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Sex-specific glioma genome-wide 
association study identifies new 
risk locus at 3p21.31 in females, 
and finds sex-differences in risk at 
8q24.21
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Incidence of glioma is approximately 50% higher in males. Previous analyses have examined exposures 
related to sex hormones in women as potential protective factors for these tumors, with inconsistent 
results. Previous glioma genome-wide association studies (GWAS) have not stratified by sex. Potential 
sex-specific genetic effects were assessed in autosomal SNPs and sex chromosome variants for all 
glioma, GBM and non-GBM patients using data from four previous glioma GWAS. Datasets were 
analyzed using sex-stratified logistic regression models and combined using meta-analysis. There were 
4,831 male cases, 5,216 male controls, 3,206 female cases and 5,470 female controls. A significant 
association was detected at rs11979158 (7p11.2) in males only. Association at rs55705857 (8q24.21) was 
stronger in females than in males. A large region on 3p21.31 was identified with significant association 
in females only. The identified differences in effect of risk variants do not fully explain the observed 
incidence difference in glioma by sex.

Glioma is the most common type of primary malignant brain tumor in the United States (US), with an average 
annual age-adjusted incidence rate of 6.0/100,0001. Glioma can be broadly classified into glioblastoma (GBM, 
61.9% of gliomas in adults 18+ in the US) and lower-grade glioma (non-GBM glioma, 24.2% of adult gliomas) 
with tumors such as ependymoma (6.3%), unclassified malignant gliomas (5.1%), and pilocytic astrocytoma 
(1.9%) making up the majority of other cases1. Many environmental exposures have been investigated as sources 
of glioma risk, but the only validated risk factors for these tumors are ionizing radiation (which increases risk), 
and history of allergies or other atopic disease (which decreases risk)2. These tumors are significantly more com-
mon in people of European ancestry, in males and in older adults1. The contribution of common low-penetrance 
SNPs to the heritability of sporadic glioma in persons with no documented family history is estimated to be 
~25%3. A recent glioma genome-wide association study (GWAS) meta-analysis validated 12 previously reported 
risk loci4, and identified 13 new risk loci. These 25 loci in total are estimated to account for ~30% of heritable 
glioma risk. This suggests that there are both undiscovered environmental risk (which accounts for ~75% of inci-
dence variance) and genetic risk factors (accounting for ~70% of heritable risk)3,4.

Population-based studies consistently demonstrate that incidence of gliomas varies significantly by sex. Most 
glioma histologies occur with a 30–50% higher incidence in males, and this male preponderance of glial tumors 
increases with age in adult glioma (Fig. 1)1. Several studies have attempted to estimate the influence of lifetime 
estrogen and progestogen exposure on glioma risk in women5,6. Results of these analyses have been mixed, and 
it is not possible to conclusively determine the impact of hormone exposure on glioma risk. Male predominance 
in incidence occurs broadly across multiple cancer types and is also evident in cancers that occur in pre-pubertal 
children and in post-menopausal adults7,8. Together these observations suggest that other mechanisms in addi-
tion to acute sex hormone actions must be identified to account for the magnitude of sex difference in glioma 
incidence.

Though sex differences exist in glioma incidence, sex differences have not been interrogated in previous gli-
oma GWAS. Sex-specific analyses have the potential to reveal genetic sources of sexual dimorphism in risk, as 
well as to increase power for detection of loci where effect size or direction may vary by sex9,10. The aim of this 
analysis is to investigate potential sex-specific sources of genetic risk for glioma that may contribute to observed 
sex-specific incidence differences.

Results
Study population.  There were 4,831 male cases, 5,216 male controls, 3,206 female cases, and 5,470 female 
controls (Table 1). A slightly larger proportion of male cases were GBM (58.7% of male cases vs 52.5% of female 
cases). Controls were slightly older than cases. GBM cases had a higher mean age than non-GBM cases, which 
was consistent with known incidence patterns of these tumors. Male and female cases within histology groups had 
similar age at diagnosis. The proportion of non-GBM cases varied by study due to differing recruitment patterns 
and study objectives (see original publications for details of recruitment patterns and inclusion criteria)4,11–14.

Previously discovered glioma risk regions.  There were 5,934 SNPs within 500 kb of 26 previously dis-
covered glioma risk loci with IMPUTE2 information score (INFO) > 0.7 and MAF > 0.01 that were previously 
found to have at least a nominal (p < 5 × 10−4) association with glioma4, and results were considered significant at 
p < 2.8 × 10−6 level (adjusted for 6,000 tests in each of three histologies [18,000 tests], see Fig. 2A for schematic of 
study design). Among the 25 previously validated glioma risk loci, nine loci contained 10 SNPs with pM < 2.8 × 10−6 
and/or pF < 2.8 × 10−6 in any histology: 1p31.3 (RAVER2), 5p15.33 (TERT), 7p11.2 (EGFR, two independent loci), 
8q24.21 (intergenic region near MYC), 9p21.3 (CDKN2B-AS1), 11q23.3 (PHLDB1), 16p13.3 (RHBDF1), 17p13.1 
(TP53), and 20q13.33 (RTEL1) (Table 2). ORM and ORF were similar in the majority of these loci.

For one of two independent loci at 7p11.2 (rs11979158), there was a significant association only in males for 
all glioma (ORM = 1.33 [95% CI = 1.23–1.44], pM = 4.87 × 10−12) and GBM (ORM = 1.40 [95% CI = 1.28–1.54], 
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pM = 1.26 × 10−12) but the sex differences did not meet the significance threshold (overall pD = 0.0055, and GBM 
pD = 0.1184) (Fig. 3, Table 2).

The previously identified SNP at 8q24.21 (rs55705857) was the most significant SNP in both males and females. 
Odds ratio for rs55705857 in all glioma was significantly higher in females (ORF = 2.45 [95% CI = 2.14–2.80],  
pF = 1.22 × 10−39) as compared to males (ORM = 1.56 [95% CI = 1.40–1.75], pM = 1.09 × 10−14) with 
pD = 3.46 × 10−7. In non-GBM only, ORF (ORF = 4.71 [95% CI = 3.94–5.63], pF = 1.85 × 10−65) was also ele-
vated as compared to ORM (ORM = 2.66 [95% CI = 2.28–3.10)], pM = 8.13 × 10−36) with pD = 8.44 × 10−7 (Fig. 3, 
Table 2). This association was further explored in a case-only analysis, where there was a significant difference 
between males and females overall (p = 0.0012), and in non-GBM (p = 0.0084) (Supplemental Table 1).

Previous studies have found a strong association between rs55705857 and oligodendroglial tumors (particu-
larly tumors with isocitrate dehydrogenase 1/2 (IDH1/2) mutation and loss of the short arm of chromosome 1 
[1p] and the long arm of chromosome 19 [19q]), so this association was further explored in the non-GBM (lower 
grade glioma [LGG]) histology groups (Table 3). For World Health Organization (WHO) grade II-grade III astro-
cytoma, effect was stronger in females (ORF = 4.64 [95% CI = 3.53–6.09], pF = 2.15 × 10−28) as compared to males 
(ORM = 2.87 [95% CI = 2.31–3.56], pM = 1.19 × 10−21) with pD = 0.0065. For WHO grade II–III oligodendroglio-
mas effect was stronger than observed in WHO grade II–III astrocytomas, and effect size was stronger in females 
(ORF = 12.15 [95% CI = 8.96–16.48], pF = 3.68 × 10−58) as compared to males (ORM = 5.47 [95% CI = 4.16–7.19], 
pM = 5.37 × 10−34) with pD = 6.60 × 10−5. Oligoastrocytic tumors were not included in sub-analyses due to recent 
research that suggests that these tumors are not an entity that is molecularly distinct from oligodendrogliomas 
or astrocytomas15.

