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2Department of Pediatrics, Washington University School of Medicine, St Louis,
United States; 3Department of Medicine, Washington University School of Medicine,
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Abstract Motile ciliopathies are characterized by specific defects in cilia beating that result in

chronic airway disease, subfertility, ectopic pregnancy, and hydrocephalus. While many patients

harbor mutations in the dynein motors that drive cilia beating, the disease also results from

mutations in so-called dynein axonemal assembly factors (DNAAFs) that act in the cytoplasm. The

mechanisms of DNAAF action remain poorly defined. Here, we show that DNAAFs concentrate

together with axonemal dyneins and chaperones into organelles that form specifically in

multiciliated cells, which we term DynAPs, for dynein axonemal particles. These organelles display

hallmarks of biomolecular condensates, and remarkably, DynAPs are enriched for the stress granule

protein G3bp1, but not for other stress granule proteins or P-body proteins. Finally, we show that

both the formation and the liquid-like behaviors of DynAPs are disrupted in a model of motile

ciliopathy. These findings provide a unifying cell biological framework for a poorly understood class

of human disease genes and add motile ciliopathy to the growing roster of human diseases

associated with disrupted biological phase separation.

DOI: https://doi.org/10.7554/eLife.38497.001

Introduction
Motile cilia are microtubule-based cellular projections that beat in an oriented manner to generate

fluid flows that are critical for development and homeostasis (Figure 1A). Accordingly, genetic

defects that disrupt motile cilia function are associated with the motile ciliopathy syndrome known

as primary ciliary dyskinesia (PCD; MIM 244400) (Horani et al., 2016; Mitchison and Valente,

2017). PCD is a rare inherited disease that results in repeated sinopulmonary disease, bronchiecta-

sis, cardiac defects such as heterotaxy, situs anomalies, and infertility. Lung disease is the predomi-

nant feature of this syndrome, with significant morbidity, and can result in end-stage lung disease

requiring lung transplantation (Horani et al., 2016). PCD is caused by mutations in at least 40 differ-

ent genes, and the function of many remains unclear. There is no cure for PCD, so understanding

the genetic control of motile cilia assembly and function is an important challenge.

PCD can arise from mutation of any one of the genes encoding subunits of the multi-protein

dynein motors that drive ciliary beating (Figure 1A, pink) (Horani et al., 2016; Mitchison and Val-

ente, 2017). These so-called axonemal dyneins are similar in structure and function to cytoplasmic

dyneins but are encoded by distinct genes. Interestingly, axonemal dynein motors are pre-assem-

bled in the cytoplasm before deployment to cilia (Fowkes and Mitchell, 1998), and it is now clear

that PCD also arises from mutations in genes encoding any of an array of cytoplasmic proteins col-

lectively known as dynein axonemal assembly factors (DNAAFs) (Figure 1A, blue) (Desai et al.,

2018).
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Figure 1. DNAAFs, Dyneins, and chaperones co-localize together in DynAPs. (A) Schematic showing a multiciliated cell (MCC) indicating the site of

function for proteins linked to motile ciliopathy. Proteins and events in the cytoplasm are indicated in blue; those in the axonemes are indicated in

magenta (B) Cross-sectional projection of mucociliary epithelium; GFP-Heatr2 is localized in MCCs to cytoplasmic foci (b’), whereas mCherry-Dnai2

localizes to both axonemes and cytoplasmic foci (b’’). (C) En face projection showing mCherry-Dnai2 localization in motile axonemes and cytoplasmic

foci (magenta), with GFP-Heatr2 showing restricted localization to cytoplasmic foci. (D–G) En face optical sections showing co-localization of

fluorescent protein (FP) fusions to the indicated proteins. (H) Graph displaying Pearson Correlation Coefficients for colocalization of GFP fusion proteins

with mCherry-Ktu at DynAPs. Scale bars 10 mm. p < 0.0001 by one-way ANOVA and post-hoc Tukey-Kramer HSD test. n-values for each FRAP

experiment can be found in Table 2.

Figure 1 continued on next page
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The initial description of DNAAFs came with the identification of KTU (aka DNAAF2), which enco-

des a novel protein present in the cytoplasm yet causes motile ciliopathy when mutated

(Omran et al., 2008). As in human patients, mutation of ktu in fish and the green algae Chlamydo-

monas also elicits defects specifically in cilia beating (Omran et al., 2008). Subsequent studies of

motile ciliopathy patients defined several additional cytoplasmic DNAAFs, and in all cases, these

genes encode cytoplasmic proteins but their mutation results in loss of dyneins specifically from the

axonemes, and as a result, defects in cilia beating (Diggle et al., 2014; Horani et al., 2012;

Horani et al., 2013; Kott et al., 2012; Mitchison et al., 2012; Moore et al., 2013; Olcese et al.,

2017; Paff et al., 2017; UK10K et al., 2013; Zariwala et al., 2013). Despite their well-known role

in human disease, the molecular mechanisms of DNAAF action are only now emerging.

Proteomic experiments initially indicated a link between DNAAFs and heat shock family chaper-

ones (Omran et al., 2008) and many of the DNAAFs contain PIH, TAH1, or CS domains that are

common in heat shock co-chaperones (Olcese et al., 2017; Omran et al., 2008; Paff et al., 2017;

UK10K et al., 2013; Yamamoto et al., 2010). Moreover, genetic ablation of the Hsp90 co-chaper-

one Ruvbl1/2 results in defective dynein arm assembly in zebrafish and mice (Li et al., 2017;

Zhao et al., 2013). More recently, work in diverse model animals has led to a model in which

DNAAFs function as part of a ‘chaperone relay,’ with distinct DNAAFs mediating specific steps in

the dynein assembly process (Cho et al., 2018; Mali et al., 2018; Olcese et al., 2017;

Yamaguchi et al., 2018; Zur Lage et al., 2018). Several of these studies suggest that the DNAAFs

and chaperones act together in cytosolic ‘foci’ (e.g. Diggle et al., 2014; Horani et al., 2012;

Li et al., 2017), and it has been suggested that different steps in the chaperone relay are somehow

compartmentalized (Mali et al., 2018), but the nature and mechanisms remain to be defined.

Here, we use live imaging to show that DNAAFs, dynein subunits and chaperones all co-localize

to discrete, multiciliated cell (MCC)-specific organelles that display hallmarks of biological phase

separation. Remarkably, while DNAAFs and chaperones flux through rapidly, dynein subunits are

very stably retained in these organelles, suggesting that these organelles may serve as a specialized

compartment for the proposed dynein/chaperone relay system. Finally, in an animal model of motile

ciliopathy, altered liquid-like behavior was associated with disrupted assembly and a failure of ciliary

beating. Thus, our data identify a novel cell type-specific, liquid-like organelle, provide a cell biologi-

cal mechanism unifying an emerging class of disease proteins, and suggest a key role for biological

phase separation in the etiology of motile ciliopathies.

