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Report

MET mutation causes muscular dysplasia
and arthrogryposis
Hang Zhou1,2,3,4,‡, Chengjie Lian1,2,3,4,‡, Tingting Wang1, Xiaoming Yang1, Caixia Xu5, Deying Su1,

Shuhui Zheng5, Xiangyu Huang6, Zhiheng Liao1, Taifeng Zhou1, Xianjian Qiu7, Yuyu Chen1, Bo Gao7,

Yongyong Li5, Xudong Wang7, Guoling You8, Qihua Fu8, Christina Gurnett9,10,11, Dongsheng Huang7 &

Peiqiang Su1,2,3,4,†,*

Abstract

Arthrogryposis is a group of phenotypically and genetically hetero-
geneous disorders characterized by congenital contractures of two
or more parts of the body; the pathogenesis and the causative
genes of arthrogryposis remain undetermined. We examined a
four-generation arthrogryposis pedigree characterized by campto-
dactyly, limited forearm supination, and loss of myofibers in the
forearms and hands. By using whole-exome sequencing, we con-
firmed MET p.Y1234C mutation to be responsible for arthrogryposis
in this pedigree. MET p.Y1234C mutation caused the failure of acti-
vation of MET tyrosine kinase. A Met p.Y1232C mutant mouse
model was established. The phenotypes of homozygous mice
included embryonic lethality and complete loss of muscles that
originated from migratory precursors. Heterozygous mice were
born alive and showed reduction of the number of myofibers in
both appendicular and axial muscles. Defective migration of
muscle progenitor cells and impaired proliferation of secondary
myoblasts were proven to be responsible for the skeletal muscle
dysplasia of mutant mice. Overall, our study shows MET to be a
causative gene of arthrogryposis and MET mutation could cause
skeletal muscle dysplasia in human beings.
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Introduction

Arthrogryposis is a group of disorders characterized by congenital

joint contractures that mainly involve two or more areas of the body

(Bamshad et al, 2009; Bayram et al, 2016) and affects approxi-

mately 1 in 3,000 newborns (Bayram et al, 2016). Structural and

functional disorders of skeletal muscles are the most common

reason for arthrogryposis (Toydemir et al, 2006). Arthrogryposis is

a group of disorders with high clinical and genetic heterogeneity.

Variants in more than 220 genes have been found to be associated

with arthrogryposis (Narkis et al, 2007; Drury et al, 2014; Hunter

et al, 2015; Bayram et al, 2016). However, the molecular etiology

still remains unclear in a large number of cases of arthrogryposis.

Further studies to identify causative genes and pathogenic mecha-

nisms are needed.

MET belongs to the receptor tyrosine kinase family, and it is

encoded by the MET proto-oncogene, receptor tyrosine kinase

(MET, MIM:164860) gene. The biological effects exerted by MET are

triggered by the stimulation of its only ligand, hepatocyte growth

factor (HGF; Trusolino et al, 2010). Upon ligand binding, MET is

autophosphorylated on tyrosine (Y)-1234/1235 in the activation

loop of the MET catalytic domain. Y-1234/1235 phosphorylation is

required for the activation of MET kinase and subsequent phospho-

rylation of other tyrosine sites of MET, including Y-1003 in the

juxtamembrane domain, and Y-1349 and Y-1356 in the carboxyl

terminus (Sangwan et al, 2008). Phosphorylated Y-1349 and Y-1356
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serve as multifunctional binding sites for GAB1, GRB2, PI3K, and

other downstream substrates (Birchmeier et al, 2003). The HGF-

MET signal plays a vital role in regulating the development of skele-

tal muscle, placenta, and liver during embryogenesis (Birchmeier

et al, 1997; Haines et al, 2004; Ueno et al, 2013). In skeletal muscle

development, MET has been demonstrated not only to be crucial for

the migration of muscle progenitor cells into the limbs, tongue, and

diaphragm, but also to be necessary for the proliferation of

secondary myoblasts in the trunk (Maina et al, 1996).

Herein, we recruited a rare four-generation Chinese arthrogryposis

pedigree with only upper limb involvement, and we found the MET

c.A3701G (p.Y1234C; Refseq NM_000245.2) mutation to be responsi-

ble for the pathogenesis of arthrogryposis in this pedigree. MET

p.Y1234C mutation was shown to cause the dysfunction of phospho-

rylation and tyrosine kinase activity of MET in vitro. We established a

Met c.A3695G (p.Y1232C; Refseq NM_008591.2) mutant mouse

model, and the defective migration of myogenic progenitor cells and

impaired proliferation of secondary myoblasts were demonstrated to

be responsible for the disturbed muscle development.