Genome-wide scan of nominally significant regions.  In a previous eight study meta-analysis, ~12,000 
SNPs (INFO > 0.7, MAF > 0.01) were identified as having a nominally significant (p < 5 × 10−4) association 
with all glioma, GBM, or non-GBM4. A sex-stratified genome-wide scan was conducted within this set of SNPs 
and results were considered significant at pD < 1.4 × 10−6 (adjusted for 12,000 tests in each of three histologies 
[36,000 tests], see Fig. 2A for schematic of study design). Similar genome-wide peaks were observed between 
males and females (Fig. 4). One large region within 3p21.31 (49400kb–49600kb, ~200 kb) was identified as 
being significantly associated with glioma and GBM in females only (Fig. 5, Supplemental Fig. 1). There were 
243 SNPs with nominally significant associations within this region in the previous eight-study meta-analysis 
(p < 5 × 10−4), and 32 of these had nominally significant sex associations (pF < 5 × 10−6 or pM < 5 × 10−6) in all 
glioma or GBM. The strongest association in females within this region was at rs9841110, in both all glioma 
(ORF = 1.22 [95% CI = 1.14–1.32], pF = 5.55 × 10−8) with pD = 1.77 × 10−4) and GBM only (ORF = 1.27 [95% 
CI = 1.16–1.38], pF = 3.86 × 10−7) with pD = 6.04 × 10−4), while there were no significant associations detected 
in males (Fig. 3). No SNPs in this region were significantly associated with non-GBM. In a case-only analysis 
a marginally significant difference was detected between males and females overall (p = 0.0520) and in GBM 
(p = 0.0428) (Supplemental Table 1).

Agnostic scan of sex chromosome loci.  SNPs on the sex chromosomes were analyzed in GICC only. 
There were 245,746 SNPs with INFO > 0.7 and MAF > 0.01 on the X chromosome after quality control and 
imputation, and results were considered significant at p < 2 × 10−7 (corrected for 250,000 tests, see Fig. 2B for 
a schematic of study design). No SNPs met this significance threshold. After quality control procedures were 
complete, there were 300 SNPs remaining on the Y chromosome. There was no imputation performed of the Y 
chromosome data and only the 300 genotyped SNPs were evaluated. No significant signals were detected on the 
Y chromosome.

Figure 1.  Average Annual Incidence of all glioma, glioblastoma and lower grade glioma by sex and age at 
diagnosis (CBTRUS 2010–2014).
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Combined analysis of germline variants and somatic characterization.  Due to the lack of molecu-
lar classification data included in the GICC, MDA-GWAS, SFAGS-GWAS and GliomaScan datasets, glioma data 
obtained from TCGA datasets (GBM and LGG) were used to explore the potential confounding due to molecular 
subtype variation with histologies. There were 758 individuals from the TCGA dataset available for analysis with 
available germline genotyping, molecular characterization, sex, and age data (Supplemental Table 2). Overall, 
slightly more females (53.2%) as compared to males (47.2%) had IDH1/2 mutant glioma, but this difference was 
not statistically significant (p = 0.1104) (Supplemental Fig. 2). When tumors were stratified by histological type, 
approximately equal proportions of males and females had IDH1/2 mutations present in their tumors (GBM: 
6.0% in males, and 5.2% in females; LGG: 17.9% in males, and 17.7% in females). There were also no significant 
differences by sex in IDH/TERT/1p19q subtype (Supplemental Fig. 3, overall p = 0.2859), or pan-glioma methyl-
ation subgroup (Supplemental Fig. 4, overall p = 0.4153).

SNPs found to be nominally significant (p < 5 × 10−4) in a previous 8 study meta-analysis, with imputation 
quality (r2) ≥ 0.7 were identified within the TCGA germline genotype data and D’ and r2 values in CEU were used 
to select proxy SNPs (Supplemental Table 3)16. A case-only analysis was conducted using sex as a binary pheno-
type for proxy SNPs in the TCGA dataset. In the overall meta-analysis, there was a nominally significant signal 
in the case-only meta-analysis for the proxy SNP in 3p21.31 in glioblastoma (Table 4). There was no significant 
association in the TCGA set, but RAF was elevated in females as compared to males in the GBM set, as well as in 
all IDH1/2 wild type gliomas. MAF in LGG and IDH1/2 mutant glioma was similar among males and females. 

Characteristic Study

Males Females

Cases Controls Cases Controls

N

Total 4,831 5,216 3,206 5,470

GICCa 2,733 1,868 1,831 1,397

SFAGS-GWASb 440 749 237 1,611

MDA-GWASc 714 1,094 429 1,142

GliomaScand 944 1,465 709 1,260

Mean Age (SD)

Total 52.5 (14.5)** 58.2 (15.2)** 51.8 (14.9)** 54.7 (14.5)**

GICC 52.5 (14.3) 56.1 (13.4) 51.3 (14.6) 53.4 (14.3)

SFAGS-GWAS 53.8 (13.0) 50.6 (14.8) 53.5 (14.0) 49.3 (13.2)

MDA-GWAS 47.1 (13.0) Modal age group: 60–69e 47.7 (13.9) Modal age group: 65–69f

GliomaScan 56.0 (15.5) 69.3 (12.7) 55.1 (15.7) 64.0 (15.4)

GBM (% of total)g

Total 2,835 (58.7%)** — 1,682 (52.5%)** —

GICC 1,575 (57.6%) — 885 (48.3%) —

SFAGS-GWAS 333 (75.7%) — 178 (75.1%) —

MDA-GWAS 397 (55.6%) — 246 (57.3%) —

GliomaScan 530 (56.1%) — 373 (52.6%) —

GBM - Mean Age 
(SD)

Total 57.3 (12.0) ** — 57.8 (12.1) ** —

GICC 57.7 (11.4) — 57.8 (11.6) —

SFAGS-GWAS 56.4 (11.5) — 56.2 (12.3) —

MDA-GWAS 52.0 (11.7) — 53.7 (11.3) —

GliomaScan 60.4 (13.0) — 61.4 (12.5) —

Non-GBM (% of 
total)g

Total 1,716 (35.5%)** — 1,320 (41.2%)** —

GICC 1,036 (37.9%) — 862 (47.1%) —

SFAGS-GWAS 107 (24.3%) — 59 (24.9%) —

MDA-GWAS 317 (44.4%) — 183 (42.7%) —

GliomaScan 256 (27.1%) — 216 (30.5%) —

Non-GBM - Mean 
Age (SD)

Total 44.3 (14.4)** — 43.9 (14.3)** —

GICC 44.7 (14.6) — 44.6 (14.2) —

SFAGS-GWAS 45.7 (14.2) — 45.4 (15.8) —

MDA-GWAS 41.0 (11.9) — 39.6 (12.9) —

GliomaScan 46.3 (15.5) — 44.4 (15.2) —

Table 1.  Population characteristics by study and sex. aData from Glioma International Case-Control Study 
(GICC; Melin, et al.4); bData from San Francisco Adult Glioma Study GWAS (SFAGS-GWAS; Wrensch, et al.12);  
cdata from MD Anderson Cancer Center GWAS (MDA-GWAS; Shete, et al.13); dData from the National Cancer 
Institute’s GliomaScan (GliomaScan; Rajaraman, et al.14); eData from CGEMS prostate study (Yeager et al.35). 
Continuous age is not available, age distribution is as follows 50–59: 12.3%, 60–69: 56.7%, 70–79: 30.7%, 80–89: 
0.3%; fData from CGEMS breast study (Hunter et al.36). Continuous age is not available, age distribution is 
as follows: 0–54: 4.3%, 55–59: 15.0%, 60–64: 23.6%, 65–69: 27.5%, 70–74: 19.0%, 75–99: 10.7%; gHistology 
information not available for all cases and frequencies may not add to 100%. **Differs between included studies 
at the p < 0.05 level.
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There was a nominally significant signal in the case-only meta-analysis for the proxy SNP at 7p11.2, but no sig-
nificant association in the TCGA, but RAF was elevated in males as compared to females in the GBM set, as well 
as in all IDH1/2 wild type gliomas. There was no significant signal detected in the overall case-only meta-analysis 
for the proxy SNP at 8q24.21, or within the TCGA set. Among both LGG and IDH1/2 mutant, RAF was elevated 
in females as opposed to males.

