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Abstract

Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically

and phenotypically distinct from wild populations associated with trees. The origins of these

domesticated populations are not always clear; human-associated migration and admixture

with wild populations have had a strong impact on S. cerevisiae population structure. We

examined the population genetic history of beer strains and found that ale strains and the S.

cerevisiae portion of allotetraploid lager strains were derived from admixture between popu-

lations closely related to European grape wine strains and Asian rice wine strains. Similar to

both lager and baking strains, ale strains are polyploid, providing them with a passive

means of remaining isolated from other populations and providing us with a living relic of

their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes

of two ale strains and found ale haplotypes to both be recombinants between European and

Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized

populations. We conclude that modern beer strains are the product of a historical melting

pot of fermentation technology.

Author summary

The budding yeast Saccharomyces cerevisiae has long been used to make beer. Yeast strains

used to make ales are known to differ genetically and phenotypically from strains used to

make wine and from strains isolated from nature, such as oak isolates. Beer strains are

also known to be polyploid, having more than two copies of their genome per cell. To

determine the ancestry of beer strains, we compared the genomes of beer strains with the

genomes of a large collection of strains isolated from diverse sources and geographic loca-

tions. We found ale, baking, and the S. cerevisiae portion of lager strains to have ancestry

that is a mixture of European grape wine strains and Asian rice wine strains and that they

carry novel alleles from an extinct or uncharacterized population. The mixed ancestry of

beer strains has been maintained in a polyploid state, which provided a means of strain
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diversification through gain or loss of genetic variation within a strain but also a means of

maintaining brewing characteristics by reducing or eliminating genetic exchange with

other strains. Our results show that ale strains emerged from a mixture of previously used

fermentation technology.

Introduction

The brewer’s yeast Saccharomyces cerevisiae is known for its strong fermentative characteris-

tics. The preference for fermentation in the presence of oxygen arose as a multistep evolution-

ary process around the time of an ancient genome duplication, endowing numerous species

with the ability to produce levels of ethanol toxic to many microorganisms [1,2]. One of these

species, S. cerevisiae, also gained the ability to competitively dominate many other species in

high-sugar, low-nutrient environments, such as grape must [3]. Wine is largely fermented by

S. cerevisiae and is thought to be the first fermented beverage, having been made for over 9,000

years [4]. However, S. cerevisiae is not the only Saccharomyces species used to make fermented

beverages; others, particularly S. uvarum, S. kudriavzevii, S. eubayanus, and hybrid derivatives,

are also used, particularly for fermentations at low temperatures [5–8]. Besides S. cerevisiae,
the most widely used species is S. pastorianus, an allopolyploid hybrid of S. cerevisiae and S.

eubayanus, used to make lager beer [7]. The use of this hybrid emerged during the 15th cen-

tury in Europe and was formed from an S. eubayanus strain closely related to wild populations

from North America and Tibet [9,10] and a S. cerevisiae strain related to those used to ferment

ales [11–13]. The origin of ale and other domesticated strains of S. cerevisiae is beginning to

emerge through comparison with wild populations [12–16].

Multiple genetically distinct populations of S. cerevisiae have been found associated with

fermented foods and beverage. These include grape wine, Champagne, sake and rice wine,

palm wine, coffee, cacao, cheese, and leavened bread [14,17–20]. Ale strains have also been

found to be both genetically and phenotypically differentiated from other strains [12,13]. Mul-

tiple populations of ale strains have been identified and found to exhibit high rates of heterozy-

gosity and polyploidy [12,13,16]. However, the origin of such domesticated groups is not

always clear because it requires comparison to wild populations from which they were derived,

and these wild populations have not all been identified. The best characterized wild popula-

tions of S. cerevisiae have been isolated from oak and other trees in North America, Japan,

China, and Europe [21–24], the latter of which is most closely related to and the presumed

wild lineage from which European wine strains were derived.

Despite clear differences among many domesticated groups, human-associated admixture

is common [20,22,25,26] and can blur the provenance of domesticated strains. For example,

wine strains show a clear signature of admixture with other populations, and clinical strains

appear to be primarily derived from admixed wine populations [27–29]. Ale strains, with the

exception of a few found related to sake and European wine lineages, have no obvious wild

population from which they were derived [12,13].

In this study, we examined the origin of ale and lager strains in relation to a diverse collec-

tion of S. cerevisiae strains. Through analysis of publicly available genomes and 107 newly

sequenced genomes, we inferred a hybrid, polyploid origin of beer strains derived from admix-

ture between close relatives of European and Asian wine strains. This admixture suggests that

early industrial strains spread with brewing technology to give rise to modern beer strains,

similar to the spread of domesticated plant species with agriculture.