Results

Clinical presentation of patients from a large
arthrogryposis family

A four-generation Chinese family presented with completely pene-

trant, autosomal dominant arthrogryposis characterized mainly by

camptodactyly (Fig 1A). All patients in this family had campto-

dactyly, and seven patients had camptodactyly, absent flexion

crease, and limited forearm supination (Fig 1B; Table EV1). Signs of

lower limb, and facial and spinal involvement were absent. Since

interphalangeal joints and carpal joints were both affected in seven

individuals, a diagnosis of arthrogryposis involving only the upper

limbs was made.

Subject IV:7 is a patient with unilateral camptodactyly, absent

flexion crease, and limited forearm supination. Severe pronator

quadratus aplasia of affected forearm was observed through magnetic

resonance imaging (MRI; Fig 1C). For the palmar muscles, loss of

lumbricalis and interosseous muscles of fifth finger of affected side was

found (Fig 1D and E). Subject IV:8 is a patient with severe bilateral

camptodactyly, absent flexion crease, and limited forearm supination.

MRI scan showed increased epimysial fat among muscle compart-

ments (Fig 1F), complete loss of thenar eminences, the radial lumbri-

calis, and interosseous muscles of both hands (Fig 1G and H). The

lumbricalis muscle of subject IV:8 showed varying fiber size and more

centrally located nuclei than control lumbricalis muscle from an age-

and gender-matched person without muscular dysplasia (Fig EV1A).

No bone abnormality was observed in arthrogryposis patients of this

pedigree (Fig EV1B). Overall, a diagnosis of arthrogryposis involving

only the upper limbs was made, and muscular dysplasia was observed

in the affected forearms and hands of these patients.

Whole-exome sequencing identified MET as a disease-causing
gene of arthrogryposis

To identify arthrogryposis-predisposing variants, whole-exome

sequencing was initially performed on four affected individuals

and one healthy member of this arthrogryposis pedigree

(Appendix Table S1). As previously reported (Gao et al, 2017), we

annotated and filtered variants, and kept variants that were novel in

dbSNP. Polyphen-2, Mutation Taster, and Genomic Evolutionary

Rate Profiling (GERP) were then used to predict the potential func-

tional effects of these mutations, which yielded two candidate SNVs,

c.A3701G in the MET; c.G2074A (Refseq NM_006019) in TCIRG1

(MIM:604592). By using Sanger sequencing, we excluded the SNV

on TCIRG1 because MET c.A3701G turned out to be the only one

which co-segregated with disease phenotypes in this family (Fig 1I,

Appendix Table S2).

MET p.Y1234C mutation caused dysfunction of the
phosphorylation and tyrosine kinase activity of MET

The influence of p.Y1234C mutation on the function of MET was

studied (Fig EV2A), and HGF treatment was shown to be unable to

phosphorylate the Y-1234/1235, Y-1349, and Y-1356 sites of mutant

MET receptor (Fig EV2B–D), suggesting MET mutation impaired the

activation of MET receptor. Moreover, the tyrosine kinase activity of

mutant MET was shown to decrease dramatically (Fig 1J).

Met mutation resulted in the reduction of limb myofibers in
transgenic mouse model

To determine the mechanism by which MET mutation causes

arthrogryposis, a Met p.Y1232C (which was identical to p.Y1234C in

human beings) mutant mouse model was constructed. No homozy-

gous newborns were found. The ratio of homozygous embryos

started to decline since E14.5, and E16.5 was the latest time that

homozygous embryos could survive, which was consistent with Met

null mutants (Schmidt et al, 1995). The failure of placental develop-

ment in homozygotes might be responsible for the death of embryos

in utero (Ueno et al, 2013).

Heterozygotes were smaller than wild-type individuals at birth

(Fig 2A and B). Compared with wild-type newborns, the mean

number of myofibers of paraspinal muscles, forelimbs, hindlimbs,

and hands of heterozygotes reduced by 14, 55, 29, and 93%, respec-

tively, while the foot muscles remained normal (Fig 2C–H). To fig-

ure out whether the myofibrils were affected, the gastrocnemius of

wild-type and heterozygous newborns was tested with transmission

electron microscope (TEM). However, no abnormality of the struc-

ture of myofibrils was found (Fig 2I).

