
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2019

An exome-wide sequencing study of the GOLDN
cohort reveals novel associations of coding variants
and fasting plasma lipids
Ping An

Mary F. Feitosa

Michael A. Province

et al

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

https://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F7573&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F7573&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F7573&utm_medium=PDF&utm_campaign=PDFCoverPages


fgene-10-00158 February 23, 2019 Time: 18:32 # 1

ORIGINAL RESEARCH
published: 26 February 2019

doi: 10.3389/fgene.2019.00158

Edited by:
Daniel Shriner,

National Human Genome Research
Institute (NHGRI), United States

Reviewed by:
Sarah Buxbaum,

Jackson State University,
United States

Maris Alver,
University of Tartu, Estonia

*Correspondence:
Xin Geng

xin.geng@uth.tmc.edu;
gxouc@hotmail.com

Donna K. Arnett
donna.arnett@uky.edu

Degui Zhi
Degui.Zhi@uth.tmc.edu

Specialty section:
This article was submitted to

Applied Genetic Epidemiology,
a section of the journal

Frontiers in Genetics

Received: 15 July 2018
Accepted: 13 February 2019
Published: 26 February 2019

Citation:
Geng X, Irvin MR, Hidalgo B,

Aslibekyan S, Srinivasasainagendra V,
An P, Frazier-Wood AC, Tiwari HK,

Dave T, Ryan K, Ordovas JM,
Straka RJ, Feitosa MF, Hopkins PN,
Borecki I, Province MA, Mitchell BD,

Arnett DK and Zhi D (2019) An
Exome-Wide Sequencing Study of the

GOLDN Cohort Reveals Novel
Associations of Coding Variants

and Fasting Plasma Lipids.
Front. Genet. 10:158.

doi: 10.3389/fgene.2019.00158

An Exome-Wide Sequencing Study of
the GOLDN Cohort Reveals Novel
Associations of Coding Variants and
Fasting Plasma Lipids
Xin Geng1,2* , Marguerite R. Irvin3, Bertha Hidalgo3, Stella Aslibekyan3,
Vinodh Srinivasasainagendra4, Ping An5, Alexis C. Frazier-Wood6, Hemant K. Tiwari4,
Tushar Dave7, Kathleen Ryan7, Jose M. Ordovas8,9,10, Robert J. Straka11,
Mary F. Feitosa5, Paul N. Hopkins12, Ingrid Borecki13, Michael A. Province5,
Braxton D. Mitchell7, Donna K. Arnett14* and Degui Zhi1,15*

1 School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States,
2 BGI-Shenzhen, Shenzhen, China, 3 Department of Epidemiology, The University of Alabama at Birmingham, Birmingham,
AL, United States, 4 Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, AL, United States,
5 Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO,
United States, 6 USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States,
7 Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine,
Baltimore, MD, United States, 8 Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture
Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States, 9 IMDEA Alimentación, Madrid,
Spain, 10 Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain, 11 Department of Experimental and Clinical
Pharmacology, University of Minnesota, Minneapolis, MN, United States, 12 Division of Cardiovascular Medicine, University
of Utah, Salt Lake City, UT, United States, 13 Genetic Analysis Center, Department of Biostatistics, University of Washington,
Seattle, WA, United States, 14 College of Public Health, University of Kentucky, Lexington, KY, United States, 15 School
of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States

Background: Associations of both common and rare genetic variants with fasting
blood lipids have been extensively studied. However, most of the rare coding variants
associated with lipids are population-specific, and exploration of genetic data from
diverse population samples may enhance the identification of novel associations with
rare variants.

Results: We searched for novel coding genetic variants associated with fasting lipid
levels in 894 samples from the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) with exome-wide sequencing-based genotype data. In single variant tests, one
variant (rs11171663 in ITGA7) was associated with fasting triglyceride levels (P = 7.66E-
08), explaining approximately 3.2% of the total trait variance. In gene-based tests, we
found statistically significant associations between ITGA7 (P = 1.77E-07) and SLCO2A1
(P = 7.18E-07) and triglycerides, as well as between POT1 (P = 3.00E-07) and low-
density lipoprotein cholesterol. In another independent replication cohort consisting of
3,183 African American samples from Hypertension Genetic Epidemiology Network
(HyperGEN) and the Genetic Epidemiology Network of Arteriopathy (GENOA), the top
genes achieved P-values of 0.04 (ITGA7), 0.08 (SLCO2A1), and 0.02 (POT1). In GOLDN,
gene transcript levels of ITGA7 and SLCO2A1 were associated with fasting triglycerides
(P = 0.07 and P = 0.02), highlighting functional relevance of our findings.
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Conclusion: In this study, we present preliminary evidence of novel rare variant
determinants of fasting lipids, and reveal potential underlying molecular mechanisms.
Moreover, these results were replicated in an independent cohort. Our findings may
inform novel biomarkers of disease risk and treatment targets.

