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Abstract

Background: Selected medical implants and other 3D printed constructs could potentially benefit from the ability
to incorporate contrast agents into their structure. The purpose of the present study is to create 3D printed surgical
meshes impregnated with iodinated, gadolinium, and barium contrast agents and characterize their computed
tomography (CT) imaging characteristics. Commercial fused deposition layering 3D printing was used to construct
surgical meshes impregnated with imaging contrast agents in an in vitro model. Polycaprolactone (PCL) meshes
were printed containing iodinated, gadolinium, or barium contrast; control PCL meshes without contrast were also
fabricated. The three different contrast agents were mixed with PCL powder and directly loaded into the 3D printer.
CT images of the three contrast-containing meshes and the control meshes were acquired and analyzed using
small elliptical regions of interest to record the Hounsfield units (HU) of each mesh. Subsequently, to test their
solubility and sustainability, the contrast-containing meshes were placed in a 37 °C agar solution for 7 days and
imaged by CT at days 1, 3 and 7.

Results: All 3D printed meshes were visible on CT. Iodinated contrast meshes had the highest attenuation (2528
mean HU), significantly higher than both and gadolinium (1178 mean HU) and barium (592 mean HU) containing
meshes. Only barium meshes sustained their visibility in the agar solution; the iodine and gadolinium meshes were
poorly perceptible and had significantly lower mean HU compared to their pre-agar solution imaging, with iodine
and gadolinium present in the adjacent agar at day 7 CT.

Conclusion: 3D prints embedded with contrast materials through this method displayed excellent visibility on CT;
however, only barium mesh maintained visibility after 7 days incubation on agar at human body temperature. This
method of 3D printing with barium may have potential applications in a variety of highly personalized and CT
visible medical devices.
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Background
Three-dimensional (3D) printing has had progressively
more uses in medicine, expanding from anatomic
models and surgical guides to implants and imaging
phantoms [1]. Bioactive 3D printing has been used to
impregnate drugs, hormones, and other substances into
models, instruments, and implants, including surgical
meshes [1–5]. Iodine has been successfully incorporated
into 3D printed constructs and imaged with CT [6].
Materials that can increase the x-ray attenuation of CT

broadly include substances used for oral and intravenous
contrast in CT and fluoroscopic examinations, e.g., barium
sulfate and iodine. Commercial contrast agents are not
used in clinical practice of coating meshes due to inherent
toxicities, short half-lives, and solubility of these materials
in intra-abdominal compartments [7–9]. 3D printing tech-
nologies have the capability to incorporate contrast mate-
rials within the structure of surgical meshes while leaving
other materials on the outside. In other words, the inner
contrast-containing material is surrounded/shielded by a
non-toxic material that lacks contrast and is likely imper-
meable to the contrast agent.
A potential application of 3D printing with contrast

agents, such as the present simple proof-of-concept study,
is to construct custom hernia meshes. Over 1 million her-
nia repairs are performed annually in the United States,
the majority of which are inguinal hernias (approximately
800,000) [10] with approximately 350,000 ventral/inci-
sional hernia operations [11]. Ventral/incisional and in-
guinal hernia recurrence following mesh repair ranges
from 15 to 32% for ventral/incisional hernias [12–14] to
0.5–10% with inguinal hernias [15, 16]. Recurrent hernias
are often predictable based on patient symptoms and con-
firmed by physical examination. Computed tomography
(CT) and magnetic resonance (MR) imaging are used to
diagnose suspected hernia recurrence or secondary com-
plications in patients following mesh repair, particularly in
ventral/incisional hernia repair [17]. In clinical practice,
these meshes have variable visibility on CT [18] and MR
imaging [19–22]. 3D printing may allow for highly visible
medical devices with patient-specific geometries. The pur-
pose of our current study was to create 3D printed meshes
impregnated with barium-, iodinated-, and gadolinium-
containing contrast agents and characterize their CT at-
tenuation characteristics both after printing and then
when kept at human body temperature over the course of
7 days. Moreover, this study serves as a proof of concept
for other 3D printed medical implants as well as surgical
devices requiring radio-opacity that may benefit from in-
creased CT visibility by the addition of contrast agents.