Met mutation affected the migration of muscle progenitor cells

To determine how Met mutation affected muscle development, its

effect on muscle progenitor cells’ migrating out of dermomyotome

was examined firstly. Using in situ hybridization, expression of

Pax3 (MIM: 606597) and Met was assessed in embryonic limbs and

dermomyotome at the end of migration (E10.5). In dermomyotome,

heterozygous and homozygous embryos showed more Pax3-positive

(Pax3+) and Met-positive (Met+) cells than wild types (Figs 3A and

EV3). Pax3+ and Met+ cells were absent from homozygous limbs,

while the number of Pax3+ and Met+ cells was markedly lower in

heterozygous limbs, suggesting Met mutation impaired muscle

progenitor cells’ migration out of dermomyotome to the limb

(Figs 3A and EV3).

2 of 9 EMBO Molecular Medicine 11: e9709 | 2019 ª 2019 The Authors

EMBO Molecular Medicine MET mutation causes arthrogryposis Hang Zhou et al

Published online: February 18, 2019 



A

B

C D E

F G

I J

H

Figure 1. MET p.Y1234C mutation caused arthrogryposis in a four-generation Chinese family.

A The MET p.Y1234C mutation segregated with disease phenotypes in the arthrogryposis family. Filled symbols denote affected individuals, open symbols indicate
unaffected individuals, and symbols with slashes represent decreased individuals. Asterisks indicate a mutation is present, # means wild-type.

B Phenotypes of affected individuals. Camptodactyly, absent flexion crease, and limited forearm supination were observed.
C–E T1-weighted MRI scan on upper limbs of subject IV:7. (C) The pronator quadratus absence of affected side was indicated by a red arrow. (D) No difference was

found in palmar muscles. (E) Loss of lumbricalis and interosseous muscles of fifth finger of affected side was indicated by a red arrow.
F–H T1-weighted MRI scan on upper limbs of subject IV:8. (F) Increased epimysial fat was indicated by a red arrow. (G) Completely loss of thenar eminences of both

hands was indicated by red arrows. (H) Loss of radial lumbricalis and interosseous muscles of both hands was indicated by red arrows.
I The MET variants by Sanger sequencing were indicated by a red arrow.
J 293T cells were transfected with FLAG-tagged MET/METMut/Vector plasmids, and 48 h post-transfection, cells were treated with 10 ng/ml recombinant human HGF

for 1 h. Then, MET/METMut protein purification and tyrosine kinase assay were conducted. Western blot pictures representative of n = 3 experiments. METMut

means p.Y1234C mutant MET. EGFR means epidermal growth factor receptor and serves as a positive control. NC means negative control.

Source data are available online for this figure.

ª 2019 The Authors EMBO Molecular Medicine 11: e9709 | 2019 3 of 9

Hang Zhou et al MET mutation causes arthrogryposis EMBO Molecular Medicine

Published online: February 18, 2019 



Met mutation had no effect on primary myogenesis of embryonic
muscle development

The decreased number of muscle fibers in axial muscles of P0

heterozygotes suggested that Met mutation might also affect the

myoblasts which do not undergo migration. The body size and

weight of E14.5 (the very end of primary myogenesis) homozygous

embryos were lower than that of wild types (Figs 3B and EV4A).

For muscles that derive from migratory precursors, remarkable

decrease of muscle fibers was observed in heterozygotes, while the

A B C

D E H

F G

I

Figure 2. Met mutation caused the reduction of both appendicular and paraspinal muscles of P0 heterozygotes.

A Gross appearance of wild-type and heterozygous newborns.
B Graph showing weight of P0 mice. Bars show mean � SD. Sample size: WT (n = 4) and Hetero (n = 5). *P < 0.05, by one-way ANOVA and followed by Dunnett’s

post hoc test.
C–G Sections of spine, forelimbs, hindlimbs, hand, and foot from wild types and heterozygotes at P0 were conducted with HE staining and immunofluorescence

staining using anti-myosin heavy chain antibody. Scale bars, 100 lm.
H The mean number of myofibers in the muscles of the spine, forelimb, hindlimb, hand, and foot was qualified. Bars show mean � SD. NS means no statistic

significance. *P < 0.05, **P < 0.01, by two-tailed independent Student’s t-test.
I Transmission electron microscope analysis of gastrocnemius from wild-type and heterozygous newborns. Black arrows denote mitochondria. Scale bars, 2 lm. WT

means wild types, Hetero means heterozygotes.

