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Manipulation of Glucose and Hydroperoxide
Metabolism to Improve Radiation Response
D1X XJohn M. Floberg, MD, PhD, D2X X* and D3X XJulie K. Schwarz, MD, PhDD4X X*,†,z

Dysregulated glucose and redox metabolism are near universal features of cancers. They
therefore represent potential selectively toxic metabolic targets. This review outlines the
preclinical and clinical data for targeting glucose and hydroperoxide metabolism in cancer,
with a focus on drug strategies that have the most available evidence. In particular, inhibi-
tion of glycolysis using 2-deoxyglucose, and inhibition of redox metabolism using the gluta-
thione pathway inhibitor buthionine sulfoximine and the thioredoxin pathway inhibitor
auranofin, have shown promise in preclinical studies to increase sensitivity to chemother-
apy and radiation by increasing intracellular oxidative stress. Combined inhibition of glycol-
ysis, glutathione, and thioredoxin pathways sensitizes highly glycolytic, radioresistant
cancer models in vitro and in vivo. Although the preclinical data support this approach, clin-
ical data are limited to exploratory trials using a single drug in combination with either che-
motherapy or radiation. Open research questions include optimizing drug strategies for
targeting glycolysis and redox metabolism, determining the appropriate timing for adminis-
tering this therapy with concurrent chemotherapy and radiation, and identifying biomarkers
to determine the cancers that would benefit most from this approach. Given the quality of
preclinical evidence, dual targeting of glycolysis and redox metabolism in combination with
chemotherapy and radiation should be further evaluated in clinical trials.
Semin Radiat Oncol 29:33−41 � 2018 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license. (http://creativecommons.org/
licenses/by-nc-nd/4.0/)

Introduction

Increased glucose utilization is a nearly universal feature of
cancers and was described by Warburg nearly a century

ago.1,2 This has been proposed as an adaptation to hypoxia as
malignant lesions outgrow their blood supply, and as a pheno-
type that is selected for in environments with scarce oxygen
and glucose.3-5 It has also formed the basis for the widespread
clinical use of [F-18]fluorodeoxy glucose positron emission
tomography ([F-18]FDG-PET) in oncology as a tool for

staging, prognosis, and monitoring treatment response.6,7 The
mechanism of increased [F-18]FDG signal seen in cancers rela-
tive to normal tissues is related to increased transport by
GLUT transporters and phosphorylation by hexokinases com-
pared to most normal tissues. [F-18]FDG becomes trapped
after its phosphorylation by hexokinases and does not proceed
any further through glycolysis.8-10 [F-18]FDG-PET derived
imaging metrics have been shown to be prognostic in lympho-
mas, head and neck, lung, and gynecologic cancers and
numerous other cancer sites, and decreased [F-18]FDG
signal during or following treatment is a favorable prognostic
sign.11-17 These extensive clinical data suggest that increased
glucose utilization is related to the aggressiveness of a cancer
and how well it is able to tolerate standard therapies such as
chemotherapy and radiation.

Altered redox metabolism, and particularly changes in
glutathione and thioredoxin metabolism, have likewise been
noted in many cancer types, and upregulation of these path-
ways has been linked to cancer progression.18 Cancer cells
produce more reactive oxygen species (ROS) than noncan-
cerous cells, and upregulate antioxidant systems, such as the
glutathione and thioredoxin pathways, to manage this excess

*Department of Radiation Oncology, Washington University School of Med-
icine, St. Louis, MO

yDepartment of Cell Biology and Physiology, Washington University School
of Medicine, St. Louis, MO

zAlvin J. Siteman Cancer Center, Washington University School of Medicine,
St. Louis, MO

Grant Support: This work was supported in part by NIH R01CA181745 to
JK Schwarz.; and by ASTRO Resident Research Seed Grant 531448 and
the RSNA Resident Research Grant RR1760 to JM Floberg.