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.38497.002

The following source data and figure supplements are available for figure 1:

Source data 1. Colocalization results presented in Figure 1H and Figure 1—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.38497.008

Figure supplement 1. DNAAFs and Dyneins co-localize in DynAPs in primary human MCC.

DOI: https://doi.org/10.7554/eLife.38497.003

Figure supplement 2. Analysis of co-localization in DynAPs.

DOI: https://doi.org/10.7554/eLife.38497.004

Figure supplement 3. For unbiased assessment of co-localization, custom software was developed for automated detection of foci in confocal stacks

and calculation of 3D co-localization in foci (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.38497.005

Figure supplement 4. DynAPs are specific cellular compartments.

DOI: https://doi.org/10.7554/eLife.38497.006

Figure supplement 5. DynAPs labeled by endogenous Ruvbl2 are present only in MCCs.

DOI: https://doi.org/10.7554/eLife.38497.007
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Results

DNAAFs and dynein subunits concentrate in cytosolic foci in
multiciliated cells
We found that the DNAAF Heatr2 is present in cytosolic foci in human airway multiciliated cells

(MCCs) (Horani et al., 2012), and we recently showed that these foci also contain dynein subunits

(Horani et al., 2018). We have found that another DNAAF, LRRC6 (Horani et al., 2013; Kott et al.,

2012; Serluca et al., 2009) is likewise present in dynein-containing cytosolic foci (Figure 1—figure

supplement 1), but imaging of these structures in human MCCs has proven challenging. We there-

fore turned to the MCCs of Xenopus embryos, which are highly amenable to live imaging, are molec-

ularly tractable, and reliably model the biology of mammalian MCCs (Walentek and Quigley, 2017).

In Xenopus MCCs, GFP-Heatr2 was easily detectable in cytosolic foci in both transverse and en face

projections of 3D confocal image stacks (Figure 1B,b’; C; Video 1). These foci were also labeled by

mCherry-Dnai2, an outer arm dynein that also strongly labeled axonemes (Figure 1B,b’’; C). To ask

if such foci are a general feature of DNAAFs, we examined the canonical DNAAF Ktu, and found

that it too co-localized with Dnai2 in cytosolic foci (Figure 1D,d’). As in human MCCs, Lrrc6 dis-

played a punctate pattern in Xenopus MCCs (Figure 1E).

To ask if these different proteins were present in a common compartment, we calculated Pearson

Correlations for co-localization (Dunn et al., 2011), finding strong co-localization in en face projec-

tions through the MCC cytoplasm for Heatr2, Lrrc6, and Dnai2 as compared to Ktu (Figure 1H); the

Costes algorithm (Costes et al., 2004) demonstrated that these co-localizations were statistically

significant (Figure 1—figure supplement 2). Because measures of co-localization can be biased by

manual selection of regions of interest in the data, we also developed custom software for auto-

mated, object-based detection of cytosolic foci and quantification of co-localization in three dimen-

sions (Figure 1—figure supplement 3A; see Materials and methods). Using this method, we again

observed strong co-localization between the DNAAFs and Dyneins (Figure 1—figure supplement

3B). As a negative control for this approach, we computationally randomized the position of foci

within these cells, generating ten independent randomized replicates per cell; we found essentially

no co-localization after randomization (Figure 1—figure supplement 3C).

We next performed a series of control experi-

ments to ask if the cytosolic foci we observed

were specific structures, because fluorescent

protein (FP) fusions have been found to aggre-

gate non-specifically in some cases (e.g.

Landgraf et al., 2012). First, we found that

DNAAFs did not co-localize with FP-fusions to

several known foci-forming proteins, including

the P-body marker Dcp1a or the amyloid form-

ing protein Fus (Kedersha et al., 2005;

Patel et al., 2015) (Figure 1—figure supple-

ment 4A,B,D). These proteins displayed signifi-

cantly lower Pearson correlation with Ktu, as

compared to DNAAFs or dyneins (Figure 1H)

and also displayed non-significant Costes values

for co-localization with Ktu (Figure 1—figure

supplement 2A). Second, other components of

motile axonemes also require cytoplasmic

assembly factors (Desai et al., 2018), but FP-

fusions to several radial spoke and docking com-

plex-related proteins did not localize in cytosolic

foci (Figure 2A,B). Finally, a recent screen exam-

ining the localization of roughly 200 FP-fusions in

Xenopus MCCs suggests non-specific aggrega-

tion of FPs is rare in these cells (Tu et al., 2017).

Our data therefore suggest that the DNAAF-

and dynein-containing foci represent novel and

Video 1. DynAPs form specifically in the cytoplasm of

multiciliated cells. This annotated movie shows a

rotating nearest-point projection of a 3D confocal stack

of a section of mucociliary epithelium labeled by

expression of membrane-RFP (red) and GFP-Ktu

(green).

DOI: https://doi.org/10.7554/eLife.38497.009
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Figure 2. DynAPs concentrate DNAAFs, dynein subunits, and Hsp70/90 chaperones. All left panels show GFP fusions (cyan) to indicated proteins, note

all co-localize in DynAPs with the mCherry-Ktu (magenta) shown in middle panels. All right panels are merged views. The docking complex protein

Ttc25 (panel A) and the radial spoke protein Rsph1 (panel B) serve as negative controls and do not localize in DynAPs. All other do co-localize; see

quantifications in Figure 1H and Figure 1—figure supplements 2 and 3. Scale bars = 10 um.

DOI: https://doi.org/10.7554/eLife.38497.010
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specific structures, so we examined FP fusions to seven additional DNAAFs. Consistent with genetic

studies demonstrating that all DNAAFs share a common function, we found that all tested DNAAFs

co-localized significantly in cytosolic foci (Figure 2C–F; Figure 1H). In all cases, these foci were irreg-

ularly shaped, measured roughly 1–3 microns across, were typically present in the middle third of

the apicobasal axis of MCCs, and in en face optical sections tended to reside near the cell periphery

(Figure 1B–G, Figure 2C–F). Additional subunits of both inner and outer arm dyneins were also

present in these foci (Figure 2G,H; Figure 1H). Together, these data demonstrate that nine distinct

DNAAFs co-localize with axonemal dynein subunits in a common compartment in the MCC

Table 1. List of proteins investigated in this study, their functions, and their localization.