Sex-stratified genotypic risk scores.  In order to estimate the cumulative effects of significant vari-
ants by sex, unweighted risk scores (URS) were calculated by summing all risk alleles for each individual using 
the 10 SNPs (rs12752552, rs9841110, rs10069690, rs11979158, rs55705857, rs634537, rs12803321, rs3751667, 
rs78378222, and rs2297440) found to be significantly associated with glioma in this analysis. GBM (URS-GBM) 
and non-GBM (URS-NGBM) specific URS were calculated only using sets of 6 SNPs in this set that were signifi-
cantly associated with these histologies (URS-GBM: rs9841110, rs10069690, rs11979158, rs634537, rs78378222, 
and rs2297440, and URS-NGBM: rs10069690, rs55705857, rs634537, rs12803321, rs78378222, and rs2297440). 
See Methods for additional information on score calculation. Median URS, URS-GBM, and URS-NGBM were 
significantly different (p < 0.0001) between cases and controls in both males and females in all histology groups 
(Supplemental Fig. 5). There was no significant difference in median risk scores between male and female cases 
for any histology group. Glioma risk increased with increasing number of alleles in both males and females for 
the 10 SNPs included in the overall URS, as well as the 6 SNPs in the URS-GBM and 6 SNPs in URS-NGBM 
(Fig. 6, Supplemental Table 4). Risk was higher in females (OR = 3.97 [95% CI = 2.42–6.80]) as compared to 
males (OR = 1.74 [95% CI = 1.21–2.53]) in all glioma for individuals for with 13–16 alleles, though the difference 
between these estimates were not statistically significant. Risk was also higher among females (OR = 2.69 [95% 
CI = 1.98–3.66]) as compared to males (OR = 1.79 [95% CI = 1.38–2.32]) in GBM for individuals with 8–11 risk 
alleles, as well as in non-GBM for individuals with 6–11 risk alleles (females: OR = 2.83 [95% CI = 2.12–3.78], 
males: OR = 1.70 [95% CI = 1.31–2.19]), though the difference between these estimates were not statistically sig-
nificant. The estimates may underestimate actual risk due to varying effect sizes and alleles frequencies between 
risk variants.

A

4,831 cases
5,176 controls

3,206 cases
5,410 controls

Analyzed individually by study using sex-stratified models (all glioma, stratified by GBM and 
non-GBM) adjusting for PCs, combined via fixed effects variance-weighted meta-analysis

Calculate difference between male and female effect sizes individually 
by study, combined via fixed effects variance-weighted meta-analysis

Agnostic Scan for Sex-Specific Variants
SNPs on autosomal chromosomes within 500kb of previously identified 
risk loci previously found (Melin, et al. 2017) to be nominally significant 

(p<5x104) Effects considered significant at p<1.4x10-6 (adjusted for 
36,000 tests)

B
Glioma International Case-Control Study

Genotyped on Illumina Oncoarray 

Fine-Mapping Previously Identified Loci for Sex-Specific Effects
SNPs on autosomal chromosomes within 500kb of 26 previously 

identified risk loci previously found (Melin, et al. 2017) to be nominally 
significant (p<5x10-4). Effects were considered significant at p<2.8x10-6 

level (adjusted for 18,000 tests)

9863 genotyped SNPs after quality control 300 genotyped SNPs remaining after 
quality control

Imputed using 1000G and UK10K, 245,746 SNPs 
with INFO>0.07 and MAF>0.01

Males: 2,733 cases and 1,868 controls
Females: 1,831 cases and 1,397 controls

Analyzed using logistic regression adjusted for 
PCs, assuming complete activation of one allele in 
females (males treated as homozygous females) 

Analyzed using logistic regression 
adjusted for PCs, effects considered 

significant at  p<1.7x10-4 (adjusted for 300 
tests)

Effects considered significant at p<2x10-7 
(corrected for 250,000 tests) 

SELAMEFSELAM

Glioma International 
Case-Control Study

San Francisco Adult 
Glioma Study GWAS MD Anderson GWAS NCI GliomaScan GWAS

Figure 2.  Study Schematic for analyses of (A) autosomal SNPs and (B) SNPs on sex chromosomes.
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Discussion
This is the first analysis of inherited risk variants in sporadic glioma focused specifically on sex differences, 
and the first agnostic unbiased scan for glioma risk variants on the X and Y sex chromosomes. One SNP at the 
7p11.2 locus (rs11979158) showed significant association in males only, in both all glioma and GBM (Table 2, see 
Supplemental Table 5 and Supplemental Fig. 6 for study-specific estimates). This variant is within one of two pre-
viously identified independent glioma risk loci located near epidermal growth factor receptor (EGFR) and is most 
strongly associated with risk for GBM4,17. Though EGFR is implicated in many cancer types and is a target for 
many anti-cancer therapies, this risk locus has not been previously associated with any other cancer type. While 
estrogen has been demonstrated to interact with EGFR as well as other growth factors, previous epidemiological 
studies have not consistently found an association between proxy markers for endogenous estrogen exposure and 
decreased glioma risk18. Cell intrinsic, hormone independent sex differences in EGF effects have been observed in 
a murine model of gliomagenesis, where EGF treatment was transforming for male but not female astrocytes that 
had been rendered null for neurofibromin and p53 function19. While this SNP was not genotyped on the germline 
genotyping array used for TCGA, a SNP in strong LD with rs11979158 (rs7785013, D’ = 1, r2 = 1 in CEU16) was 
evaluated using a case-only approach. The association was not statistically significant in any histology group, but 
a similar trend to that observed in the overall meta-analysis in sex-specific RAF was observed in both the overall 
GBM and the IDH1/2 wild type groups.

The association at 8q24.21 (rs55705857) is the strongest that has been identified by glioma GWAS to date4, 
with an odds ratio of 1.99 (95% CI = 1.85–2.13, p = 9.53 × 10−79) in glioma overall, and an odds ratio of 3.39 
(95% CI = 3.09–3.71, p = 7.28 × 10−149) in non-GBM (see Supplemental Table 5 and Supplemental Fig. 7 for 
study-specific estimates). The identified SNP, rs55705857, is located in an intergenic region near coiled-coil 
domain containing 26 (CCDC26, a long non-coding RNA). This analysis found a stronger association in females 

SNP (Locus)
Risk 
Allele Histology

Males Females

PDPM ORM (95% CI) PF ORF (95% CI)

rs12752552 (1p31.3) T/C

All glioma 1.40 × 10−6 1.25 (1.14–1.37) 3.22 × 10−4 1.21 (1.09–1.34) 0.7280

GBM 3.27 × 10−6 1.28 (1.15–1.42) 8.41 × 10−4 1.24 (1.09–1.41) 0.7535

Non-GBM 0.0235 1.15 (1.02–1.30) 0.0036 1.23 (1.07–1.42) 0.4252

rs9841110 (3p21.31) C/G

All glioma 0.5885 1.02 (0.96–1.08) 5.55 × 10–8 1.22 (1.14–1.32) 1.77 × 10–4

GBM 0.3429 1.04 (0.96–1.11) 1.44 × 10−7 1.27 (1.16–1.38) 6.04 × 10−4

Non-GBM 0.4816 0.97 (0.89–1.06) 0.0160 1.13 (1.02–1.24) 0.0186

rs10069690 (5p15.33) C/T

All glioma 7.58 × 10−31 1.49 (1.39–1.60) 4.88 × 10−20 1.45 (1.34–1.57) 0.5688

GBM 3.38 × 10−35 1.64 (1.52–1.78) 6.29 × 10–22 1.60 (1.45–1.76) 0.7049

Non-GBM 1.20 × 10−6 1.27 (1.15–1.40) 1.67 × 10−6 1.31 (1.17–1.46) 0.7036

rs75061358 (7p11.2) T/G

All glioma 6.93 × 10−12 1.43 (1.29–1.59) 1.71 × 10−9 1.46 (1.29–1.66) 0.8114

GBM 2.66 × 10−16 1.65 (1.46–1.86) 1.16 × 10−11 1.68 (1.45–1.96) 0.8211

Non-GBM 0.0079 1.23 (1.06–1.43) 0.0129 1.25 (1.05–1.49) 0.9246

rs11979158 (7p11.2) A/G

All glioma 4.87 × 10−12 1.33 (1.23–1.44) 0.0187 1.12 (1.02–1.22) 0.0055

GBM 1.26 × 10−12 1.40 (1.28–1.54) 1.33 × 10−4 1.24 (1.11–1.39) 0.1184

Non-GBM 2.74 × 10−5 1.27 (1.13–1.41) 0.9014 0.99 (0.88–1.12) 0.0034

rs55705857 (8q24.21) A/G

All glioma 1.09 × 10−14 1.56 (1.40–1.75) 1.22 × 10−39 2.45 (2.14–2.80) 3.46 × 10−7

