6 Blister Gall (center cell) MD 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

7 Blister Gall (center cell) TX 0 0 0 0 0 1 1 0 0 0 0 1 0 0 

8 Disc Gall (center eel\) 1 0 0 0 0 1 1 0 0 0 0 1 0 0 

9 Petiole Gal\ 0 0 0 0 0 1 0 0 1 0 0 1 0 0 

10 Glabrous Bud Gall 0 0 0 0 0 1 1 0 0 1 0 1 0 0 

11 Hairy Bud Gal\ 0 0 0 0 0 1 0 0 0 1 0 1 0 0 

12 Twig Gall 1 0 0 0 0 1 0 1 0 0 0 1 0 0 

13 Tetrogonocephala 0 0 0 1 0 1 1 0 0 0 0 1 0 0 

1 4 \ Celtisaspis 
I 

0 I 1 I 1 I 0 1 0 I 1 0 0 I 0 I 1 0 1 1 

Pachy4.ALL (s.a\\ele) 8 1 99 1 100 
I I 

107 I 101 102 103 104 105 106 108 1 09 110 111 112 
C-IDH1 D -lDH1 E -lDH1 F -lDH1 A-IDH, B -IDH2 D -IDH2 G-IDH2 A-MOH B-MDH D-MDH E-MDH F-MDH G-MDH 

1 I Hairy Nipple Gall (center eel\) 0 1 1 0 0 0 1 0 0 1 1 0 0 0 
2 Hairy Nipple Gal\ (side eel\) 0 1 1 0 0 0 1 0 0 0 1 1 1 0 
3 Glabrous Nipple Ga\\ (center ce 0 1 1 0 0 0 1 0 1 1 1 0 0 0 
4 Glabrous Nipple Ga\\ (side eel\ 0 0 1 0 0 0 1 0 0 1 1 1 1 1 
5 Star Ga\\ (center eel\) 1 1 1 1 0 0 1 0 1 1 1 0 0 0 
6 Blister Ga\\ (center eel\) MD 0 1 0 0 0 0 1 0 0 1 1 0 0 0 
7 Blister Gal\ (center eel\) TX 0 1 0 0 0 0 1 0 0 1 1 0 1 0 
8 Disc Gal\ (center eel\) 0 1 1 1 0 0 1 0 0 1 1 0 1 0 
9 Petiole Gall 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
10 Glabrous Bud Gal\ 0 0 1 0 0 0 0 1 0 1 1 0 0 0 
11 Hairy Bud Gal\ 0 0 1 0 0 0 0 1 0 0 1 0 0 0 
12 Twig Gall 1 0 0 1 0 0 0 1 0 0 1 0 0 0 
13 Tetrogonocephala 0 0 0 1 0 1 0 0 0 0 0 0 0 1 
14 Celtisaspis 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
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Table 3-2 (cont.) 

Pachy4.ALL (s.alle/e) g 113 114 115 116 117 11 8 119 120 121 122 

H·MOH /-MOH · A-MOH 8-MOH A·6PGI 8-6PG! C-6PG! 0-6PG! E-6PG[ F·6PGC 

1 Hairy Nipple Gall (center cell) 0 0 0 1 0 0 0 1 0 1 

2 Hairy Nipple Gall (side cell) 0 0 0 1 0 0 0 1 0 0 

3 Glabrous Nipple Gall (center ce 0 0 0 1 0 0 0 1 0 0 

4 Glabrous Nipple Gall (side cell 0 0 0 1 0 0 0 1 1 1 

5 Star Gall (center cell) 0 0 0 1 0 0 0 1 0 1 

6 Blister Gal\ (center eel\) MD 0 0 0 1 0 0 0 1 0 1 

7 Blister Gal\ (center cell) TX 0 0 0 1 0 0 0 1 0 1 

8 Disc Gal\ (center eel\) 0 0 0 1 0 0 0 1 0 0 

9 Petiole Gal\ 0 1 0 1 1 1 0 1 0 0 

1 O \ Gtabrous Buel Gall 0 0 0 1 0 0 0 0 0 0 

11 \ \--\airy Bud Gall 0 0 0 1 0 0 0 0 0 0 

1 2 \ "Twig Gall 1 0 0 1 0 0 1 0 0 0 

13 \ 1etrogonocephala 0 0 1 0 1 1 1 0 0 0 

1 4 \ Celtisaspis \ 0 I 0 I 1 I 0 I 0 0 I 0 I 0 I 0 I 0 

?achy4.ALL ts.allele) 10 I 121 I 12s I 12s I 130 I 131 I 132 I 133 I 134 I 13s 
C-LD\--1 \D-LD\--1 \E-LD\--1 \F-LD\--1 \m-kan\f-karv,\voltine o verwi ovioosi 

1 \ \--\airy Nipple Ga\\ (center ce\\) \ 0 I 1 \ 1 \ 0 I 5 I 6 \ 1 2 1 
2 I \--\airy Nipple Ga\\ (side ce\\) ' 1 I 1 0 0 \ 5 6 1 2 1 
3 G\abrous Nipple Ga\\ (center ce 0 1 1 0 5 6 1 2 1 
4 G\abrous Nipple Ga\\ (side eel\ 1 1 0 0 ? ? 1 2 1 
5 Star Ga\\ (center eel\) 0 1 0 1 ? ? 1 2 1 
6 Blister Ga\\ (center cell) MD 1 1 0 1 5 6 1 2 1 
7 Blister Gall (center eel\) "TX 0 1 1 1 ? ? 1 2 1 

8 Disc Gal\ (center cell) 0 1 0 0 ? ? 1 2 1 

9 Petiole Ga\\ 0 0 0 0 3 4 1 1 0 
10 G\abrous Bud Gall 0 1 0 0 2 2 1 1 2 
11 Hairy Bud Ga\\ 0 1 0 0 ? ? 1 1 2 

12 Twig Gall 0 1 0 0 5 6 1 1 2 

13 1 etrogonocephala 0 1 0 1 5 6 2 ? ? 

1 4 Celtisaspis 0 0 0 0 ? ? 1 / 2 0 ? 

123 124 
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Tab1e3_3 L' 
• 

1
st of morphological characters used for Pachypsylla phylogenetic study 

I. ADULT 

l-IEAD 
1. 

Surface t . 
0 exture of vertex [seen from SEM (Fig. 3-8)]: 
· rough surface without obvious pattern, with scattered hairs, e.g. 

C~!tisaspis, 

1. With small shallow bumps like fish scales, with scattered hairs, e.g. 
T~tragonocephala flava, 2

· With shallow wrinkles and some scattered short setae. e.g. Pachypsylla 
bud galler, 

3
· densely and evenly covered with deep wrinkles and short setae, e.g. 