Protein Localization Function

Ciliopathy Associated
DNAAFs

Ktu (Dnaaf2) DynAPs DNAAF

Dnaaf3 DynAPs DNAAF

Dyx1C1(Dnnaf4) DynAPs DNAAF

Heatr2 (Dnaaf5) DynAPs DNAAF

Lrrc6 DynAPs DNAAF

Zmynd10 DynAPs DNAAF

Spag1 DynAPs DNAAF

Pih1d3 DynAPs DNAAF

C21orf59 DynAPs DNAAF

Dynein Arm
Subunits

Dnai1 DynAPs Outer Dynein Arm

Dnai2 DynAPs Outer Dynein Arm

DnaL1 DynAPs Outer Dynein Arm

Dnal4 DynAPs Outer Dynein Arm

Dnali1 DynAPs Inner Dynein Arm

Wdr78 DynAPs Inner Dynein Arm

Hsp Family
Chaperone-Related

Hsp90ab1 DynAPs Hsp90 Chaperone

Hspa8 DynAPs Hsp70 Chaperone

Ruvbl1 (Pontin) DynAPs Hsp90 Co-chaperone (R2TP)

Ruvbl2 (Reptin) DynAPs Hsp90 Co-chaperone (R2TP)

DnajC7 (Ttc2) DynAPs Hsp70 Co-chaperone

Stip1 (Hop) DynAPs Hsp70 Co-chaperone

Ttc9c DynAPs Hsp Co-chaperone

Other
MCC-Related

Centrin4 Baseal Bodies Basal Bodies

Ccdc63 Other foci Deuterosome marker

Mns1 Baseal Bodies Docking complex-related

Armc4 Axeoneme Docking complex-related

Ttc25 Cytosol Docking complex-related

Rsph1 Cytosol Radial Spoke

Nme5 Cytosol Radial Spoke

Known
Foci-Forming

Dcp1a Other foci P-body marker

Lsm4 Other foci P-body marker

Fus Nuclear foci Known foci forming

Tia1(Tiar) Other foci Stress granule marker

G3bp1 DynAPs (+other foci) Stress granule marker

Other
Organelles

GalT Golgi

EEA1 Other foci

DOI: https://doi.org/10.7554/eLife.38497.011
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cytoplasm (Table 1). Based on the nomenclature for the genes encoding both the dyneins and their

assembly factors, we propose the term DynAP, for Dynein Axonemal Particles.

DynAPs concentrate core Hsp70/90 chaperones and specific co-
chaperones
As discussed above, DNAAFs act in concert with heat shock chaperones, and genetic mutants in the

co-chaperones Ruvbl1 and Ruvbl2 result in defective dynein assembly and cilia beating. We were sat-

isfied therefore to find that immunostaining for endogenous Ruvbl2 also strongly labeled DynAPs in

Xenopus MCCs (Figure 1—figure supplement 5; Video 2), consistent with results from zebrafish

and mice (Li et al., 2017). This result also further demonstrates that these structures are not artifacts

of FP fusions. We note that Ruvbl2 immunostaining also reported much smaller foci that were pres-

ent in both MCCs and neighboring cells (Figure 1—figure supplement 5), consistent with previous

reports that this broadly acting co-chaperone can form cellular foci (Rizzolo et al., 2017). However,

these much smaller foci were readily distinguishable from DynAPs by their size.

In addition, we also observed that DynAPs were strongly labeled by FP fusions to other known

Hsp co-chaperones, including Stip1 and Dnajc7 (e.g. (Moffatt et al., 2008; Odunuga et al., 2004)).

Finally, we also identified Ttc9c as a DynAP component, which is of interest because the function of

this protein is essentially unknown, but it binds Hsp90 and is implicated in cilia beating (Gano and

Simon, 2010; Xu et al., 2015). These data provide a cell biological context for understanding the

interplay of axonemal dyneins, ciliopathy-associated DNAAFs, and the ubiquitous machinery of pro-

tein folding and homeostasis.

DynAPs are MCC-specific organelles that assemble under the control of
the motile ciliogenic transcriptional circuitry
We next sought to understand the developmental biology of DynAP formation. Xenopus MCCs

develop and function in concert with other cell types that lack motile cilia, including mucus-secreting

goblet cells, ion pumping cells, and seratonin secreting cells (Walentek and Quigley, 2017). We

reasoned that if DynAPs were dedicated organelles related to axonemal dyneins, they should be cell

type specific. To test this idea directly, we ectop-

ically expressed FP-fusions to DNAAFs through-

out the mucociliary epithelium (i.e. in MCC as

well as other cell types). Strikingly, FP fusions to

DNAAFs reported foci only in MCCs and not in

adjacent cells lacking motile cilia (Figure 3A,C,E;

Figure 1—figure supplement 4D). This MCC-

specificity was not a general property of FP

fusions, as the P-body marker Dcp1a assembled

into foci in both MCCs and goblet cells (Fig-

ure 1—figure supplement 4D). Thus, both

immunostaining for Ruvbl2 (above) and expres-

sion of FP fusions to DNAAFs demonstrate that

DynAPs assemble specifically in MCCs and not in

neighboring non-ciliated cells.

For a direct test of the cell type-specificity of

DynAPs, we turned our attention to the evolu-

tionarily conserved transcriptional circuitry that

directs MCC differentiation in vertebrates rang-

ing from Xenopus and zebrafish to mice and

humans (Brody et al., 2000; Stubbs et al.,

2008; Stubbs et al., 2012). At the top of this

hierarchy is the master regulator Mcidas, which

is necessary and sufficient for the specification of

MCCs (Stubbs et al., 2012). As previously

reported, ectopic expression of Mcidas signifi-

cantly increased the percentage of MCCs in the

Video 2. Endogenous Ruvbl2 is present in DynAPs

specifically in the cytoplasm of multiciliated cells. This

annotated movie shows a rotating maximum intensity

projection of a 3D confocal stack of a section of

mucociliary epithelium labeled by immunostaining for

acetylated tubulin to label cilia (red) and Ruvbl2

(green). Note that the contrast levels in this projection

obscure the smaller Ruvbl2 foci present in both MCCs

and gobelt cells (see Figure 1—figure supplement 5).

DOI: https://doi.org/10.7554/eLife.38497.012
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Figure 3. DynAPs are MCC-specific and controlled by the motile ciliogenic transcriptional circuitry. (A) Membrane

labeling with CAAX-RFP at the apical surface reveals a single MCC (cilia, dashed circle) surrounded by non-ciliated

goblet cells. (a’) Projection of the cytoplasm of the same cells in A. GFP-Ktu is expressed throughout, but forms

foci only in the MCC. (B) Membrane labeling at the apical surface reveals that expression of Mcidas converts all

Figure 3 continued on next page
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mucociliary epithelium, and importantly, all of these MCCs contained obvious DynAPs (Figure 3B,b’,

E). We then tested the Foxj1 transcription factor, which is essential for motile ciliogenesis and acts

downstream of Mcidas (Brody et al., 2000; Stubbs et al., 2008). Expression of Foxj1 can induce the

formation of solitary motile cilia (Stubbs et al., 2008), and we found that these ectopic motile cilia

were associated with assembly of ectopic DynAPs (Figure 3C–E). Thus, DynAPs are specific features

of MCCs and their assembly is controlled by the evolutionarily conserved motile ciliogenic transcrip-

tional program.