Conflict of Interest: None.
Address reprint requests to Julie K. Schwarz MD, PhD, Department of Radia-

tion Oncology, Washington University School of Medicine, Box 8224,
4921 Parkview Place, Lower Level, St. Louis, MO 63110. E-mail:
jschwarz@wustl.edu

https://doi.org/10.1016/j.semradonc.2018.10.007 33
1053-4296/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.semradonc.2018.10.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jschwarz@wustl.edu
https://doi.org/10.1016/j.semradonc.2018.10.007
http://creativecommons.org/licenses/by-nc-nd/4.0/


of ROS, particularly hydroperoxide species.18-21 Glutathione
in particular has been shown to play an important role in
cancer initiation, and the combination of inhibiting the glu-
tathione and thioredoxin pathways has been shown to be
toxic to a number of different cancer cells.18,22,23 Increased
glycolysis and increased activity of the pentose phosphate
pathway may also help cancer cells manage oxidative stress
by providing reducing equivalents, for example nicotinamide
adenine dinucleotide phosphate (NADPH), that can be used
by ROS scavenging pathways, connecting the increased glu-
cose consumption and upregulation redox metabolic path-
ways seen in many cancers.24

Despite the evidence of the importance of alterations in
both glycolysis and redox metabolism to cancer initiation and
progression, no current standard-of-care therapies specifically
target these metabolic pathways, and clinical investigations
have been limited. There are accumulating preclinical data that
targeting hydroperoxide metabolism at both the glutathione
and thioredoxin pathways increases ROS and is toxic to cancer
cells, and that targeting glycolysis in addition to these path-
ways further increases redox stress and toxicity.18,22,24 Thera-
pies that increase oxidative stress may be particularly valuable
as a means to sensitize cancers to radiation. Damage from radi-
ation therapy is classically thought to be mediated by ROS cre-
ated by ionizing radiation, and upregulation of ROS
scavenging pathways may therefore help cancers mitigate dam-
age from radiation.25 Inhibiting both glycolysis and hydroper-
oxide metabolism has therefore also been proposed as a
potential radiosensitization strategy.23,26 Here we aim to
review the preclinical and clinical data on therapies targeting
glycolysis and the glutathione and thioredoxin pathways,
either alone or in combination, with particular focus on how
these therapies might improve radiation response.

Targeting Glycolysis

There are a number of potential therapeutic targets within
the early steps of glucose uptake and metabolism (Fig. 1).
Furthest upstream, the GLUT family of transporters can be
targeted for anticancer effect,27 and some cancers express
unique GLUT isoforms.28 WZB117 is an inhibitor of GLUT1
that has been shown to inhibit cancer growth and cause cell-
cycle arrest, senescence, and death in vitro and in vivo
through a mechanism that appears to be dependent on ATP,
and it has also been shown to decrease the tumor-initiating
capacity of cancer stem cells derived from a number of differ-
ent cancers.29,30 The protease inhibitor ritonavir, approved
for the treatment of HIV, has an off-target inhibitory effect
on the GLUT4 transporter, and has been proposed as a ther-
apy for multiple myeloma, which is dependent upon expres-
sion of the GLUT4 transporter.31

Hexokinase, which phosphorylates glucose after it has
entered the cell, is another potential upstream target in glu-
cose metabolism. A number of drugs have been evaluated in
the preclinical and clinical setting as hexokinase inhibitors,
including 2-deoxyglucose (2-DG), and lonidamine. 32,33

Lonidamide has been evaluated in clinical trials, but

widespread clinical utility of lonidamide has been limited by
significant hepatic and pancreatic toxicities.34 As with [F-18]
FDG, 2-DG is taken up by GLUT transporters and phos-
phorylated by hexokinase, at which point it becomes
trapped within cells and is not metabolized any further.
Excess accumulation of 2-DG leads to cell cycle inhibition
and ultimately cell death in a variety of preclinical cancer
models.27,33,35 There is also evidence that increased oxida-
tive stress in cancer cells relative to normal cells mediates
selective toxicity of 2-DG for cancers.36

