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cerebral cortex cell-type population
structure
Zeran Li1, Jorge L. Del-Aguila1, Umber Dube1,2, John Budde1, Rita Martinez1, Kathleen Black1, Qingli Xiao3,
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John C. Morris3,5,6, Randall J. Bateman3,5,6, Celeste M. Karch1, Carlos Cruchaga1,5,6* and Oscar Harari1*

Abstract

Background: Alzheimer’s disease (AD) is characterized by neuronal loss and astrocytosis in the cerebral cortex. However,
the specific effects that pathological mutations and coding variants associated with AD have on the cellular composition
of the brain are often ignored.

Methods: We developed and optimized a cell-type-specific expression reference panel and employed digital
deconvolution methods to determine brain cellular distribution in three independent transcriptomic studies.

Results: We found that neuronal and astrocyte relative proportions differ between healthy and diseased brains and
also among AD cases that carry specific genetic risk variants. Brain carriers of pathogenic mutations in APP, PSEN1, or
PSEN2 presented lower neuron and higher astrocyte relative proportions compared to sporadic AD. Similarly, the APOE
ε4 allele also showed decreased neuronal and increased astrocyte relative proportions compared to AD non-
carriers. In contrast, carriers of variants in TREM2 risk showed a lower degree of neuronal loss compared to
matched AD cases in multiple independent studies.

Conclusions: These findings suggest that genetic risk factors associated with AD etiology have a specific imprinting in
the cellular composition of AD brains. Our digital deconvolution reference panel provides an enhanced understanding
of the fundamental molecular mechanisms underlying neurodegeneration, enabling the analysis of large bulk
RNA-sequencing studies for cell composition and suggests that correcting for the cellular structure when
performing transcriptomic analysis will lead to novel insights of AD.

Keywords: Digital deconvolution, Alzheimer’s disease, Brain cellular composition, Bulk RNA-sequencing,
Autosomal dominant AD, TREM2

Background
Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized clinically by gradual and progressive memory
loss and pathologically by the presence of senile plaques
(Aβ deposits) and neurofibrillary tangles (NFTs, Tau de-
posits) in the brain [1]. AD has a substantial but heteroge-
neous genetic component. Mutations in the amyloid-beta

precursor protein (APP) and Presenilin genes (PSEN1 and
PSEN2) [2, 3] cause autosomal dominant AD (ADAD)
which is typically associated with early-onset (< 65 years).
In contrast, the most common manifestation of AD
presents late-onset (LOAD) and accounts for the majority
of the cases (90–95%). Despite appearing sporadic in
nature, a complex genetic architecture underlies LOAD
risk. APOE ε4 is the most common genetic risk factor,
increasing the risk in three- to eightfold [4]. In addition,
recent whole genome and whole exome analyses have
identified rare coding variants in TREM2 [5, 6], PLD3 [7],
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ABCA7 [8, 9], and SORL1 [10, 11] that are associated with
AD and confer risk comparable to that of carrying one
APOE ε4 allele. Besides age at onset, the clinical presenta-
tions of LOAD and ADAD are remarkably similar with an
amnestic and cognitive impairment phenotype [12, 13]. A
minor fraction of cases of ADAD have additional neuro-
logical findings, sometimes also seen in LOAD [12, 13].
Altered cellular composition is associated with AD

progression and decline in cognition. Neuronal loss in
the hippocampus is characteristic in the initial stages of
AD, which could explain early memory disturbances [14,
15]. As the disease progresses, neuronal death is ob-
served throughout the cerebral cortex. Furthermore, ~
25% of cognitively normal individuals who die by the age
of ~ 75 years also presented substantial cerebral lesions
that resemble AD pathology, including amyloid plaque,
NFTs, and neuronal loss [16]. Thus, the identification of
the brain cellular population structure is essential for un-
derstanding neurodegenerative disease progression [17].
However, stereology protocols for counting neurons can
be tedious, require extensive training, and are susceptible
to technical artifacts which may lead to biased quantifica-
tion of cell-type distributions [17].
Recently there has been a growing interest in under-

standing the transcriptomic changes attributed to AD
[18–25], as these may point to underlying molecular
mechanisms of disease. These studies are typically
designed to analyze the expression profiles of large co-
horts ascertained from homogenized regions of the brain
(e.g. bulk RNA-sequencing [RNA-seq]) of affected and
control donors. However, as bulk RNA-seq captures the
gene expression of all the constituent cells in the sam-
pled tissue; the altered cellular composition associated
with AD has been reported to confound downstream
analyses [20].
Digital deconvolution approaches enhance the interro-