GBM 0.0344 1.17 (1.01–1.34) 4.16 × 10−7 1.61 (1.34–1.94) 0.0066

Non-GBM 8.13 × 10−36 2.66 (2.28–3.10) 1.85 × 10−65 4.71 (3.94–5.63) 8.44 × 10−7

rs634537 (9p21.3) T/G

All glioma 2.37 × 10−21 1.33 (1.25–1.41) 6.38 × 10−14 1.30 (1.21–1.39) 0.6496

GBM 1.00 × 10−20 1.38 (1.29–1.48) 1.92 × 10−16 1.41 (1.30–1.53) 0.6544

Non-GBM 2.63 × 10−8 1.26 (1.16–1.37) 4.88 × 10−4 1.18 (1.08–1.30) 0.3131

rs12803321 (11q23.3) G/C

All glioma 3.96 × 10−4 1.12 (1.05–1.19) 8.49 × 10−6 1.18 (1.10–1.26) 0.2680

GBM 0.4497 0.97 (0.91–1.04) 0.6463 1.02 (0.94–1.11) 0.3667

Non-GBM 1.82 × 10−14 1.41 (1.29–1.53) 8.88 × 10−13 1.43 (1.30–1.57) 0.7207

rs3751667 (16p13.3) C/T

All glioma 2.98 × 10−6 1.18 (1.10–1.26) 0.0297 1.09 (1.01–1.19) 0.1779

GBM 2.22 × 10−4 1.16 (1.07–1.26) 0.1130 1.08 (0.98–1.19) 0.2729

Non-GBM 2.62 × 10−6 1.26 (1.14–1.38) 0.0060 1.17 (1.05–1.31) 0.3241

rs78378222 (17p13.1) T/G

All glioma 3.36 × 10−17 2.41 (1.97–2.96) 1.75 × 10−12 2.43 (1.90–3.12) 0.8483

GBM 1.27 × 10−14 2.65 (2.07–3.40) 2.28 × 10−9 2.67 (1.93–3.68) 0.8731

Non-GBM 1.10 × 10−10 2.79 (2.04–3.80) 4.40 × 10−8 2.70 (1.89–3.85) 0.9385

rs2297440 (20q13.33) T/C

All glioma 4.09 × 10−21 1.42 (1.32–1.52) 1.34 × 10−13 1.37 (1.26–1.49) 0.5299

GBM 1.22 × 10−19 1.47 (1.35–1.59) 1.15 × 10−16 1.53 (1.39–1.70) 0.5159

Non-GBM 2.92 × 10−7 1.29 (1.17–1.43) 0.0040 1.18 (1.05–1.32) 0.1916

Table 2.  Previously identified glioma risk loci and histology-specific odds ratios (OR) and 95% confidence 
intervals (95% CI) stratified by sex.
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than males in all glioma and non-GBM, where female odds ratio estimates are ~2 × those of males (Table 2). 
ORs were higher in women than men in all studies included in the analysis (see Supplemental Tables 5 and 6 
for study-specific estimates and MAF). A sensitivity analysis was conducted to assess the effect of study hetero-
geneity on this estimate in non-GBM using only the GICC, MDA-GWAS, and GliomaScan datasets. The exclu-
sion of SFAGS-GWAS did not substantially change the results (Main analysis pD = 1.20 × 10−6 and sensitivity 
pD = 1.49 × 10−5). A histology-specific analysis found a similar sex differences in ORs for rs55705957 for both 
non-GBM astrocytoma, and oligodendroglioma (Table 3, see Supplemental Table 7 for study-specific estimates). 
This variant is strongly associated with IDH1/2 mutant and 1p/19q codeleted glioma tumors, but data on these 
molecular markers was not available for the four GWAS datasets used20,21. The TCGA GBM and LGG datasets22–24 
were used to assess potential sex differences in frequency of IDH1/2 mutation within histologies. Approximately 
the same proportion of males as females with histologically confirmed GBM had IDH1/2 mutations (5.2% vs 
6.0%, respectively, Supplemental Fig. 2). While this SNP was not genotyped on the germline genotyping array 
used for TCGA, a SNP in weak LD with rs55705857 (rs4636162, D’ = 1; r2 = 0.104, in CEU16) was evaluated using 
a case-only approach. There was no significant association in the overall meta-analysis for this SNP, and the asso-
ciation in the analysis of TCGA cases was not statistically significant in any group.

A large region in 3p21.31 was identified that was associated with all glioma and GBM in females only (Table 2, 
see Supplemental Table 5 and Supplemental Fig. 8 for study-specific estimates). The strongest association in this 
region was rs9841110, an intronic variant located upstream of dystroglycan 1 (DAG1) within an enhancer region. 
While this SNP was not genotyped on the germline genotyping array used for TCGA, a SNP in strong LD with 
rs9841110 (rs9814873, D’ = 1, r2 = 1 in CEU16) was able to be evaluated using a case-only approach. The associa-
tion was not statistically significant in any group, but a similar trend in RAF was observed in the overall GBM and 
IDH1/2 wild type groups. Though this region has not previously been associated with glioma, previous GWAS 
have detected associations at 3p21.31 for a large variety of traits, including several autoimmune diseases as well 
as increased age at menarche25–28. If increased lifetime estrogen exposure decreases glioma risk, as some have 
hypothesized, it is reasonable that variants which increase age at menarche (potentially decreasing total lifetime 
estrogen exposure) may increase glioma risk in females. Due to the complexity of measuring lifetime estrogen 
exposure (which is affected by age at menarche, age at menopause, parity, breast feeding patterns, and estrogen 
replacement therapy post-menopause) it is difficult to determine the ‘true’ effect that this exposure might have 
on glioma risk.

As compared to a model containing age at diagnosis and sex alone, the three SNPs (rs55705857, rs9841110 and 
rs11979158) identified as having sex-specific effects explain an additional 1.4% of trait variance within the GICC 
set. The variance explained by these SNPs varies by histology (0.6% in GBM, and 3.3% in Non-GBM). The vari-
ance explained by the addition of these three SNPs was higher in females for all glioma (1.3% in males and 2.2% in 
females), and non-GBM glioma (2.3% in males and 5.3% in females), and slightly higher in males for GBM (0.9% 
in males and 0.7% in females). Unweighted risk scores (URS) were generated to compare the cumulative effects 

Figure 3.  Sex-specific odds ratios overall and by histology grouping, 95% CI and p values for selected previous 
GWAS hits and 3p21.31 (rs9841110) for all glioma, GBM, and non-GBM.

RSID (Locus) Histology

Males Females

PDPM ORM (95% CI) Phet PF ORF (95% CI) Phet

rs9841110 (3p21.31)
Astrocytoma (Non-GBM) (WHO grade II-III) 0.5304 1.04 (0.92–1.17) 0.751 0.0407 1.15 (1.01–1.32) 0.549 0.2409

Oligodendroglioma (WHO grade II-III) 0.4190 0.94 (0.81–1.09) 0.694 0.0973 1.14 (0.98–1.34) 0.360 0.0649

rs11979158 (7p11.2)
Astrocytoma (Non-GBM) (WHO grade II-III) 0.0023 0.79 (0.68–0.92) 0.056 0.9363 0.99 (0.83–1.18) 0.418 0.0500

Oligodendroglioma (WHO grade II-III) 0.0221 0.81 (0.68–0.97) 0.865 0.6561 1.05 (0.86–1.28) 0.262 0.0471

rs55705857 (8q24.21)
Astrocytoma (Non-GBM) (WHO grade II-III) 1.19 × 10−21 2.87 (2.31–3.56) 0.073 2.15 × 10−28 4.64 (3.53–6.09) 0.237 0.0065

Oligodendroglioma (WHO grade II-III) 5.37 × 10−34 5.47 (4.16–7.19) 0.103 3.68 × 10−58 12.15 (8.96–16.48) 0.027 6.60 × 10−5

Table 3.  Sex-specific odds ratios (OR), 95% confidence intervals (95% CI), and p values from meta-analysis for 
rs11979158, rs55705857 and rs9841110 by specific non-GBM histologies.
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of glioma risk variants by sex by summing all risk alleles using the 10 SNPs found to be significantly associated 
with glioma in this analysis. GBM (URS-GBM) and non-GBM (URS-NGBM) specific URS were calculated using 
sets of six SNPs in this set that were associated with significantly associated with each histology. Individuals with 
lower numbers of risk alleles had significantly lower odds of glioma, and those with higher numbers of alleles had 
increased odds of glioma, with statistically significant trends in each histology group. Males and females with low 
risk scores had similar odds of glioma, while females had increased odds in the upper strata of scores as compared 
to males. Development of risk scores that weight alleles by effect size, and use sex-specific estimates for variants 
for which effect size varies by sex (such as 7p11.2 and 8q24.21), may lead to better predictive values.

