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Transient PP2A inhibition alleviates normal
tissue stem cell susceptibility to cell death
during radiotherapy
Maria Rita Fabbrizi1, Barbara Meyer1, Sandeep Misri1, Suyash Raj1, Cheri L. Zobel1, Dennis E. Hallahan1,2 and
Girdhar G. Sharma 1,2

Abstract
Unintended outcomes of cancer therapy include ionizing radiation (IR)-induced stem cell depletion, diminished
regenerative capacity, and accelerated aging. Stem cells exhibit attenuated DNA damage response (DDR) and are
hypersensitive to IR, as compared to differentiated non-stem cells. We performed genomic discovery research to
compare stem cells to differentiated cells, which revealed Phosphoprotein phosphatase 2A (PP2A) as a potential
contributor to susceptibility in stem cells. PP2A dephosphorylates pATM, γH2AX, pAkt etc. and is believed to play dual
role in regulating DDR and apoptosis. Although studied widely in cancer cells, the role of PP2A in normal stem cell
radiosensitivity is unknown. Here we demonstrate that constitutively high expression and radiation induction of PP2A
in stem cells plays a role in promoting susceptibility to irradiation. Transient inhibition of PP2A markedly restores DNA
repair, inhibits apoptosis, and enhances survival of stem cells, without affecting differentiated non-stem and cancer
cells. PP2Ai-mediated stem cell radioprotection was demonstrated in murine embryonic, adult neural, intestinal, and
hematopoietic stem cells.

Introduction
Ionizing radiation (IR) is a major cancer treatment

modality for primary and metastatic cancers, but invariably
results in debilitating organ dysfunction such as cognitive
impairment1,2 and learning deficiencies in patients sub-
jected to cranial irradiation3,4. Similarly, IR therapy-induced
intestinal injury is a common problem in patients with
abdominal and pelvic cancers and is associated with a loss
of stem cells5. IR response of progenitor cells is determined
mostly by the intrinsic radiation hypersensitivity and
unique molecular/epigenetic regulation of DNA damage
response (DDR) and apoptotic response (AR) in stem
cells6–8. Although all the mechanistic regulation of stem

cell radiosensitivity has not been elucidated, the differential
expression of several genes in stem cells plays a role in
attenuated DDR and heightened AR6. For example, histone
modifications that are unique to stem cells include Histone
3 Lysine 56 acetylation (H3K56ac)7 and H3K9 acetylation/
methylation8.
Embryonic stem (ES) cells in culture maintain the stem

cell phenotype and provide a discovery tool when com-
pared to differentiated (ED) cells. We compared the gene
expression of ES and ED cells and found that Phospho-
protein Phosphatase 2A (PP2A) contributes to DDR sig-
naling and is associated with the radiosensitivity observed
in normal stem cells. PP2A activity has also been asso-
ciated with maintenance of “stemness”9. PP2A holoen-
zyme participates in many cellular functions such as
neural growth, replication, and several metabolic path-
ways10,11. PP2A dephosphorylates pATM and γH2AX,
and deactivates DDR once the DNA strand break (DSB) is
repaired12. In addition, PP2A dephosphorylates Akt at
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both Thr308 and Ser473 sites, resulting in consequent
apoptotic pathway activation13, and PP2A inhibition has
been suggested as potential cancer treatment and
knockdown of PP2A in several in vitro cancer cell models
resulted in elevated γH2AX and increased radio-
sensitivity14–17. However, recent studies suggest PP2A
activation as potential tumor suppressor and indicate
promising results in chemotherapeutic treatment of can-
cers18, therefore further studies are needed to elucidate
the mechanisms. The role of PP2A in stem cell response
during the DDR was studied in the experiments presented
herein. We hypothesized that PP2A phosphatase antag-
onizes DNA repair and is a unique molecular switch that
imparts differential response to DNA damage in stem
cells. We compared karyotypically normal, early passage,
radiosensitive stem cells with isogenic, differentiated cells
to delineate the role of PP2A during the DNA damage and
apoptotic responses.
We thus show that PP2A contributes to stem cell

radiosensitivity in murine intestinal organoids, neural, and
hematopoietic stem cells all of which belong to the tissues

that demonstrate high radiosensitivity in their stem cell
compartment. Transient suppression of PP2A sig-
nificantly decreased stem cell radiosensitivity, reduced IR-
induced apoptosis, and improved stem cell survival
without affecting differentiated cells or cancer cells. In
addition, we observed PP2Ai-mediated reduction in IR-
sensitivity in human neuroprogenitor cells. PP2A inhibi-
tion may be a therapeutic approach for radioprotection of
normal tissue stem cells during radiotherapy in cancer
patients.

RESULTS
PP2A is constitutively overexpressed in stem cells in vivo
and in culture
To identify the unique regulatory mechanisms under-