gation of expression profiles to identify the cellular
population structure of individual samples, alleviating
the requirement of additional neurostereology proce-
dures. These approaches have been developed, tested,
and applied to ascertain cellular composition altered in
many traits [26–29]. However, digital deconvolution has
not been applied to identify the cellular population
structure from RNA-seq from human brain of AD cases
and controls. Technical constraints restrict the dissoci-
ation of cells from the brains for very specific conditions
[30–32]. Nevertheless, a limited number of RNA-seq
from isolated cell populations from the brain have been
generated [30–32]. Using these resources, we are now
able to generate a reference panel for digital deconvolu-
tion of human brain bulk RNA-seq data.
We sought to investigate the cellular population struc-

ture in AD by analyzing RNA-seq from multiple brain
regions of LOAD participants. To do so, we assembled a

novel brain reference panel and evaluated the accuracy
of digital deconvolution methods by analyzing additional
cell-type-specific RNA-seq samples and by creating
synthetic admixtures with defined cellular distributions.
Then we analyzed large cohorts of pathologically con-
firmed AD cases and controls (n = 613) and verified that
our model predicts cellular distribution patterns consist-
ent with neurodegeneration. Finally, we generated
RNA-seq from the parietal lobe of participants from the
Charles F. and Joanne Knight Alzheimer’s Disease Re-
search Center (Knight-ADRC) [33], including
non-demented controls, LOAD cases, with enriched
proportions of carriers of high-risk coding variants asso-
ciated with AD, and also ADAD from The Dominantly
Inherited Alzheimer Network [34] (DIAN). We com-
pared the cell composition in ADAD and LOAD; and
also evaluated differences among carriers of coding
high-risk variants in PLD3, TREM2, and APOE ε4. Our
findings indicate that cell-type composition differs
among carriers of specific genetic risk factors, which
might be revealing distinct pathogenic mechanisms con-
tributing to disease etiology.

Methods
Subjects and samples
DIAN and Knight-ADRC
Parietal lobe tissue of post-mortem brain was obtained
with informed consent for research use and was
approved by the review board of Washington University
in St. Louis. RNA was extracted from frozen brain using
Tissue Lyser LT and RNeasy Mini Kit (Qiagen, Hilden,
Germany). RNA-seq paired-end reads with read lengths
of 2 × 150 bp were generated using Illumina HiSeq 4000
with a mean coverage of 80 million reads per sample
(Table 1; Additional file 1: Table S1). RNA-seq was gen-
erated for 19 brains from DIAN, 84 brains with LOAD
and 16 non-demented controls from Knight-ADRC [33].
The AD brains selected from Knight-ADRC are enriched
for carrier of variants in TREM2 (n = 20; Additional file
1: Table S1) and PLD3 (n = 33; Additional file 1: Table
S1). The clinical status of participants was neuropatholo-
gically confirmed [35]. We identified three additional
participants from the Knight-ADRC study with PSEN1
(A79V, I143T, S170F) mutations. Clinical Dementia
Rating (CDR) scores were obtained during regular visits
throughout the study before the subject’s decease [36]. A
range of other pathological measurements were collected
during autopsy including Braak staging, as previously
described [37].
RNA was extracted from frozen brain tissues using

Tissue Lyser LT and RNeasy Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instruction. RIN
(RNA integrity) and DV200 were measured with RNA
6000 Pico Assay using Bioanalyzer 2100 (Agilent
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Technologies). The RIN is determined by the software
on the Bioanalyzer taking into account the entire elec-
trophoretic trace of the RNA including the presence or
absence of degradation products. The DV200 value is
defined as the percentage of nucleotides > 200 nt. RIN
and DV200 for all the samples can be found on Add-
itional file 1: Table S1. The yield of each sample is deter-
mined by the Quant-iT RNA Assay (Life Technologies)
on the Qubit Fluorometer (Fisher Scientific). The com-
plementary DNA (cDNA) library was prepared with the
TruSeq Stranded Total RNA Sample Prep with
Ribo-Zero Gold kit (Illumina) and then sequenced by
HiSeq 4000 (Illumina) using 2 × 150 paired-end reads at
McDonnell Genome Institute, Washington University in
St. Louis with a mean of 58.14 ± 8.62 million reads.
Number of reads and other quality control (QC) metrics
can be found in Additional file 1: Table S1.