Beer yeast originated from a melting pot of brewing technology
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Results

We sequenced the genomes of 47 brewing and baking strains and 65 other strains of diverse

origin for reference. Combining these with 430 publicly available genomes, we found nearly all

the brewing strains closely related to previously sequenced ale and lager strains (S1 Fig).

Through analysis of population structure, we identified 13 populations, 4 of which contain the

majority (64/76) of beer strains. The four beer-associated populations consisted of predomi-

nantly lager strains, German ale strains (Ale 1), British ale strains (Ale 2), and a mixture of

beer and baking strains (Beer/baking) and are consistent with previously identified groups of

beer strains [12,13]. The remaining populations were similar to previously characterized

groups [20,21,27] and were classified by the most common source and/or geographic region of

isolation as Laboratory, Clinical, Asia/sake, Europe/wine, Mediterranean/oak, Africa/Philip-

pines, China/Malaysia, and two populations from Japan/North America (S2 Table).

To identify the most likely founders of the four beer populations, we used a composite like-

lihood approach to infer population relationships while accounting for admixture, which can

obfuscate population phylogenies [30]. The inferred admixture graph grouped the four beer

populations together, with the lager and two ale populations being derived from the lineage

leading to the Beer/baking population (Fig 1). The four beer populations are most closely

related to the Europe/wine population. However, the admixture graph also showed strong

Fig 1. Admixture graph of population relationships shows admixture from the Asia/sake to multiple beer

populations. Population relationships were inferred using TreeMix, and horizontal branch lengths are proportional to

genetic drift with the scale bar showing the average of 10 s.e. of the sample covariance matrix. Red arrows show

admixture events with migration weights over 0.40, indicating the fraction of alleles derived from a source population.

Migration from the ancestor of the Mediterranean/oak to the Clinical population is not shown for clarity. The data

underlying this figure are available from http://doi.org/10.6084/m9.figshare.7550009.v1. s.e., standard errors.

https://doi.org/10.1371/journal.pbio.3000147.g001

Beer yeast originated from a melting pot of brewing technology
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support for two episodes of gene flow into the beer lineages resulting in 40% to 42% admixture

with the Asia/sake population. We confirmed these admixture events using f4 tests for dis-

cordant population trees, which are caused by admixture [31,32]. All f4(Europe, test; Asia,

Africa) statistics were significant for tests of the four beer populations (Z-scores < −21.3),

whereas the f4(Europe, Mediterranean; Asia, Africa) statistic was much closer to zero for the

Mediterranean/oak population (Z-score = 3.4). Similar results were obtained using the China

or Japan/North American populations rather than Africa (S3 Table). Therefore, the beer

populations were derived from admixture events between a population closely related to the

Europe/wine population and Asia/sake population. Consistent with prior studies [20,29], we

also found admixture events between the Europe/wine population and both the lab and clinical

population.

To quantify the degree of admixture for each of the beer strains, we calculated f4 admixture

proportions using the Europe/wine and Asia/sake populations [31,33]. For the 64 beer strains,

we estimated an average of 39.6% (range 36.7%–46.7%) of their genome was derived from the

Asia/sake population and 60.4% was derived from the Europe/wine population. The high pro-

portion yet narrow range of admixture implies little to no subsequent back-crossing following

admixture.

Polyploidy is enriched in beer and baking strains [12,16,18] and has been shown to contrib-

ute to reproductive isolation [34]. The Beer/baking population includes 10 previously studied

strains, all of which were found to be triploid or tetraploid and to exhibit high rates of hetero-

zygosity [20]. These strains were previously found to group with other strains isolated from

diverse sources around the world (Pan/Mixed 2 in [20]). To identify triploids and tetraploids

strains, we used the expected allele frequency at heterozygous sites: 50% for diploids, 33% and

66% for triploids, and 25%, 50%, and 75% for tetraploids (Fig 2). We note that this approach

can miss triploid or tetraploid strains due to low heterozygosity or read coverage but should

not yield any false positives. Nevertheless, out of 105 strains with an abundance of heterozy-

gous sites, we identified 23 triploid and 28 tetraploid strains (S2 Fig). Of the 51 polyploid

strains (N > 2), 45 (88%) were in one of the four beer populations, of which 29 were beer

strains and 6 were baking strains. The remaining 10 polyploids assigned to the beer popula-

tions include three isolates from green coffee beans and were previously assigned to a Pan/

Mixed 2 population [20], a group of predominantly human-associated strains. These results

are comparable to the high rates of polyploidy found in prior studies of beer strains [12,16].