lying stem cell radiation response, gene expression pro-
files of isogenic ES and ED cells7,8 were compared before
and after radiation treatment using genechip microarray
analysis. With the aim of finding contrasting gene
expression patterns, differential alterations in expression
profiles were investigated at an early time point of 15 min
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Fig. 1 PP2A is constitutively overexpressed in stem cells in vivo and in culture. a The number of genes up- or downregulated more than two-
fold is compared between ES and ED cells as well as among irradiated ES and ED cells collected early (15 min; RE, radiation early) or late (4 h; RL,
radiation late) after 10 Gy IR using microarray analysis. b PP2A and GAPDH were detected in lysates of ES and ED cells using immunoblot. c Tissue
sections obtained from testis of WT C57BL/6 mice were stained with Oct4, PP2A, and DNA labeled with DAPI. d Tissue sections of the dentate gyrus
of hippocampus obtained from brains of WT C57BL/6 mice were stained with SOX2, PP2A, and DNA labeled with DAPI. e ES and ED were co-plated
and stained with SOX2, PP2A, and DNA labeled with DAPI. Cells were stained after 0 Gy treatment. f ES and ED were co-plated and stained with SOX2,
PP2A, and DNA labeled with DAPI. Cells were stained 30 min after 6 Gy treatment. Scale bars indicate 10 μm
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(radiation early, RE) and at a late time point of 4 h
(radiation late, RL) after irradiation on ES and ED cells.
Differentiation of stem cells led to transcriptional induc-
tion of 3622 genes, whereas 4960 genes were suppressed
(Fig. 1a). Of these 8582 genes, expression of 139 genes was
commonly altered when stem cells underwent differ-
entiation, as well as after irradiation of differentiated cells.
In contrast, expression of 144 genes was commonly
altered following both differentiation and irradiation in
stem cells (Supplemental Fig. S1A). We reason that these
unique subsets of genes in the intersection lists (Supple-
mental Table 1, the raw data of gene-expression profiling
at NIH’s Gene Expression Omnibus can be found at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=h-
pexbaiyaoawyre&acc=GSE44780) contain potential
molecular regulators of the radiosensitive and radio-
resistant phenotypes of stem and non-stem cells, respec-
tively. Pathway analysis, enrichment scores, and
functional interaction determinations using GeneGo
analyses showed that the most pronounced IR-induced
change in the stem cell transcriptome was associated with
affecting biosynthesis such as ribosome expression. The
non-stem cell transcriptome, however, promoted activa-
tion of survival signaling pathways as well as protein
digestion and absorption (Supplemental Fig. S1B).
Through rigorous statistical short listing and verification
analyses, we identified overexpression and substantial
radiation induction of the catalytic subunit of phospho-
protein phosphatase 2A (PP2A) selectively in stem cells,
which was confirmed by RT-PCR (Supplemental Fig.
S1C).
Immunoblotting confirmed that ES cells express

detectable basal levels of PP2A without IR treatment.
After 6Gy irradiation, PP2A expression increased dra-
matically at 10 min to 4 h post IR treatment, while in ED
cells PP2A increased gradually and reached the maximum
expression after 4 h (Fig. 1b), when it is presumed to
dephosphorylate pATM and γH2AX toward the end of
DSB repair12,19.
We treated cells with 0.8 nM Calyculin A (Cal A), a

known chemical inhibitor of PP2A phosphatase. We
measured the phosphatase activity by specific immuno-
precipitation kit (PP2A Immunoprecipitation Phospha-
tase kit, Milllipore) and observed a clear reduction of
PP2A activity in stem cells (Supplemental Fig. S1D). We
also genetically silenced PP2A using a pool of several
specific siRNAs and observed a reduction of PP2A protein
levels after 36 and 48 h of RNAi treatment (Supplemental
Fig. S1E).
To validate whether PP2A is overexpressed in stem cells

in vivo, we studied stem cell niches in the brain, intestine
and testis. Identification of adult spermatogonial stem
cells in murine testis has been obtained with PLZF-
positive8 and Oct4-positive staining. Stem cells showed

significantly higher levels of PP2A compared to the sur-
rounding non-stem cells (Fig. 1c). Similar overexpression
was also detected in neural stem cells (Fig. 1d) and in
intestinal stem cells (Supplemental Fig. S1F). Immuno-
fluorescent staining on co-plated ES and ED culture cells
further confirmed PP2A overexpression in ES cells
(Fig. 1e, f). Almost 85% of cells that stained positively for
stem cell markers showed overexpression of PP2A, both
in vivo and in culture, compared to only 5% of differ-
entiated cells which were negative for stem cells marker.
PP2A was differentially overexpressed in murine
embryonic stem cells, neuro-progenitors, intestinal, and
spermatogonial stem cells in comparison to their non-
stem progeny cells.

Suppression of PP2A restores DNA repair in stem cells
We co-plated ES and ED cells and microirradiated ES

cells in close proximity to ED cells. The induction of DDR
on the DSBs along the micro-irradiation track was
visualized by labeling γH2AX in ES and ED cells while ES
cells were identified by SOX2 positive staining (Fig. 2a).
Eighty percent of the untreated ES cells and ES cells
treated with CTRL siRNA showed high pan-nuclear PP2A
levels (Fig. 2a1, a2), while displaying a significantly
reduced γH2AX signal at DNA lesions compared to ED
cells (Supplemental Fig. S2(A)). In contrast, ES treated
with PP2A inhibitors (chemical inhibitor Cal A (Fig. 2a3)
and siPP2A pool treated (Fig. 2a4)) showed a clear γH2AX
signal at the DNA break site, with a decrease in PP2A
signal intensity in siRNA-treated cells (Supplemental Fig.
S2(A)). The non-stem cells showed mostly undetectable
or reduced PP2A levels and a clear γH2AX activation in
all samples, indicating that PP2A inhibition did not exert
any effect on differentiated cells (Supplemental Figs. S2
(A1–4)). Detection of γH2AX with flow cytometry cor-
roborated improved DDR activation after PP2A inhibition
(Supplemental Fig. S2(B)A).These results indicate differ-
ential regulation and dissimilar involvement of PP2A in
DDR in stem vs. non-stem cells.
We measured the DSB repair efficiency and kinetics by

neutral comet assay after PP2A inhibition/suppression in
ES and neural stem cells (NS). An improved DNA DSB
repair efficiency was observed in ES cells after treatment
with Cal A (Fig. 2b) and after RNAi suppression (Sup-
plemental Fig. 2(B)B), while inhibition/suppression in the
non-stem ED cells showed no influence on DNA repair.
The same result was observed in NS cells with no effect
on non-stem differentiated ND cells (Fig. 2c and Sup-
plemental Fig. 2(B)C).
We next investigated the effect of PP2A inhibition upon