Data information: In (C–H), n = 3.

4 of 9 EMBO Molecular Medicine 11: e9709 | 2019 ª 2019 The Authors

EMBO Molecular Medicine MET mutation causes arthrogryposis Hang Zhou et al

Published online: February 18, 2019 



homozygotes showed a complete loss of muscle fibers in these areas

(limbs, front tongue, and diaphragm, Figs 3C and EV4B). For

muscles that do not originate from the migratory precursors, no

obvious difference was observed among three genotypes at E14.5

(paraspinal muscle and intercostal muscle, Figs 3C and EV4B). To

evaluate the proliferation and apoptosis of primary myoblasts, Ki67

staining and TUNEL assay were conducted in paraspinal muscle,

and no significant difference was found among all three genotypes

(Fig EV4C–F), suggesting that Met mutation had no effect on

primary myogenesis.

Met mutation suppressed proliferation of myoblasts during
secondary myogenesis

To reveal the effect of Met mutation on secondary myogenesis,

appendicular and axial muscles of E16.5 embryos (the latest time

A B

D

C E

F G

Figure 3. Met mutation led to the defects in the migration of muscle progenitor cells and impaired proliferation of secondary myoblasts.

A In situ hybridization of E10.5 embryos using Pax3 probe. Pax3 expression (brown signal) was observed in limb bud and dermomyotome (DM), respectively. Cells
labeled with Pax3 were indicated by a red arrow. Scale bars, 200 lm.

B Gross appearance of E14.5 embryos of indicated genotype. Scale bars, 2.5 mm.
C HE staining of forelimb, hindlimb, and paraspinal muscle of E14.5 embryos. Scale bars, 100 lm.
D Gross appearance of E16.5 embryos of indicated genotype. Scale bars, 2.5 mm.
E HE staining of forelimb, hindlimb, and paraspinal muscle of E16.5 embryos. n = 3, scale bars, 200 lm.
F Anti-Ki67 antibody was used to label proliferative myoblasts (red fluorescence) with DAPI-labeled nuclei (blue fluorescence) in paraspinal muscle. Scale bar, 25 lm.
G Bar graph showing statistical analysis of positive rate of Ki67-labeled nuclei, n = 3 with more than 150 cells analyzed per n, **P < 0.01, by chi-square test (v2 test).

Bars show mean � SD. WT means wild types, Hetero means heterozygotes, and Homo means homozygotes.
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that homozygotes could survive and also the late stage of secondary

myogenesis) were studied. The body size and weight of E16.5

embryos decreased in heterozygotes and homozygotes (Figs 3D and

EV5A). HE staining showed that compared to wild types, the mean

myofiber numbers in heterozygotes decreased by 46% in forelimb

and 45% in hindlimb, respectively, and a complete absence of

myofiber was observed in homozygous limbs (Figs 3E and EV5B).

HE staining revealed a graded reduction in paraspinal muscle fibers,

progressively more severe in homozygotes than in heterozygotes

(Figs 3E and EV5B).

To make it clear whether Met mutation affected apoptosis or

proliferation of secondary myoblasts, TUNEL assay and Ki67 stain-

ing were performed in paraspinal muscle of E16.5 embryos. No

significant difference in the TUNEL-positive rate was found among

all three genotypes (Fig EV5C and D). However, in heterozygous

and homozygous embryos, there was a reduction in Ki67-positive

rate of 58 and 81%, respectively, relative to wild types (Fig 3F and

G), indicating that a defect in proliferation of myoblasts was the

reason for the impaired secondary myogenesis.

Discussion

In the present study, MET p.Y1234C mutation was found to cause

arthrogryposis in a four-generation pedigree. In vitro study showed

that MET p.Y1234C mutation resulted in the failure of phosphoryla-

tion and loss of tyrosine kinase activity of MET receptor. A Met

p.Y1232C transgenic mouse model was established, and defective

migration of muscle progenitor cells and impaired proliferation of

secondary myoblasts were detected, which was in accordance with

previous study (Maina et al, 1996).