Fig 2. Diploid, triploid, and tetraploids are distinguished by read counts at heterozygous sites. Plots show examples of a (A) diploid

(YO700), (B) triploid (TUM205), and (C) tetraploid (YMD1952) strain by the number of reads with the reference allele (A) versus the

alternative allele (B) for heterozygous (red) and homozygous (black) sites. The data underlying this figure are available from http://doi.org/

10.6084/m9.figshare.7550009.v1.

https://doi.org/10.1371/journal.pbio.3000147.g002

Beer yeast originated from a melting pot of brewing technology
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Given the admixed origin of beer strains, we wanted to know which populations the hetero-

zygous sites indicative of polyploidy were derived from. We examined heterozygous sites in

the beer populations in relation to other strains by clustering SNPs and grouping strains by

their inferred population membership (Fig 3). Excluding the lager population, which are not

heterozygous, the three beer populations are predominantly heterozygous for alleles abundant

within either the Asia/sake or Europe/wine population. However, all four beer populations

also carry alleles not present in any of the other populations. The presence of heterozygous,

beer-specific alleles suggests that these alleles were derived from admixture between a lineage

closely related to the Europe/wine lineage and/or the Asia/sake lineage. The large number of

beer-specific alleles is unlikely to have accumulated in the recent past subsequent to the forma-

tion of the polyploids. The beer groups have between 6,558 and 13,728 alleles present at 25%

frequency or more in the group but not in any other population. Using these beer-specific

alleles, we found the divergence at four-fold degenerate synonymous sites was 0.153%, 0.100%,

0.087%, and 0.069% along the Ale 1, Ale 2, Beer/baking, and Lager lineages. These rates are

higher than expected to have accumulated since the use of these strains for brewing purposes

(see Discussion) and not much less than the rate of divergence between the Europe/wine and

Asia/sake population (0.592%). Combined with the observation that these variants are mostly

heterozygous, we infer that many were present when the strains became polyploid and origi-

nated from an extinct or as yet to be characterized yeast population related to the Europe/wine

and/or Asia/sake population.

Fig 3. Beer populations are heterozygous for alleles shared with Europe/wine and Asia/sake populations. Genotypes of 2,000 randomly selected SNPs are shown

for 339 strains grouped by their ancestry to 13 populations shown by the colored panel on the left. Genotypes are homozygous for the major allele (black), minor

allele (red), or heterozygous (yellow), and SNPs (columns) were ordered by hierarchical clustering. The panel on the right indicates triploid and tetraploid strains,

grape and sake wine strains, and ale, lager, and baking strains. The data underlying this figure are available from http://doi.org/10.6084/m9.figshare.7550009.v1.

https://doi.org/10.1371/journal.pbio.3000147.g003

Beer yeast originated from a melting pot of brewing technology
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The presence of heterozygous European, Asian, and beer-specific alleles enabled us to use

haplotype phasing to test whether there has been recombination between European and Asian

haplotypes and whether beer-specific alleles reside on European or Asian haplotypes. We used

long-read sequencing to phase two beer strains—a German ale strain in the Ale 2 population

(A.2565) and a Belgian ale strain in the Beer/baking population (T.58). Both strains were

inferred to have over 99% ancestry to their assigned population, and both are likely polyploids

(S2 Table). As a control, we phased the genome of a hybrid (YJF1460) generated between a

Europe/wine strain and a Japan/North America 2 oak strain. Because of uncertainty in the

ploidy as well as the possibility of variable ploidy levels (aneuploidy) across the genome, we

developed a phasing algorithm that merges reads into consistent haplotypes and makes no

assumptions about ploidy.

Phasing of the three strains yielded predominantly two haplotypes in the YJF1460 control

and three or four haplotypes in the two ale strains (Fig 4 and S4 Fig). The majority of phased

haplotypes in the two ale strains carried a mixture of European and Asian alleles. In contrast,

the YJF1460 control showed few haplotypes with both European and Asian alleles, which is

indicative of haplotype switching errors or mitotic exchange. Eliminating regions of haplotype

switching less than 4 kb in length, which could result from genotype errors or mitotic gene

conversion, we counted the number of switches within the phased haplotypes between Euro-

pean and Asian alleles and found 12 in YJF1460, 346 in T.58, and 199 in A.2565 (S4 Table).

Consequently, most haplotypes present in the two ale strains represent recombinant haplo-

types as opposed to pure European-related or Asian-related haplotypes (Fig 4 and S4 Fig); only

22% of the T.58 genome and 19% of the A.2565 genome carried haplotypes with over 95%

European or 95% Asian alleles. In contrast, 88% of the YJF1460 genome was inferred to carry

pure European or Asian haplotypes.