Pachypsylla leaf and petiole gallers. 
2

' ~etween vertex and gena [seen from dry specimens]: 
· gena conical, not forming a flat plane vertical to body, gap between 

frons and vertex not deep, . 
1. frontal part of gena very flat, vertical to the body, formrng a grove 

between vertex and gena. 
3

· gurfac~ texture of genae [seen from SEM] (Fig. 3.-8): 
l.· a little r.ough, e.g. Tetragonocephala, Celtisas_p_zs, 

2 smooth m frontal portion and rough on the ~1de, e.g. ~ud gaJJer, 
· bumpy, with deep wrinkles, e.g. leaf and petwle gallers. 

4. L 
0 ength of setae on genae: 

1 · ~e~rly homogeneous, . . . 
. apical end of genae with group of s1gmficantly longer setae. 

5. Le 
0 ngth of genae + length of vertex: 
· < 1/2 

6. 

7. 

1. ~ 1 

OAntenna length + head width: 
· > 1.2 

1. ~ 1.0 

Thick · 1 
0 ness of antenna, distal vs. prox.1ma 'th 'milar width between 
· flagellum of antenna within each segment wi si 

distal and proximal end.s, . 
1 

end and wider distal end, 
l. flagellum of antenna with narrow proxima 

esp. seg. VI to VIII. 
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Tl-IoRAx 
8. Surface f h . 

0 ° t orac1c dorsum: 
· cover d · h 

1 1 
e Wit conspicuous, short stiff pubescence 

· g abro h. · ' us, s mmg, often with sparse minute pubescence. 

9. Pterostigma 

O. indistinct 
1. distinct. ' 

10. 
Bind-cox 

11. 

12. 

out . ae, ventral crescentic denticulate patch of nearly crescent shape on 

0 
er _side above meracanthas [seen under SEM (Fig. 3-ll)]: 

1
. With some bumps, not pointed 
. full . ' With sharply pointed bird-beak-structure. 

Fan-shaped . . (F' area m crescent-shaped patch on hmd-coxa, [seen under SEM 
ig. 3-ll)]: 

O. no ob · 
1 . v10us groves and ridges. 

2 · w~ th a few ridges parallel to each other, 
· With obvious groves and ridges in fan-like arrangement. 

teracanthus, length + width: 
· > 2.0 

I. l.O - 1.5 

13. T 
0 

wo black claws on the basal segment of metatarsus 
· absent 

1· presen~. 

~LE GENITALIA 
· Male · · 1 1 · 

0 
Proct1ger bipartite, setae on the basal segment m at:ra view: 

· sparsely distributed on apical caudal area, e.g. Leaf bhster galler, and 
outgroups 

1. apical caudal area and caudal margin densely covered. 

15
· Setae · · 

0 
' ~p1cal half of basal segment of male proct1g~r: 

· m_amly on upper caudal side, leaving sma11 port10n of lower frontal part 
Without setae 

l. evenly distrib~ted. 

16. 
~ale forceps, in lateral view: . , , 

· gradually tapering at apically, lateral margms convex, not parallel. 
1. abruptly reduced subapically, lateral margins parallel. 

147 



I 
I 

I 
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17. i\ -r 
lVlale aedea 
0. round dgus, apex of head of the second segment: 
1 h e , blunt. 
· ooked. 

18. 
Second se . 
0. formi;ment of male aedeagus, base of head at joint to basal rod: 
1. · . . g a sharp angle 

Joirung smoothly. ' 
F'Ei\fA 
19. p L~ GENITALIA 

aired thumb 1 'k 
i-la): - 1 e processes, lateral proximal side of female proctiger (Fig. 

1 · absent, 
· Present. 

20. 
Shape of£ 
0. Wid emale dorsal valve (proctiger): 
1. sho~ :t base, pointed toward the end, triangular shape in lateral vi.ew, 

2l. ' ounded down, broad at caudal end, pointed toward ventral side. 

Setae on£ 
0. s emale proctiger 
1 etae of h . 
. long th. omogeneous size evenly distributed, 

Tetro 
O

m setae densely covering apex, shorter setae elsewhere, e.g. 
23. '!} nocepha!a, Ce!tisaspis. 

Peznale circ 
0. sing) umanal ring, rows of pores 
1 e row 
· do b ' u le row 

lI · 
·~PfI( 5th instar) 

22 
. Dorsal su 

0 1 rface of head· 
· acki . · 

1. 'With ng _consp1cuous chitinized areas. 
24. Pa1red rectangular chitinized bands. 

Base of n 
0. ve Ymphal antenna· . 

s ry close to margi~ of head the antenna extending beyond first 
1. n:grnent outside margin of head. · 'd 

ar mar . d f econd segment rns1 e the h gm, the entire first segment an part o s 
2. f' ead margin 

irst and ' . 
25. second segments inside margm . 

l'roch o anter: 
1 · absent, 
· Present. 
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26. Pairs of ventral plates on abdomen anterior to caudal plate: 
0. no plates, 
1. only one pair near the caudal plate, 
2. three pairs, each on a different segment. 

27. Abdominal median dorsal plate near caudal plate: 
0. absent, 
1. present, one small irregular plate, e.g. twig galler, 
2. paired small semi-circular plates, e.g. most leaf gallers. 

28. Dorsal margin of caudal plate in conjunction with abdomen: 
0. a straight line without median indentation, 
1. a straight line with median indentation, i.e. a small middle area on the 

margin not chitinized. 

29. Caudal plate in ventral view: 
0. a median plate flanked by pair of ventral plates, 
1. entire, except for segmentation, without separate ventra l plate. 

30. Pointed chitinized caudal spurs: 
0. absent, 
1. present. 

31. Central apical spur on pointed chitinized caudal spurs (if present): 
0. sharp pointed, 
1. blunt and/or notched. 

32. Apical caudal spurs on strongly chitinized caudal plates: 
0. present in apical two segments only, 
1. present in alJ three segments. 

33. Abdominal caudal spurs: 
0. absent, 
1. present. 
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~~~I~ 4-l . Classification of Spondyliaspidinae, showing differences between systems of White & 
indicatson and Burckhardt. Asterisks indicate taxa included in my phylogenetic analyses. Underlining 

es taxa whose position has been especially controversial. 