In our study, heterozygous Met p.Y1232C mutant mice also

showed reduction of myofibers’ number in both appendicular and

axial muscles. Given that various heterozygous Met loss-of-function

mutant mice did not show any abnormal phenotype (Maina et al,

1996, 2001; Sachs et al, 2000), the phenotype of Met p.Y1232C

heterozygotes is likely to be caused by a dominant negative effect

rather than by haploinsufficiency. Since Y-1232 is a crucial phosphory-

lation site in the MET kinase domain and MET activation depends on

receptor dimerization in response to ligand binding (Trusolino et al,

2010), the p.Y1232C mutant might form non-functional dimers with

the wild-type MET protein, resulting in impaired HGF-MET signaling.

A similar effect has been previously described with a kinase-domain-

truncated mutant MET (Furge et al, 2001; Long et al, 2003).

In P0 heterozygous mice, there was a complete absence of the

intrinsic muscles of the hand, while the intrinsic muscles of the foot

stayed normal, which was in accordance with the phenotypes of our

arthrogryposis patients. Meanwhile, the reduction of myofibers in

forelimb was more severe than that in hindlimb. One possible expla-

nation for this inconsistency is that MET plays a predominant role in

the early period of embryonic muscle development. As reported,

MET was indispensable to the delamination of muscle progenitor

cells from dermomyotome at the very beginning of migration. In

Met�/� mice, the muscle progenitor cells failed to delaminate from

the dermomyotome, and all the muscles that derived from migration

failed to form as a result (Schmidt et al, 1995). Other genes, such as

Lbx1 and Pax3, are more important in regulating the migration of

muscle precursor cells into the limbs during later periods of

migration (Relaix et al, 2004; Masselink et al, 2017). In homozygous

Lbx1 null mutant mice, limb muscle precursor cells could delami-

nate from dermomyotome normally but failed to migrate into the

limb, which led to the loss of appendicular muscles (Gross et al,

2000). Since forelimb buds (E9.0–E9.5) formed earlier than hindlimb

buds (E9.5–E10) during embryonic muscle development, it can be

inferred that Met mutation caused severer phenotypes in forelimbs

than hindlimbs because it mainly affects the early stage of migration.

Although the reduction of myofibers in the extensor side of forelimbs

was severer than that in the flexor side in some Met mutant mice

models constructed before (Maina et al, 1996; Sachs et al, 2000), we

did not find such differences in Met p.Y1232C mutant mice. It is also

noteworthy that although Met p.Y1232C mutant mice recapitulated

the phenotypes of muscular dysplasia in arthrogryposis patients,

neither heterozygous nor homozygous mice showed contracture of

distal joint. In the arthrogryposis family we examined, all patients

with MET p.Y1234C mutation had camptodactyly, which was caused

by the loss of the intrinsic muscles of the hands. Similar to these

patients, Met c.A3695G mutant mice also showed loss of intrinsic

muscles of the hands. The reason why mutant mice had no campto-

dactyly may be that the digits of mice are relatively short, so contrac-

ture is not readily visible. However, instead of contracture at the

digits, the whole paw flexion at the wrist was observed in Met

p.Y1356F mutant homozygotes (Maina et al, 1996).

It has been reported that SNVs in the MET gene, causing lowered

MET expression, increase susceptibility to autistic spectrum disor-

ders (ASD) in European and North American populations (Campbell

et al, 2006). Mental evaluation by a psychiatrist of our arthrogrypo-

sis patients revealed no sign of ASD, possibly owing to the dif-

ference in genetic background among populations.

To the best of our knowledge, this is the first study to report

MET as a causative gene of arthrogryposis. Though several mouse

models have been established to study the role of MET on the devel-

opment of skeletal muscle, the present study is the first to demon-

strate a direct relationship between MET mutation and skeletal

muscle dysplasia in arthrogryposis patients.

Materials and Methods

Subjects

Patients were recruited and evaluated in the First Affiliated Hospital

of Sun Yat-sen University. Patients provided a detailed medical

history, received physical examinations and mental evaluation, and

underwent standard posterior–anterior plain X-rays of both the

hands and the feet. MRI, electromyogram, and blood biochemical

examination were conducted in subject IV:7. Histological analysis of

lumbricalis and MRI were conducted in subject IV:8, and the lumbri-

cales of an age- and gender-matched person with a severe hand

injury served as normal control.