The amount of recombination between European and Asian alleles is indicative of time

since admixture. We measured the decay in linkage disequilibrium between European and

Asian alleles on phased haplotypes as a function of distance and found a 50% drop in linkage

disequilibrium corresponds to 6.3 kb in A.2565 and 30 kb in T.58 and no decay in YJF1460 (S5

Fig 4. Phased haplotypes show recombination between European and Asian alleles. Panels for two ale strains (T.58

and A.2565) and the control hybrid (YJF1460) show haplotypes and allele configurations across chromosome XI. The

purple panel shows haplotypes with more than 95% European or Asian alleles in red and blue, respectively, and in gray

otherwise. Ticks indicate European (red) and Asian (blue) alleles. Haplotypes were assigned labels H1–H4 in order of

longest to shortest, except for YJF1460 in which they were assigned based on predominance of Europe/wine (H1, red)

or Asia/sake (H2, blue) alleles. The green panel shows ale-specific alleles for the four haplotypes (H1–H4) by green

ticks. The first 100 kb of A.2565 shows a region exhibiting loss of heterozygosity. The data underlying this figure are

available from http://doi.org/10.6084/m9.figshare.7550009.v1.

https://doi.org/10.1371/journal.pbio.3000147.g004

Beer yeast originated from a melting pot of brewing technology
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Fig). Assuming 0.34 kb/cM [35], this translates to an equivalent of 46.9 meiotic events in

A.2565 and 9.8 meiotic events in T.58. For comparison, we estimated the number of meiotic

equivalents since admixture of the Clinical (9.5), Laboratory (13.7), Lager (72.1), Beer/baking

(6.7), Ale 1 (75.0), and Ale 2 (67.5) populations. These results indicate more recent admixture

of the Clinical, Laboratory, and Beer/Baking populations compared with the Lager and two ale

populations.

Although it is difficult to know how much recombination occurred prior to polyploidy and

how much occurred subsequently through mitotic recombination or gene conversion, mitotic

events have contributed to diversification of beer strains subsequent to polyploidy. There are

four large and a number of smaller regions in A.2565 that exhibit loss of heterozygosity (Fig 4),

and loss of heterozygosity is a distinct signature of mitotic recombination. Recombination of

European- and Asian-derived haplotypes occurred prior to loss of heterozygosity because the

fixed haplotypes in regions where there is loss of heterozygosity are recombinants of Euro-

pean- and Asian-derived haplotypes.

The polyploid beer strains also carry beer-specific alleles not present in other strains. These

beer-specific alleles could have been inherited from an ancestral population that split from

either the European/wine or Asian/sake population, or from an admixed population. To dis-

tinguish between these possibilities, we examined the distribution of beer-specific alleles on

the phased haplotypes and found most (approximately 80%) were on mixed haplotypes, having

at least 5% European and 5% Asian alleles. Therefore, beer-specific alleles were present during

admixture of European and Asian alleles. The remaining beer-specific alleles were equally dis-

tributed between predominantly European or predominantly Asian haplotypes (S4 Table). We

also counted alleles at heterozygous sites as an indicator of ploidy contribution. At sites with

four phased haplotypes, we found Asian alleles had an average of 1.93 and 1.96 copies in T.58

and A.2565, respectively. In contrast, beer-specific alleles had an average 1.31 and 1.56 copies

in T.58 and A.2565, respectively. The lower copy number of beer-specific alleles suggests either

lower beer-specific allele frequencies compared to European/Asian allele frequencies in the

ancestral admixed population prior to polyploidy or that polyploidy involved parents from

populations with unequal representation of beer-specific alleles compared to European/Asian

alleles. Finally, because many of the beer-specific alleles are not shared between the Ale 1, Ale

2, Beer/baking, and Lager populations, we can infer multiple origins of the four beer popula-

tions despite similar episodes of admixture and polyploidy, demonstrating that the S. cerevisiae
contribution to lager strains did not simply come from one of the other beer strain lineages.

Discussion

Inferring the origin of domesticated organisms can be complicated by extinction of wild pro-

genitor populations, human-associated migration, polyploidy, and admixture with wild popu-

lations. In this study, we find that extant beer strains are polyploid and have an admixed origin

between close relatives of European and Asian wine strains. Ale genomes, like lager genomes,

carry relics of their parental genomes captured in a polyploid state as well as novel beer alleles

from an extinct or undiscovered population. Loss of heterozygosity through mitotic exchange

provided a means of strain diversification but has also potentially eroded precise inference of

the timing and order of events giving rise to modern beer strains. Below, we discuss models

and implications for an admixed, polyploid origin of beer strains.

Polyploidy is thought to mediate rapid evolution [36], and prior work showed that poly-

ploidy is common in beer and baking strains [12,18,31]. We find that the Ale 1, Ale 2, and

Beer/baking population all have a polyploid origin. Although not all strains had sufficient cov-

erage for calling polyploidy, all those that did were either triploid or tetraploid. Chromosome

Beer yeast originated from a melting pot of brewing technology
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level aneuploidy is also more common in strains within the Ale 1 (52%), Ale 2 (19%), and

Beer/baking (52%) populations than in the nonbeer populations (5.1%). A notable conse-

quence of both polyploidy and aneuploidy is that they can limit admixture with haploid or dip-

loid strains due to low spore viability [34,37,38], thereby maintaining their brewing

characteristics. Indeed, beer strains exhibit low sporulation efficiency and spore viability [12].