~ITE & 
SPONDy HODKINSON (1985) 

Are _!-,lASPIDIDAE 
PUunae White & Hodkinson 

~* 

Euphaler · B 
E mae ecker-Migdisova 
~* 
Retroac · · H . 
? izzia eslop-Harnson 
.Pacfzyparia Longinova 

~* 
Co!p!zorina Capener* -* 

Pachyp Jr 
p sy inae Becker-Migdisov 

achypsy/la Riley* 
Tetrag onocephala Crawford* 
PachJps 11 . . Y a ;aponica Miya take * 

Spondy!" · · iaspidmae Schwartz 
A ustra/opsy/la Tuthill & Taylor 

Cardiaspina Carwford* 
Creiis Scott* 

Eucalyptolyma Froggatt 

G!"ca · ., sp1s Taylor* 
Hya/inaspis Taylor 

Lasiopsy/la Froggatt 

Spolldyfiaspis Signoret* 

APt.r , 
' V\LA RIDA E 
Ctenaryt · · 

a znmae White & Hodkinson 

er* 

Syl!ca · 
E 

1P1olyma Froggatt 
Url,i l lloco a Crawford 

BURCK.HARDT (1991) 

=Russelliana* (APHALAROIDINAE) 

( out of Spondyliaspidinae) 
( If ti " ) 

( " " ) 

( = Phyllolyma Walker) 

SPONDYLIASPIDINAE 
Pachypsyllini 

Pachypsylla* 
Tetragonocepha!a * 
Celtisaspis Yang & Li* 

Spondyliaspidini Schwartz 
Australopsylla 
Boreiogycaspis Moore 
Cardiaspina* 
Creiis* 
Dasypsylla Froggatt 
Eucalyptolyma Froggatt 
Eurhinocola Crawford 
Glycaspis Taylor* 
Hyalinaspis Taylor 
Kenmooreana Taylor 
Lasiopsylla Froggatt 
Phellopsy!!a Taylor* 
Phy!!olvma Walker* 
Platyobria Taylor 
Spondyliaspis Signoret* 

(to Spondyliaspidini Schwartz), including: 
Agelaeopsylla Taylor 
Anoeconeossa Taylor 
Blastopsylla Taylor 
C,yptoneossa Tay!or * 
Ctena,ytaina Ferns & Klvver 
Eriopsylla Frogga tt 
Leptospermonastes Taylor 
Syncarpiolyma Frogga tt 
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Table 4-2 L' 
Phylog · . 1st of characters used for Pacbypsyllini/Spondyliaspidinae 

enet1c study. 

t~DLT CHARACTERS. 
1. Vertex· th 1 . 

0 · e owest part of the lower margin, adJacent to gena: 
· near median ocellus 

1 ' · near antennal socket 
2 ' 
3 

· betw~en ocellus and antennal socket, 
· margm flat, equally low. 

2
· Angle between top margin of vertex and median carina: 

0. ~ 900 
1. > > 900. 

3. lrregul d . 
ar epress10ns or fovea on vertex: 

O. not obvious i' one obvious' depression, 

3 
· two apparent depressions, 
· three apparent depression. 

4. Genal cones: 

0. absent. 

i_' present, length < < 1/2 length of vertex, 
present, length about half as long as vertex, 

3· present, subequal to or longer than vertex in length. 

5. Shape of occipital foramen surrounded by the occipital sclerite, when 
Vertex · · ' 

pos1t10ned horizontally: 
O. basic shape dorsal margin straight (Fig. 4-2 a), 
1. similar to a' dorsal margin indented (Fig. 4-2 b ), . 
2· reverse tria~gular shape, ventral margin poninted (Fig. 4-2 c). 

6. l 
ength of antennae ..,.. width of head including eyes: 

O. l.71-20 
1. 1.11-1.69,' 
2. 1 ~ .0, 
3. < 0.7. 

7. 
AntennaI segment X length + segment I length: 

0. s 0.6 
1. 0.61 ~ 1 O 
2. > 1.0 .. ' 
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S. Antennal segment width, distal to proximal: 

1. Widen at distal end within each segment, especially on seg. VI to 
0. homogeneous, 

VIII. 

9· Rhinaria: 
0. absent from seg. V, 
1. present on seg. V. 

10. An teoccipital lobes, a usually narrow sclerite between eye and 

genae /vertex: 
0. present, obvious, 
1. highly reduced or absent. 

TBORAX 
11 Ed · ge of forewing apex: 

0. rounded 
1. pointed.' 

12· Forewing: 
0. not elongate with curvy veins not parallel, 
I. very elongate with veins straight and almost parallel: 

13. Pterostigma: 
O. present, obvious, 
1. absent or very reduced. 

14. Number of spines, thick black saltatorial spurs, at apex of metatibia: 

0. < 6 
' 1. ~ 6. 

15. M etatibial basal (genual) spine: 
0. present 
1. absent.' 

16. A pical spines on metatarsal segment I: 

0. present, 
1. absent. 

17. M eracanthus: 
0. prominent, 
1. absent. 
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MALEG 
18. Mal ENITALIA 

e proctiger: 

1 
b' ai:tite (seg. X and XI of abdomen fused) 0. unip · 

· 1part1te. ' 

19. Male par 
0 

_amere, lateral view: 
1 · d~stal end tapered, 
. distal end swollen. 

20. M ale para 
0 

mere, lateral protruding lobes: 
· absent 

1. present~ 

21. M ale para . 
0 

mere, a !me of marginal teeth at terminal end: 

· absent 
1. presen~. 

22. Shape of . o. 
1 

ternunal segment of aedeagus, lateral view: 
ong and narrow with a small bead, like a slender rod swollon at 

one end 
1 ' 
2

· ~wollen before middle without a slender rod-like part at the base, 

FE: · ramatically swollen at both ends. 

23~:,E GENITALIA 
ape off 1 
0 

. ema e dorsal valve (proctiger). lateral view: 

1

· wide at base, pointed toward the end, tiangu!ar, 
· wide at base till middle, at apical 1/3 narrow, sharply angled 

dorsally, 
2
· short, rounded down broad at caudal end, pointed toward vetral 

side. ' 

24. S etae on f o . ~male proctiger: 

1
: surular i~ size, evenly distributed, . uneven m size, a group of Jong setae ctorsomed1anly, others shorter 

and evenly distributed in rest area, 
2

· long thin setae densely covering the apex, some short setae 

dorsally. 

25. N umber of . I . o . rows of pores on female circumana area. 

. smgle 
1. doubl

1 

e. 
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26. Shape of f . 
0 

.e~ale circumanal ring 
· elliptical/ circular 

1. convoluted. ' 

~~· NYMPHS 
t-iEAD 
27. Number f 

0 
° nymphal antenna! segments: 

· 10 ' 
1. 9. 

28. Base of · very close to bead margin, only partia!l first basal segment cover by 
0 

nymphal antenna placement: 

1. 
2. 

head 
' partial second segment covered by head, 

both the first and second segments covered by head. 

TBORAX 
29 A . · p1cal 

0 
an~le of nymphal forewing-pad: . . 