Much of the preclinical and clinical work studying 2-DG
has been in glioblastoma multiforme (GBM). 2-DG selectively
inhibits proliferation of GBM cell lines relative to normal
human astrocytes.35 Use of 2-DG has also been shown
to inhibit cancer growth and carcinogenesis in noncentral
nervous system cancers (eg, mammary cancers).37 However,
2-DG alone may not act as an effective anticancer therapeutic.
For example, although glucose deprivation has been shown to
induce apoptosis through a ROS dependent mechanism in
GBM derived cell lines but not normal human astrocytes, treat-
ment with 2-DG actually prevents apoptosis through depletion
of ATP.38 Controversy remains over the precise mechanism of
2-DG toxicity when this drug is administered a monother-
apy.39,40 Hypoxia and activation of the hypoxia-inducible-fac-
tor-1 transcription factor have been linked to 2-DG
monotherapy resistance,41 and some studies have demon-
strated activation of prosurvival pathways in cancer cells after
2-DG treatment, leading some investigators to propose 2-DG
combination therapies rather than 2-DG monotherapy as the
most appropriate strategy.42,43

Numerous combination therapies, utilizing 2-DG in addi-
tion to another metabolic agent, a chemotherapeutic drug,
or radiation therapy, have, however, proven to be effective
strategies. For example, the combination of 2-DG and the
oxidative phosphorylation inhibitor oligomycin has been
shown to synergistically suppress growth and mobility in
GBM cell lines, and the combination of 2-DG and inhibition
of NADPH oxidase 4 likewise inhibits proliferation and
angiogenesis in GBM cells.35,44 In addition, 2-DG has been
shown to enhance the efficacy of systemic and chemothera-
peutic agents, such as cisplatin, topoisomerase, and trastuzu-
mab, in vivo and in vitro,27,45-47 and the combination of 2-
DG and docetaxel has been evaluated in a phase I trial in
patients with advanced solid tumors with tolerable and
reversible side effects including hyperglycemia and QTc pro-
longation.48 Most germane to this review, 2-DG has been
shown to increase the efficacy of radiation therapy in a num-
ber GBM and other cancer cell lines, with evidence support-
ing that this is due to disruptions in thiol metabolism.49-52

The enhanced response to radiation seen in GBM cell
lines has formed the basis for a number of clinical trials com-
bining 2-DG with radiation therapy. The published trials
have for the most part been small phase I/II trials evaluating
the safety and tolerability of administering 2-DG prior to
radiation therapy using escalating doses of 2-DG, and
have used large fractions of RT (5 Gy) delivered once a week
20-30 minutes after 2-DG administration. These trials have
reported that such a regimen is tolerated, with acute side
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effects of restlessness, nausea, and vomiting, and without any
apparent significant long-term toxicities.53-55 There are cur-
rently no open randomized controlled clinical trials evaluat-
ing the efficacy of 2-DG as an anticancer agent alone or in
combination with radiation or chemotherapy. Limiting fac-
tors include unacceptable side effects at high doses used to
limit glucose metabolism in cancer cells, and limited efficacy
for glycolysis inhibition when lower doses of 2-DG mono-
therapy are used.56

Finally, although separate from glycolysis, the pentose
phosphate pathway represents another potential target for
anticancer therapy (Fig. 1). The pentose phosphate pathway
is one of the primary sources of cellular NADPH, which pro-
vides electrons for ROS scavengers like glutathione and thio-
redoxin. For example, 6-aminonicotinamide is an inhibitor
of glucose-6-phosphate dehydrogenase that has shown anti-
cancer activity in vitro, either alone or in combination with
radiation, but that also has significant side effects.33 Other
strategies for inhibiting glucose-6-phosphate dehydrogenase
have also been investigated, for example using dehydroepi-
androsterone in combination with 2-DG.24 Whether the
pentose phosphate pathway can effectively be targeted for
anticancer therapy in humans remains an open question.