Mayo Clinic Brain Bank
Mayo Clinic Brain Bank RNA-seq was accessed from the
Advanced Medicines Partnership – Alzheimer’s Disease
(AMP-AD) portal (synapse ID = 5,550,404; accessed Janu-
ary 2017) (Table 1). Paired end reads of 2 × 101 base pairs
were generated by Illumina HiSeq 2000 sequencers for an
average of 134.9 million reads per sample. Neuropathology
criteria, quality control procedures, RNA extraction, and
sequencing details are explained elsewhere [18].
RNA-seq based transcriptome data were generated

from post-mortem brain tissue collected from cerebel-
lum (CB; 189 samples) and temporal cortex (TC; 191
samples) of Caucasian subjects [18, 38]. RNA was
extracted using Trizol® reagent and cleaned with Qiagen

RNeasy. RIN measurement was performed with Agilent
Technologies 2100 Bioanalyzer. Samples with RIN > 5
were included. Library was prepared by Mayo Clinic Med-
ical Genome Facility Gene Expression and Sequencing
Cores with TruSeq RNA Sample Prep Kit (Illumina).

Mount Sinai Brain Bank
The Mount Sinai Brain Bank (MSBB) RNA-seq study
was downloaded from the AMP-AD portal (synapse ID
= 3,157,743; accessed January 2017) (Table 1). Single-end
reads of 100 nt were generated by Illumina HiSeq 2500
System (Illumina, San Diego, CA, USA) for an average
of 38.7 million reads per sample [39].
This dataset contains 1030 samples collected from

four post-mortem brain regions of 300 subjects: anterior
prefrontal cortex (APC; BA10); superior temporal gyrus
(STG; BA22); parahippocampal gyrus (PHG; BA36); and
inferior frontal gyrus (IFG; BA44). RNA-seq was gener-
ated using the TruSeq RNA Sample Preparation Kit v2
and Ribo-Zero rRNA removal kit (Illumina, San Diego,
CA, USA) [39].

Induced pluripotent stem cell (iPSC)-derived neurons
Dermal fibroblasts were obtained from skin biopsies from
research participants in the Knight-ADRC (Fibroblast
lines: F11362, F12455, and F13504). Human fibroblasts
were reprogrammed into iPSCs using non-integrating
Sendai virus carrying OCT3/4, SOX2, KLF4, and cMYC
[40, 41]. iPSCs were manually selected and expanded on
Matrigel in mTesR1 (StemCell Techologies). iPSCs were
characterized for expression of pluripotency markers by
immunocytochemistry and quantitative polymerase chain
reaction (qPCR). qPCR with probes specific to the Sendai
virus were used to confirm the absence of virus in the
isolated clones. All cell lines were confirmed to have a
normal karyotype based on G-band karyotyping. To gen-
erate cortical neurons, iPSCs were plated in a v-bottom
plate in neural induction media (StemCell Technologies;
65,000 per well) to form highly uniform neural aggregates.
After five days, neural aggregates were transferred onto
PLO/laminin-coated tissue culture plates. Neural rosettes
formed over 5–7 days. The resulting neural rosettes were
then isolated by enzymatic selection (StemCell Technolo-
gies) and cultured as neural progenitor cells (NPCs).
NPCs were then differentiated by culturing in neural mat-
uration medium (neurobasal medium supplemented with
B27, GDNF, BDNF, cAMP). RNA was collected from the
cells and sequenced following the same protocol and pro-
cessing pipeline as the DIAN and Knight-ADRC dataset.
In addition, we accessed RNA-seq data generated for

iPSC-derived neurons from the Broad iPSC study [42]
(synapse ID: syn3607401). Forebrain neurons from
wild-type background were generated using an embryoid
body-based protocol to produce neural progenitor cells

Table 1 Demographics and disease status of cohorts from four
brain bank resources

Mayo MSBB DIAN Knight-ADRC

Sample size 191 300 19 103

Age (years) 83 ± 7.77 83.3 ± 7.55 50.6 ± 7.06 85.1 ± 9.78

Male (%) 45.5 36 68.4 38.8

APOE ε4+ (%) 33.2 31.7 14.3 45.6

Brain weight – – 1187.7 ± 184.5 1138.1 ± 142.5

AD 82 135 19 87

PA 29 0 0 0

Control 80 85 0 16

CDR = 0 – 40 0 13

CDR = 0.5 – 40 0 9

CDR = 1 – 30 2 11

CDR = 2 – 44 4 14

CDR = 3 – 146 1 56

Mayo Mayo Clinic, MSBB Mount Sinai Brain Bank, AD Alzheimer’s disease, PA
pathological aging, CDR Clinical Dementia Rating for available samples
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(day 17) and mature neurons (days 57 and 100). RNA
was purified using a PureLink RNA mini-kit (Life Tech-
nologies). RNA-seq libraries were prepared using Illumina
Strand Specific TruSeq protocol and sequenced to obtain
an average of 75 M reads in paired reads per sample.