1

· ~dJa~ent or exterior to the margin of the hmdwmg-pad, 

· mtenor to the hindwing-pad margin, 

30. Tr h oc anter: 

31. 

O. absent 
1. presen~. 

Arolium· 
0. 
1. 

triangular, 

32. N 

2. 
broad, semi-circular 
highly reduced or absent. 

Ymphal unguitractor, a central sclerotized rod within arolium: 

~- present, obvious, 
· absent or very reduced. 

~DO MEN 
. Ny mphal abdominal sclerites on dorsal surface: 

~- p~esent, obvious, . . . . 
· highly reduced or lacking distinct sclente. 

34. Nym h 

0 
P al abdominal apex: 

1 
· sm.oothly truncate, 
· pomted. 
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35. Sh a{{° of nymphal abdominal apex, if pointed: 

1 
· no special structure, 
· serrate 

2 . ' · with large medial 'teeth'. 

36. N 

P

{':'Ph_al abdominal segments produced laterally as rounded or 'tooth' like 

OJect1ons: 
0. absent 
1. presen~. 

37. La teral bulges on the abdomen, coincident with each apparent segment: 

0. absent 
1. prese;t. 

38· Position f . o anal operung: 
0. ventral 
1. most p~sterior point. 

39. Circum 1 . -ana pore nng (nymphs): 
O. present 
1. absent.' 

40. An~ pore field ( other than circum-anal ring): 

· absent 
1. presen't. 

4
1. Ar 1 · 'f t 

r~ngement of anal pores in field other than circum-ana nng, 
1 

presen : 

· entire or broken rings 
1 ' · small groups. 

42. Setal t 

0 
YP.e on nymphal head: 

1 
· simple setae only, 
· clavate setae 

2 . ' · cap1tate setae. 

43. S etal type, beside simple setae on dorsal area of nymphal abdomen: 

0 . ' 

1 
· simple setae only, 
· clavate setae 

2 . ' · cap1tate setae. 
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44. S 
etaI tYPe, beside simple setae, on ventral area of nymphal abdomen: 

0. simple setae only, 
1. lanceolate setae 
2. rod setae ' 
3. capitate s~tae. 

45. s 
etaI ~e, beside simple setae, on the margin of nymphal abdomen: 

O. simple setae only, 
l. Ianceolate setae 
2. ' secta setae 
3. capitate se;ae. 
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Table 4-3. Character matrix used in Spondyliaspidinae phylogenetic analyses based on morphological 
characters. 

spon4.data 1 1 2 3 4 5 6 I 7 8 9 1 0 11 12 13 14 

ve rtex ve r tex fovea Qenalc occipit, A L/HWI XII ant. rhinaric an teocc w inQ a1 w inQsh, pt erost s altato1 

1 Pachypsyl/a c-mam ma 2 0 1 2 1 2 0 1 0 1 0 0 0 1 

2 Pachypsylla c -vesicu/a 2 0 1 2 1 2 0 1 0 1 0 0 0 1 

3 Pachypsylla venusta 2 0 1 2 1 2 0 1 0 1 0 0 0 1 

4 Pachypsylla c-gemma 2 0 1 2 0 2 1 1 0 1 0 0 0 1 

5 Tetragonocephala flava 3 0 1 2 0 1 1 0 0 1 0 0 0 1 

6 Celtisaspis bei jingana 3 0 1 3 0 1 0 0 0 1 0 0 0 1 

7 Phellopsylla spp . 1 0 3 1 1 1 0 0 0 0 1 0 0 1 

8 Phyllolyma rufa 1 0 3 1 1 3 0 1 0 0 1 0 0 0 

9 Phyllolyma sp 1 0 3 1 1 3 1 1 0 0 1 0 1 0 
1 o I Creiis tecta 2 0 1 2 1 0 1 0 0 0 0 1 0 1 

11 \ Creiis \ongipennis 2 I 0 1 2 1 0 1 0 0 0 0 1 0 1 

1 2 \ Spondyliaspis p\icatu\oid 2 I 0 \ 1 2 1 1 2 0 0 0 0 1 0 1 

1 3 \ Cardiaspina a\bitexturata 3 I 0 I 1 2 1 2 1 0 0 0 0 1 0 1 

1 4 \ Cardiaspina vittaformis 3 I 0 I 1 I 2 1 2 1 0 0 0 0 1 0 1 

1 5 \ Glycaspis bai\eyi 2 I 0 I 1 I 3 2 0 1 0 1 0 1 1 0 0 

1 6 \ G\ycaspis aggregata 2 I 0 I 1 I 3 I 2 0 1 0 1 0 1 1 0 0 

1 7 \ Glycaspis plani\ecta 2 I 0 I 1 I 3 I 2 0 1 0 1 0 1 1 0 0 

1 8 \ Ctenarytaina eucalypti 2 I 0 I 1 I 2 I 1 2 2 1 0 0 0 1 0 0 

1 9 \ Co\ophorina spn 0 I 0 I 0 I 2 I 0 I 2 2 0 0 1 0 0 0 0 

2 O \ Euphalerus spA 0 I 0 I 1 I 2 I 0 I 1 2 0 0 1 0 0 0 0 

2 1 \ Euphalerus nidifix 0 I 0 I 1 I 2 2 I 1 2 0 0 0 0 0 0 0 

2 2 \ Russe\\iana adesmiae 0 I 1 0 2 0 1 1 0 0 1 0 0 0 0 

2 3 \ Russe\\iana fabiahae 0 1 0 2 0 1 1 0 0 1 0 0 0 1 

2 4 \ Heteropsyl\a texana 0 0 0 0 2 0 2 0 0 1 0 0 0 0 

2 5 Acizzia uncatoides 0 1 2 2 2 1 0 0 0 1 0 0 0 0 

26 Trigonon longicomis 0 1 I 2 0 2 0 2 0 0 1 0 0 0 0 

27 1 Psylla a\ni 

' 
0 I 1 I 1 I 2 2 I 0 I 1 0 I 0 1 0 I 0 0 0 
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Table 4-3 (cont.). 

spon4.data 2 15 1 6 17 18 19 20 21 22 23 24 25 26 27 28 
oen ual metata1 me race male c pa ram1 pa ram1,pa ram1 ae deaq, le male se tae circum, cir cum, an t sea an t ola 