Targeting Hydroperoxide
Metabolism

Cancer cells are thought to generate excess ROS as a result of
unrestrained growth, and genetic and metabolic alterations

that uncouple glycolysis, the pentose phosphate pathway
and the tricarboxylic acid cycle. In order to manage this
excess oxidative stress, cancer cells upregulate ROS scaveng-
ing pathways, and as such are selectively sensitive to thera-
pies that inhibit these pathways.18,57-59 The glutathione and
thioredoxin pathways, which scavenge hydroperoxide radi-
cals, are 2 pathways that have been shown to be upregulated
in many cancers. Targeting these pathways can be toxic in
itself, or sensitize cancers to other therapies that further
increase oxidative stress such as radiation therapy and some
chemotherapies (Fig. 2).

Targeting Glutathione
Metabolism

As outlined above, glutathione has been identified as an
important factor in carcinogenesis, and as one of the most
abundant antioxidant molecules in cells it plays a key role in
maintaining redox balance, particularly in cancer cells.18,58

One of the most widely used strategies to target glutathione
metabolism is the drug buthionine sulfoximine (BSO), which
inhibits g-glutamylcysteine synthase, the enzyme responsi-
ble for the first step in the synthesis of glutathione.60 A num-
ber of preclinical studies have demonstrated that BSO can be
used to sensitize cancer cells to a number of therapies includ-
ing arsenic,61 cisplatin,62 mephalan,63 and radiation.64 Some
of these studies have demonstrated that BSO also sensitizes
cancer cells to therapies that are not conventionally thought
of as inducing ROS on their own (eg, cisplatin), and that

Figure 1 Potential targets of glucose metabolism for anticancer therapy. Blocking glucose metabolism serves to inhibit
both a major energy source for cancer cells, as well as a major source of reducing equivalents (eg, NADPH). The major
glucose metabolic pathways, and potential drug strategies to target them are shown. Drugs are shown in bold. Abbrevi-
ations: HK, hexokinase; 2-DG, 2-deoxyglucose; LND, lonidamide; G6PD, glucose-6-phosphate dehydrogenase; 6-AN,
6-aminonicotinamide; DHEA, dehydroepiandrosterone; PPP, pentose phosphate pathway; GAPDH, glyceraldehyde 3-
phosphate dehydrogenase; 3-BrPA, 3-bromopyruvate; LDHA, lactate dehydrogenase A; TCA cycle, tricarboxyclic acid
cycle.
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glutathione depletion may have an effect on mediating cell
death pathways like apoptosis.62

BSO was first studied in clinical trials in combination with
mephalan over 20 years ago. These phase I trials in small
cohorts of patients with advanced refractory cancers studied
different doses and dosing schedules (eg, BSO every 12 hours
vs as a continuous infusion), the biologic activity of BSO,
namely reduced glutathione levels in the peripheral blood and
within tumors, and toxicities associated with its use. These tri-
als found that BSO given in combination with melphalan is
fairly well tolerated, with low-grade nausea and vomiting the
most common acute toxicity, and a more frequent incidence of
severe (grade 4) myelosuppression. They have also reported
depletion of glutathione in the peripheral blood of < 10% of
pretreatment values, and depletion to ≤ 20% of pretreatment
values within tumors.65-67 More recently, the combination of
BSO and melphalan has been tested in a pilot study of children
with recurrent neuroblastoma, again assessing for tolerability
and toxicity, biochemical efficacy, and clinical efficacy.68 This
trial showed the combination of these drugs decreased blood
mononuclear cell glutathione levels and, an 18% response rate
was observed. Grade 3-4 leukopenia and thrombocytopenia in
these patients were common, and 2 grade 5 toxicities were
reported (acute renal tubular necrosis and diffuse cerebral
edema) after the initiation of BSO.