ATM activation in stem cells and observed a significant
increase in ATM activation 15min post IR in ES cells
treated with Cal A compared with untreated samples
(Fig. 2d). Cytogenetic analysis also confirmed an improved
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chromosomal repair and reduced residual chromosome
and chromatid breaks in ES that have been treated with
PP2A inhibitor (Fig. 2e).

PP2A inhibition suppresses apoptosis signaling in stem
cells
To investigate whether PP2A inhibition has direct or

indirect influence on the apoptotic signaling pathways in

irradiated stem cells, we performed transient knock down
of PP2A and analyzed pro- and anti-apoptotic proteins by
immunoblotting. PP2A chemical inhibition resulted in
reduced Bax, which has been found to be constitutively
elevated in stem cells20, increased Bcl-2 protein levels
compared to ES control (Fig. 3a) and led to a marked
reduction of cleaved caspase-3 levels (Fig. 3b). We also
observed an increased activation of Akt after Cal A
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Fig. 2 Suppression of PP2A restores DNA repair in stem cells. ES and ED cells were treated with Calyculin A (Cal A), control siRNA (siCtrl), or PP2A
siRNA (siPP2A) or left untreated. Scale bars indicate 10 μm. Error bars indicate SD; *p < 0.05; **p < 0.01. Three independent experiments were
performed. a Cells shown in all panels were microirradiated, fixed immediately after irradiation and stained for PP2A and γH2AX detected along with
Sox2 (arrow indicates laser region of interest, ROI). (a1) Untreated ED (left panel) and ES cells (right panel). (a2) ED (left panel) and ES cells (right panel)
treated with siCtrl. (a3) ED (left panel) and ES cells (right panel) treated with Calyculin A. (a4) ED (left panel) and ES cells (right panel) treated with
siPP2A. b ES and ED cells treated with Calyculin A or untreated were analyzed by comet assay. Values were normalized to 6 Gy time point. c NS and
ND cells treated with Calyculin A or untreated were analyzed by comet assay. Values were normalized to 6 Gy time point. d ATM-pS1981 (pATM),
PP2A, and GAPDH were detected in lysates of ES cells using immunoblot. e Chromosomal aberrations per set of chromosomes were quantified at 7 h
after 2 Gy irradiation
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treatment, which is normally absent in ES cells after IR
(Supplemental Fig. S3A). To obtain a more holistic view
of PP2Ai effects on apoptotic network proteins, we per-
formed RT-PCR analysis on a panel of apoptosis reg-
ulatory genes (RT² Profiler™ PCR Array Mouse Apoptosis
from Qiagen). This analysis showed a clear reduction in
expression of several genes involved in the apoptotic
pathway in ES treated with Cal A compared to the 6 Gy
control, with a dramatic decrease in caspase-4 and Fas
expression (Fig. 3c).

Influence of PP2Ai is mediated by both ATM and Akt
PP2A is known to have a role in the deactivation of

DDR by dephosphorylation of pATM and γH2AX12,19.
PP2A also dephosphorylates Akt at both Thr308 and
Ser473 sites, with consequent apoptotic pathway activa-
tion13. We analyzed PP2Ai influence on ATM and Akt by
Annexin V and neutral comet assay and observed that
simultaneous inhibition of PP2A and ATM/Akt withdrew
the radioprotective effect of PP2Ai on ES cells. However, a
detrimental effect of Akti was observed with high levels of
apoptosis (Fig. 4a1, a2, statistical analysis in Supplemental
Fig. 4A). DNA repair efficacies were also reduced

drastically after simultaneous inhibition of PP2A and
ATM (Fig. 4b1, b2).

Suppression of PP2A reduces IR sensitivity of stem cells
After observing the improved DNA repair and reduced

apoptotic signaling, we then investigated whether the
inhibition of PP2A was effective at radioprotecting stem
cells and improving cell survival. Flow cytometric analysis
of Annexin V revealed a remarkably significant decrease
in apoptosis selectively in irradiated ES cells with deple-
tion of PP2A activity by chemical inhibition (Fig. 5a1) and
expression by RNAi (Fig. 5a2), while no protective effect
was observed in medulloblastoma (Fig. 5b and Supple-
mental Fig. 5A) and glioblastoma cancer cells (Fig. 5c and
Supplemental Fig. 5B). Clonogenic assay reasserted the
decreased radiosensitivity and the improved clonogenic
survival of irradiated ES cells after PP2A downregulation
(Fig. 5d).