Genetic studies

Exome sequences were enriched with an Agilent SureSelect Human

All Exon V5 Kit (Agilent Technologies). Sequences were generated

on a HiSeq PE150 (Illumina). Base calling was performed, and raw

sequencing read files were generated in FASTQ format.
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Subsequently, the sequenced reads were aligned to the reference

human genome (NCBI Build 37, hg19). SeattleSeq Annotation 150

(version 9.10) was used to perform the annotation. Various data-

bases, including dbSNP database, 1000 genomes, Mutation Taster,

Polyphen-2, and SIFT, were used to predict and filter mutations. Data

analysis was performed as given below: Exome capture was

performed using an Agilent SureSelect Human All Exon Kit and

sequences were generated on HiSeq PE150. After mapping to the

human reference genome (NCBI Build 37, hg19), an average of

99.3% of reads were mapped and a sequencing depth per target base

of 168 times on average was provided, with at least 20 times for 99%

of bases. More than 154,876 SNVs per individual were identified. We

first chose variants that were shared by the four affected individuals

but not present in the unaffected individual. We found 5,350 such

variants. Next, to identify potentially pathogenic variants, we anno-

tated those variants and filtered out synonymous variants, non-

coding variants, intergenic variants, and variants located in introns,

retaining those affecting splice sites. We then parsed a total of 1,441

variants and kept only those that were novel in dbSNP.

Immunoprecipitation

Flag-tagged MET, p.Y1234C mutant MET (METMut), and Vector plas-

mids were expressed in a 293T cell expression system. Forty-eight

hours post-transfection, cells were treated with 10 ng/ml recombi-

nant human HGF (PeproTch, Catalog No. 100-39H-25) for 1 h. As

previously reported (Lian et al, 2016; Liu et al, 2018), lysates were

prepared from 5 × 107 293T cells transfected with indicated plas-

mids using RIPA Lysis Buffer (Beyotime, Catalog No. P0013D).

Lysates were incubated with 20 ll anti-Flag affinity agarose (Sigma-

Aldrich, Catalog No. A4596) overnight at 4°C. Beads containing

affinity-bound proteins were washed seven times with 5 ml wash

buffer (300 mM NaCl, 20 mM HEPES, 1 mM EDTA, 1 mM EGTA,

2% glycerol, pH 7.4, and 0.1% NP-40) and collected by centrifuga-

tion. Samples were subjected to SDS–PAGE and immunoblotting

analysis after the addition of 30 ll of sample buffer [62 mM

Tris–HCl, 1.25% (w/v) SDS, 10% (v/v) glycerol, 3.75% (v/v)

mercaptoethanol, and 0.05% (w/v) bromophenol blue, pH 6.7] and

denaturation. The following antibodies were used: 1:1,000 dilution of

anti-Phospho-Met (Tyr1234/1235) antibody (CST, Catalog No. #3077),

1:1,000 dilution of anti-Phospho-Met (Tyr1349) antibody (Abcam,

Catalog No. ab68141), 1:500 dilution of anti-Phospho-Met (Tyr1356)

antibody (Abcam, Catalog No. ab73992), 1:2,000 dilution of anti-

GAPDH antibody (Proteintech, Catalog No. 60004-1-lg), and 1:1,000

dilution of anti-FLAG antibody (Sigma-Aldrich, Catalog No. F1804).

Tyrosine kinase assay

Flag-tagged MET/METMut/Vector plasmids were expressed in a 293T

cell expression system. Forty-eight hours post-transfection, cells were

treated with 10 ng/ml recombinant human HGF for 1 h. MET/METMut

protein purification and tyrosine kinase assay were conducted accord-

ing to the operations manual (Sigma-Aldrich, Catalog No. CS0730).

Generation of CRISP/Cas9 Met mutant mice

The mouse Met gene (GenBank accession number: NM_008591.2;

Ensembl: ENSMUSG00000009376) is located on mouse chromosome

6, and human MET c. A3701G is identical to Met c.A3695G in mouse

gene. Twenty-two exons have been identified, with the ATG start

codon in exon 3 and TGA stop codon in exon 22. The Tyr1232 is

located on exon 20. Exon 20 was selected as a target site. MET

gRNA targeting sequencing 50-GCTTGGCACCCGTCTTGTTGTGG-30

and donor oligo were designed. The Tyr1232Cys (TAC to TGC)

mutation sites in donor oligo were introduced into exon 20

using homology-directed repair. A silent mutation (GTC to GTA

or ACG to ACT) was also introduced to prevent the binding and

recutting of the sequence by gRNA after homology-directed

repair. Cas9 mRNA, gRNA generated by in vitro transcription,

and donor oligo were co-injected into fertilized eggs for KI

mouse production.