Both grape wine and particularly sake wine strains have also evolved more limited capacities to

interbreed through low sporulation efficiencies [39,40].

Human-associated admixture is well documented in wine strains, which have been dis-

persed around the globe with the spread of viticulture [20,22,25,26]. However, admixture

between close relatives of European grape wine and Asian rice wine populations presents a

conundrum regarding where and how these populations became admixed. A crucial yet unre-

solved piece of information is where European wine strains were domesticated. The discovery

of a Mediterranean oak population closely related to European wine strains suggests a Euro-

pean origin of wine strains [21]. An alternative model is that the Mediterranean oak popula-

tion is a feral wine population and both the European wine and Mediterranean oak

populations are nonnative. Analysis of a diverse collection of Asian strains suggested an East

Asian origin of all domesticated S. cerevisiae strains, including European wine strains [14].

Domestic populations from solid and liquid state fermentations (bread, milk, distilled liquors,

rice wines, and barley wines) were found related to wild populations from East Asia. In sup-

port of European wine and Mediterranean oak populations also originating in East Asia, these

populations carry duplicated genes involved in maltose metabolism and grouped with fer-

mented milk and other strains isolated from China. However, this model also has some uncer-

tainty given the small number of Chinese isolates within the European wine group, the

dispersion of European wine strains with viticulture, and the absence of samples from the Cau-

casus where grapes are thought to have been domesticated [4,41].

Considering the uncertainty of where European wine strains were domesticated, we put

forth two hypotheses regarding the admixed origin of beer strains. First, European wine strains

were domesticated in East Asia and admixed in situ with a population related to the Asia/sake

group, which contains eight sake/rice wine strains, seven distillery strains, and seven bioetha-

nol strains, mostly from Asia. Second, European wine strains were domesticated in Europe

from a Mediterranean oak population, or perhaps in the Caucasus, and the admixed beer pop-

ulations arose through East–West transfer of fermentation technology, including yeast by way

of the Silk Route. Resolving these scenarios would be greatly facilitated by finding putative

parental populations of diploid but not necessarily wild strains that carry alleles we find to be

unique to the Ale 1, Ale 2, Beer/baking, and Lager groups. As yet, such populations have not

been sampled or are extinct.

Even with a clear signature of a polyploid and admixed origin of beer strains, there are

uncertainties regarding the founding strains and the order of events. The decay in linkage dis-

equilibrium suggests that admixture occurred prior to polyploidy, and the distribution of beer-

specific alleles suggests that admixture involved at least one uncharacterized population. How-

ever, polyploid genomes are often labile, and it is hard to know the extent to which mitotic

recombination and gene conversion have altered genetic variation in the beer strains. In yeast,

the rate of mitotic gene conversion and recombination has been estimated to be 1.3 × 10−6 per

cell division and 7 × 10−6 per 120 kb, respectively [42,43], and both can lead to loss of heterozy-

gosity. Converting to the size of a tetraploid genome (approximately 48 Mbp), we expect

0.0038 (using a median track length of 16.6 kb) conversion events and 0.0028 recombination

events across the genome per cell division. Three lines of evidence support the role of these

mitotic events in beer strains. First, many of the switches between the European and Asian

alleles involved one or a small number of adjacent SNPs rather than long segments, indicative
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of gene conversion (S4 Table). Second, one strain (A.2565) shows clear loss of heterozygosity

on multiple chromosomes, indicative of mitotic recombination (S4 Fig). Third, there is sub-

stantial genotype diversity within each of the beer populations (Fig 3). This would be expected

to occur if loss of heterozygosity occurred during strain divergence but subsequent to the

founding of each beer population.

Two other factors besides mitotic gene conversion and recombination must be considered

in regards to diversity within the beer populations—outcrossing and de novo mutation. Out-

crossing with strains outside of the beer population is unlikely because there is no evidence for

this type of admixture in our analysis and admixture proportions from the Asian population is

fairly constant at 37% to 47% across beer strains. However, it is worth noting that outcrossing

of strains within or between different beer populations may not easily be detected. De novo

mutations have undoubtedly occurred, but even using a reasonable estimate of 150 generations

per year for brewing strains [12] and a per base mutation rate of 5 × 10−10 [44], the beer lineage

substitution rates yield divergence times of 2.0 × 104 (Ale 1), 1.3 × 104 (Ale 2), 1.1 × 104 (Beer/

baking), and 9.2 × 103 (Lager) years. Therefore, a sizable fraction of beer-specific alleles was

likely inherited from populations closely related to European wine and Asian wine populations

rather than de novo mutations that accumulated subsequent to polyploidy. Regardless of the

relative impact of mitotic recombination, gene conversion, outcrossing, and de novo mutation,

beer strains have diversified from one another but have remained relatively distinct from other

populations of S. cerevisiae [12,13].