DynAPs display hallmarks of biological phase separation
We next explored the cell biological basis of DynAP assembly. DynAPs were not labeled by a gen-

eral membrane marker (CAAX-RFP) (Video 1) or by markers of known membrane-bound organelles

such as Golgi or endosomes (Figure 1—figure supplement 4B,C). We hypothesized, then, that

DynAPs may represent biomolecular condensates formed by liquid-liquid phase separation

(Banani et al., 2017; Shin and Brangwynne, 2017). This possibility was exciting, because while

phase separation has emerged as a widespread mechanism for compartmentalizing ubiquitous cellu-

lar processes, such as RNA processing and stress responses (Banani et al., 2017; Shin and Brang-

wynne, 2017), examples of cytoplasmic phase separated organelles with cell-type specific functions

in differentiated somatic cells remain comparatively rare.

One hallmark of phase separated organelles is rapid fission and fusion, such as that observed in

C. elegans p-granules and mammalian stress granules (Brangwynne et al., 2009; Li et al., 2012).

Time-lapse imaging of DynAPs revealed similar behaviors. DynAPs underwent fission and coales-

cence on the order of only a few minutes (Figure 4A; Video 3). A second hallmark of biological

phase separation is rapid exchange of material both within organelles and between the organelle

and the cytoplasm (Brangwynne et al., 2009; Li et al., 2012). Using ‘half-bleach’ FRAP experiments,

in which only a portion of the organelle is bleached (Brangwynne et al., 2009; Patel et al., 2015;

Schmidt and Rohatgi, 2016; Woodruff et al., 2017), we observed rapid intra-DynAP exchange of

Ktu (Figure 4B,C). GFP-Ktu displayed similarly rapid FRAP kinetics after bleaching of entire DynAPs,

suggesting rapid exchange of Ktu between DynAPs and the cytoplasm (Figure 4B,D). As a negative

control we performed FRAP on the Golgi resident protein GalT, and it displayed no recovery over

similar time frames (Figure 4E). Thus, both the fission/coalescence behaviors and FRAP kinetics of

DynAPs are similar to those observed in organelles known to form via biological phase separation

(Brangwynne et al., 2009; Li et al., 2012; Patel et al., 2015; Schmidt and Rohatgi, 2016;

Woodruff et al., 2017).

DynAPs stably concentrate dynein subunits, while allowing DNAAFs
and chaperones to flux through rapidly
Since dyneins are the clients for DNAAFs, we next examined dynein kinetics within DynAPs using

FRAP. In stark contrast to Ktu, dynein subunits were stably retained inside DynAPs. We observed

very limited mobility within DynAPs in ‘half-bleach’ FRAP experiments and between DynAPs and the

cytoplasm when entire organelles were bleached (Figure 5A,B,b’). Similar results were obtained

Figure 3 continued

cells to MCCs. (b’) Projection of the cytoplasm of the same cells in B; GFP-Ktu forms foci in all cells upon

expression of Mcidas.( C–D) Apical surface views of a control mucociliary epithelium (C) and one ectopic

expressing Foxj1 (D). (c’–d’) Projection of the cytoplasm of the same cells in C and D. GFP-Dnai1 labels both of

axonemes at the surface in C, D and DynaAPs in cytoplasm in c’d’. CAAX-BFP labels membranes; Dashed lines

mark MCCs. Expression of Foxj1 induces solitary ectopic motile cilia (D) and ectopic DynAPs (d’).(E) Graph

displaying number of cytoplasmic GFP-Ktu foci in wild-type MCCs and goblet cells as well as ciliogenesis-induced

goblet cells. p < 2.2�10�16 for Foxj1 and p = 1.68�10�7 for Mcidas experiments by two-sample t-test. n = 29

(wild-type MCC), n = 130 (wild-type goblet cell), n = 122 (Foxj1-OE goblet cells), and n = 24 (Mcidas-HGR Goblet

cells) across three embryos. Scale bars 10 mm.

DOI: https://doi.org/10.7554/eLife.38497.013

The following source data is available for figure 3:

Source data 1. Foci counts for WT MCCs and WT, FoxJ1-OE and Mcidas-OE goblet cells.

DOI: https://doi.org/10.7554/eLife.38497.014
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with both inner and outer arm dynein subunits (Figure 5D). These results prompted us to test other

DynAP-localized proteins, and we found that all tested DNAAFs and chaperones displayed signifi-

cantly higher mobile fractions when compared to all dynein subunits (Figure 5C,D; Table 2). Thus,

DynAPs stably concentrate dynein subunits, while assembly factors and chaperones rapidly flux

through.
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Figure 4. DynAPs display liquid-like behaviors. (A) Stills from time-lapse imaging of an individual DynAP labeled with GFP-Ktu undergoing fission

(upper) and later coalescence (lower) (time in seconds). (B) Time-lapse images of GFP-Ktu recovery after photobleaching of partial (upper) or entire

DynAPs (lower). Images are color-coded to highlight changes in pixel intensity (blue = low; red = high; green = intermediate. Dashed line marks the

photobleaching area. (C) Kymograph of GFP-Ktu recovery after partial bleach, showing that recovery of the bleached area occurs from within the

DynAP, rather than from the cytoplasm. Note, however, that FRAP of whole DynAPs indicates that rapid exchange also occurs between DynAPs and the

cytoplasm (Panel B, lower; and see Table 2). (D) FRAP kinetics of GFP-Ktu after bleaching entire DynAPs. (E) FRAP kinetics of the trans-golgi protein

GalT-GFP after bleaching golgi-derived vesicles.

DOI: https://doi.org/10.7554/eLife.38497.015

The following source data is available for figure 4:

Source data 1. Aggregate data for FRAP curves presented in Figures 4 and 5.

DOI: https://doi.org/10.7554/eLife.38497.016
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DynAPs are distinct from stress
granules but share a subset of
molecular machinery
The mixture of more-fluid and more-stable com-

ponents we observed in DynAPs is consistent

with data from other phase-separated organelles,

and recent studies suggest that these organelles

frequently share protein machinery (Aizer et al.,

2008; Feric et al., 2016; Jain et al., 2016;

Kedersha et al., 2005). Because stress granules

also contain Ruvbl2 and the Hsp70/90 chaper-

ones (Jain et al., 2016), we next probed the rela-

tionship between DynAPs and stress granules.