Methods
Commercial fused deposition layering 3D printing was
used to create surgical meshes infused with imaging

contrast agents. Computer-aided design files were gen-
erated in the shape of surgical meshes. These designs
were manufactured using a Hyrel System 30M 3D
printer (Hyrel 3D, Norcross, GA). Three different con-
trast agents were used to impregnate the mesh struc-
ture including barium (barium sulfate powder;
Sigma-Aldrich, St. Louis, MO), iodinated contrast
(Optiray 350 [loversol], Mallinckrodt Inc., St. Louis,
MO), and a gadolinium-based contrast medium
(Dotarem [gadoterate meglumine]; Guerbet LLC,
Bloomington, IN); control meshes without these con-
trast additives were also fabricated. The two commer-
cial intravenous contrast agents (Optiray 350 and
Dotarem) were selected based on the convenience and
availability of these agents, which are commonly used.
Fused deposition modeling 3D printing with the

Hyrel printer was performed using a KRA 15 print
head, which directly prints using emulsified materials
loaded into the print head rather than filaments, elim-
inating the need for an intermediate filament extrusion
step. For 3D printing control meshes without contrast,
polycaprolactone (PCL) powder was loaded directly
into the print head. For 3D printing contrast-impreg-
nated meshes, PCL powder mixed with contrast agents
was also loaded directly into the print head. Mixing
contrast agents with PCL was performed in one of two
ways for barium powder or liquid iodinated and gado-
linium contrast. For barium powder, calculated
amounts of contrasting agent and PCL powder (1:10
wt/wt) were hand mixed thoroughly in a mortar and
pestle under a fume hood. Iodinated and gadolinium
contrast agents were also mixed with PCL powder in
this manner; however, since these two commercial
agents are in liquid form, the mixtures were allowed to
air-dry in a chemical fume hood for 72 h. For printing
the three contrast-containing meshes along with the
control PCL mesh, 10 g of the three contrast-contain-
ing dried mixtures along with bland PCL powder were
loaded into the KRA 15 print head for Hyrel printer.
To 3D print the mesh, the print head temperature was
maintained around 125-130C at a speed of 7 mm/s and
at layer height 0.2 mm.
For CT imaging, 2 meshes impregnated with iodine

and barium, 1 mesh impregnated with gadolinium, and
2 PCL control meshes were arranged 1 cm apart, and
images were acquired with a kVp of 120, mAs of 220,
using a slice thickness of 0.6 mm. CT imaging was per-
formed using a Siemens Biograph 40 PET/CT scanner
[Siemens, Munich, Germany]). CT images were ana-
lyzed using Vitrea Enterprise Suite (version 6.7, Vital
Images, Inc., Minnetonka, Minnesota, USA) using a
small elliptical region of interest (ROI) to acquire the
mean Hounsfield units (HU) of each mesh. Fifteen
mean HU were acquired for each of the four meshes.
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To test the stability of the radio-opacity of the 3D
printed mesh constructs in a solution at body
temperature, each contrast-infused mesh, as well as the
control PCL mesh (3 of each type and 3 controls, n = 12),
were incubated in agar for 7 days at 37 °C. Cell culture
grade agar (Millipore Sigma, MO) was dissolved in de-
ionized water and sterilized. Molten agar was poured
into 60 mm petri dishes. 3D printed mesh constructs of
2x2cm dimensions were placed in petri dishes after the
agar solidified. Extra molten agar was poured into the
petri dishes after placing the mesh to ensure complete
immersion of mesh in agar media. After complete gel-
ation of agar, all the petri dishes including control agar
were placed in an incubator at 37 °C. Petri dishes were
imaged with CT using the same imaging parameters
previously mentioned on day 1, day 3 and day 7 after
implantation into the 37 °C agar environment. CT im-
ages of the agar implanted mesh fragments were ana-
lyzed in a similar manner as previously described with
Vitrea Enterprise Suite. A small elliptical ROI was
placed on the mesh itself and a large circular ROI was
placed on the background agar for days 1, 3, and 7.

Differences between mean HU values for each of the
four meshes as well as the mesh in the agar solution
were compared using one-way analysis of variance. A
p value of < 0.05 was considered statistically significant.