PP2A inhibition decreases radiosensitivity of stem cells in
ex vivo organoid cultures
We have so far established that PP2A plays dual reg-

ulatory role in DDR and AR responses in stem cells in

Fig. 3 PP2A suppression influences apoptosis signaling. ES cells were treated with Calyculin A (Cal A) or left untreated. Error bars indicate SD; *p
< 0.05; **p < 0.01. a Bax, Bcl-2, and GAPDH were detected in lysates of ES cells using immunoblot. b PP2A, GAPDH, and CC-3 were detected in lysates
of ES using immunoblot. c Apoptotic gene expression was quantified using qRT-PCR in ES cells 4 h after 6 Gy IR or without IR. The data were
normalized to the expression levels in untreated ES cells. Three independent experiments were performed
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Fig. 4 (See legend on next page.)
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(see figure on previous page)
Fig. 4 Influence of PP2Ai is mediated by both ATM and Akt. ES cells were treated with Calyculin A, control siRNA (siCtrl) or PP2A siRNA (siPP2A) or
left untreated. Error bars indicate SD; *p < 0.05; **p < 0.01. Three independent experiments were performed. a1 ES cells were either untreated controls
or they were treated with Calyculin A, together with ATM and/or Akt inhibitors. Cells were irradiated with 6 Gy and apoptosis analyzed after 16 h by
Annexin V labeling. a2 ES cells were treated with control siRNA (siCtrl) or PP2A siRNA (siPP2A), together with ATM and/or Akt inhibitors. Cells were
irradiated with 6 Gy and apoptosis analyzed after 16 h by Annexin V labeling. b1 ES cells were untreated or treated with Calyculin A, together with
ATM inhibitor analyzed by comet assay. Values were normalized to 6 Gy time point. b2 ES cells were treated with siCtrl or PP2A siRNA with ATM
inhibitor analyzed by comet assay. Values were normalized to 6 Gy time point

Fig. 5 Suppression of PP2A reduces IR sensitivity of stem cells. ES and ED cells were treated with Calyculin A (Cal A), control siRNA (siCtrl), or
PP2A siRNA (siPP2A) or left untreated. Error bars indicate SD; *p < 0.05; **p < 0.01; n.s.= not significant. Three independent experiments were
performed. a1 ES and ED cells were treated with Cal A, irradiated with 6 Gy and apoptosis analyzed after 8 and 12 h by Annexin V labeling. a2 ES and
ED cells were treated with siPP2A, irradiated with 6 Gy and apoptosis analyzed after 8 and 12 h by Annexin V labeling. b Human medulloblastoma
cells (Daoy HTB-186) were treated with Cal A or left untreated. Cells were irradiated with 6 Gy and apoptosis analyzed after 16 h by Annexin V
labeling. c Murine glioblastoma cells (GL261) were treated with Cal A or left untreated. Cells were irradiated with 6 Gy and apoptosis analyzed after
16 h by Annexin V labeling. d Clonogenic survival of ES cells was analyzed after the indicated doses of irradiation
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culture models. We employed the 3D ex vivo organoid
explant culture models to verify the radioprotective effi-
cacy of PP2A. PP2A inhibition led to better preservation
of 3D structures, maintenance, and growth of both

murine intestinal organoids grown on matrigel and neu-
rospheres grown in suspension cultures (Fig. 6a). Immu-
nofluorescent identification of crypt stem cells in the
intestinal organoids by staining with intestinal stem cell

B C

A

D E

0 Gy 6 Gy 6 Gy + CAL A 6 Gy + siCTRL 6 Gy + siPP2A0 Gy + CAL A

Fig. 6 PP2A inhibition decreases radiosensitivity of stem cells in ex vivo organoid cultures. a Shown are optical microscope images of murine
intestinal organoids (upper panel) and murine neurospheres (lower panel) untreated or irradiated at 6 Gy after treatment with Calyculin A (Cal A),
control siRNA (siCtrl), or PP2A siRNA (siPP2A). Pictures have been taken 48 h after IR treatment. b Murine intestinal organoid stem cells were left
untreated or irradiated at 6 Gy after treatment with Calyculin A (Cal A), control siRNA (siCtrl) or PP2A siRNA (siPP2A). Percentage of cells positive for
stem cell marker SSEA1 and apoptotic marker CC-3 was calculated from total SSEA1 positive cells. Scoring was performed 4 h after irradiation. c
Murine intestinal organoid stem cells were left untreated or irradiated at 6 Gy after treatment with Calyculin A (Cal A), control siRNA (siCtrl), or PP2A
siRNA (siPP2A). Percentage of cells Lgr5-GFP positive was detected by flow cytometry. Scoring was performed 4 h after irradiation. d Murine
hematopoietic stem cells were treated with Cal A or left untreated. Cells were irradiated with 2 Gy and apoptosis analyzed after 16 h by Annexin V
labeling. e Human neuroprogenitors were treated with Cal A or left untreated. Cells were irradiated with 6 Gy and apoptosis analyzed after 16 h by
Annexin V labeling. Scale bar= 100 μm. Error bars indicate SD; *p < 0.05; **p < 0.01. Three independent experiments were performed
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marker SSEA1 and co-labeling with CC-3 revealed
selectively high apoptosis in stem cells after IR in the
organoid model and a clear reduction after PP2A inhibi-
tion (Fig. 6b). Proliferative cells marked with Ki67 posi-
tivity largely comprised SSEA1-negative non-stem cells in
the organoids and did not show any significant improve-
ment in cell survival after IR treatment (Supplemental
Fig. 6A). To further confirm the immunostaining based
observations, we utilized the Lgr5-EGFP-IRES-creERT2
mouse model, where intestinal stem cells are GFP posi-
tive21,22. Cells dissociated from organoids grown from the
small intestine of a Lgr5-EGFP-IRES-creERT2 mouse
were analyzed by flow cytometry for GFP positivity with
or without PP2Ai after 6 Gy IR treatment. The number of
Lgr5-GFP-positive cells increased after Cal A or PP2A
RNAi treatments compared to the cells from 6 Gy control
organoid samples from the Lgr5-GFP mouse (Fig. 6c).
PP2A knockdown efficiency in intestinal organoids using
siRNA pool was confirmed by reduced PP2A levels on
immunoblots (Supplemental Fig. 6B). We also observed
PP2Ai mediated reduction of IR-induced apoptosis in the
murine hematopoietic stem cells (Fig. 6d). Besides all the
aforementioned murine embryonic and adult stem cell
models, we further ascertained the radioprotective effect
of transient PP2Ai in the human neuroprogenitors
(Fig. 6e). Collectively, these data provide a mechanistic
basis and corroboratively reinforce the potential ther-
apeutic efficacy of PP2Ai in prevention of radiotherapy
induced stem cell death.