We found that the canonical stress granule

marker G3bp1 (Kedersha et al., 2005;

Wheeler et al., 2016) was strongly enriched in

DynAPs, where it co-localized significantly with

Ktu (ovals in Figure 6A,a2; Figure 6B). Curiously,

however, G3bp1-FP also consistently labeled a second population of smaller foci in MCCs that did

not contain DNAAFs (boxes in Figure 6A,a2). FRAP experiments revealed turnover kinetics in both

populations of foci that were similar to those reported for G3bp1 in stress granules (Figure 6C)

(Kedersha et al., 2005). Thus, G3bp1 is a component of at least two populations of cytoplasmic foci

in MCCs, including DynAPs.

To ask if DynAP localization was a common feature of stress granule proteins, we examined Tia1,

which also functions in stress granules (Kedersha et al., 1999). Tia1-FP localized to small foci in

MCCs similar to the DNAAF-negative foci labeled by G3bp1 (Figure 1—figure supplement 4E).

However, unlike G3bp1, Tia1-FP was typically not present in DynAPs, though in some cases partial

co-localization between Tia1 and DNAAFs was observed (e.g. Figure 1—figure supplement 4E,

Video 3. Liquid-like fission and fusion of a single

DynAP. This non-annotated movie shows smoothened

data from a time-lapse movie of a single Heatr2-

labeled DynAP. Stills from this movie are presented in

Figure 4A.

DOI: https://doi.org/10.7554/eLife.38497.017

Table 2. FRAP data for all tested proteins.

Protein Mobile fraction (%) N

Total Bleach Ktu 77.38 ± 6.63 25

Dnaaf3 77.57 ± 6.64 6

Dnaaf4 61.64 ± 10.01 14

heatr2 60.71 ± 6.02 14

Lrrc6 58.53 ± 10.75 32

Pih1d3 61.66 ± 7.14 7

Ruvbl2 61.82 ± 7.14 13

Hsp90ab1 54.60 ± 2.89 4

Hspa8 74.00 ± 9.67 16

Dnai1 25.15 ± 5.76 13

Dnai2 16.88 ± 5.75 13

Dnali1 22.02 ± 5.71 5

G3bp1 (DynAP) 84.11 ± 6.43 11

G3bp1(SG) 83.93 ± 11.08 11

Partial Bleach Ktu 66.66 ± 8.43 13

Ruvbl2 55.20 ± 9.59 4

Dnai2 20.10 ± 9.77 7

G3bp1 (DynAP) 74.83 ± 12.26 12

G3bp1(SG) 88.95 ± 10.06 6

DOI: https://doi.org/10.7554/eLife.38497.018
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Figure 5. DynAP stably retain axonemal dynein subunits. (A) Time-lapse images of GFP-Dnai2 recovery after partial photobleaching of a DynAP reveals

little recovery after 30 s. Dashed line marks the photobleaching area. (B) Kymograph of the first 10 s following photobleaching displays little recovery of

GFP-Dnai2. This is reflected by the FRAP kinetics of Dnai2 after complete bleaching of DynAPs (b’). (C) In stark contrast, the kymograph of the first 10 s

following partial photobleaching of the DNAAF GFP-Ruvbl2 displays rapid recovery at DynAPs. This is reflected by the FRAP kinetics of GFP-Ruvbl2

after complete bleaching of DynAPs (c’). (D) Boxplots of the mobile fractions of various resident proteins at DynAPs. Ciliopathy-related DNAAFs (blue)

and canonical chaperones (orange) display greater fluorescence recovery than dynein arm components (purple). p<0.0001 by one-way ANOVA and

post-hoc Tukey-Kramer HSD test. n-values for each FRAP experiment can be found in Table 2.

DOI: https://doi.org/10.7554/eLife.38497.019

The following source data is available for figure 5:

Source data 1. Aggregate data for FRAP curves presented in Figures 4 and 5.

DOI: https://doi.org/10.7554/eLife.38497.020
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arrow). However, the Pearson correlation between Tia1 and Ktu was significantly lower than that

observed for G3bp1 or for other DynAP proteins (Figure 6B). Thus, despite sharing a similar semi-

liquid-like behavior, DynAPs share only a subset of molecular components with stress granules,

including G3bp1, Ruvbl1/2, and the Hsp70/90 chaperones (Jain et al., 2016).

Loss of the DNAAF Heatr2 disrupts assembly of DynAPs and alters
their liquid-like behavior
Our data suggest that DynAPs share properties with stress granules, but even in those well-studied

organelles, it remains unclear just how their liquid like properties impact organelle function. We con-

sidered two models for DynAP function. First, given that genetic disruption of either DNAAFs or

DynAP-localized chaperones results in specific failure of axonemal dynein assembly, we considered

that the kinetics observed in DynAPs could reflect a modified ‘reaction crucible’ function (Shin and

Brangwynne, 2017), whereby dynein clients are stably retained as they are acted upon by a proces-

sion of assembly factors fluxing through. Consistent with this idea, we found that DynAPs were pres-

ent not only in mature MCCs but also in nascent MCCs undergoing ciliogenesis (Figure 7). On the

Figure 6. DynAPs share molecular and physical properties with stress granules. (A) GFP-G3bp1 strongly co-localizes with DNAAFs in DynAPs (ovals),

but also labels smaller foci that do not contain DNAAFs (boxes). (a1–a3) Higher magnification views of the bottom left corner of the MCC shown in

panel A. (B) Quantification of co-localization relative to mCherry-Ktu (Dnaaf4 and Fus data from Figure 1 are recapitulated here for comparison). (C)

FRAP kinetics of GFP-G3bp1 in Ktu-positive DynAPs (black) in MCCs and in Ktu-negative foci in neighboring goblet cells (pink). p < 0.0001 by one-way

ANOVA and post-hoc Tukey-Kramer HSD test. n-values for each FRAP experiment can be found in Table 2.

DOI: https://doi.org/10.7554/eLife.38497.021

The following source data is available for figure 6:

Source data 1. Data for GFP-G3bp1 FRAP experiments presented in Figure 6C.

DOI: https://doi.org/10.7554/eLife.38497.022
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other hand, the continued presence of DynAPs in mature MCCs may instead indicate a sequestration

function, for example preventing deployment of mis-assembled dynein arms to axonemes during

homeostasis.

We reasoned that modeling motile ciliopathy might shed light on DynAP function: If DynAPs are

sequestering organelles for mis-assembled dyneins, we expect their numbers to increase if DNAAF

function is disrupted; if they are assembly organelles, we expect the converse. To test this idea, we

focused on Heatr2, which acts early in the assembly process (Horani et al., 2018). Nonsense muta-

tions in HEATR2 that lead to protein loss cause disease (Diggle et al., 2014; Horani et al., 2012),

and thus can be modeled simply by knockdown in Xenopus. To this end, we performed knockdown

using morpholino antisense oligonucleotides (MOs). Like all knockdown reagents, MOs have their

caveats, so it is important that the MO experiments described below meet the current standards for

use (Blum et al., 2015; Eisen and Smith, 2008; Stainier et al., 2017), as MOs targeting two distinct

regions of heatr2 eliminated the mRNA for the targeted gene and the two elicited identical pheno-

types that closely recapitulate those observed in humans and flies with genetic mutations.