While often not included in GWAS, sex-stratified analyses can reveal genetic sources of sexual dimor-
phism in risk9,10. Sex-stratified analyses not only contribute to understanding of sources of sex difference in 
incidence, but may also suggest mechanisms and pathways disease development that vary by sex. Sex variation 
in genetic susceptibility to disease is likely not due to sex differences in actual DNA sequence, but is thought 
to be the result of sex-specific regulatory functions29–31. In addition to genetic sources of difference, there are 
likely several additional factors acting in combination which contribute to sex differences in glioma incidence. 
Sex differences in disease can also be linked to in-utero development, during which time gene expression and 
risk phenotypes are patterned through the action of X chromosome alleles that escape inactivation and genes 
on the non-pseudo-autosomal component of the Y chromosome, as well as the epigenetic effects of in utero 

Figure 4.  Manhattan plot of -log(p) values for all glioma in (A) males and (B) females, for GBM in (C) males 
and (D) females, and for non-GBM in (E) males and (F) females.
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testosterone32. A previous analysis estimating heritability of brain and CNS tumors by sex using twins attempted 
to estimate sex-specific relative risks, but these analyses were limited by a small sample size33. Further investi-
gation of the inheritance patterns of familial glioma by sex may also provide additional information about sex 
differences in this disease.

There are several limitations to this analysis. Individuals included in these datasets were recruited during 
different time periods from numerous institutions, with no central review of pathology. Molecular tumor mark-
ers were unavailable for all datasets, and as a result classifications are based on the treating pathologist using 
the prevailing histologic criteria at time of diagnosis. The variant at 8q24.21 has been shown to have significant 
association with particular molecular subtypes, and without molecular data it was not possible to determine 
whether the observed result is an artifact of varying molecular features by sex. Oligodendroglioma as a histology 
is highly enriched for IDH1/2 and 1p/19q co-deleted tumors (117/174, or ~67% within TCGA) and it is there-
fore likely that the analysis using only tumors classified as oligodendroglioma captured most of this molecular 
subtype. Males and females within histology groups have different frequencies of IDH1/2 mutation22, which may 
have confounded the estimates for 8q24.21. The TCGA dataset was used to explore sex differences in allele fre-
quency within molecular groups, but none of the identified SNPs were able to be directly validated within this set; 

Figure 5.  Plot of region on chromosome 3 identified as having a sex-specific association with GBM for  
(A) males and (B) females.

Marker SNP Histology

Four-study Meta-Analysis The Cancer Genome Atlas

Males Females
Case-only analysis 
(males:females)

INFO

Males Females
Case-only analysis 
(males:females)

RAFcases RAFcases P OR (95% CI) RAFcases RAFcases p OR (95% CI)

rs9814873 (3p21.31)

All glioma 0.692 0.707 0.0577 1.07 (1.00–1.15) 1.00 0.701 0.716 0.5321 0.93 (0.75–1.16)

GBM 0.694 0.716 0.0371 1.11 (1.01–1.22) 1.00 0.697 0.742 0.2003 0.80 (0.58–1.12)

LGG (non-GBM) 0.686 0.691 0.6446 1.03 (0.92–1.15) 1.00 0.705 0.697 0.8039 1.04 (0.77–1.40)

IDH1/2 wild type — — — — 1.00 0.704 0.731 0.4343 0.88 (0.64–1.21)

IDH1/2 mutant — — — — 1.00 0.705 0.692 0.7023 1.06 (0.77–1.47)

rs7785013 (7p11.2)

All glioma 0.864 0.847 0.0058 0.88 (0.80–0.96) 0.99 0.855 0.850 0.7813 1.04 (0.78–1.39)

GBM 0.872 0.861 0.2141 0.92 (0.81–1.05) 0.99 0.854 0.840 0.6073 1.12 (0.73–1.72)

LGG (non-GBM) 0.855 0.832 0.0109 0.83 (0.72–0.96) 0.99 0.856 0.857 0.9585 0.99 (0.67–1.47)

IDH1/2 wild type — — — — 0.99 0.864 0.837 0.3132 1.24 (0.82–1.87)

IDH1/2 mutant — — — — 0.99 0.846 0.875 0.2447 0.77 (0.50–1.19)

rs4636162 (8q24.21)

All glioma 0.358 0.365 0.5161 1.02 (0.96–1.09) 0.93 0.392 0.424 0.2113 0.88 (0.71–1.08)

GBM 0.343 0.338 0.6001 0.98 (0.89–.07) 0.93 0.374 0.404 0.4456 0.89 (0.66–1.20)

LGG 0.383 0.401 0.1594 1.08 (0.97–1.20) 0.94 0.410 0.438 0.3891 0.88 (0.67–1.17)

IDH1/2 wild type — — — — 0.92 0.371 0.373 0.9480 0.99 (0.73–1.34)

IDH1/2 mutant — — — — 0.94 0.419 0.460 0.2613 0.84 (0.63–1.14)

Table 4.  Risk allele frequencies (RAF) Case-only odds ratios, 95% confidence intervals (95% CI), and p values 
for marker SNPs from four study meta-analysis and the Cancer Genome Atlas genotyping data.
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however SNPs in strong LD were evaluated except for in 8q24.21. The 8q24.21 region is not well characterized on 
the array used for the TCGA genotyping, and as a result this region imputed poorly. No proxy SNP in strong LD 
with rs55705857 was able to be identified. Similar trends in RAF to those observed in the overall meta-analysis 
were seen in the TCGA set, though these differences were not statistically significant. Further interrogation in 
datasets with molecular classification where direct genotyping of these regions is warranted in order to confirm 
the sex-specific associations observed in this analysis.

Conclusions
Sex and other demographic differences in cancer susceptibility can provide important clues to etiology, and 
these differences can be leveraged for discovery in genetic association studies. This analysis identified potential 
sex-specific effects in 2 previous identified glioma risk loci (7p11.2, and 8q24.21), and 1 newly identified autoso-
mal locus (3p21.31). Odds ratios for the highest strata of an unweighted risk score calculated by summing total 
risk alleles was higher in females as compared to males in all three histology groups. These significant differences 
in effect size may be a result of differing biological function of these variants by sex due to biological sex differ-
ences, or interaction between these variants and unidentified risk factors that vary in prevalence or effect by sex.

Materials and Methods
Study cohorts.  This study was approved locally by the institutional review board (IRB) at University Hospitals 
Cleveland Medical Center and by each participating study site’s IRB. Written informed consent was obtained from 
all participants. All research was performed in accordance with relevant guidelines and regulation. In this study, 
data was combined from four prior glioma GWAS: Glioma International Case-Control Study (GICC), San Francisco 
Adult Glioma Study GWAS (SFAGS-GWAS), MD Anderson Glioma GWAS (MDA-GWAS), and National Cancer 
Institute’s GliomaScan (Fig. 4A)4,11–14. The SFAGS-GWAS includes controls from the Illumina iControls dataset, 
and MDA-GWAS includes controls from Cancer Genetic Markers of Susceptibility (CGEMS) breast and prostate 
studies34–36. Details of data collection and classification are available in previous publications4,11–14.
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Genotyping and imputation of GWAS datasets.  GICC cases and controls were genotyped on the 
Illumina Oncoarray37. The array included 37,000 beadchips customized to include previously-identified 
glioma-specific candidate single nucleotide polymorphisms (SNPs). SFAGS-GWAS cases and some controls 
were genotyped on Illumina’s HumanCNV370-Duo BeadChip, and the remaining controls were genotyped 
on the Illumina HumanHap300 and HumanHap550. MDA-GWAS cases were genotyped on the Illumina 
HumanHap610 and controls using the Illumina HumanHap550 (CGEMS breast34,36) or HumanHap300 (CGEMS 
prostate35). GliomaScan cases were genotyped on the Illumina 660 W, while controls were selected from cohort 
studies and were genotyped on Illumina 370D, 550 K, 610Q, or 660 W (See Rajaraman et al. for specific details of 
genotyping)14. Details of DNA collection and processing are available in previous publications4,12–14. Individuals 
with a call rate (CR) <99% were excluded, as well as all individuals who were of non-European ancestry (<80% 
estimated European ancestry using the FastPop38 procedure developed by the GAMEON consortium). For all 
apparent first-degree relative pairs were removed (identified using estimated identity by descent [IBD] ≥ .5), for 
example, the control was removed from a case-control pair; otherwise, the individual with the lower call rate was 
excluded. SNPs with a call rate < 95% were excluded as were those with a minor allele frequency (MAF) <0.01, or 
displaying significant deviation from Hardy-Weinberg equilibrium (HWE) (p < 1 × 10−5). Additional details of 
quality control procedures have been previously described in Melin et al.4. All datasets were imputed separately 
using SHAPEIT v2.837 and IMPUTE v2.3.2 using a merged reference panel consisting of data from phase three 
of the 1,000 genomes project and the UK10K39–44.