Results
All contrast-containing 3D printed meshes were visible
on CT (Fig. 1), each showing mean attenuation greater
than 500 HU. Iodinated contrast displayed a mean HU
of 2529 + 426, gadolinium contrast displayed mean HU
of 1178 + 259, barium displayed mean HU of 592 + 186,
and control 3D prints displayed mean HU of − 378 + 122
(Table 1). The iodinated contrast-containing 3D printed
mesh had significantly higher attenuation values com-
pared to all other meshes and gadolinium contrast-con-
taining 3D printed mesh had significantly higher
attenuation values compared to the barium and the
control mesh (Table 1).
In the agar solution at simulated body temperature,

the barium mesh was easily visible for all time periods,
the iodine mesh was most perceptible at day 1 and less
at day 7, and the gadolinium mesh was poorly

Fig. 1 a Source CT image of iodinated contrast containing 3D printed mesh. b Coronal reconstructions depicting the small regions of interests
used to analyze the mean Hounsfield units for each mesh. The barium mesh (top; purple region of interest) and iodinated contrast mesh
(bottom; blue region of interest) are illustrated. c Maximum intensity project coronal reconstruction (c) of the three different contrast-
impregnated polycaprolactone 3D printed meshes along with the control polycaprolactone 3D printed mesh
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perceptible at all time periods (Fig. 2). Objectively, the
composite mean HU for the barium mesh in the agar so-
lution was not significantly different compared to the
pre-agar imaging (agar solution barium mesh = 541 + 133
mean HU vs pre-agar = 592 + 186 mean HU, p = 0.48)
whereas both the agar solution iodine and gadolinium
meshes had significantly lower mean HU compared to
pre-agar imaging (agar solution iodine mesh = 194 + 54
mean HU vs pre-agar = 2529 + 426 mean HU, p < 0.001;
agar solution gadolinium mesh = 44 + 19 mean HU vs
pre-agar = 1178 + 259 mean HU, p < 0.001), with apparent
contrast-agent visibility in the adjacent agar.
There were no significant differences within any of

the same contrast meshes or their background agar at
subsequent CT acquisitions at day 1, day 3, or day 7.

The iodine meshes did visually become less perceptible
from day 1 to day 7 (Fig. 2). The mean HU for the iod-
ine meshes decreased upon repeat CT measurements
(mean HU day 1 = 247, mean HU day 3 = 177, mean
HU day 7 = 158), but again, this did not achieve statis-
tical significance (p = 0.39–1.00).

Discussion
In the present study, we describe fused deposition layer-
ing 3D printing as a process for impregnating contrast
materials into 3D printed objects, with the proof-of-con-
cept focusing on surgical mesh. Excellent visibility was
demonstrated for CT imaging using all three contrast
agents; however, contrast stability over time was demon-
strated only with the barium infused mesh. The fused

Table 1 Mean Hounsfield units of the three contrast-containing mesh-types in comparison to each other and the control meshes

3D Printed Meshes Mean HU (± SD) Significantly higher attenuation
compared to other meshes

p-value

Iodinated contrast-containing (n = 2) 2529 ± 426 Greater than gadolinium,
barium, and control

< 0.0001, < 0.0001,
< 0.0001

Gadolinium contrast-containing (n = 1) 1178 ± 259 Greater than barium and control < 0.0001, < 0.0001

Barium (n = 2) 592 ± 186 Greater than control < 0.0001

Control (n = 2) − 378 ± 122 None Not applicable

HU Hounsfield units
SD Standard deviation

Fig. 2 Coronal volume rendering of the contrast impregnated and control meshes in the 37 °C. agar solution at day 1 (a) and day 7 (b). Note the
visibility of the barium mesh sustained at both time periods, poor perceptibility of the gadolinium meshes at either time period, and that more
iodine is present in the surrounding agar at day 7 (b) compared to day 1 (a)
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deposition layering 3D printing process described in the
present study can potentially be applied for developing
medical implants, with contrast in all layers – or all but
the most external layers, for additional contrast-material
containment. Moreover, contrast-impregnated fused de-
position layering 3D printing can be used to create ana-
tomic models to be CT scanned for pre-procedural
planning, for image-guided therapies, or as phantoms.
In the simulated tissue environment (agar solution at

37 °C), only barium retained its visibility with a consist-
ent mean HU compared to the pre-agar solution. The
attenuation of both iodine and gadolinium both signifi-
cantly decreased and were poorly visually perceptible in
the agar solution, with apparent increase in contrast-
material within the agar suggesting leaching of the
material into the agar at body temperature.
Surgical meshes have variable appearances on imaging.