1 Pachypsylla c-mamma 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

2 Pachypsylla c -vesicula 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

3 Pachypsylla venusta 1 0 0 1 0 0 0 0 0 0 0 0 0 1 

4 Pachypsylla c-gemma 1 0 0 1 0 0 0 0 0 0 0 0 0 1 

5 Tetragonocephala !lava 1 1 0 1 0 0 0 0 1 2 1 0 0 0 

6 Celtisaspis beijingana 1 0 0 1 0 0 0 0 1 2 1 0 0 2 
7 Phe\\opsy\\a spp. 1 0 1 0 0 0 0 0 0 0 0 0 1 0 

8 \ Phy\\olyrna ruta 1 0 1 0 0 0 0 ? ? ? ? ? ? ? 
9 I Phy\\olyrna sp 1 I 0 \ ? 0 0 0 0 0 ? ? ? ? 1 0 
1 o \ Creiis tecta 0 I 0 I 1 1 1 0 1 1 ? ? ? ? ? ? 
11 \ Creiis \ongipennis 0 I 0 I 1 I 1 1 0 1 1 0 1 1 0 0 0 

1 2 I Spondy\iaspis p\icatuloid 0 I 0 I 1 I 1 ? ? ? ? 0 1 1 1 0 0 

1 3 \ Cardiaspina albitexturata 0 I 0 I 1 
I 

1 1 0 1 0 0 0 1 0 0 0 

1 4 \ Cardiaspina vittaforrnis 0 I 0 I 1 1 1 0 1 0 ? ? ? ? 0 0 

1 s I Glycaspis bai\eyi 0 I 0 I 1 1 1 1 0 1 0 0 1 2 0 0 
1 6 I G\ycaspis aggregata 0 I 0 I 1 1 1 1 0 1 0 0 1 2 ? ? 
1 7 \ G\ycaspis planitecta 0 I 0 I 1 1 1 0 0 1 ? ? ? ? ? ? 
1 8 \ Ctenarytaina eucalypti 1 1 I 0 1 0 0 0 0 0 0 1 0 0 0 
1 9 \ Colophorina spn 1 0 0 0 0 0 0 0 ? ? ? ? 1 0 
2 O I Eupha\erus spA 1 I 0 0 0 0 0 0 0 0 1 1 0 1 1 
2 1 I Eupha\erus niditix 0 

I 
0 0 0 0 0 0 0 0 1 1 0 1 2 

22 I Russelliana adesrniae 0 1 0 0 1 0 0 1 0 1 0 0 ? ? 
23 Russelliana tabiahae 0 I 1 0 0 1 0 0 1 0 1 0 0 ? ? 
24 Heteropsy\\a texana 0 I 0 0 0 0 1 0 2 0 0 1 0 1 0 
25 Acizzia uncatoides 0 

. 
0 0 0 0 1 0 2 0 1 1 0 1 1 

26 Trigonon \ongicornis 0 0 0 0 0 0 0 ? 0 1 1 0 ? ? 
27 \ Psy\\a a\ni I 0 I 0 \ 0 0 1 \ I 

0 I 1 I 0 0 1 1 0 1 1 
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Table 4-3 (cont.) . 

spon4.data 3 

1 Pachypsylla c-mamma 

2 Pachypsylla c -vesicula 

3 Pachypsylla venusta 

4 Pachypsylla c-gemma 

5 Tetragonocephala !lava 

6 Celtisaspis beijingana 

7 Phel\opsylla spp . 

8 Phyllolym a rufa 

9 Phyllolyma sp 

10 Creiis tecta 

11 Creiis longipennis 

12 Spondyliaspis plicatuloid 

13 Cardiaspina albitexturata 

14 Cardiasp ina vittaformis 

1 5 Glycaspis bai\eyi 

1 6 Glycaspis aggregata 

17 Glycaspis plani tecta 

18 Ctenaryta ina eucalypti 

19 Colophorina spn 

20 Euphalerus spA 

21 Euphalerus nidifix 

22 Russelliana adesmiae 

23 Russell iana fabiahae 

24 Heteropsylla texana 

25 Acizzia uncatoides 

26 Trigonon longicornis 

27 Psylla alni 

29 I 30 

win-pa<I trocha1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 0 

? ? 

0 0 

? ? 

1 0 

0 0 

1 0 

1 0 

0 0 

? ? 

? ? 

0 0 

0 0 

0 0 

0 1 

? ? 

? ? 

0 0 

0 0 

? ? 

0 0 

31 32 I 33 
aroliun unQuit d dorsal 

2 1 I 1 

2 1 I 1 

2 1 I 1 

2 1 1 

2 1 1 

2 1 1 

2 1 0 

? ? ? 

2 1 0 

? ? ? 

2 1 0 

2 1 0 

2 1 0 

2 1 0 

2 1 0 

? ? ? 

? ? ? 

2 1 0 

0 0 0 

0 0 0 

0 0 0 

? ? ? 

? ? ? 

1 0 0 

1 0 0 

? ? ? 

1 0 0 

34 I 35 36 37 38 39 40 41 42 

abd spi pointed lat. prc abd lat anal op circum- anal pc anal pc head s, 

1 I 2 0 0 1 1 1 1 0 

1 2 0 0 1 1 1 1 0 

1 2 0 0 1 1 1 1 0 

1 2 0 0 I 1 1 1 1 0 

1 0 0 0 1 1 1 1 0 

1 0 0 0 1 1 1 1 0 

0 0 0 1 0 1 ? 0 

? ? ? ? ? ? ? ? ? 

1 0 0 0 1 0 1 1 0 

? ? ? ? ? ? ? ? ? 

1 0 1 1 1 1 1 1 0 -· 
1 0 0 0 1 1 0 0 

1 0 0 1 1 1 0 0 

1 0 0 1 I 0 1 0 0 

1 0 0 0 / 1 1 1 1 2 0 

? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 

0 0 0 1 0 1 1 0 

0 - 0 0 1 0 1 0 0 

0 - 0 0 1 0 1 0 0 

1 1 0 0 1 1 1 0 0 

? ? ? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 

0 0 0 0 0 0 - 1 

0 0 0 0 0 0 2 

? ? ? ? ? ? ? ? ? 

0 0 0 1 0 0 0 
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Table 4-3 (cont.). 

spon4.data 4 

1 Pachypsylla c-mamma 

2 Pachypsylla c -vesicula 

3 Pachypsylla venusta 

4 Pachypsyl!a c-gemma 

5 Tetragonocephala !lava 

6 Celtisaspis beijingana 

7 Phe\lopsylla spp . 

8 Phyllolyma rula 

9 Phy\lolyma sp 

10 Creiis tecta 

11 Creiis longipennis 

1 2 I Spondyliaspis plicatu\oid 

1 3 \ Cardiaspina albitexturata 

1 4 \ Cardiaspina vittatormis 

1 s \ Glycaspis baileyi 

1 6 I G\ycaspis aggrega\a 

1 7 I Glycaspis planitecta 

1 8 \ C\enary\aina eucalypti 

1 9 \ Colophorina spn 

2 o \ Euphalerus spA 

2 1 \ Euphalerus niditix 

2 2 \ Russelliana adesmiae 

2 3 \ Russe Iliana tabiahae 

2 4 \ Heteropsylla texana 

2 s \ Acizzia unca\oides 

26 \ Trigonon longicomis 

2 7 \ Psylla alni 
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Table 4-4. Summary of concealment types and character states scored for each taxa for the analyses of evolu tion of 
gaII / lerp formation of Spondyliaspidinae. 