TCGA cases were genotyped on the Affymetrix Genomewide 6.0 array using DNA extracted from whole 
blood (see previous manuscript for details of DNA processing23,24), and underwent standard GWAS QC, and 
duplicate and related individuals within datasets have been excluded4. Ancestry outliers were identified in TCGA 
using principal components analysis in plink 1.945. Resulting files were imputed using Eagle 2 and Minimac3 as 
implemented on the Michigan imputation server (https://imputationserver.sph.umich.edu) using the Haplotype 
Reference Consortium Version r1.1 2016 as a reference panel46–48. Somatic characterization of TCGA cases was 
obtained from the final dataset used for the TCGA pan-glioma analysis22, and classification schemes were adopted 
from Eckel-Passow, et al.49 and Ceccarelli, et al.22.

Sex-stratified scan of the autosomal chromosomes.  The data were analyzed using sex-stratified logis-
tic regression models in SNPTEST for all SNPs on autosomal chromosomes within 500 kb of previously identified 
risk loci, and/or those found to be nominally significant (p < 5 × 10−4) in a previous meta-analysis (Fig. 2A)4,50. 
Sex-specific betas (βM and βF), standard errors (SEM and SEF), and p-values (pM and pF) were generated using 
sex-stratified logistic regression models that were adjusted for number of principal components found to significant 
differed between cases and controls within each study in a previous meta-analysis4,50. Genomic inflation factors were 
calculated After excluding SNPs with MAF < 0.05, INFO score < 0.7, and that significantly violated Hardy-Weinberg 
equilibrium in controls (p < 5 × 10−8), genomic inflation factors (Males: GICC: λadjusted = 1.04, SFAGS-GWAS: 
λadjusted = 1.01 MDA-GWAS: λadjusted = 1.02; Gliomascan: λadjusted = 1.01. Females: GICC: λadjusted = 1.03;  
SFAGS-GWAS: λadjusted = 1.02; MDA-GWAS: λadjusted = 1.04; Gliomascan: λadjusted = 1.01).

Estimation of sex difference and test of statistical significance.  βD and SED were estimated using 
the sex-specific betas and standard errors separately for each dataset, as follows:

β β β= − (1)D M F

= +SE SE SE (2)D M F
2 2

The difference between the groups was then tested using a z test51,52. Sex-stratified results and differences esti-
mates from the four studies were separately combined via inverse-variance weighted fixed effects meta-analysis in 
META53. See Fig. 2A for schematic of autosomal analysis methods. Case only-analyses were performed for SNPs 
found to be significant in agnostic analyses using sex as outcome for all glioma, GBM, and non-GBM by study and 
betas and standard errors were combined via inverse-variance weighted fixed effects meta-analysis in META53.

Sex chromosome analysis.  X and Y chromosome data were available from GICC set only. Males and 
females were imputed separately for the X chromosome using the previously described merged reference panel. 
X chromosomes were analyzed using logistic regression model in SNPTEST module ‘newml’ assuming complete 
inactivation of one allele in females, and males are treated as homozygous females (Fig. 2B). For prioritized SNPs 
in the combined model, sex-specific effect estimates were generated using stratified logistic regression models. Y 
chromosome data were analyzed using logistic regression in SNPTEST (Fig. 2B)54. Figures were generated using 
LocusZoom and R 3.3.2 using GenABEL, qqman, and ggplot55–59.

Analysis of TCGA germline and somatic data.  Only newly diagnosed cases from TCGA GBM and LGG 
with no neo-adjuvant treatment or prior cancer were used. Demographic characteristics, molecular classification 
and somatic alterations data was obtained from Ceccarelli, et al.22. Chi-square tests were used to compare the 
frequency of somatic alterations between age groups. SNPs found to be nominally significant (p < 5 × 10−4) in a 
previous 8 study meta-analysis4, with imputation quality ≥ 0.7 were identified within the TCGA genotype data 
and D’ and r2 values in CEU were used to select proxy SNPs16. Using these SNPs, a case-only analysis using sex as 
a binary phenotype was conducted using logistic regression in SNPTEST assuming an additive model to estimate 
beta, standard error, and p values50. Results were considered significant at p < 0.003 (Bonferroni correction for 15 
tests, for the three assessed loci in each of five histology groups).
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Calculation of unweighted genetic risk scores.  In order to estimate the cumulative effects of significant 
variants by sex, histology-specific unweighted risk scores were calculated using the SNPs found to be significantly 
associated with each outcome. Data from all four studies was merged, and any imputed genotypes with genotype 
probability >0.8 were converted to hard calls. An overall unweighted risk score (URS) was generated using the sum 
of risk alleles at rs12752552, rs9841110, rs10069690, rs11979158, rs55705857, rs634537, rs12803321, rs3751667, 
rs78378222, and rs2297440. As risk alleles are known to have histology specific associations4, histologic specific 
scores were generated for GBM and non-GBM using only the SNPs found to have a significant association with 
each histology. GBM-specific URS (URS-G) was calculated by summing the number of risk alleles at rs9841110, 
rs10069690, rs11979158, rs634537, rs78378222, and rs2297440. Non-GBM-specific (URS-N) specific URS was 
calculated by summing the number of risk alleles at rs10069690, rs55705857, rs634537, rs12803321, rs78378222, 
and rs2297440. Unweighted risk scores (URS) were calculated by summing all risk alleles for each individual. 
Differences in median scores between groups using were tested using Wilcoxon rank sum tests. Scores were com-
pared against the median score for each set (URS: ten alleles, URS-GBM: six alleles, URS-NGBM: four alleles). 
Odds ratios and 95% confidence intervals for each level of the score using sex-stratified logistic regression adjusted 
for age at diagnosis (for controls where only an age range was available, the mean value of the range was used), 
where each score was compared to the median score within the entire population as described in Shete et al.13.

Calculation of trait variance explained by SNPs with sex-specific effects.  In order to determine 
whether the identified SNPs with sex-specific effects more accurate estimate odds of glioma than sex alone, logis-
tic regression models were used to estimate odds of all glioma, GBM, and non-GBM glioma based on sex using 
the GICC data only. Proportion of variance in odds of glioma explained by sex-specific SNPs was calculated using 
R2 estimated using the log likelihood of the null model (sex, age at diagnosis, and the first two principal compo-
nents only) and the full model (including identified SNPs, rs9841110, rs11979158, rs55705857)60, calculated as 
follows:

= −R
L
L

1
log( )
log( ) (3)

full

null

2

Proportion of variance explained was also calculated separately by sex for each histology (null model adjusted 
for age at diagnosis, and the first two principal components only).