On CT and MR imaging, different commercial meshes
are either not visible, indirectly or poorly visible, or
highly-visible. For CT, meshes with intrinsic high attenu-
ation will have better visibility on CT [18]. There have
been a number of “MR visible” meshes that design the
mesh to accentuate signal voids. These meshes do not
produce signal, but rather accentuate their signal voids
by incorporating materials such as iron particles to
achieve visibility by sharp signal dropout compared to
surrounding tissue [19, 23].
In this study, we describe a novel method of incorpor-

ating contrast materials into 3D printed constructs using
a fused-deposition modeling 3D printer. The incorpor-
ation of the contrast into the 3D printed construct itself
increases the volume of contrast that can be incorpo-
rated compared to superficially coating with contrast
and “protects” the contrast material deep in the con-
struct from dilution that may occur with handling or
cleaning/sterilization procedures. Although this tech-
nique may or may not have future use in printing cus-
tom meshes, there are a number of immediate ways this
contrast-incorporating technique can be potentially
used. Broadly, potential applications where impregnated
contrast materials may be helpful include 3D printed
phantoms, anatomic models, procedural/surgical instru-
ments, and implants other than surgical mesh. 3D
printed constructs have been used for a number of CT
phantom studies [24–27]. The contrast-incorporating
technique described in the present study may be used to
increase x-ray attenuation of anatomic structures, such
as high proportions of contrast being used to delineate
high-density structures such as the axial and appendicu-
lar skeleton or at a diluted concentration to distinguish
intermediate-density structures such as visceral organs
from surrounding fat. Another potential application is
printing anatomic models for simulation and training of
fluoroscopic or CT-guided procedures. Few studies have

reported 3D printed constructs being used to facilitate
CT or fluoroscopic procedures [28, 29].
There are a number of limitations to this study. A

single base material, PCL, was tested using a single
commercial fused deposition modeling 3D printer. PCL
was chosen given its ease to work with, availability, and
that it has been previously used in studies impregnating
drugs and other bioactive materials into 3D printed
constructs [2–4]. The specific commercial print head
used in this study directly used the contrast-PCL mix-
tures to print the meshes, without an intermediate fila-
ment extrusion step. Future studies to validate the
method of contrast impregnated 3D printed constructs
could include broadening the number of materials used,
including common materials such as polylactic acid and
polyvinyl alcohol, and incorporating other commercial
3D printers that require a preceding filament extrusion
step. The 3D printed meshes in this study were imaged
outside of tissues and in isolation; the appearance of a
surgically implanted mesh may vary dramatically when
embedded in tissues. The nature of this project was to
demonstrate utility of this synthetic approach in creat-
ing materials with ideal imaging properties. Highly vis-
ible commercial meshes used in clinical practice are
chosen for the factors of the mesh with relevance to
ease of insertion and proven efficacy. At the time of this
writing, 3D printed meshes have not been reported in
humans; however, a number of in vitro studies have
demonstrated the feasibility of surgical meshes impreg-
nated with drugs or hormones [3, 4]. To fully validate
the use of these mesh types in patients will require
pre-clinical animal studies that compare the surgical ef-
ficacy toxicity, imaging characteristics, and longevity of
imaging characteristics.

Conclusion
This study describes a novel method to incorporate
contrast materials into 3D printed constructs using a
commercial fused deposition modeling printer. PCL
was used as the base material along with barium pow-
der and commercial liquid iodinated and gadolinium
intravenous contrast agents. 3D printed meshes infused
with contrast materials were highly visible on CT, with
mesh impregnated with barium demonstrating stability
over time at body temperature. The 3D printing tech-
nique described in this study may have applications in a
variety of future 3D printed constructs.

Abbreviations
3D: Three-dimensional; CT: Computed tomography; HU: Hounsfield unit;
MRI: Magnetic resonance imaging; PCL: Polycaprolactone; ROI: Region of interest
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