We designed separate MOs to disrupt splicing of the L and S alloalleles of heatr2 in the allotetra-

ploid genome of X. laevis (Session et al., 2016) (see Materials and methods), and RT-PCR demon-

strated that co-injection of the two MOs was effective. Not only was splicing severely disrupted, but

the overall level of heatr2 mRNA was also severely reduced, a common effect of nonsense mediated

Figure 7. DynAPs are present in nascent MCCs during ciliogenesis. (A) GFP-Dnai1 labels the short, still-growing

axonemes during MCC ciliogenesis at stage 21. (B) GFP-Dnai1 also labels the longer, mature axonemes at stage

25. (a’, b’) GFP-Dnai1 labeled DynAPs are present in the cytoplasm at both stages. Scale bars = 10 um.

DOI: https://doi.org/10.7554/eLife.38497.023

Huizar et al. eLife 2018;7:e38497. DOI: https://doi.org/10.7554/eLife.38497 14 of 24

Research article Cell Biology

https://doi.org/10.7554/eLife.38497.023
https://doi.org/10.7554/eLife.38497


decay when splicing is disrupted by MOs (Figure 8—figure supplement 1A). Time-lapse imaging of

cilia beating revealed that the loss of heatr2 mRNA was accompanied by a severe defect in cilia

beating (Figure 8A,B). Moreover, confocal imaging of the apical surface of MCCs revealed that

while cilia length was not disrupted, Heatr2 knockdown eliminated the axonemal localization of the

outer arm dynein Dnai2, (Figure 8C,D). A second MO targeting a different splice site in heatr2 eli-

cited the same phenotypes in Xenopus, indicating that this phenotype was not the result of off-tar-

get effects (Figure 8—figure supplement 1). Thus, MO knockdown targeting either of two distinct

sites closely recapitulated the phenotype observed after loss of Heatr2 by genetic mutation in both

human PCD patients and in Drosophila (Diggle et al., 2014; Horani et al., 2012).

Strikingly, knockdown with either of the MO sets also elicited a significant reduction in the num-

ber of DynAPs (Figure 8E–G; Figure 8—figure supplement 1E–G). This result suggested a role for

Heatr2 in DynAP assembly, which was intriguing because Heatr2 is not implicated in chaperone func-

tion, but does act early in the dynein assembly process in human MCCs (Horani et al., 2018). Inter-

estingly, changes in protein FRAP mobility accompany pathological alterations of phase separated

organelles in neurodegenerative diseases (Patel et al., 2015; Schmidt and Rohatgi, 2016), so we

used FRAP to ask if Heatr2 loss may impact the liquid-like behavior of DynAPs. Indeed, loss of

Heatr2 significantly decreased the FRAP mobile fraction of Ktu in DynAPs (Figure 8H,h’), suggesting

that an alteration in liquid like behavior is linked to defects in DynAP assembly that in turn associate

with defects in cilia beating in an animal model of motile ciliopathy.

Discussion
Here, we have shown that an entire class of motile ciliopathy genes (the DNAAFs) encode proteins

that co-localize together with axonemal dynein subunits and chaperones in discrete organelles we

term DynAPs (Table 1). DynAPs are MCC-specific, form under the control of the conserved genetic

circuitry that governs motile ciliogenesis, and display hallmarks of biological phase separation. More-

over, loss of dynein arms from axonemes after disruption of DNAAF function was associated with

defective DynAP assembly and altered liquid like character in these organelles. These findings pro-

vide a unifying cell biological framework for a poorly understood class of human disease genes and

add motile ciliopathy to the growing roster of human diseases associated with disrupted biological

phase separation.

As is the case for most phase separated organelles, the significance of concentrating DNAAFs

and dyneins into organelles remains a key unanswered question. Nonetheless, our data suggest a

model in which client dyneins are concentrated into DynAPs so they can be acted upon by chaper-

ones and co-chaperones that rapidly flux through. This model is parsimonious for integrating three

essential functions required for dyneins assembly: First, dyneins are particularly large multi-protein

complexes; their assembly takes time and requires multiple assembly factors. Sequestering the client

in one compartment would allow the many requisite assembly factors to work together efficiently.

Second, large protein complexes require strict quality control, and concentration in DynAPs provides

an efficient means to couple assembly and quality control. Third, assembled dyneins might then be

stored in DynAPs until they are needed for rapid deployment, which is important because motile cilia

are known to very rapidly regenerate.

Finally, our description of DynAPs suggests an attractive hypothesis regarding compartmentaliza-

tion of the myriad biochemical processes that arise as cell types proliferate in developing embryos.

Despite the emergence of phase separation as a mechanism for compartmentalizing cellular func-

tions, cell type-specific, phase separated organelles remain relatively rare, for example Cajal bodies

control genome organization in the nuclei of some cell types and the Balbiani body facilitates

oocytes’ long-term dormancy (Banani et al., 2017; Shin and Brangwynne, 2017). Our description

of DynAP formation specifically in MCCs predicts that a wide range of cell-type specific-liquid like

organelles may await discovery. Moreover, our data suggest a model whereby the molecular frame-

work of known ubiquitous liquid-like organelles such as stress granules (e.g. G3bp1) is differentially

modified by cell type-specific transcriptional circuits in order to assemble novel organelles to achieve

specific functions.
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Figure 8. Loss of Heatr2 disrupts formation of DynAPs and alters the liquid-like behavior of Ktu. (A) Color-based time coding of a high-speed time-

lapse movie of an MCC; Successive frames of the movie are color coded as indicated in the time key and overlaid; distinct colors in the overlay reveals

ciliary movement. (B) Similar time-coding of an MCC after Heatr2-KD; the lack of color reflects the absence of ciliary movement between frames in the

movie. (C) Membrane labeling with CAAX-RFP (pink) reveals normal cilia morphology in control MCCs (an projection of the confocal optical slices

specifically through the apical surface is shown with; dashed lines indicate MCCs. (c’) Labelling with GFP-Dnai2 reveals normal localization to the motile

axonemes shown in panel C. (D) Membrane labeling reveals normal morphology of motile cilia in MCCs after Heatr2 KD. (d’) GFP-Dnai2 is lost from the

motile cilia shown in panel D. (E) Dnai2 is present in DynAPs visible in an en face projection through the cytoplasm of control MCCs (indicated by

dashed lines). (F) Despite loss from motile axonemes, Dnai2 remains localized to DynAps in the cytoplasm of MCCs after Heatr2 knockdown. (G)

Despite the presence of DynAPs in Heatr2-KD MCCs, the number of foci in these cells is significantly reduced relative to wild-type MCCs. p = 1.27 � 10
�10 by two-sample t-test (n = 25 wild-type cells, 26 Heatr2-KD cells across two experiments, three embryos each). (H, h’) FRAP reveals that Heatr2

knockdown significantly impairs the mobility of GFP-Ktu in DynAPs. Control vs. Heatr2-KD GFP-Ktu mobile fraction, p < 2.2 � 10 �16 by two-sample

t-test (n = 25 vs. 31 observations, each in independent cells across three experiments, three embryos each). Scale bars 10 mm.