Taxa Coding! Coding2 Coding3 Summarv of concealed biologv** 
Pachypsylla celtidismamma 2 2 0 G 
Pachypsylla celtidivesicu la 2 2 0 G 

Pachypsylla venusta 2 2 0 G 
pachypsylla celtidisgemma 2 2 0 G 

Tetragonocephala flava 1 0 2 L 
Celtisaspis beijingana 1/ 2 1 2 L+G(P) or L 

Phellopsylla spp. 0 0 1 F (W) [under bark w/ floccuent cover] 
Phyllolyma rufa 1 0 2 L 

Phyllolyma sp. 1 0 2 L 
Creiis tecta 1 0 2 L 

Creiis longipennis 1 0 2 L 
Spondyliaspis plicatuloides 1 0 2 L 

Cardiaspina albitexturata 1 0 2 L 
Cardiaspina vittaformis 1 0 2 L 

Glycaspis baileyi 1 0 2 L 
Glycaspis aggregata 1 0 2 L 
Glycaspis planitecta 1 0 2 L 

Ctenarytaina eucalypti 0 0 1 F (W) 
Colophorina cassiae 0 0 1 F (W) [between pairs of unopene leaflets] 

Euphalerus sp. A ? ? ? unknown 
Euphalerus nidifex 1 0 2 L 

Russe lliana adesmiae 0 0 0 F 
Russelliana fabianae 0 0 0 F 
Heteropsylla texana 0 0 0 F 

Acizzia uncatoides 0 0 0 F 
Trigonon longi ? ? ? unknown 

Psylla alni 0 0 0 F 

. See text for the details . .. F = free-living; W = wax; L= lerp; P= partial gall (not enclosed); G = enclosed gall; ? = biology unknown; W within 
parentheses means associate habits with F; notes are enclosed in bracket. 

, 
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~, leaf galls leaf galls 
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r \T~ig !!:'" \p-1 ) \ u hairy 
Nipple gall 

~ Disc gall 

Fig.1-1. Diagrammatic profiles of gall types of hackberry psyllids, Pachypsylla, on 
host plant Ce/tis. There are four major groups according to galling position, i.e., the 
leaf-blade gall makers, the petiole gall makers, the bud gall makers, and the twig gall 
makers. Drawings in the box show five major types of leaf galls . 
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Figure 1-2. Distribution of hosts of the hackberry psyllids, Pachypsylla (after Little, 1971, 1976, 1977) 
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Figure 1-3. Map of United States showing sampling localities for Pachypsylla adults. 
Numbers of populations sampled from each state are indicated. 
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Figure 1-4. Map of United States showing sampling localities for Pachypsylla nymphs. 
Numbers of populations sampled from each state are indicated. 
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Figure 1-5. Forewing pattern variations of the major galling groups of 
Pachypsylla adults: (a) the petiole gall maker, P. venusta; (b) the leaf­
blade hairy nipple gall maker, P. celtidismamma; (c) the glabrous bud gall 
maker, P. celtidisgemma; (d) the hairy bud gall maker, P. pallida; (e) the 
twig gall maker, P. celtidisinteneris. (after Porter) 
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Figure 1-6. Life history of two types of leaf gall makers at National Agricultural 
Library (NAL) population in Beltsville, Maryland: (a) glabrous nipple gall 
maker; (b) star gall maker. 



(a) Leaf blister gall maker 
• 

(c) Leaf hairy nipple gall maker ( d) Side cell individual of leaf 
hairy nipple gall 
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(a) 
Wagner tree produced by rooting at midpoint of longest path 
Coefficient used: Rogers (1972) genetic distance 
w********************************************************** 

Di s tance from root 
. 00 .01 .02 .03 .04 .D5 .06 .06 .07 . 08 .09 
+----+----+----+----+--- -+- ---+----+----+----+----+--- -+--- -+----+----+----+- - - -+ ----+--- -+- ---+----+ 

Hairy Nipple Gall rn+c (CMt) 

~--- - -------- Glabrous Nipple Gall rn+c (NAL+BB) 

.-- ---------------- - - ---------- - --- Blister Gall m (CMt) 

Star Gall m (NAL+BB) 

.-------------- ----------------- Hairy Nipple Gall side (CMt) 

'--------------- Glabrous Nipple Gall side (NAL+BB) 
+- ---+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+- - --+----+----+----+ 
.00 .01 .02 .03 .04 .05 .06 .06 .07 . 08 .09 

(b) 
Cluster analysis using unweighted pair group method (UPGMA) 
Coefficient used: Rogers (1972) genetic distance 
*****************'************************************ 

Distance 
.20 .18 .16 .14 . 12 .10 .08 .06 .04 .02 .00 
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--- -+----+----+- -- -+----+ 

~----------- --- -- Hairy Nipple Gall m+c(CMt) 

Glabrous Nipple GAll rn+c (NAL+BB) 

'-------------------- Star Gall m (NAL +BB) 

'--- -------------------- Glabrous Nipple Gall side (NAL+BB) 

'---- -------------------- ---- Blister Gall m (CMt) 

'----------------------------- Hairy Nipple Gall side (CMt) 
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+- -- -+----+----+----+----+ 
.20 .18 .16 .14 .12 .10 .08 .06 .04 .02 .00 

Figure 2-1. Distance Wagner and UPGMA trees, based on Rogers' distance (15 loci), of eight populations of 
Pachypsylla leaf gall nymphs from different gall types and cell positions (m= monocell gall; c= center cell of multiple 
cell gall; side= side cell of multiple cell gall) . Populations are given in parentheses; acronyms follow Table 1-3. 
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Figure 2-2. Change of gall size through time betw 
individual destroyed) and control (center cell indivr~n ratll!ent (center cell 
was conducted at three different times during gall i·n·tu_a _undisturbed). Destruction 1 iat10n · (a) b th 
cell nymphs exposed, (b) center cell nymph enclosed b t .d 

O 

center and side 
(c) both center and side cell nymphs enclosed in galls ~i1 

e ce!l nymphs exposed, 
when destruction implemented; Time 2: two weeks after ti servtio_n time I : time 
after time 1; Time 4: fou r months after time I. Number off~- ·.Jime 3: two months 
total observed indi viduals until emergence is given at time 4~ ivi ual survived out of 
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Figure 2-3. Change of proportion of center and side cell females of hackberry 
leaf gall makers at Beltsville, Md, in the spring of 1993. Numbers in 
parentheses below each date indicate total number of individuals collected. 