References
	 1.	 Ostrom, Q. T. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United 

States in 2009–2013. Neuro-oncology 18, v1–v75 (2016).
	 2.	 Ostrom, Q. T. et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology 16, 896–913, https://doi.

org/10.1093/neuonc/nou087 (2014).
	 3.	 Kinnersley, B. et al. Quantifying the heritability of glioma using genome-wide complex trait analysis. Scientific reports 5, 17267, 

https://doi.org/10.1038/srep17267 (2015).
	 4.	 Melin, B. S. et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to 

glioblastoma and non-glioblastoma tumors. Nature genetics. 49, 789–794, https://doi.org/10.1038/ng.3823 (2017).
	 5.	 Benson, V. S., Kirichek, O., Beral, V. & Green, J. Menopausal hormone therapy and central nervous system tumor risk: large UK 

prospective study and meta-analysis. International journal of cancer 136, 2369–2377, https://doi.org/10.1002/ijc.29274 (2015).
	 6.	 Zong, H. et al. Reproductive factors in relation to risk of brain tumors in women: an updated meta-analysis of 27 independent 

studies. Tumor biology 35, 11579–11586, https://doi.org/10.1007/s13277-014-2448-1 (2014).
	 7.	 Howlader N, N. A. et al (eds). SEER Cancer Statistics Review, 1975-2014, based on November 2016 SEER data submission. (National 

Cancer Institute, Bethesda, MD, 2017).
	 8.	 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA: a cancer journal for clinicians 67, 7–30, https://doi.org/10.3322/

caac.21387 (2017).
	 9.	 Liu, L. Y., Schaub, M. A., Sirota, M. & Butte, A. J. Sex differences in disease risk from reported genome-wide association study 

findings. Human genetics 131, 353–364, https://doi.org/10.1007/s00439-011-1081-y (2012).
	10.	 Dorak, M. T. & Karpuzoglu, E. Gender differences in cancer susceptibility: an inadequately addressed issue. Frontiers in genetics 3, 

268, https://doi.org/10.3389/fgene.2012.00268 (2012).
	11.	 Amirian, E. S. et al. The Glioma International Case-Control Study: A Report From the Genetic Epidemiology of Glioma International 

Consortium. American journal of epidemiology 183, 85–91, https://doi.org/10.1093/aje/kwv235 (2016).
	12.	 Wrensch, M. et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nature genetics 

41, 905–908, https://doi.org/10.1038/ng.408 (2009).
	13.	 Shete, S. et al. Genome-wide association study identifies five susceptibility loci for glioma. Nature genetics 41, 899–904, https://doi.

org/10.1038/ng.407 (2009).
	14.	 Rajaraman, P. et al. Genome-wide association study of glioma and meta-analysis. Human genetics 131, 1877–1888, https://doi.

org/10.1007/s00439-012-1212-0 (2012).
	15.	 Sahm, F. et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or 

astrocytoma. Acta neuropathologica 128, 551–559, https://doi.org/10.1007/s00401-014-1326-7 (2014).
	16.	 Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking 

correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557, https://doi.org/10.1093/bioinformatics/btv402 
(2015).

	17.	 Sanson, M. et al. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Human molecular genetics 20, 2897–2904, https://
doi.org/10.1093/hmg/ddr192 (2011).

	18.	 Filardo, E. J. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a 
novel signaling pathway with potential significance for breast cancer. The journal of steroid biochemistry and molecular biology 80, 
231–238 (2002).

	19.	 Sun, T. et al. Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males. The journal of clinical 
investigation. 124, 4123–4133, https://doi.org/10.1172/JCI71048 (2014).

	20.	 Enciso-Mora, V. et al. Deciphering the 8q24.21 association for glioma. Human molecular genetics 22, 2293–2302, https://doi.
org/10.1093/hmg/ddt063 (2013).



www.nature.com/scientificreports/

13SCIENTIFIC Reports |  (2018) 8:7352  | DOI:10.1038/s41598-018-24580-z

	21.	 Jenkins, R. B. et al. A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas 
with IDH1 or IDH2 mutation. Nature genetics 44, 1122–1125, https://doi.org/10.1038/ng.2388 (2012).

	22.	 Ceccarelli, M. et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 
164, 550–563, https://doi.org/10.1016/j.cell.2015.12.028 (2016).

	23.	 Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477, https://doi.org/10.1016/j.cell.2013.09.034 
(2013).

	24.	 The Cancer Genome Atlas Research Network et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. 
The New England journal of medicine 372, 2481–2498, https://doi.org/10.1056/NEJMoa1402121 (2015).

	25.	 Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nature 
genetics. 42, 1077–1085, https://doi.org/10.1038/ng.714 (2010).

	26.	 Perry, J. R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97, 
https://doi.org/10.1038/nature13545 (2014).

	27.	 Pokrajac-Bulian, A., Toncic, M. & Anic, P. Assessing the factor structure of the Body Uneasiness Test (BUT) in an overweight and 
obese Croatian non-clinical sample. Eating and weight disorders: EWD 20, 215–222, https://doi.org/10.1007/s40519-014-0166-8 
(2015).

	28.	 Raelson, J. V. et al. Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple 
validated disease loci. Proceedings of the national academy of sciences of the United States of America 104, 14747–14752, https://doi.
org/10.1073/pnas.0706645104 (2007).

	29.	 Reinius, B. et al. An evolutionarily conserved sexual signature in the primate brain. PLoS genetics 4, e1000100, https://doi.
org/10.1371/journal.pgen.1000100 (2008).

	30.	 Rinn, J. L. & Snyder, M. Sexual dimorphism in mammalian gene expression. Trends in genetics: TIG 21, 298–305, https://doi.
org/10.1016/j.tig.2005.03.005 (2005).

	31.	 Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nature reviews. Genetics 8, 689–698, 
https://doi.org/10.1038/nrg2167 (2007).

	32.	 Sun, T., Plutynski, A., Ward, S. & Rubin, J. B. An integrative view on sex differences in brain tumors. Cellular and molecular life 
sciences 72, 3323–3342, https://doi.org/10.1007/s00018-015-1930-2 (2015).

	33.	 Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, 
Denmark, and Finland. The New England journal of medicine 343, 78–85, https://doi.org/10.1056/NEJM200007133430201 (2000).

	34.	 Ahmed, S. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nature genetics 41, 585–590, https://doi.
org/10.1038/ng.354 (2009).

	35.	 Yeager, M. et al. Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nature genetics 41, 1055–1057, 
https://doi.org/10.1038/ng.444 (2009).

	36.	 Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal 
breast cancer. Nature genetics 39, 870–874, https://doi.org/10.1038/ng2075 (2007).

	37.	 Amos, C. I. et al. The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers. Cancer 
epidemiology, biomarkers & prevention, https://doi.org/10.1158/1055-9965.EPI-16-0106 (2016).

	38.	 Li, Y. et al. FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data. BMC 
Bioinformatics 17, 122, https://doi.org/10.1186/s12859-016-0965-1 (2016).

	39.	 Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nature 
communications 6, 8111, https://doi.org/10.1038/ncomms9111 (2015).

	40.	 Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. Nature methods 9, 179–181, 
https://doi.org/10.1038/nmeth.1785 (2012).

	41.	 Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-
wide association studies. PLoS genetics 5, e1000529, https://doi.org/10.1371/journal.pgen.1000529 (2009).

	42.	 Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68–74, https://doi.org/10.1038/nature15393 
(2015).

	43.	 Golding, J., Pembrey, M., Jones, R. & Team, A. S. ALSPAC–the Avon Longitudinal Study of Parents and Children. I. Study 
methodology. Paediatric and perinatal epidemiology 15, 74–87 (2001).

	44.	 Moayyeri, A., Hammond, C. J., Hart, D. J. & Spector, T. D. The UK Adult Twin Registry (TwinsUK Resource). Twin research and 
human genetics: the official journal of the International Society for Twin Studies 16, 144–149, https://doi.org/10.1017/thg.2012.89 
(2013).

	45.	 Purcell, S. & Chang, C. PLINK 1.9, https://www.cog-genomics.org/plink2.
	46.	 Das, S. et al. Next-generation genotype imputation service and methods. Nature genetics 48, 1284–1287, https://doi.org/10.1038/

ng.3656 (2016).
	47.	 Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nature genetics 48, 1443–1448, https://

doi.org/10.1038/ng.3679 (2016).
	48.	 McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature genetics 48, 1279–1283, https://doi.

org/10.1038/ng.3643 (2016).
	49.	 Eckel-Passow, J. E. et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. The New England journal 

of medicine 372, 2499–2508, https://doi.org/10.1056/NEJMoa1407279 (2015).
	50.	 Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by 

imputation of genotypes. Nature genetics 39, 906–913, https://doi.org/10.1038/ng2088 (2007).
	51.	 Paternoster, R., Brame, R., Mazerolle, P. & Piquero, A. Using The Correct Statistical test For The Equality of Regression Coefficients. 