Targeting Thioredoxin
Metabolism

The other major thiol-based ROS scavenging pathway in
mammalian cells is the thioredoxin system. Thioredoxin
donates electrons to peroxiredoxins, which then remove
hydroperoxide radicals. Thioredoxin is then converted back

to its reduced form by thioredoxin reductase, using electrons
donated by NADPH. Along with the glutathione system, this
is one of the key regulators of intracellular ROS.69

There are a number of drug strategies that have been pro-
posed to inhibit the thioredoxin pathway. These include aura-
nofin, a gold complex initially developed for treating
rheumatoid arthritis that acts as a thioredoxin reductase inhibi-
tor, and sulfasalazine, an inhibitor of the XC¡ cystine trans-
porter also used in rheumatoid arthritis and other
inflammatory conditions (Fig. 2).18,23 Auranofin has been
shown to inhibit both mitochondrial and cytosolic thioredoxin
reductase, resulting in an increase in ROS levels.70 As a result
of the increased oxidative stress, auranofin causes endoplasmic
reticulum stress and mitochondrial dysfunction, which can be
reversed using the thiol antioxidant n-acetylcysteine (NAC),
suggesting that this effect is mediated by ROS.71,72

Auranofin has shown activity against a number of cancer
types in preclinical studies. This includes diverse disease
sites such as chronic lymphocytic and chronic myeloid
leukemias, multiple myeloma, osteosarcoma, and gastric
cancer.71-75 In each of these cases, the toxicity due to aura-
nofin appears to be mediated by increased ROS, which trig-
ger programmed cell death pathways. Auranofin alone
can also act as a radiosensitizer in both normoxic and hyp-
oxic cancer cells, and appears to do so through increased
ROS generation, which can be reversed by NAC, as well by
inducing mitochondrial dysfunction.76

Combined Inhibition of Glucose
and Hydroperoxide Metabolism

As outlined above, inhibition of glutathione alone does not
result in significant toxicity to cancer cells. The glutathione

Figure 2 Potential targets of hydroperoxide metabolism for anticancer therapy. The glutathione and thioredoxin path-
ways are the 2 major thiol reactive oxygen species scavenging pathways. Many cancers rely on these pathways to man-
age increased oxidative stress from excess growth and dysregulated metabolism, and targeting them could increase
sensitivity to therapies that further increase oxidative stress, like radiation therapy.
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and thioredoxin pathways are the 2 major thiol ROS scav-
enging systems in mammalian cells, and selective targeting
of 1 pathway often results in increased activity of the other.69

For example, thioredoxin pathway proteins are overex-
pressed in cancer cells depleted of glutathione.18 Therefore,
inhibition of both pathways may be needed to induce ROS
dependent toxicity, and a number of studies have found that
many cancers are sensitive to the simultaneous inhibition of
both the glutathione and thioredoxin pathways.18,22,77 Com-
bining glutathione and thioredoxin pathway inhibition has
also been shown to sensitize cancer cells, including breast
cancer stem cells, to radiation therapy, and to inhibit cancer
cell migration and invasion.23 The toxicity of combined glu-
tathione and thioredoxin pathway inhibition and the result-
ing sensitization to radiation therapy are mediated by ROS,
and reversible using exogenous ROS scavengers like NAC.

Altered glucose metabolism, particularly through the gen-
eration of NADPH in the pentose phosphate pathway, pro-
vides another means for cancer cells to manage excess
oxidative stress. The pyruvate produced by glycolysis may
also help mediate ROS scavenging.77,78 Furthermore, treat-
ment with 2-DG has been shown to increase levels of super-
oxide and hydrogen peroxide in cancers.36 Therefore, the
combination of inhibition of glucose metabolism and inhibi-
tion of the glutathione and thioredoxin pathways may
increase oxidative stress in cancer cells even further (Fig. 3).
As all of these pathways are upregulated in many cancer
types this approach therefore offers a potential means of
selectively targeting one of the more reproducible observa-
tions with respect to dysregulated metabolism seen in

many cancers. The combination of glycolysis inhibition
using 2-DG, pentose phosphate pathway inhibition using
dehydroepiandrosterone, and thioredoxin pathway inhibi-
tion using auranofin is significantly more toxic than when
any one of these pathways is inhibited alone as documented
in human breast and prostate cancer cells, and importantly
this combination treatment is significantly more toxic to
breast cancer cells than normal mammary cells.24 As such,
the dual targeting of glycolysis in combination with redox
metabolism holds great promise for cancer therapy.