DOI: https://doi.org/10.7554/eLife.38497.024

The following source data and figure supplement are available for figure 8:

Source data 1. GFP-Ktu foci counts for WT and Heatr2-MO (Set #1) MCCs.

DOI: https://doi.org/10.7554/eLife.38497.026

Source data 2. Kinetic data for GFP-Ktu FRAP experiments in WT and Heatr2-MO MCCs.

DOI: https://doi.org/10.7554/eLife.38497.027

Source data 3. GFP-Ktu foci counts for WT and Heatr2-MO (Set #2) MCCs.

Figure 8 continued on next page
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Materials and methods

Xenopus embryo manipulations
Female adult Xenopus were induced to ovulate by injection of hCG (human chorionic gonadotropin).

In vitro fertilization was carried out by homogenizing a small fraction of a testis in 1X Marc’s Modi-

fied Ringer’s (MMR). Embryos were dejellied in 1/3x MMR with 2.5%(w/v) cysteine at pH7.8, microin-

jected with mRNA or morpholinos (MOs) in 2% ficoll (w/v) in 1/3x MMR. Injected embryos were

washed with 1/3x MMR after 2 hr and were reared in 1/3x MMR until the appropriate stages.

Plasmids, MOs and microinjections
Xenopus gene sequences were provided from Xenbase (www.xenbase.org) (James-Zorn et al.,

2018; Karimi et al., 2018) and open reading frames (ORF) of genes were amplified from the Xeno-

pus cDNA library by polymerase chain reaction (PCR). The PCR products were inserted into a pCS

vector containing a fluorescence tag. The cloned genes are as follows: KTU, Heatr2, DNAI2, DNALI1,

ZMYND10, LRRC6, PHI1D1, PHI1D3, Hsp90ab1, TTC9C, STIP1, DnajC7, G3BP1, Fus, and Tia1 into

pCS10R-N-term GFP; DNAAF4 and Ruvbl2 into pCS10R-C-term GFP; Ruvbl2, KTU, Heatr2, DNAI2

into pCS10R-N-term mCherry; DCP1a into pCS-dest-mCherry. Ccdc39 and Lsm4 were obtained

from the Human ORFeome and DNAAF3, Dyx1c1, and EEA1 were amplified from the Xenopus

cDNA library were cloned into pCS2 +Gateway destination vectors containing an alpha tubulin pro-

moter and an RFP tag or a GFP tag respectively, via the Gateway LR Clonase II Enzyme. Human

GalT-GFP or RFP was derived from GalT-CFP (Nichols et al., 2001) by exchange of CFP. Capped

mRNAs were synthesized using mMESSAGE mMACHINE SP6 transcription kit (ThermoFisher Scien-

tific, AM1340). Morpholino antisense oligonucleotides (MOs) against Heatr2 were designed to block

splicing of mRNAs transcribed from both L and S alloalleles (Gene Tools). Heatr2 MO sequences

and injected doses are as follow:

Heatr2 MO set #1: Heatr2.L (30 ng): 5’-ACATTATCAATCACAACCTGGTATA-3’

Heatr2.S (30 ng): 5’-CATTGAATTCCTCACCTGATTTCAG-3’

Heatr2 MO set #2: Heatr2.L (5 ng): 5’- GGATCATGTAAGACACCTACCTGCA-3’

Heatr2.S (5 ng): 5’-GGTAAAAAACACCTACCTGAACTGA-3’

For imaging, mRNAs and DNAs for fluorescence proteins were injected into two ventral blasto-

meres of 4 cell stage embryos with 100 pg/injection and 40 pg/injection, respectively. mRNA of

FoxJ1 (Pohl and Knöchel, 2004) was injected with 200 pg/injection into two ventral blastomeres.

mRNA of MCIDAS(Stubbs et al., 2012)-hGR from CS10R-MCIDAS-hGR (100 pg/injection) was

injected into all four blastomeres at the 4 cell stage and animal cap explants were dissected at stage

8, treated with 10�7 M dexamethasone at stage 11, cultured until stage 26 and then imaged. For all

experiments, embryos were selected at random from multiple clutches, and cells were selected ran-

domly from individual embryos for imaging. No blinding to treatment was employed. Unless other-

wise noted, all experiments were performed for at least three replicates, each consisting of a

minimum three embryos per condition.

Imaging, FRAP and image analysis
Embryos expressing fluorescent proteins were fixed at stage 26 with 1x MEMFA (0.1 M MOPS, 2

mM EGTA, 1 mM MgSO4, 3.7% formaldehyde, pH7.4) for 40 min at stage 26, washed with PBS and

then imaged. For live images, Xenopus embryos were mounted between cover glass and submerged

in 1/3x MMR at stage 25–28. Imaging was performed on a Zeiss LSM700 laser scanning confocal

microscope using a plan-apochromat 63 � 1.4 NA oil objective lens (Zeiss) or Nikon eclipse Ti confo-

cal microscope with a 63 � 1.4 oil immersion objective. For FRAP experiments, a region of interest

(ROI) was defined for full bleach experiments as a 1.75 mm� 1.75 mm box and for half-bleach experi-

ments as a 0.8 mm� 0.4 mm box. ROIs were bleached using 50% laser power of a 488 nm laser and a

Figure 8 continued

DOI: https://doi.org/10.7554/eLife.38497.028

Figure supplement 1. MOs targeting a distinct splice sites in heatr2 elicited defects in dynein delivery to axonemes and DynAP assembly.

DOI: https://doi.org/10.7554/eLife.38497.025
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0.64 ms pixel dwell time. Fluorescence recovery was recorded at ~0.20 s intervals for up to 300

frames. Bleach correction and normalization was carried out using a custom python script (modified

from http://imagej.net/Analyze_FRAP_movies_with_a_Jython_script). Plots were generated using

the ggplot2 package in R. 3D projections were generated in Fiji or IMARIS.