DISCUSSION
Radiotherapy-induced stem cell depletion is believed to

impair regenerative abilities of many tissues. Research
findings in recent years suggest that stem cell transplant
in addition to the use of anti-inflammatory agents may
provide a useful intervention strategy for minimizing the
adverse effects of cranial irradiation on central nervous
system (CNS) function. However, application of stem cell
transplant therapy to alleviate cognitive deficits in CNS
malignancy treatment regimen has enormous practical
limitations. Normal stem cells in multiple tissue niches
have been shown to be deficient in DNA repair and
undergo IR-induced programmed cell death even at low
doses that do not kill non stem and cancer cells. We
envisage that normal stem cell radiosensitivity is a phe-
nomenon regulated by pluralistic factors that attenuate
DDR and promote AR. Our laboratory has identified and
characterized a few epigenetic “structural” barriers of
DDR in stem cells previously7,8. Here we have found
constitutively overexpressed and IR-induced PP2A phos-
phatase as a “signaling” barrier that promotes radio-
sensitivity in normal stem cells. However, besides PP2A
and histone modification profiles characteristic of stem
cells, other regulators may also have important roles in

imparting the radiosensitive phenotype (Supplementary
Table 1). These molecular regulators collectively diminish
DDR and DNA repair and promote AR in stem cells in a
multifaceted manner.
Here we propose a pivotal regulatory role of PP2A

phosphatase in promoting normal stem cell radio-
sensitivity. Although PP2A role has been investigated in
differentiated and cancer cells and its inhibition has been
proven to cause delay in tumor growth, the significance of
PP2A overexpression in stem cells remains unknown.
PP2A phosphatase is an antagonist of ATM/DDR sig-
naling that inhibits DNA DSB repair as well as promotes
apoptosis. Transient suppression of PP2A activity or
expression markedly improves ATM activation, restores
DNA repair, inhibits apoptosis and enhances survival of
stem cells without any significant effect on differentiated
non-stem cells and cancer cells. Prolonged inhibition or
knockdown of PP2A led to cytotoxicity and cytostatic
effects. PP2A is known to be involved in several cell
processes including cell proliferation, growth, and survi-
val10,11. It also dephosphorylates pATM and γH2AX and
is believed to be a turn off switch for DNA repair
machinery at the end of DSB repair12,19. PP2A inhibition
has been suggested as potential cancer treatment and
knockdown of PP2A in several in vitro cancer cell models
resulted in elevated γH2AX and increased radio-
sensitivity14–17. Our observation on glioma cells
GL261 showed a similar trend. However, some studies
have also indicated that PP2A suppression reduces
apoptosis in some cancer cell lines23,24 and the concept of
activating PP2A as potential tumor suppressor has indi-
cated positive results in chemotherapeutic treatment of
several cancers18. Despite extensive studies on the role of
PP2A in different cellular processes in various cancer cell
lines, little is known about the radioprotective effect of
PP2A suppression in stem cells. Li and colleagues
observed that suppression of PP2A subunit B56ϵ in
human embryonic kidney epithelial cell line caused
γH2AX to persist on the DSB site, leading to increased
chromatin instability, diminished cell cycle regulation,
and DNA repair25. Our results obtained from normal
stem cell models clearly demonstrate that elevated PP2A
levels in stem cells prohibit ATM activation after IR
treatment and that transient suppression of PP2A suc-
cessfully restores the activity of ATM at the DNA breaks
and improves DSB repair. We also observed that histone
H2AX S139 phosphorylation around DNA breaks is
attenuated in stem cells and PP2A suppression restores
γH2AX at DNA breaks, confirming that reduction of
PP2A activity induces DDR activation in normal stem
cells, as observed in other non-stem cell types12. Fur-
thermore, simultaneous inhibition of PP2A and ATM
partially obliterates the restoration of DDR and DNA
repair in stem cells, indicating that the radioprotective
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action of PP2A is predominantly ATM dependent. PP2A
also dephosphorylates the serine/threonine protein kinase
B (PKB, also known as Akt) which plays an essential role
in several cellular processes such as survival, growth,
proliferation26,27, self-renewal of stem cells28 and has also
been associated with cancer and neurodegenerative diseases
when mutated29–31. Cancer cells exposed to PP2A inhibitor
show elevated Akt phosphorylation and activation32–34. In
agreement with these findings, we found that PP2A inhi-
bition increases Akt phosphorylation in normal stem cells
and that simultaneous inhibition of PP2A and Akt increases
apoptosis compared to cells treated with only Cal A or
siPP2A. Slight increase in the apoptosis in glioma cells by
PP2Ai is likely due to the activation of Akt and suggests the
anti-cancer prospects of PP2A inhibition35.
PP2A regulates apoptosis by dephosphorylating anti-