Histological study

Tissues from E14.5, E16.5, and P0 mice were dissected and fixed in

4% paraformaldehyde overnight, dehydrated, and embedded in

paraffin. Sections for histological analysis were rehydrated and

stained with hematoxylin-eosin. Immunofluorescence was

performed with Histostain-Plus Kit (ZSGB-BIO, Catalog No. SPN-

9002). Primary antibodies included: 1:400 dilution of anti-myosin

antibody (Sigma, Catalog No. M4276); 1:200 dilution of anti-Ki67

antibody (Abcam, Catalog No. ab16667). Detection was conducted

using 1:1,000 dilution of anti-mouse IgG fragment, Alexa Fluor 555

conjugate (CST, Catalog No. #4409), and 1:1,000 dilution of anti-

rabbit fragment, Alexa Fluor 555 conjugate (CST, Catalog No.

#4413S). Nucleus was stained by DAPI in a final concentration of

0.1 lg/ml (CST, Catalog No. #4083). TUNEL assay was performed

according to the manufacturer’s instructions (MBL, Catalog No.

8445). Quantification of Ki67-positive rate and TUNEL-positive rate

was conducted using ImageJ (version 1.51) software.

Transmission electron microscopy

Transmission electron microscope analysis was performed on the

gastrocnemius in standard fashion. Ultra-thin sections were

stained with uranyl acetate and lead citrate, and then examined

using a Tecnai transmission electron microscope (FEI) operated at

80 kV.

Mouse embryos in situ hybridization

In situ hybridization using RNAscope probes was performed on

E10.5 mouse embryos. Embryos were fixed with 4% paraformalde-

hyde for 24 h at 4°C, dehydrated, and embedded in paraffin.

Tissue sections were washed twice with PBS for 5 min, followed

by incubation in hydrogen peroxide (ACD, Catalog No. 322335)

for 10 min at room temperature, boiling in target retrieval (ACD,

Catalog No. 322000) for 15 min. After target retrieval, slides were

briefly washed with distilled water and incubated for 30 min at

40°C with Protease Plus (ACD, Catalog No. 322331). Following all

pretreatments, the manufacturer’s protocol for RNAscope 2.5 HD

Detection Kit-Brown (ACD, Catalog No. 322310) was followed to

hybridize probes and detect the signals. The following probes were

used: RNAscope Probe-Mm-Pax3 (ACD, Catalog No. 455801);

RNAscope Probe-Mm-Met (ACD, Catalog No. 405301); RNAscope

Negative Control Probe-DapB (ACD, Catalog No. 310043); and
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RNAscope Positive Control Probe-Mm-Ppib (ACD, Catalog No.

313911).

Statistical analysis

All quantitative data are here presented as mean � standard devia-

tion (SD). Statistical analysis of body weight of transgenic mice was

performed using one-way ANOVA followed by Dunnett’s post hoc

test for multiple comparisons. The positive rates of Ki67- and

TUNEL-labeled cells were analyzed using the chi-square test (v2

test). All statistical analyses were conducted with the SPSS (version

19.0) statistical software. The level of statistical significance was set

at P < 0.05. See Appendix Statistical Analysis for the exact P-value

in each experiment.

Study approval

Written informed consent was obtained from all subjects or, in the

case of children under 16 years of age, their parents. Collection and

usage of patient samples for this study were approved by the Ethics

Committee of the First Affiliated Hospital of Sun Yat-sen University.

All procedures in studies involving human participants were

performed in accordance with the principles set out in the WMA

Declaration of Helsinki and the Department of Health and Human

Services Belmont Report. Transgenic mice were raised in the labora-

tory animal center of Sun Yat-sen University, and all animal experi-

ments, housing, and husbandry followed the operating procedures

approved by the Institutional Animal Care and Use Committee of

Sun Yat-sen University.

Data availability

The whole-exome sequencing data of arthrogryposis patients are

available in the Clinvar dataset (https://www.ncbi.nlm.nih.gov/clin

var/), and accession ID is SCV000606865.

Expanded View for this article is available online.
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