Our group has recently evaluated the combination of gly-
colysis, glutathione, and thioredoxin inhibition as a means
to radiosensitize cervical cancer cell lines.26 Increased [F-18]
FDG uptake is an established prognostic factor in human
cervical cancers, and persistent tumor [F-18]FDG uptake fol-
lowing definitive chemo-radiation therapy portends a poor
outcome.15,17 These clinical observations suggest that glu-
cose metabolism is a marker for aggressive, radiation-resis-
tant cervical cancers. Cervical cancer may therefore be well
suited to a treatment approach using inhibition of glycolysis
in combination with inhibition of hydroperoxide metabo-
lism to increase oxidative stress and enhance sensitivity to
standard of care radiation therapy. We have demonstrated
that combining 2-DG, buthionine sulfoximine, and aurano-
fin results in significant toxicity to a number of cervical can-
cer cell lines that is mediated by an increase in ROS.
Furthermore, treatment with this combination of drugs
results in decreased tricarboxylic acid cycle activity, as well
as AMPK activation in cell lines sensitive to this drug combi-
nation. The mechanism of cell death from this combination

Figure 3 Simultaneous inhibition of the glycolysis and the glutathione and thioredoxin systems reduces cancer cells’
defenses against reactive oxygen species, and can be used as a strategy to sensitize cancer cells to therapies that increase oxi-
dative stress, like radiation therapy. An example inhibitory combination drug strategy using 2-DG, BSO, and AUR is
shown. Abbreviations: 2-DG, 2-deoxyglucose; BSO, buthionine sulfoximine; AUR, auranofin; PPP, pentose phosphate
pathway; GSR, glutathione reductase; GPX, glutathione peroxidase; TrxR, thioredoxin reductase; PRDX, peroxiredoxin.
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treatment appears to be dependent on expression of specific
pathways, namely MYC. In MYC transformed cells, this ther-
apy causes a caspase and poly ADP ribose polymerase
(PARP) dependent autophagic cell death, whereas non-MYC
transformed cells die by an AMPK dependent nonautophagic
death. These data also demonstrated that this drug combina-
tion was an effective radiosensitization strategy in vivo.26

This high quality preclinical evidence supports further inves-
tigation of this drug combination as an adjunct to radiother-
apy in the context of clinical trials for cervical cancer.

Future Directions

An important future direction in this field is selection of the
best drug strategy to target aerobic glycolysis in tumors. A
number of glycolytic enzymes downstream of hexokinase
have been explored as potential cancer therapeutic targets,
and are at various stages of preclinical vs clinical develop-
ment. Small molecule inhibitors of 6-phosphofructo-2-
kinase are being developed and have been shown to influ-
ence tumor growth in animal models.79 As the first enzy-
matic step within glycolysis associated with NADH
production, glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) represents a unique therapeutic target.80,81 Inhibi-
tion of GAPDH leads to accumulation of glucotrioses, which,
during the course of their metabolism generate methyl-
gyoxal, which is toxic to the cell. Enzymes responsible for
the metabolism of methyglyoxal are dependent upon
reduced glutathione (GSH). Therefore, in the presence of
limited GSH, targeting GAPDH represents an attractive
opportunity to not only limit ATP production via glycolysis,
but also to enhance intracellular levels of oxidative stress by
simultaneously limiting NADH production and generating a
toxic metabolite that consumes intracellular GSH.

A number of GAPDH inhibitors have been tested in the
preclinical setting. For example, 3-bromopyruvate has been
well studied in this role and has entered early phase clinical
trials.82-84 Recently, Gunda et al demonstrated that pretreat-
ment with 3-bromopyruvate abrogated radiation resistance
in MUC1 overexpressing pancreatic cancer models. Pyruvate
kinase (PK) catalyzes the near final step of conversion of
phyophoenolpyruvate to pyruvate. Early studies showed
that knockdown of PKM2 in tumor cells and replacement
with the PKM1 isoform reversed the Warburg effect,85 and
preclinical studies of PKM2 inhibition have demonstrated
anticancer effect.86 Although it is now clear that expression
of PKM2 is not cancer-specific, additional study of PKM2
regulation and biology may lead to effective and selective
anticancer strategies. It is important to note that PKM2 is an
inefficient enzyme, and backflow of glycolytic intermediates
can be diverted to the PPP to generate NADPH that can be
used to metabolize ROS.58 PKM2 itself is inhibited directly
by ROS, and detailed understanding of this relationship will
be important to design rationale drug or radiation combina-
tions with PKM2 inhibitors.87 Further downstream, inhibi-
tors of lactate dehydrogenase A, such as the pyruvate analog
oxamate, have been shown to increase efficacy of systemic