apoptotic factor Bcl-2 and by activating pro-apoptotic Bad
and Bax36,37. PP2A also regulates p53 signaling through
ATM and Akt38,39 and by direct dephosphorylation of
p53, promoting cell cycle arrest, expression of Bax and
apoptosis40,41. The precise mechanistic role(s) of PP2A
activity in apoptosis pathways is still not entirely clear.
PP2A inhibition has been found to drastically reduce
apoptosis in myeloid cells42,43 but not in other cancer cell
lines44 or in endothelial cells45. In contrast, treatment of
cancer cells with potent PP2A activators or over-
expression of the PP2A catalytic subunit inhibits Bcl-2
phosphorylation, leading to increased p53/Bcl-2 binding
and apoptotic cell death9,42. We observed that in stem
cells inhibition/RNAi of PP2A leads to suppression of the
apoptotic pathway with a significant decrease of apoptotic
cells, lowered levels of pro-apoptotic Bax protein and
elevated levels of anti-apoptotic Bcl-2. Besides, we also
observed significantly elevated expression of several reg-
ulators involved in programmed cell death pathways such
as Fas, CRADD, and caspase-4, probably caused by the
upregulation of endoplasmic reticulum stress marker
noticed after IR treatment46–48. Cal A treatment increases
anti-apoptotic Bcl-2 protein level and dramatically
decreases the expression of several caspases. While DDR
is resumed primarily through ATM activation, the con-
current effects on reduced apoptosis is multifactorial.
PP2A-caspase-4 interaction and other interacting
mechanisms underlying PP2Ai-mediated radioprotection
need further investigation. Our data highlights the mul-
tifaceted role of PP2A in regulation of stem cell radio-
sensitivity and the functional dichotomy of PP2A in
normal stem cells vs. cancer cells makes PP2A an inter-
esting molecular target for radioprotecting stem cells.
Although we have established radioprotection in cel-

lular models of stem cells, toxicity of 0.8 nM Cal A (at
which it specifically inhibits PP2A phosphatase activity)
exposure for more than 2–3 h in culture and toxicity of
Cal A to mice prohibited us from validating the PP2Ai

radioprotective efficacy in tissue niches in vivo. We
therefore utilized the ex vivo three-dimensional (3D)
organoid explant models in the present study. We suc-
cessfully grew murine intestinal organoids from stem cells
from wild type mice and from genetically modified mice
which present Lgr-5-positive intestinal stem cells labeled
with GFP. IR treatment resulted in loss of 3D structure of
the organoids along with an increased number of apop-
totic stem cells in both the organoid models. Differ-
entiated, actively proliferating non-stem cells in the
intestinal organoids show no benefit from treatment with
Cal A or siPP2A and appeared to be more radioresistant
implicating the differential regulation of radiosensitivity in
stem vs. non-stem cells. The loss of 3D structure has been
observed before in ex vivo crypts after increasing irra-
diation doses49 and in vivo data show that 10% of
intestinal stem cells initiate apoptosis after low doses,
without any appreciable alteration in the intestine archi-
tecture7,50,51. While organoids do resemble the physiology
and cell architecture of the intestine, they manifest
eventual disruption of 3D structure unlike the resilient
intestine in vivo, possibly due to lack of some essential
factors and supportive tissue that is present in vivo but
not in the explant organoid cultures in matrigel52. PP2A
inhibition successfully improved cell survival in intestinal
organoids, which showed a reduced number of SSEA1/
CC-3 double positive cells, and helped in maintaining the
3D structure of the ex vivo organoid cultures.
Thus, using cellular, ex vivo organoids and in vivo

models, this study has addressed the associations between
cellular differentiation, DNA damage response and
apoptotic response unique to stem cells and characterized
multifaceted role of PP2A in antagonizing DDR and
promoting AR. Corroborative validation of transient
PP2A suppression in radioprotection of stem cells
emphasizes PP2A as a novel molecular target for radio-
protection. This will allow future development of inno-
vative prevention and intervention strategies to alleviate
the undesired side effects of radiotherapy which impairs
the quality of life of cancer survivors especially in pedia-
tric neoplasms.

MATERIALS AND METHODS
Cell culture and undirected differentiation
Wild-type murine embryonic stem cells were originally

isolated from mouse blastocysts and obtained from the
Murine Embryonic Stem Cell Core at Washington Uni-
versity in Saint Louis. Cells were cultured as previously
described for EDJ22 and RW.4 cells7,8. Cells were kar-
yotypically normal and cultured for not more than 20
passages and tested bi-monthly for mycoplasma. Undir-
ected differentiation of cells was achieved by depletion of
LIF (leukemia inhibitory factor) and beta-mercaptoethanol
for at least 4 days as described earlier7,8.

Fabbrizi et al. Cell Death and Disease  (2018) 9:492 Page 10 of 14

Official journal of the Cell Death Differentiation Association



Human medulloblastoma cells (Daoy HTB-186,
obtained from ATCC) and murine glioblastoma cells
(GL261, obtained from ATCC) were cultured in DMEM
containing 15% fetal bovine serum.
Neural stem cells were isolated from the dentate gyrus

of P0-P2 newborn mice and cultured or differentiated as
previously described7,8.
Wild-type murine intestinal stem cells were isolated

from the intestine of P0-P2 newborn mice and cultured
according to Intestinal Epithelial Organoid Culture pro-
tocol provided by manufacturer (Stem Cell Technology).
Organoids were grown for 7–10 days prior to the
experiments.
Wild-type murine hematopoietic stem cells were iso-

lated from the bone marrow of 4–6-week-old mice
according to isolation protocol provided by the manu-
facturer (Miltenyi) and showed 92.97% CD117+ cells
(Supplemental Fig. S6C).
Human neuroprogenitor cells were cultured at the

Human Embryonic Stem Cell core facility of Washington
University as previously described8.