In conclusion, beer strains are the polyploid descendants of strains related to but not identi-

cal to European grape wine and Asian rice wine strains. Therefore, similar to the multiple ori-

gins of domesticated plants, including barley [45] and rice [46,47], beer yeasts are the products

of admixture between different domesticated populations and benefited from historical trans-

fer of fermentation technology.

Materials and methods

Genome sequencing and reference genomes

Genome sequencing was completed for 47 commercial yeast strains, which include 33 ale, 7

lager, 2 whiskey, and 5 baking strains. For reference, sequencing was also completed for 60

strains of diverse origin, including 22 isolates from trees or other nonhuman-associated

sources and 38 isolates from human-associated ferments such as togwa, coffee, and cacao (S1

Table). For each strain, DNA was extracted and indexed libraries were sequenced on Illumina

machines (NextSeq, HiSeq2000, or HiSeq2500). A median of 10.7 million reads per strain was

obtained, ranging from 272,000 to 26 million. The sequencing data is available at NCBI

(PRJNA504476).

Genomic data was obtained for 430 strains from publicly available databases. These include

138 additional beer strains from [12,13]. We also obtained reference genomes for S. paradoxus,
S. mikatae [48], and S. eubayanus (SEUB3.0) [49]. Two large sets of recently published

genomes [14,16] were obtained for comparison with our set of 537 genomes. Genotype calls

for SNPs identified in this study were obtained from gvcf files of the 1,011 yeast genomes proj-

ect [16], and genotype calls were generated for 266 strains from China [14] using the mapping

and genotyping pipeline described below. Because these two later sets of data were only avail-

able recently, they were only incorporated into the S1 Fig heatmap.

Alignment, variant calling, and genotyping

Reads were aligned to the S. cerevisiae S288c reference genome (R64-1-1_20110203) using

BWA-v0.7.12-r1039 [50]. Lager strains were mapped to a concatenated S. cerevisiae and S.
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eubayanus genome and reads mapping to S. eubayanus were discarded. For short reads (<70

bp), we used BWA-sampe, and for the remainder, we used BWA-mem. Duplicate reads were

marked prior to genotyping. Assembled genomes were also mapped using BWA-mem, and

flags for secondary alignments were removed to facilitate complete mapping of large contigs.

For S. paradoxus and S. mikatae, we obtained higher coverage of the S288c genome by map-

ping synthetic reads fromshredded contigs compared to mapping of full contigs and so used

the former.

SNPs were called using short read data and then genotyped in those strains with assembled

genomes. For SNP calling, we used GATK-UnifiedGenotyper-v3.3–0 [51] and applied the

hard filters: QD < 5, FS > 60, MQ< 40, MQRankSum < −12.5, and ReadPosRankSum < −8.

The dataset was filtered to remove strains and sites with more than 10% missing data. Among

those strains removed were lager strains of the type 1 Saaz group [11], but we retained S. para-
doxus and S. mikatae for which we obtained calls at 78% and 40% of sites, respectively. Biallelic

SNPs with a minor allele frequency of at least 1% and with at least four minor allele genotype

calls were selected for analysis, resulting in a total of 273,963 SNPs. The 399 strains retained

for analysis are listed in S2 Table, and the genotype data is available in variant call format from

http://doi.org/10.6084/m9.figshare.7550009.v1. Genotype calls for these SNPs were also

obtained for the 1,277 strains in the comparative data set [14,16].

To estimate our genotyping error rate, we compared six pairs of strains that were indepen-

dently sequenced. Two of the strains, YJF153 and BC217, were haploid derivatives of diploids

strains, YPS163 [52] and BC187 [53], respectively, that were also sequenced. The other four

pairs were all beer strains independently obtain from Wyeast (Wyeast 1728, 1968, 2565, 2112)

and independently sequenced at Washington University in St. Louis and University of Wash-

ington in Seattle. Between the pairs of strains, we found genotype discordance rates of

9.62 × 10−4 (YJF153/YPS163), 1.31 × 10−3 (BC217/BC187), 3.57 × 10−3 (L.2112/YMD1874),

3.00 × 10−3 (A.2565/YMD1952), 1.81 × 10−2 (A.1968/YMD1981), and 5.74 × 10−3 (A.1728/

YMD1866). We retained the six pairs of strains throughout the analysis as a measure of

robustness.