(a) 

!!ft• 
3
-1. Female genitalia of: side cell individual of Pachypsylla hairy nipple 

(d) !a), s!3r gall maker(b), Tetragonocefhalajlava (c) and Ce//isaspis beijingana 
pr ' how mg rounded dorsal valve (DV) ID the latter two taxa, and thumb-like 

ocess (arrow) in the former two species. 
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Distance from root 
. 00 .06 .11 . 17 .22 .28 .33 .39 .44 . 50 .55 
+- - - -+-- - -+-- - -+-. - -+- -- -+- - - -+- - - -+- - - -+- - --+- - --+- - --+- - --+- - - -+- - - -+- -- -+-- - -+-- --+- - - -+- - . -+----+ 

dlstance \.Jagner tree 
Rogers' di stance 
tree length = 2.849 

Hairy Nipple Galler mono+center (CMt) 

Disc Ga l ler mono (GFV) 

Hairy Nipple Galler side {CMt) 

Glabrous Nipple Galler side {NAL+BB) 

Star Galler mono (MD) 

Blister Galler mono {CMtl 

Bli s ter Galler mono {GFV310) 

Blister Galler mono (OH+ND+ID) 

Blister Galler mono Cl (TX) 

Blister Galler mono C.r. (TX) 

Glabrous Nipple Galler mono+center {NAL+BB) 

Glabrous Nipple Galler mono {GFV) 

Petiole Galler(BFL) 

Petiole Galler {BB) 

Petiole Galler {AZ) 

Glabrous Bud Galler {LA) 

Glabrous Bud Galler {NAL+BB) 

Hairy Bud Galler {OK) 

G l abrous Bud Gall er {VA) 

~ - -------------- -------- Twig Galler {OK) 

Te tr agonocepha la fl ava 

~----------------------- -------- Cletisaspis bei j ingana 
+- - - -+-- - -+----+-- --+- - - -+- - - -+- - --+- ---+- -- -+- - - -+-- --+- - - -+- - - -+- - - -+- - -+- - - -+- ---+ 

.00 . 06 .11 . 17 .22 .28 .33 .39 .44 .50 .55 

Figure 3-2. Distance Wagner tree of Paclzypsylla with outgroups Tetragonocephala flava and Celtisaspis beijingana 
based on Rogers' genetic distance using allozyme data (15 loci). 
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Distance 

.50 .40 .30 . 20 .10 .00 
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(al 
UPGMA tree 
Rogers' distance 
CPCC=O. 986 

******************* 
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Star Galler mono (MD) 

•••••••••** Ha 1 ry Nipple Gal ter side ( CMt) 

*********** Glabrous Nipple Galler side (NAL+BB) 
** *** * * * * * * ** * * * * * * * * * * ********** * * * * * *** * * * * *. * 

Blister Galler mono (CMt) 

Blister Galler mono Cl (TX) 

Bl ister Galler mono Cr (TX) 

*********** Blister Galler mono (GFV310) 

*********** Blister Galler mono (OH+ND+ID) 

* *** * ** * ** * * ••• *** •• ************* *** ** *** * * ** * ** * **** **** ****** Tetragonocephala flava (AZ) 

Glabrous Bud Galler (LA) 

Glabrous Bud Galler (MAL+BB) 

****************************************************** Hairy Bud Ga l ler (OK) 

********** ******** Glabrous Bud Galler (VA) 

****************************************************** Twig Galler (OK) 
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Petiole Galler (AZ) 
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1. 00 .90 .80 .70 . 60 . 50 .40 .30 .20 . 10 .00 

Figure 3-3 (a) UPGMA tree of Pachypsylla with outgroups Tetragonocephala flava and Celtisaspis beijingana based on 
Rogers' genetic distance using allozyme data (15 loci). 
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• Blister Galler Cr (TX) 

**** Blister Galler mono (GFV310) 

*** Blister Galler mono (OH+ND+!D) 

* **************'*************************"'*************'********** T etragonocephal a f lava {AZ) ..... 
** Glabrous Bud Galler Cl (LA) 

** 

* ***- Glabrous Bud Galler Ct (NAL+BB) 

****************************** .. ********************** Hairy Bud Galler (OK) ...................... • * 
**** Glabrous Bud Galler Co (VA) 

••••••••••••••••••••11r•••••••••••••••••••••••••••••••• Twig Galler (OK) 

**** Petiole Galler (BFL) ......... 
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************ Pet i ote Galler CAZ) 

****************************************************************************************** Celt i saspi s bei j i ngana (CH I) 
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Figure 3-3 (b) UPGMA tree of Pachyp~ylla with outgroups Tetragonocephala flava and Celtisaspis beijingana based on 
Nei's genetic distance using allozyme data (15 loci). 
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Figure 3-8. Scanning electron micrographs of adult heads: (a) Pachypsylla leaf star galler; 
(b) Pachypsylla petiole galler; (c) Tetragonocephalaflava; (d) Celtisaspis beijingana, 
showing the surface structure of vertex (V) and genae (G). 
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C torn JO t c, nd hfe history data: ( a) each locus treated as single character 

elJ Posjftee.s); (b) each allele treated as single character (from 5 trees). 
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Figure 3-10. Fifth instar nymph of leaf blister gall maker: (a) dorsal view; (b) ventral 
view; (c) enlargement of caudal spurs (arrow) of (a); (d) enlargement of caudal spurs 
(arrow) of (b ). 
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(d) 

Figure 3-11. Hind coxa of hackberry leaf star gall maker showing: (a) distal ventral crescentic denticulate 
patch (arrow head) and a fan-shaped area (arrow) near the patch, ventral view; (b) lateral view; (c) 
enlargement of denticulate patch of (b); (d) enlargement of hole (double arrow head) between fan-shaped 
area and trochanter (T) of (a). 
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Euphal sp. C&D 

Euphal sp.B 
t,""1phicola & Eupha/,rus ranr/1/US 

Heterapsylla 

Euceropsy//a 

Jsogonoceraia 

/nJTltsiO 

CiriacnttrJITI 

A,ryroina 

Floria 
A,ryroini//a 
Psylla (Ba,opt/""1) 

Span/ontUrD 
psylla (Asphagidtlla) 

psy//a (.str.) 
pry/lo (Heparopry//a) 
pry/la (OYIIOPSJ11af7honviopry11a) 