Animal models
Mouse strain C57BL/6 was used for all in vivo studies.

Adult 6–8-week-old males were utilized for tissue har-
vest/sectioning. P0-P2 mouse pups were sacrificed by
rapid decapitation prior to dissection for neural and
intestinal stem cell isolation. All animal procedures were
approved by the Animal Studies Committee at
Washington University Medical Center.

Antibodies
A list of antibodies used in this study is provided in

Supplemental Table 2.

X-ray irradiation and microirradiation
Cells were irradiated with 160 keV X-rays with indicated

doses at a dose rate of 1.7 Gy/min in an RS-2000 Biolo-
gical Research Irradiator (Rad-Source). For microirradia-
tion co-plated embryonic and differentiated cells were
cultured for 2 days in 70 μM BrdU and irradiated with a
405 nm and 633 nm laser using a LSM 510 Confocal
Microscope (Zeiss, Plan-APOCHROMAT ×63/1.4 oil
objective) as previously described7,8. ZEN software was
used to select cells and target irradiation. Samples were
micro-irradiated for 20min and fixation of cells for
immunofluorescence staining was performed 5min after
irradiation.

RNA interference
Twenty-four hours after plating, cells were transfected

using RNAiMAX Lipofectamine (Invitrogen) according to
the manufacturer’s instructions. Fifty nM siRNA PP2A
(Dharmacon, L-040657-00-0005) was used and incubated

36–48 h before irradiation. According to manufacturer,
siRNA products consist of pools of four target-specific
siRNAs designed to specifically knockdown gene expres-
sion. As control, cells were transfected with the same
concentration of non-targeted control siRNA (Dharma-
con, D-001810-01-05). Organoids were transfected using
Invivofectamin 3.0 (Life Technology Corp., IVF3001).

Inhibitors
PP2A inhibitor Calyculin A (Tocris, 1336) was dissolved

in DMSO and the cells incubated with 0.8 nM inhibitor
2 h before irradiation. Two hours post irradiation, the
media containing Calyculin A was removed and fresh
media was added. Calyculin A binding affinity to PP2A
has been tested using PP2A Immunoprecipitation Phos-
phatase kit (Milllipore, 2459553) according to the man-
ufacturer’s protocol.
ATM inhibitor (Sigma Aldrich, KU-55933) was dis-

solved in DMSO and the cells incubated with 10 μM
inhibitor for 1 h prior irradiation.
Akt inhibitor (Selleckchem, MK2206) was dissolved in

DMSO and the cells incubated with 10 μM inhibitor for
24 h prior irradiation.

Immunoblot
Cell lysates were obtained by using NP40 buffer

(Thermo Scientific, FNN0021) containing protease and
phosphatase inhibitor cocktail (Thermo Scientific, 78444)
and 1mM PMSF (Sigma, 78830) according to the man-
ufacturer’s protocol. Protein concentration determined
using the BCA protein assay (Thermo Scientific, 23228).
Twenty μg of lysate were loaded on a 4–15% tris glycine
PAA-Gel (BioRad, 5671083) using tris glycine running
buffer (Novex, LC2675). Protein size was determined with
the Kaleidoscope prestained marker (BioRad, 161-0375)
or HiMark pre-stained protein standard (Novex, LC5699).
Transfer to a PVDF membrane was performed with iBlot
transfer system (Invitrogen, IB1001). For blocking, the
membrane was incubated in 5% milk or BSA in TBS-T for
30min. Incubation with primary and secondary perox-
idase conjugated antibodies and detection of chemilumi-
nescent signal were performed as previously described7,8.
Quantification has been performed by using ImageJ
software. Every western blot performed in this study has
been performed at least twice in at least three different
cell cultures.

Apoptosis assay
Cells were trypsinized at indicated timepoints after

irradiation and labeled using the FITC Annexin V
Apoptosis Detection Kit I (Biomake, B32115) according
to the manufacturer’s instructions. At least 5000 cells
were analyzed by flow cytometry (Miltenyi, 2550-
ANALYZER10).
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Immunofluorescence staining
Cells were grown on cover slips and fixed for 10 min

with 4% formaldehyde in PBS and permeabilized for 5 min
in 0.2% Triton X-100 in PBS. After several washes in PBS,
samples were incubated at least 20 min with 2% BSA in
PBS. Incubation with primary or secondary antibody
(Supplemental Table 2) was conducted for 1 h at 37 °C.
For antibody staining of microscopy samples standard
protocols were used as described earlier7,8. Samples were
mounted in Vectashield mounting medium with (Vector,
H1200) or without DAPI (Vector, H1000).

Immunohistochemistry
Six- to eight-week-old male C57BL/6 mice were sacri-

ficed and tissues frozen in OCT media. Cryosections of
10 μm thickness were obtained from the histology core at
Washington University. Frozen sections were thawed in
cold PBS, fixed for 20min in 4% formaldehyde in PBS and
permeabilized in 0.2% Triton-X-100 in PBS for 15min.
After several short PBS washes, sections were blocked in
2% BSA in PBS for 1 h. Staining with primary antibodies
and secondary antibody incubation was carried out as
previously described7,8. Cells were stained with well-
characterized stem cell-associated markers specific for
each tissue, SOX2 for brain, SSEA1/ LGR5 for intestine,
and Oct4/ PLZF for testis, respectively.