Criminology 36, 859–866, https://doi.org/10.1111/j.1745-9125.1998.tb01268.x (1998).
	52.	 Mittelstrass, K. et al. Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers. PLoS Genet. 7, e1002215, https://doi.

org/10.1371/journal.pgen.1002215 (2011).
	53.	 Liu, J. Z. et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature genetics 42, 436–440, 

https://doi.org/10.1038/ng.572 (2010).
	54.	 Chow, J. C., Yen, Z., Ziesche, S. M. & Brown, C. J. Silencing of the mammalian X chromosome. Annual review of genomics and 

human genetics 6, 69–92, https://doi.org/10.1146/annurev.genom.6.080604.162350 (2005).
	55.	 R Core Team. R: A language and environment for statistical computing, http://www.R-project.org/ (2017).
	56.	 Wickham, H. ggplot2: elegant graphics for data analysis, http://had.co.nz/ggplot2/book (2009).
	57.	 Karssen, L. C., van Duijn, C. M. & Aulchenko, Y. S. The GenABEL Project for statistical genomics. F1000Research 5, 914, https://doi.

org/10.12688/f1000research.8733.1 (2016).
	58.	 qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv, https://doi.org/10.1101/005165 (2014).
	59.	 Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337, https://

doi.org/10.1093/bioinformatics/btq419 (2010).
	60.	 Mittlbock, M. & Schemper, M. Explained variation for logistic regression. Statistics in medicine 15, 1987–1997, https://doi.

org/10.1002/(SICI)1097-0258 (19961015)15:19 1987::AID-SIM318 3.0.CO;2-9 (1996).



www.nature.com/scientificreports/

1 4SCIENTIFIC Reports |  (2018) 8:7352  | DOI:10.1038/s41598-018-24580-z

Acknowledgements
The results of this study were previously presented at the 2016 Annual Meeting of the Society for Neuro-Oncology, 
and the 2017 Annual Meeting of the American Association for Cancer Research. A pre-publication version of this 
manuscript was previously made available on bioRxiv (https://doi.org/10.1101/229112). QTO is supported by 
a Research Training Grant from the Cancer Prevention and Research Institute of Texas (CPRIT; RP160097T). 
The GICC was supported by grants from the National Institutes of Health, Bethesda, Maryland (R01CA139020, 
R01CA52689, P50097257, P30CA125123, P30CA008748, C. Thompson PI). Additional support was provided 
by the McNair Medical Institute and the Population Sciences Biorepository at Baylor College of Medicine. In 
Sweden work was additionally supported by Acta Oncologica through the Royal Swedish Academy of Science 
(BM salary) and The Swedish Research council and Swedish Cancer foundation. We are grateful to the National 
clinical brain tumor group, all clinicians and research nurses throughout Sweden who identified all cases. The 
UCSF Adult Glioma Study was supported by the National Institutes of Health (grant numbers R01CA52689, 
P50CA097257, R01CA126831, and R01CA139020), the Loglio Collective, the National Brain Tumor Foundation, 
the Stanley D. Lewis and Virginia S. Lewis Endowed Chair in Brain Tumor Research, the Robert Magnin Newman 
Endowed Chair in Neuro-oncology, and by donations from families and friends of John Berardi, Helen Glaser, 
Elvera Olsen, Raymond E. Cooper, and William Martinusen. This project also was supported by the National 
Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes 
of Health, through UCSF-CTSI Grant Number UL1 RR024131. Its contents are solely the responsibility of 
the authors and do not necessarily represent the official views of the NIH. The collection of cancer incidence 
data used in this study was supported by the California Department of Public Health as part of the statewide 
cancer reporting program mandated by California Health and Safety Code Section 103885; the National Cancer 
Institute’s Surveillance, Epidemiology and End Results Program under contract HHSN261201000140C awarded 
to the Cancer Prevention Institute of California, contract HHSN261201000035C awarded to the University of 
Southern California, and contract HHSN261201000034C awarded to the Public Health Institute; and the Centers 
for Disease Control and Prevention’s National Program of Cancer Registries, under agreement # U58DP003862-
01 awarded to the California Department of Public Health. The ideas and opinions expressed herein are those 
of the author(s) and endorsement by the State of California Department of Public Health, the National Cancer 
Institute, and the Centers for Disease Control and Prevention or their Contractors and Subcontractors is not 
intended nor should be inferred. Other significant contributors for the UCSF Adult Glioma Study include: M 
Berger, P Bracci, S Chang, J Clarke, A Molinaro, A Perry, M Pezmecki, M Prados, I Smirnov, T Tihan, K Walsh, 
J Wiemels, S Zheng. UK10K data generation and access was organized by the UK10K consortium and funded 
by the Wellcome Trust. We are grateful to all the patients and individuals for their participation and we would 
also like to thank the clinicians and other hospital staff, cancer registries and study staff in respective centers who 
contributed to the blood sample and data collection.

Author Contributions
QTO and JSB-S conceptualized and designed the analyses. QTO wrote the main manuscript text and prepared 
all tables and figures. QTO, BK, YC, GA, and TR prepared the analytic files. MRW, JEE-P, JKW, LSM, HMH, CIA, 
JLB, EBC, DI, CJ, DHL, RKL, RTM, SHO, SS, JMS, SS, UA, PR, SJC, MS, ZW, MY, LEBF, SK, DA, KV, VLS, RH, 
DSM, MF, AA, GGG, RM, RM-C, LLM, MS, AM, TC, GH, AZ-J, JMG, HDS, MPP, EW, UP, JB, RSH, RBJ, BM, 
MLB, and JSB-S provided data. JSB-S supervised all analyses. BK, MRW, JEE-P, EC, SHO, JBR, JDL, MEB, RSH, 
RBJ, BM, MLB, and JSB-S critically revised the manuscript for intellectual content. All authors reviewed the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24580-z.
Competing Interests: This study was approved locally by the institutional review board (IRB) at University 
Hospitals Cleveland Medical Center and by each participating study site’s IRB. Written informed consent was 
obtained from all participants. There are no conflicts of interest to report. The GliomaScan (phs000652.v1.p1), 
CGEMS (phs000812.v1.p1), San Francisco Adult Glioma Study (phs001497.v1.p1), and GICC (phs001319.v1.p1) 
data used for these analyses are available through dbGap. Individual genotypes and phenotypes from the MD 
Anderson Glioma GWAS are being submitted to dbGAP, and final identifiers to these data will be provided in the 
final manuscript. The results here are in part based upon data generated by the TCGA Research Network: (http://
cancergenome.nih.gov/).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018



www.nature.com/scientificreports/

1 5SCIENTIFIC Reports |  (2018) 8:7352  | DOI:10.1038/s41598-018-24580-z

Consortia
GliomaScan consortium
Laura E. Beane Freeman29, Stella Koutros29, Demetrius Albanes29, Kala Visvanathan32, 
Victoria L. Stevens33, Roger Henriksson34, Dominique S. Michaud35, Maria Feychting36, Anders 
Ahlbom36, Graham G. Giles37, Roger Milne37, Roberta McKean-Cowdin18, Loic Le Marchand38, 
Meir Stampfer39,40, Avima M. Ruder41, Tania Carreon42, Göran Hallmans43, Anne Zeleniuch-
Jacquotte44, J. Michael Gaziano45, Howard D. Sesso39, Mark P. Purdue29, Emily White46, Ulrike 
Peters46 & Julie Buring39

32Department of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United 
States of America. 33American Cancer Society, Atlanta, Georgia, United States of America. 34Department of 
Oncology, Karolinska University Hospital, Stockholm, Sweden. 35Department of Public Health and Community 
Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America. 36Institute of 
Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 37Cancer Epidemiology and Intelligence 
Division, Cancer Council Victoria, Melbourne, Australia. 38Department of Public Health, John A. Burns School 
of Medicine, University of Hawaii at Manoa, Manoma, Hawaii, United States of America. 39Department of 
Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States 
of America. 40Department of Epidemiology, Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, 
Boston, Massachusetts, United States of America. 41National Institute for Occupational Safety and Health, Centers 
for Disease Control and Prevention, Atlanta, Georgia, United States of America. 42Division of Surveillance, Hazard 
Evaluations, and Field Studies, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of 
America. 43Department of Public Health and Clinical Medicine, Faculty of Medicine, Umeå University, Umeå, 
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