Keywords: whole exome sequencing, rare variant, HDL, LDL, triglyceride, cholesterol, genetics, epidemiology

INTRODUCTION

The understanding of the biology behind lipid-metabolism
has increased exponentially in the past two decades, enabled
by the vast interrogation of the human genome. To date,
genome-wide association studies have identified over 170
candidate single-nucleotide variants (SNVs), with many
residing in common regions of the genome (Teslovich et al.,
2010; Do et al., 2013). However, two major limitations exist
in the current exploration for causal loci associated with
lipid metabolism: (1) Identification of SNVs in non-coding
regions or SNVs in large regions that span several candidate
genes; and (2) missing detection of candidate genes altogether,
particularly if population-specific (Assimes and Quertermous,
2014). Exome-wide association studies naturally expand
on findings from genome-wide association studies through
their exploration of the functional region of the genome
(Majewski et al., 2011).

Exome-wide association studies have been extensively
used to dissect the genetic architecture of complex
diseases and quantitative traits (Lee et al., 2014). Exonic
variants, particularly loss-of-function variants, tend to
show the most dramatic effect sizes, yielding the greatest
power for detection. Recent evidence on lipid traits
provides support that rare variants can be ancestry-
specific (Lu et al., 2017). Therefore, examining exonic
variants across diverse ancestry groups likely augments the
identification of novel loci.

The Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) cohort, recruited from families of European ancestry
residing in the United States, provides an opportunity to
study the effects of rare genetic variants on clinically measured
lipid levels. Prior studies in GOLDN have identified common
variants controlling lipid fasting level (An et al., 2014). To
augment the discoveries which were limited to common
variants and identify additional rare functional loci contributing
to variation in fasting plasma lipid level, we performed an
exome-wide sequencing study in 894 GOLDN participants
to identify novel associations of coding variants and fasting
lipid traits. To further explore population-specific effects, we
also performed replication analyses in two diverse external
validation cohorts: (1) the Heredity and Phenotype Intervention
(HAPI) Heart Study, composed of Old Order Amish individuals;
and (2) the Hypertension Genetic Epidemiology Network
(HyperGEN) and the Genetic Epidemiology Network
of Arteriopathy (GENOA), which both recruited African
Americans. Finally, we interrogated the functional relevance of
our significant findings using DNA methylation and RNA-Seq
data available in GOLDN.

MATERIALS AND METHODS

Study Populations
Genetics of Lipid Lowering Drugs and Diet Network
(clinicaltrials.gov-NCT00083369) recruited and sequenced
894 participants from 186 families of European ancestry at
two centers (Minneapolis, MN, United States and Salt Lake
City, UT, United States) to characterize genetic and epigenetic
determinants of lipid levels (Wojczynski et al., 2015). The
population size indicates we have statistical power ranging from
0.5 for h2

locus = 0.02 to 1.00 for h2
locus = 0.05 or above in the

single variant test, and from 0.8 for h2
locus = 0.02 to 1.00 for

h2
locus = 0.05 or above in the gene-based test for SNVs with

MAF < 0.05. The participants were healthy without diabetes or
cardiovascular disease, and they were asked to discontinue any
lipid-lowering agents (pharmaceuticals or nutraceuticals) for at
least 4 weeks prior to the initial visit. Demographic and clinical
characteristics of the study participants are listed in Table 1.

We sought to replicate the significant association in two
studies. The effect directions of the associated variants were also
compared in different ethnic populations. The first study is HAPI
Heart Study consisting of 770 Old Order Amish participants. The
triglyceride (TG) levels were relatively low in the physically active
Amish population (Mitchell et al., 2008; Table 1). It was allowed
to use HAPI Heart Study for replication of the TG findings,
not the LDL-C for POT1. The second study, which consisted
of 3,183 African Americans from pooled samples of HyperGEN
and GENOA, was used to replicate high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-
C), and TG findings. In the replication test, only the top genes
found in GOLDN were analyzed. All the exonic variants within
these top genes in the replication populations were included in
the gene-based test.