Cennothia 
Euglypron,ura 

fur.vtivora 
pry/la (Cacop.ry//a) 

};" ._!gure 4 
Q.ighI · · l. Parr 

1 

gh led tax~•! P ~YI ogen y of Psyll oi dea after While and Hodkinson ( 1985), 
md1cate those sampled for current study, 
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a 

b 

C 

Fig. 4-2. Shapes of occipital foramen. 
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(a) 

(c) 

Pachypsyl/a ce/tidismamma 
Pachypsy/la cellidisvesicula 
Pachypsy/la venusra 
Pachypsy/la cellidisgemma 
Te rragonocephala j/ava 
Ce!ri.saspis beijingafla 
Creiir tecra 

Cardiaspina a/birexrurara 
Cardiasp1na vinaformis 
Creiis lrmgipennis 
G!ycaspis baileyi 
G!ycaspis aggregara 
Glycaspis planirecra 
Spondyliaspir p/icaruloid 
Crenaryraina eucalypri 
Phellopsy/la spp. 
Phyllolyma rufa 
Phyllo!yma sp. 
Colophorina sp. n 
Euphalerus sp. A 
Euphale rus nidifix 
Hereropsy//a rexana 
Trigonon lnngicornis 
A c iwa uncaroides 
Psy/la a/ni 
Russel/iana fabiahae 
Russel/iana adesmiae 

Pachypsylla ce/tidismamma 
Pachyp.rylla ce/1id1:rvesicula 
Pachypsyl/a venusra 
Pachypsylla celridirgemma 
Te lragonocepha/a jlava 
Ce lrisaspir be ijingana 
Creiir re era 
Creiir longipeflflir 
Cardiasp1na a/hirexrurata 
Cardiaspina vinafonnis 
G!ycaspir baileyi 
G!ycaspir aggregata 
G!ycaspis planirecra 
Spondyliaspis plicaru/oid 
Crenarytmna eucalypti 
Phel!opsylla spp. 
Phyl!olyma rufa 
Phyllolyma sp. 
Colophorina sp. 11 
Euphalerus sp. A 
Euphalerus nidifu: 
Hereropsyl/a rexa11a 
Trigo11011 I011gicornis 
Aciu.ia 1111caroides 
Psylla a/11i 
Russe llia11a fabiahae 
Russe//ia11a adesmiae 

(b) 

(d) 

Pachypsy//a celridirmamma 
Pachypsy//a ce/Jidirvesicula 
Pachypsy//a ve11us1a 
Pachypsy//a ce/Jidirgemma 
Te tragonoce phala jlava 
Ce lrisaspir be ijinga11a 
Creiir lecra 
Creiir longipennir 
Cardiaspina alhirexturata 
Cardiaspina vinafonnir 
G/ycaspir baileyi 
Glycaspir aggregara 
Glycaspir planilecra 
Spondyliaspir p/icarulo_id 
Cre11aryraina euca/yplt 
Phe//opsylla spp. 
Phy//olyma rufa 
Phyllo/yma sp. 
Co/ophorina sp. n 
Euphalerus sp. A 
Eupha/erus mdifu: 
Hereropsylla rexana 
Trigonon /011gicomir 
Aciuia u11catmdes 
Psyl/a alni . 
Russe/lia11G fab,alzae 
Russe Iliana adesmiae 

Pachypsy//a cellidi.rma,~ma 
Pachypsylla ce/ridisves,cula 
Pachypsylla venusta 
Pachypsy//a celridisgemma 
Terrago110cep.~a/ajlava 
Celrisaspir bel}mgana 
Creiis recto 
Creiis lo11gipen11ir 
Cardiaspina alhitexrurata 
Cardiaspi11a vinafonnis 
Glycaspir ba11eyi 
Glycaspir aggregata 
G/yca.rpir p~amtuta . 
Spondyliaspis p/,catulmd 
Crenarytai11a euca/yplt 
Phe//opsyl/a spp. 
Phy//olyma rufa 
Plzy//o/yma sp. 
Colophorina sp. 11 
Euphalerus sp. A 
£up hale rus 11idifix 
Heteropsy//a texa11a 
Trigonon fongicom1s 
Aciuia uncato1des 
Psyl/a alni . 
Russe Iliana fabwlwe 
Russellia11a adesmwe 

}?· 

t Jgllte 4-3 d their strict consensus ( d) 
S •t SpOlJd . th tee equally parsimonious trees ( a-c) an. th all characters unonlered. 

allle tr: y Jaspidini based on morphological data wi 
ees found after successive weighting. 
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Pachypsylla celtidismamma 

Pachypsylla celtidisvesicula 

Pachypsylla venusta 

Pachypsylla celtidisg , ma 

Tetragonocephala ftava 

Celtisaspis beijingana 

Creiis tecta 

Creiis longipennis 

Spondyliaspis plicatuloid 

Cardiaspina albitexturata 

Cardiaspina vittaformis 

Glycaspis baileyi 

Glycaspis aggregata 

Glycaspis planitecta 

Ctenarytaina eucalypti 

Phellopsylla spp. 

Phyllolyma rufa 

Phyllolyma sp. 

Colophorina sp. n 

Euphalerus sp. A 

Euphalerus riidiftx 

Heteropsylla texana 

Trigonon [ongicornis 

Acizzia uncatoides 

------------- Psylla alni 
Russelliana Jabiahae 

Russelliaria adesmiae 

F· S •gure 4-4 . Pondyl' · ~tnct consensus of 164 most parsimonious trees for 
ch 1asp1d' · · h aracters # mae based on morpbOlogical data wit some 

( 3-7) ordered and others unordered, 
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Pachypsylla celtidismamma 

Pacliypsylla celtidisvesicula 

Pachypsylla venusta 

Pachypsylla celtidisgemma 

Tetragonocephala Jlava 

Celtisaspis beijingana 

Creiis tecta 

Creiis longipennis 

Cardiaspina albitexturata 

Cardiaspina vittaJormis 

Spondyliaspis plicatuloid 

Glycaspis baileyi 

Glycaspis aggregata 

Glycaspis planitecta 

Cteriarytaina eucalypti 

Phellopsylla spp. 

Phyllolyma rufa 

Phyllolyma sp. 

Colophoriria sp. n 

Euphalerus sp. A 

Euphalerus riidifix 

Heteropsylla texaria 

Trigonori /o,igicorriis 

Acizzia uricatoides 

Psylla alni 
Russelliana Jabiahae 

Russelliaria adesmiae 

F· igure 4-5 . 
8

Pondy(' • Stnct consensus of 10 most pars;n1onious tree' for 
(#3-7) iaspidinae after successive weighting with some characters 

and others unordered, ordered 
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