3D object-based co-localization algorithm
This algorithm and the steps within were primarily implemented using scikit-image (van der Walt

et al., 2014). First, we segment the cell across all z-stack layers. An Otsu threshold (Otsu, 1979) is

applied to each layer in the GFP channel. All pixels above threshold in each image are assigned a

value of 1, and all background pixels are assigned a value of 0. These thresholded layers are then

summed (projected) into a single image. Each disjoint island of positive pixel values represents a

projected 3D object, and the sum of pixel values in each island is a proxy of its volume. We identify

the object with the largest pixel sum (volume) as the cell, and hence select the thresholded areas in

each z layer as being part of the cell if they projected to this largest object. After thus identifying

the cell’s cross-section in each layer, we apply morphological closing and opening to each image to

remove small features caused by noise. We then apply a second round of Otsu thresholding within

each thresholded area to identify intracellular vacuoles and organelles that have a significantly lower

concentration of GFP. This final segment mask obtained from the GFP channel is used to identify

the cell in both channels; areas outside of this mask in either channel are no longer relevant to down-

stream processing. Second, we isolate cellular areas with a significantly higher than average fluores-

cence by subtracting the fluorescent background present across the cell. This is performed for both

channels separately. We apply a median filter to the cell, effectively subtracting the background fluo-

rescence, and then apply morphological opening and closing to remove noise. One of the resulting

areas frequently over-represented using this approach as an area of enriched fluorescence is the cell

boundary: quite often, the cell’s edges are significantly more fluorescent than the rest of the cell.

We attenuate this effect by multiplying areas near the edge by a factor linearly interpolated between

0 and 1 with increasing distance from the edge: that is at the edge values are multiplied by 0, at a

distance of 20 pixels from the edge values are multiplied by 0.5, and at a distance of 40 pixels from

the edge values are multiplied by 1. Below, we will call the resulting image the fluorescent fore-

ground. Third, the Laplacian of Gaussian (LoG) is applied to the fluorescent foreground to identify

puncta in both GFP and RFP channels. Fourth, we segment each punctum’s body to accurately cap-

ture its intensity. LoG identifies the puncta, but it does not accurately capture their size or intensity;

we need to identify which pixels are contiguous to each punctum and thus are a part of it. To do

this, we apply the watershed algorithm to the fluorescent foreground, with each LoG identified

punctum acting as a watershed marker. Fifth, we measure the intensity of each punctum by summing

the fluorescent foreground pixels in each watershed basin. Sixth, we collate these 2D puncta from

each z-layer into 3D puncta. We do this by simply querying whether puncta watersheds obtained in

step four overlap in adjacent z-layers. Seventh, we measure the overlap between 3D puncta in RFP

and GFP channels. For a punctum in the RFP channel, the overlap metric is its area overlapping any

GFP punctum divided by its total area. Both overlapped and total areas are summed for each punc-

tum across all z-layers in which it is present, thus acting as a volume-based overlap metric. For GFP

channel puncta, this is computed analogously. Finally, we create a background overlap rate by ran-

domly shuffling puncta positions in each cell and computing their overlaps using the same metric.

Puncta in each channel are randomized independently. Randomization is performed for each punc-

tum one at a time. For each punctum, a random set of coordinates is chosen in 3D space. Coordi-

nates in the image plane are pixel coordinates; z-stack coordinates are the discrete layers. Once a

random triplet of coordinates is chosen, the entire 3D punctum is placed at the new position by sim-

ply shifting all of its components in each layer by the same amount in the 2D planes, and then shifted

a discrete number of layers up or down in the z direction as appropriate. We check whether any part

of the punctum lies outside of the cell segmentation found above and whether it overlaps any previ-

ously placed punctum. If either is true, we generate new random coordinates again. We continue

until all puncta have been placed or a computational limit is reached (in practice, all puncta were

placed successfully). For each cell, we generated ten such synthetic replicates to obtain background

overlap rates for each cell. Code for this algorithm has been deposited in

GitHub (Boulgakov, 2018).
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Immunostaining
Xenopus embryos were fixed at stage 25 by cold Dent’s fixative (80% methanol +20% DMSO) over-

night and then were transferred in 100% methanol. Embryos were rehydrated consecutively with

TBS (155 mM NaCl, 10 mM Tris-Cl, pH7.4) and then were blocked in 10% FBS, 5% DMSO in TBS.

Monoclonal anti-acetylated alpha-tubulin antibody (Sigma-Aldrich, T6793, RRID:AB_477585, 1:500

dilution) and rabbit polyclonal anti-Ruvbl2 (Abcam, ab91462, RRID:AB_2050278, 1:1000 dilution)

antibody were used as primary antibodies. Primary antibodies were detected by FITC-goat anti-rab-

bit antibody (Sigma-Aldrich, F9887, RRID:AB_259816, 1:400 dilution) and AlexaFluor 555-anti-mouse

IgG antibody (Invitrogen, A21422, AB_141822, 1:400 dilution).

Human airway cells were fixed and immunostained as previously described using primary and sec-

ondary antibodies.(Pan et al., 2007; You et al., 2002) Primary antibodies and dilution used included

rabbit monoclonal LRRC6 (Sigma-Aldrich, HPA028058, RRID:AB_1853337, 1:100 dilution), mouse

monoclonal DNAI1(Neuromatb, cat# 73–372, RRID:AB_2315828, 1:2000 dilution) and mouse mono

clonal acetylated a�tubulin (Sigma-Aldrich, RRID: T7451, clone 6–11-B1, RRID:AB_609894, 1:5000).

Primary antibodies were detected using fluorescently labeled, species-specific donkey antibodies

(Alexa Fluor, Life Technologies, Grand Island, NY, USA). Nuclei were stained using 4’, 6-diamidino-2-

phenylindole (Sigma-Aldich).

Airway epithelial cell culture
Human airway epithelial cells were isolated from de-identified surgical excess of trachea and bronchi

removed from lungs donated for transplantation. The use of these cells was exempt from human

studies by the Institutional Review Board at Washington University School of Medicine. Tracheobron-

chial epithelial cells were expanded in culture, seeded on supported membranes (Transwell, Corning

Inc., Corning, NY), and differentiated using air-liquid interface conditions as previously described

and maintained in culture for up to 10 weeks.

RT-PCR
To verify the efficiency of HEATR2 MOs, both L and S MOs were injected into all cells at the 4 cell

stage and total RNA was isolated using the TRIZOL reagent (Invitrogen Cat#15596026) at stage 25.

cDNA was synthesized using M-MLV Reverse Transcriptase (Invitrogen, Cat# 28025013) and random

hexamers. Heatr2 cDNAs were amplified by Taq polymerase (NEB, M0273S) with these primers:

Heatr2.L 25F GCGACTTCCGATGTGACTAA

Heatr2.L 661R CTTCCCACTGCTGTACTGTATAA

Heatr2.S 649F GGCAATGGAAAGTCCGTAGAT

Heatr2.S 1058F CAACAACCCAGTCCGTTACA

Heatr2.L 471F CTTCCCAGAGGTGAAGAAAGAG

Heatr2.L 944R GAAGGACATGGAGCACTGAA
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