agents such as paclitaxel and traztuzumab.27,88 Further pre-
clinical studies, particularly in vivo, supporting the use of
these drug strategies in the context of radiotherapy should
be performed.

A second important future direction is optimization of
drug strategies to increase intracellular oxidative stress in
cancer cells. In this review, we have focused on dual target-
ing of glutathione and thioredoxin pathways with BSO and
auranofin, the most well studied drugs in each category.
Other drug strategies exist to deplete cells of GSH reserves,
including inhibitors of cysteine/glutamate transporter XCT
(sulfasalazine), inhibitors of glutathione peroxidase, and glu-
tathione disulphide mimetics (NOV-002).89,90 It is impor-
tant to note that glutamine can be converted to glutamate,
which is required for GSH synthesis. As such, developing
drug strategies that inhibit glutamine metabolism will, by
definition, decrease intracellular glutathione levels. A num-
ber of drug strategies are being developed to target glutamine
metabolism, and detailed study of the effects of these drugs
on intracellular levels of oxidative stress will need to be per-
formed. Although it is well accepted that radiation treatment
results in increased ROS, the precise source, species and tim-
ing of ROS increases after RT exposure are not well known,
and may be unique in certain cancer types. Understanding
the precise mechanism and timing of ROS fluctuations after
RT exposure will be important for the successful timing of
administration of ROS inducing agents. Preclinical studies
that incorporate variations in dose and schedule for ROS
inducing agents in the context of single fraction and multi-
fraction radiation schedules should be performed.

Determining the most appropriate biomarker to identify
cancers that are uniquely susceptible to inhibition of glycoly-
sis and redox metabolism is also critical. Historically,
increased uptake of [F18]FDG-PET by tumors has been used
to identify tumors that engage in increased rates of aerobic
glycolysis; however, it is important to note that this imaging
modality is limited to glucose uptake, and does not directly
visualize glucose metabolism. Significant improvement in
imaging technology, specifically the development of mag-
netic resonance imaging with hyperpolarized substrates, will
allow for direct visualization of enzymatic steps within gly-
colysis and other metabolic pathways in tumors (ie, the
pyruvate to lactate transition.) Ongoing research efforts in
our own group are evaluating novel PET imaging strategies
that can be used to noninvasively monitor levels of tumor
oxidative stress.91

Conclusions

Dysregulated metabolism is a hallmark of cancer cells. Spe-
cifically, cancers demonstrate changes in both glucose
metabolism and redox metabolism to help them meet high
energy and growth requirements in environments with lim-
ited resources, and manage excess ROS that result from
excess growth and aberrant metabolic pathways. Both glycol-
ysis and thiol-mediated hydroperoxide metabolism represent
targetable pathways that are upregulated in many cancer
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types, and this work has reviewed the preclinical and clinical
literature on the efficacy of such an approach. The available
clinical data are restricted to inhibitors of a single pathway
(eg, glycolysis or the glutathione pathway) given in combina-
tion with radiation or chemotherapy, and have been limited
to early phase trials in small cohorts. The preclinical data
reviewed here demonstrate that the combination of glucose
and hydroperoxide metabolism is an effective treatment
strategy across a number of cancer types, particularly when
also combined with radiation or chemotherapy, and far
more effective than inhibiting any one single pathway on its
own. Ongoing research to identify the most appropriate bio-
marker for susceptibility to inhibition of glycolysis and redox
metabolism, including development of novel imaging strate-
gies, should be performed.
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