Microscopy and image processing
Imaging was performed using a Zeiss Axioplan 2

microscope with ×20, ×63, or ×100 objectives (Plan-
NEOFLUAR ×20/0.5, Plan-APOCHROMAT ×63/1.4 Oil,
Plan-NEOFLUAR ×100/1.3 Oil) and Meta Systems ISIS
imaging software. ImageJ was used to process micro-
graphs, which included cropping of images and minimal
adjustment of signal intensity. All images of any experi-
ment were processed in the same way.

Neutral comet assay
At indicated timepoints after irradiation, cells were

trypsinized, centrifuged for 5 min at 300×g and resus-
pended in media to a final concentration of 0.5 × 106 cells
per ml.A volume of 5 μl of cell suspension was resus-
pended in 50 μl pre-warmed (37 °C) 1% agarose (Sigma,
A9414), distributed on a glass slide (CometSlide, Trevi-
gen, 4250-200-03) and incubated in cold lysis solution
(Trevigen, 4250-050-01) at 4 °C for 1 h. After collection of
all samples, electrophoresis and staining with SybrGreen
(Life technologies, S7563) and scoring was conducted as
previously reported7,8.

Clonogenic assay
Murine embryonic stem cells were treated then irra-

diated with indicated doses and incubated 6 h after irra-
diation to allow for DNA repair to occur. Cells were then

trypsinized and counted using a Vi-Cell cell counter. The
same number of cells for control and siRNA-treated cells
were plated and grown for 7 days. Fixation was performed
by PBS wash and incubation in cold methanol on ice for
10min. For staining cells were incubated for 10 min with
crystal violet (Sigma, C3886) at RT. Cells were washed
twice with water, dried, and counted. Plating efficiency
was 15%.

Cytogenetic analysis
Twenty-four hours after treatment, cells were irradiated

at the dose of 2 Gy, which still allow cells to enter mitosis
after irradiation. Five hours after irradiation, cells were
treated with 100 ng/ml colcemid (Gibco, 15212012) for
additional 1 h and 45min. Mitotic shake-off in cold
trypsin was performed, harvested cells were centrifuged
for 8 min at 250 × g and treated with hypotonic buffer
(0.56% KCl) for 8 min. Samples were fixed in acetic acid/
methanol (1:3) for at least 45 min and fluorescence-in-
situ-hybridization of telomeres, staining and imaging of
chromosomes preparation was performed as previously
described7,8. At least 40 chromosome plates were scored.

Gene expression profiling
Cells were treated with 10 Gy IR and collected at 15 min

and 4 h post IR. Unirradiated cells were used as controls.
Total RNA was isolated from cells using RNeasy Kit
(QIAGEN, 74104) following manufacturer’s protocol.
Integrity of total RNA was determined by Nanodrop ND-
1000 analysis. Cyanine-3 (Cy3)-labeled cRNA was pre-
pared from 0.5 μg RNA using the One-Color Low RNA
Input Linear Amplification PLUS kit (Agilent, 5188-5339)
according to the manufacturer’s instructions, followed by
RNAeasy column purification (QIAGEN, 79656). Dye
incorporation and cRNA yield were checked with the
NanoDrop ND-1000 Spectrophotometer. One microarray
was performed for each sample, with no pooling. Samples
were hybridized to ArrayStar GPL15692 genechip plat-
form (Arraystar). Microarrays were scanned immediately
after washing on a DNA Microarray Scanner (Agilent,
G2505B) using one color scan setting for 1 × 44k array
slides (scan area 61 × 21.6 mm, scan resolution 10 μm,
Dye channel set to Green and Green PMT set to 100%).

Real-time quantitative RT-PCR
qPCR was conducted to confirm the results for gene

expression in samples from all the samples as mentioned
earlier using RT2 First strand Synthesis Kit for cDNA
synthesis, and amplified using RT2 qPCR Master Mixes in
a CFX96 Real-Time PCR (Bio-Rad). We used two sets of
primers for qPCR. Forward primer1 was ATG GAC GAG
AAG TTG TTC ACC AGG (5′-3′) and reverse primer1
was TTA CAG GAA GTA AGT CTG GGG TAC. For-
ward primer2 was CCT CTT GTC ATC AAC AGC CGT
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G and reverse primer2 was GCA GGA AGA ACC CAC
AAA GTG. β-actin (ACTB) mRNA was used as an
internal reference transcript, with forward primer GCG
GGA AAT CGT GCG TGA CAT T and reverse primer
GAT GGA GTT GAA GGT AGT TTC GTG.
Gene expression linked to apoptotic pathways has been

analyzed by RT² Profiler™ PCR Array Mouse Apoptosis
(Qiagen, 330231), according to the manufacturer’s
protocol.

Statistical analysis
Statistical analysis was performed using the two-sided

Student’s t-test, except for comet assay which has been
analyzed using ANOVA. p-values of p < 0.05 were con-
sidered statistically significant and p < 0.01 highly statis-
tically significant. Error bars represent the standard
deviation of the mean.
Cell culture, neutral comet assay, immunoblot analysis,

immunocytochemistry, and immunohistochemistry on
adult WT mouse tissue were performed using standard
protocols.
Procedures for all experiments including animals were

approved by the Animal Studies Committee at
Washington University Medical Center.
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