Translating ribosome affinity purification (TRAP)-seq mice
All animal procedures were performed in accordance with
the guidelines of Washington University’s Institutional
Animal Care and Use Committee. The Rosa26fsTRAP mice
(Gt(ROSA)26Sortm1(CAG-EGFP/Rpl10a,-birA)Wtp) [43] (The
Jackson Laboratory) were crossed with PVCre mice
(Pvalbtm1(cre)Arbr) [44] (The Jackson Laboratory) to produce
PV-TRAP mice directing expression of EGFP-L10a riboso-
mal fusion protein in parvalbumin (PV) expressing cells.
Purification of cell-type-specific messenger RNA (mRNA)

by TRAP was described previously [45] with modifications.
Briefly, PV-TRAP mouse brain was removed and quickly
washed in ice-cold dissection buffer (1× HBSS, 2.5 mM
HEPES-KOH (pH 7.3), 35 mM glucose, and 4 mM
NaHCO3 in RNase-free water). Barrel cortex was rapidly
dissected and flash-frozen in liquid nitrogen, and then
stored at − 80 °C until use. Affinity matrix was prepared
with 150 μL of Streptavidin MyOne T1 Dynabeads, 60 μg
of Biotinylated Protein L, and 25 μg of each of GFP anti-
bodies 19C8 and 19F7. The tissue was homogenized on ice
in 1 mL of tissue-lysis buffer (20 mM HEPES KOH
(pH 7.4), 150 mM KCl, 10 mM MgCl2, EDTA-free protease
inhibitors, 0.5 mM DTT, 100 μg/mL cycloheximide, and
10 μL/mL rRNasin and Superasin). Homogenates were
centrifuged for 10 min at 2000×g, 4 °C, and 1/9 sample
volume of 10% NP-40 and 300 mM DHPC were added to
the supernatant at final concentration of 1% (vol/vol). After
incubation on ice for 5 min, the lysate was centrifuged for
10 min at 20,000×g to pellet insolubilized material. Then
200 μL of freshly resuspended affinity matrix was added to
the supernatant and incubated at 4 °C for 16–18 h with
gentle end-over-end mixing in a tube rotator. After incuba-
tion, the beads were collected with a magnet and resus-
pended in 1000 μL of high-salt buffer (20 mM HEPES
KOH (pH 7.3), 350 mM KCl, 10 mM MgCl2, 1% NP-40,
0.5 mM DTT, and 100 μg/mL cycloheximide) and collected
with magnets as above. After four times of washing with
high-salt buffer, RNA was extracted using Absolutely RNA
Nanoprep Kit (Agilent Technologies) following the manu-
facturer’s instructions. RNA quantification was measured
using Qubit RNA HS Assay Kit (Life Technologies) and the
integrity was determined by Bioanalyzer 2100 using an
RNA Pico chip (Agilent Technologies). The cDNA li-
brary was prepared with Clontech SMARTer and then
sequenced by HiSeq3000. Single-end reads of 50 base
pairs were generated for an average of 29.2 million
reads per sample (24 samples).

iPSC-derived microglia
The data were accessed from the AMP-AD portal (synapse
ID: syn7203233). This dataset comprises iPSC-derived
microglia (n = 10) from human primitive streak-like cells
[46]. Within 30 days of differentiation, myeloid progenitors
co-expressing CD14 and CX3CR1 were generated. These
iPSC-derived microglia were able to perform phagocytosis
and elicit ADP-induced intracellular Ca2+ transients that
asserted their microglia identity as opposed to macrophage.
Single-ended RNA-seq data were generated with the Illu-
mina HiSeq 2500 platform following the Illumina protocol.