Ploidy and aneuploidy

Ploidy and aneuploidy were assessed by read counts at heterozygous sites and read coverage,

respectively. For ploidy analysis, genotypes of 317 strains were from assemblies, and so no

information on heterozygous sites was available, and 117 strains had few heterozygous sites

indicating they were haploid or homozygous diploid. Of the remaining 105 strains, 66 had suf-

ficient coverage at heterozygous sites to make visual designations of ploidy [20,54,55]. Visual

designations were based on dominant trends consistent with expected percentage of read

counts supporting—diploid (50:50), triploid (33:66), tetraploid (25:50:75) allele configurations.

Of the 39 strains without sufficient coverage to distinguish triploids from tetraploids, most

(33) showed distributions consistent with polyploidy (ploidy > 2), and of these, 29 were beer

strains (S2 Fig). Aneuploidy was assessed by visual inspection of read coverage across the

genome. Aneuploidy was only called for clear cases in which one or more chromosomes

showed a deviation in read coverage compared to all other chromosomes.

Population structure and admixture

Population structure was inferred by running ADMIXTURE [56] on a set of 20,394 sites with

a minimum physical distance of 500 bp. The variants from 138 strains in a recent study of beer

strains [12] were removed because the assemblies eliminated heterozygous sites and raw reads

for these genomes were not available. Based on 20 independent runs using between 4 and 20
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populations for the 399 strains, we chose 13 based on an average change in the log-likelihood

greater than 3 standard deviations of the variation in the log-likelihood among independent

runs (S3 Fig). The beer populations of interest were not affected by this choice; with 12 popula-

tions, the 2 Japanese populations merged and with 14—a new population of admixed Euro-

pean wine strains was formed (S3 Fig).

Population admixture graphs were inferred using Treemix [30]. A subset of 199 strains

with less than 1% admixture were used to generate a population admixture graph. The popula-

tion from China was used to root the tree because two strains in the China population, HN6

and SX6, were most closely related to both S. paradoxus and S. mikatae, and blocks of 500

SNPs were used to obtain jacknife standard errors. Five episodes of migration were inferred

(P< 4.9 × 10−12), with weights ranging from 0.18 to 0.49. Migration events were validated

using f4 tests of admixture (S3 Table). For tests of tree discordance, we did not use the clinical

and lab populations as reference populations because these showed evidence of admixture. f4
admixture proportions were estimated by the ratio of f4(Mediterranean, Africa; test, Europe)

to f4(Mediterranean, Africa; Asia, Europe), in which each of the 64 beer strains in the Ale 1,

Ale 2, lager, and beer/baking populations were individually tested.

Long-read phasing

Three strains were selected for PacBio sequencing and variant phasing. Two of the strains were

beer strains, A.2565 and A.T58, and the third, YJF1460, was a hybrid we generated by mating a

European/wine strain (BC217) and a Japan/North America 2 oak strain (YJF153). PacBio

reads were aligned to the S288c reference genome using Blasr [57], and heterozygous variants

in each genome were phased using HapCUT2 [58], and our own heuristic phasing method

that accounts for variable ploidy levels across the genome. Average coverage at 56k, 59k, and

33k variant sites was 13.1, 18.8, and 13.0 for YJF1460, A.T58, and A.2565, respectively. Our

custom phasing method used the variant call format files and fragment files from HapCUT2 as

input, and output a variable number of phased haplotypes. HapCUT2 fragment files were gen-

erated with minimum base quality of 10. Reads were merged into haplotypes using a minimum

overlap of four matching SNPs and a minimum of 80% matching SNPs. Reads were iteratively

joined to haplotypes using the best scoring overlap based on score = matches– 5 × mismatches.

Haplotypes were formed by three rounds of merging. In the first round, reads were merged

into haplotypes without any mismatches. In the second and third rounds, haplotypes were

merged using the criteria defined above. Error rates were estimated by counting the minimum

number of mismatches of reads to the final set of haplotypes. Error rates of 1.84%, 2.03%, and

1.90% were obtained from comparison of reads to 3337, 2452, and 2607 haplotype alleles for

YFJ1460, A.T58, and A.2565, respectively. The average number of haplotypes at phased sites

was 2.29, 3.27, and 2.98 for YFJ1460, A.T58, and A.2565, respectively. Sites where three haplo-

types were inferred in the YJF1460 control are largely due to overlapping haplotypes that were

too short to merge. The long read data, custom phasing script and inferred haplotypes are

available from http://doi.org/10.6084/m9.figshare.7550009.v1.