Genotype, Phenotype, and Statistical
Analysis
The sequencing, genotyping, and quality control procedures were
described in a prior study (Geng et al., 2018). Briefly, genomic
DNA from peripheral blood nucleated cells was extracted using
QIAmp 96 DNA Blood Kits (Qiagen, Hilden, Germany). After
Illumina paired end small fragment libraries were constructed,
they were run on a HiSeq 2000 V3 2 bp × 101 bp sequencing
run. Illumina sequencing data in FASTQ format were aligned to
the GRCh37-lite reference sequence using BWA (Li and Durbin,
2010) version 0.5.9. SNVs were called using the Atlas-SNP2 first
at the Subject-level and then combined (Challis et al., 2012).
Only biallelic mutations were kept after filtered using VCFtools
(Danecek et al., 2011). For the genotype level QC, genotypes
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TABLE 1 | Demographic and clinical characteristics of samples in GOLDN, HyperGEN and GENOA, and HAPI Heart Study.

GOLDN HyperGEN and GENOA HAPI Heart Study

Sex Male: 435 Male: 488 Male: 404

Female: 459 Female: 881 Female: 366

Age 50.2 ± 6.1 48.9 ± 11.26 43.50 ± 13.90

Recruiting Minneapolis, MN: 457 Alabama: 1042 –

Center Salt Lake City, UT: 437 North Carolina: 327

BMI (kg/m2) 28.5 ± 5.6 32.05 ± 7.6 26.62 ± 4.46

LDL (mg/dL) 122.77 ± 31.88 122.06 ± 36.87 –

HDL (mg/dL) 46.73 ± 13.06 54.09 ± 15.84 –

TG (mg/dL) 139.34 ± 97.63 109.26 ± 74.03 68.56 ± 41.37

with read depth less than 20 or genotyping quality less than 30
were excluded. For the variant level QC, the mutations were
filtered out if their missing rate exceeded 5%. The project-
level VCF was further annotated using ANNOVAR (Wang
K. et al., 2010) according to hg19 genome assembly/dbSNP
version 138. Four classes of functional variants (splicing, non-
synonymous, stop-loss, and stop-gain) on chromosomes 1–22
were used for association tests (Lange et al., 2014). We required
that >70% of target bases were covered at >20×; samples
below that threshold received additional (top-up) sequencing. To
confirm sample purity and identity, we compared high-density
SNVarray genotypes (Aslibekyan et al., 2012) (Illumina Omni
Express) to the SNV calls, and each sample achieved >90%
genotype concordance.

HDL-C, LDL-C, and TG were measured in this study in the
fasting state as previously reported (Liu et al., 2008). All the
lipid values were natural log transformed to achieve normality
of residuals. Genetic associations were assessed using linear
mixed models using RAREMETALWORKER and RAREMETAL
(version 4.13.6). All the associations were adjusted for sex, age
(linear, quadratic, and cubic terms), and recruiting center as fixed
effects, and a kinship coefficient was used to adjust for family
relatedness as a random effect. Single variant analyses and gene-
based analyses were both conducted. For gene-based analyses,
sequence kernel association test (SKAT), simple burden test,
Madsen and Browning weighted burden test (MB), and variable
threshold test (VT) were utilized for rare variants with MAF < 1%
(Madsen and Browning, 2009; Price et al., 2010; Wu et al., 2011).

Functional Validation
We also sought to explore the relationships between our top
findings and other omic layers using the following GOLDN
data: DNA methylation (measured with the Illumina Infinium
450K chip, n = 991) (Irvin et al., 2014) and gene expression
(measured with RNA-Seq, n = 100 unrelated participants) as
previously described (Sayols-Baixeras et al., 2016). The CpG
sites of CD4+ T-cells within the genes containing significantly
associated variants and the intergenic CpG sites near these genes
were examined to test whether their methylation levels were
associated with lipid levels or not. For transcriptional profiling,
GOLDN participants were selected from the extremes of the
BMI distribution. RNA was extracted from buffy coats using
the TRIzol method (Thermo Fisher Scientific, Waltham, MA,

United States) and the quality was evaluated using Bioanalyzer
(Agilent Technologies, Santa Clara, CA, United States). We
also fitted linear mixed models to test for associations of
DNA methylation and gene-expression. We hypothesized CD4+
T-cells should reflect underlying epigenetic variation influencing
blood lipids. Many key genes (e.g., PPARs) involved in lipid
metabolism are expressed in lymphocytes and other immune cells
(Chinetti et al., 2000; Bouwens et al., 2008). It was demonstrated
that peripheral blood mononuclear cell gene expression profiles
reflect nutrition-related metabolic changes. Responsive genes
including CPT1, ACAA2, and SCL25A20 were enriched for fatty
acid metabolizing enzymes (Bouwens et al., 2007).