After phasing, two sets of SNPs were selected for analysis. The first set consisted of nearly

fixed differences between the Europe/wine and Asia/sake populations. After excluding strains

with more than 1% admixture, there were 34,022 sites with an allele frequency of 99% in

Europe/wine strains (n = 47) and less than 1% frequency in Asia/sake strains (n = 28) or vice

versa. The nearly fixed differences between Europe/wine and Asia/sake strains were used to

quantify switching between European and Asian haplotypes. Switching events were measured

by counting switches involving one or more sites, five or more sites, or sites spanning 4 kb or

longer (S4 Table). The latter two measures were used to avoid counting switches caused by
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sequencing errors or mitotic gene conversion events, which should not affect multiple adjacent

sites or regions longer than 4 kb [59], respectively. The switching rate for the YJF1460 control

was similar to that obtained using HAPCUT2 (S4 Table), which minimizes errors when merg-

ing reads but assumes a ploidy of two, and SDhaP [60] run assuming a ploidy of two for

YJF1460 and four for the two ale strains. The second set consisted of alleles abundant in the

four beer populations but absent in all others. After excluding strains with more than 1%

admixture, there were 32,829 sites with allele frequencies over 25% in either the Ale 1 (n = 13),

Ale 2 (n = 12), or Beer/baking strains (n = 2), but less than 1% in all other populations. To

avoid problems with low-coverage strains, we estimated population allele frequencies from

counts of homozygous calls and half of heterozygous calls.

Decay in linkage disequilibrium was measured by the covariance in alleles between sites

[61]. An exponential decay function was fit to the average covariance of sites binned every 100

bp from 1kb to 50kb. Rather than weight linkage disequilibrium based on the allele frequency

differences between the two admixed populations, we used the unweighted covariance across

34,022 sites that show nearly fixed differences between the Europe/wine and Asia/sake popula-

tion. For the phased strains, we used the covariance across sites on the same haplotypes. For

the population decay estimates, we only used strains with 99% or more ancestry assigned to

either the Clinical, Laboratory, Ale 1, Ale 2, Beer/baking, and Lager populations. Invariant

sites were excluded in each case. We assumed 0.34 kb/cM [35] to translate decay in physical

distance to genetic distance and infer the number of meiotic equivalents.

We estimated divergence using four-fold degenerate sites in coding sequences. Excluding

splice sites and sites with overlapping gene annotations, there were 1,036,317 four-fold degen-

erate sites surveyed. At these sites, we found 1586, 1040, 899, and 716 alleles at a frequency of

25% or more in the Ale 1, Ale 2, Beer/baking, or Lager population, respectively, but not in any

other population.

Supporting information

S1 Fig. Heatmap of clustered genotypes and strains relating other studies to this one.

Strains are color coded by bars, from left to right. Column 1: beer strains (red) with grey labels

from Peter and colleagues [16] (African Beer, Mosaic Beer) or this study (Ale+Lager); column

2: referenced study; column 3: population assignments from this study. Strains (rows) and

SNPs (columns) show genotypes: major allele homozygous (black), heterozygous (yellow), and

minor allele homozygous (red). The data underlying this figure are available from http://doi.

org/10.6084/m9.figshare.7550009.v1.

(PDF)

S2 Fig. Ploidy inferred from the frequency of genotyped SNPs. Each graph shows the fre-

quency of reads with the reference (A) versus the nonreference (B) allele, with color indicating

the genotype call (black = homozygous, red = heterozygous). Diploids, triploids, and tetra-

ploids were inferred by heterozygous SNPs being predominantly at frequencies of 50, 33:66,

and 25:50:75, respectively. The data underlying this figure are available from http://doi.org/10.

6084/m9.figshare.7550009.v1.

(PDF)

S3 Fig. Fit of admixture models as a function of the number of populations. (A) Boxplot of

the log-likelihood of 20 independent runs as a function of the number of populations. (B) The

scaled improvement in fit, measured by the change in the log-likelihood with increasing popu-

lation number divided by the standard deviation in the log-likelihood values from 20 indepen-

dent runs. (C) Population assignments assuming a different number of populations. Each row
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shows a strain with ancestry to different populations shown by colors and population labels

based on similarity to the labels for 13 populations. The data underlying this figure is available

from http://doi.org/10.6084/m9.figshare.7550009.v1.

(PDF)

S4 Fig. Phased haplotypes show recombination between European and Asian alleles. Panels

are the same as in Fig 4 and show all 16 chromosomes for two ale strains (T.58 and A.2565)

and the control hybrid (YJF1460). European or Asian alleles are shown in red and blue, respec-

tively, and ale alleles in green. The orange panel shows homozygous ale, European and Asian

alleles, as well as sites heterozygous for Europe-Asia alleles. The data underlying this figure are

available from http://doi.org/10.6084/m9.figshare.7550009.v1.

(PDF)

S5 Fig. Decay in linkage disequilibrium as a function of distance between sites. Linkage dis-

equilibrium was measured by the covariance of alleles across sites on the same phased haplo-

types for A.2565 (red), T.58 (green), and YJF1460 (blue). Each point shows the average

covariance of sites with distances binned into 100 bp increments. The solid lines represent the

fit to an exponential decay function. The data underlying this figure are available from http://

doi.org/10.6084/m9.figshare.7550009.v1.

(PDF)
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