RESULTS

Association Test Results
In single variant tests, we found rs11171663 in ITGA7 to
be significantly associated with fasting TG levels (P = 7.66E-
08), explaining approximately 3.2% of the total trait variance.
The 16 participants carrying this variant exhibited significantly
higher TG compared with non-carriers (mean of 260 mg/dL in
carriers vs. 114 mg/dL in non-carriers, P < 0.05) (Figure 1 and
Table 2). In the gene-based test, three genes were significantly
associated with lipid traits, specifically ITGA7 (TG, P = 1.77E-07),
SLCO2A1 (TG, P = 7.18E-07), and POT1 (LDL-C, P = 3.00E-
07). In the ITGA7 gene-based test, the signal was driven by the
same variant (rs11171663) identified in the single variant test.
The severities of rare variant effects, predicted by PolyPhen2
(Ramensky et al., 2002) or SIFT (Ng and Henikoff, 2003),
are listed in Table 2. The Bonferroni-corrected significance
thresholds for single variant tests and gene-level tests were
P < 5.98E-07 (0.05/83,577 rare variants) and P < 3.44E-06
(0.05/14,521 genes), respectively.

Replication Results
In the pooled HyperGEN and GENOA samples, POT1, ITGA7,
and SLCO2A1 approached significant associations (P = 0.020,
P = 0.036 and 0.082, respectively) in the gene-based test
(Supplementary Table 1). After Bonferroni correction, the
significant threshold for association in this replication gene-
based test is 0.05/3. Among the top single variants in these
three genes in GOLDN, only one in ITGA7 (rs11171663)
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FIGURE 1 | Distribution of residuals from the regression of phenotypes on their covariates. The diamonds indicate corresponding residual values of rare variant
carriers. X-axis lists the z-score for residuals; Y-axis represents the sample counts.

TABLE 2 | Gene-based test results in GOLDN, augmented with corresponding single variant data.

Trait Gene Gene
P-value

Method Rare
variant #

Rare variants with P < 0.10

Variant
ID

Variant
P-value

Variant effect
direction

Rare allele
carrier #

Variant
effect

Allele frequency
in ExAC

TG ITGA7 1.77E-07 SKAT 13 12:56094886:G:T
(rs375671999)

7.30E-02 − 2 T->K
possibly

damaging

4.5E-05

12:56105894:G:A
(rs11171663)

6.45E-08 + 16 T->I
possibly

damaging

0.01

SLCO2A1 8.97E-07 MB 4 3:133664015:T:C
(rs150345667)

5.76E-03 + 4 N->S
benign

1.6E-03

7.18E-07 VT 3:133666169:A:G
(rs200472093)

1.11E-04 + 1 M->T
benign

7.5E-05

3:133667496:A:G
(rs1415094638)

3.87E-03 + 1 L->P
probably
damaging

4.5E-04

LDL-C POT1 1.32E-06 VT 5 7:124493142:C:G
(rs1172142052)

1.30E-05 − 1 M->I
tolerated

NA

3.00E-07 MB 7:124532380:T:Ca

(rs375440229)
1.73E-03 − 2 I->V

benign
2.3E-04

Rare variant #: the number of rare variant loci within the candidate genes; Rare allele carrier #: the number of samples who carry the rare variant; Variant P: P-value for
the null hypothesis of the association test between the rare variant and its corresponding trait. aThe rare variant was carried by samples from the same family. ExAC:
http://exac.broadinstitute.org/; SKAT, sequence kernel association test; MB, Madsen and Browning weighted burden test; VT, variable threshold test.

and another one in SLCO2A1 (rs150345667) were shared by
HyperGEN and GENOA samples, but both associations failed to
replicate (P > 0.05).

Our top TG findings were allowed to be tested for association
with the corresponding trait in the HAPI Heart Study, which were
recruited from the Amish community of Lancaster County, PA,
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who are descendants of about 200 original founding individuals.
None of the ITGA7 or SLCO2A1 SNVs with P < 0.05 in
GOLDN were found in HAPI Heart samples which are from
a unique founder population. Variants in these two genes
according to single variant test or these two genes according
to gene-based test were not significantly associated with TG in
HAPI Heart Study.

Functional Validation
Transcripts of all the three top genes were observed from the
buffy coats. The significant threshold for functional validation
of gene-expression is 0.05/3 for multiple testing. In the gene
transcript analysis, the expression levels of SLCO2A1 and ITGA7
approached a significant association with TG (P = 0.02 and
P = 0.07, respectively), and POT1 was not significantly associated
with LDL-C (P > 0.1). The associations between the methylation
status of CpG sites within or neighboring the three significant
genes with lipid levels were not statistically significant after
Bonferroni correction.

DISCUSSION

Genetic associations with fasting blood lipids have been
extensively studied. Here, we sought to expand on that work by
examining data from heterogeneous communities to leverage the
population-specific nature of rare coding variants, striving for
a more thorough understanding of the mechanisms underlying
lipid metabolism.

In this study, we present preliminary evidence of rare
variant determinants of circulating lipids. Three genes – ITGA7,
SLCO2A1, and POT1 – were significantly associated with fasting
lipid levels in the discovery cohort. Two of these findings (ITGA7
and POT1) were nominally replicated in the African American
HyperGEN/GENOA sample but not in Old Order Amish, likely
due to the genetic isolation of the latter. Additionally, the
expression level of SLCO2A1 was associated with fasting TG,
suggesting regulatory relevance. Importantly, lack of replication
in ethnically distinct cohorts supports the population-specific
effect of rare variants on lipid traits, particularly because SNVs
with P < 0.05 in the top three genes in GOLDN (the discovery
cohort) were not found in HAPI Heart at all, and only few were
shared with HyperGEN/GENOA.

The three genes harboring novel loci identified in our study
have been implicated in lipid homeostasis. SLCO2A1 is a
lipid transporter protein, which could inhibit TG accumulation
(Gimeno, 2007). ITGA2, an ITGA7 homolog, was reported
to be associated with coronary atherosclerosis in the Chinese
Han population (Wang Y. et al., 2010), drawing attention
to the ITGA gene family in the cardiovascular context.
We also observed associations between ITGA7 and LDL-
C response to fenofibrate in another GOLDN study (Geng
et al., 2018). In the conditional analysis after including LDL-
C response to fenofibrate as a covariate, ITGA7 is still
significantly associated with fasting TG (P < 0.05). The
associations between the top three genes and lipid levels
were in part supported by our replication and functional

assessments. The putative biological mechanism of POT1 needs
further clarification.

In addition to identifying novel associations, we also
tested variants within known lipid genes and corresponding
traits. In GOLDN, variants within APOE, PCSK9, LDLR,
and APOB were nominally associated with fasting LDL-C
in single variant association tests (P < 0.05), and PCSK9
and LDLR were nominally associated with fasting LDL-C in
gene-based tests (P < 0.05). These findings are consistent
with a previous study, which reported associations between
LDL-C and APOE, PCSK9, LDLR, APOB, and PNPLA5
(Lange et al., 2014). However, rare variants in PNPLA5
(Lange et al., 2014) were not present in GOLDN and nor
was the gene significantly associated with LDL-C, further
highlighting the population-specific nature of some genetic
determinants of lipids.

Our work also suggests that rare variants may play different
roles in different populations. Heterogeneous effects of the same
variant across different ethnic groups are due to differences
in the genetic background or environment (Lin et al., 2007;
Lu et al., 2017). Subjected to natural selection or genetic drift,
inter-ancestry differences in the identification of rare coding
variants across populations were observed as expected (Lu
et al., 2017). In our study, rare variant rs11171663 in ITGA7
was significantly associated with TG in Caucasian samples
from GOLDN, but the direction of effect was opposite in
African American samples from HyperGEN and GENOA,
yet the variant still approached significance (P = 0.053).
The hypothesis that this rare variant – or others identified
in our study – may be positively or negatively associated
with fasting lipid levels depending on the population merits
attention in future studies in individuals of diverse ancestry.
One limitation of our study is that we did not take the
environmental factors for participants into account, which may
interact with the variants and account for partial population
difference as well.

CONCLUSION

In this study, we presented preliminary evidence of novel rare
variant determinants of fasting lipids, which may inform novel
biomarkers of disease risk and treatment targets. We found
statistically significant associations between ITGA7 (P = 1.77E-
07) and SLCO2A1 (P = 7.18E-07) and triglycerides, as well
as between POT1 (P = 3.00E-07) and low-density lipoprotein
cholesterol. Replication analyses yielded mixed results: in 3,183
African American samples from HyperGEN and GENOA
study, the top genes achieved P-values of 0.04 (ITGA7), 0.08
(SLCO2A1), and 0.02 (POT1), but no associations approached
significance in 770 samples from the HAPI Heart Study
(P > 0.05), which implies exploration of genetic data from
diverse population samples may enhance the identification of
novel associations with rare variants. In GOLDN, the P-values
for the association between gene transcript levels of ITGA7
and SLCO2A1 and fasting triglycerides were 0.07 and 0.02,
respectively, highlighting functional relevance of our findings.
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