RNA-seq QC and alignment
FastQC was applied to DIAN and Knight-ADRC RNA-seq
data to perform quality checks on various aspects of
sequencing quality [47]. The DIAN and Knight-ADRC
dataset was aligned to human GRCh37 primary assembly
using Star (ver 2.5.2b) [48]. We used the primary assembly
and aligned reads to the assembled chromosomes,
un-localized and unplaced scaffolds, and discarded alter-
native haploid sequences. Sequencing metrics, including
coverage, distribution of reads in the genome [49], riboso-
mal and mitochondrial contents, and alignment quality,
were further obtained by applying Picard CollectRnaSeq-
Metrics (ver 2.8.2) to detect sample deviation. Additional
QC metrics can be found in Additional file 1: Table S1.
Aligned and sorted bam files were loaded into IGV

[50] to perform visual inspection of target variants. Sam-
ples carrying unexpected variants or missing expected
variants were labeled as potential swapped samples. In
addition, variants were called from RNA-seq following
BWA/GATK pipeline [51, 52]. The identity of the
samples was later verified by performing IBD analysis
against genomic typing from genome-wide association
study chipsets.

Expression quantification
We applied Salmon transcript expression quantification
(ver 0.7.2) [53] to infer the gene expression for all sam-
ples included in the reference panel and participants in
the Mayo, MSBB, DIAN, and Knight-ADRC. We quanti-
fied the coding transcripts of Homo sapiens included in
the GENCODE reference genome (GRCh37.75). Simi-
larly, we quantified the expression of the mice samples
included in the reference panel using the Mus musculus
reference genome (mm10).

Reference panel
Reference samples
We assembled a cell-type-specific reference panel from
publicly available RNA-seq datasets comprising both
immunopanning collected or iPSC-derived neurons, as-
trocytes, oligodendrocytes, and microglial cells from hu-
man and murine samples. For immunopanning collected
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cells, antibodies for cell-type-specific antigens were
utilized to bind and immobilize their targeted cell types
in order to immunoprecipitate and purify each cell type
from the suspensions [30]. cDNA synthesis was accom-
plished using Ovation RNA-seq system V2 (Nugen
7102) and library prepared with Next Ultra RNA-seq
library prep kit from Illumina (NEB E7530) and NEB-
Next® multiplex oligos from Illumina (NEB E7335
E7500). TruSeq RNA Sample Prep Kit (Illumina) was
used to prepare library for paired-end sequence on
100 ng of total RNA extracted from each sample. Illu-
mina HiSeq 2000 Sequencer was used to sequence all
libraries [30].
Both human adult TC tissue, collected from patients

receiving neurological surgeries, and mice cells were
disassociated, sorted and sequenced as described else-
where [31], and deposited in the Gene Expression Omni-
bus GSE73721 and GSE52564. We also accessed neural
progenitor cells (day 17) and mature human neurons
(days 57 and 100) from Broad iPSC deposited in the
AMP-AD portal [42] and neural progenitor cells and
iPSC-derived neurons from [54]. Broad iPSC-derived
neurons accessed from the AMP-AD portal were gener-
ated using an embryoid body-based protocol to differen-
tiate into forebrain neurons. Wild-type cells used in the
protocol were obtained from UConn StemCell Core.
RNA was purified using PureLink RNA mini-kit (Life
Technologies) and libraries were prepared by Broad
Institute’s Genomics Platform using TruSeq protocol.
Please refer to Additional file 1: Table S2 for additional
information.

Marker genes
The reference panel was assembled with samples from
four distinct cell types. A redundant set of well-known
cell-type markers was selected from the literature [31,
55, 56] (Additional file 1: Table S3). Principal component
analysis (PCA) was performed on the reference panel
using R function prcomp (version 3.3.3) to verify that the
expressions of these gene were clustering samples by
their cell types (Additional file 1: Figure S1b; Additional
file 1: Figure S2a).

Inference of the cellular population structure
We ascertained alternative computation deconvolution
algorithms implemented in the CellMix package (ver 1.6).
Based on accuracy and robustness evaluation results, we
compared and reported the following three algorithms
that outperformed the others: Digital Sorting Algorithm
(named “DSA”) [27], which employs linear modeling to
infer cell distributions; the method population-specific
expression analysis (PSEA, also named meanProfile in
CellMix implementation) [29] that calculates estimated
expression profiles relative to the average of the marker

gene list for each cell type [29]; and a semi-supervised
learning method that employs non-negative matrix
factorization (ssNMF in CellMix implementation) [57].
We employed a leave-one-out cross-validation (LOOCV)
procedure to evaluate the accuracy provided by each
method. The best performing algorithm ssNMF integrates
cell-type marker genes to resolve the drawbacks of
completely unsupervised standard non-negative matrix
factorization. We followed the standard procedure de-
scribed in the CellMix package, which included the extrac-
tion of marker genes from the reference samples (function
extractMarkers from the CellMix package), and the pos-
terior invocation of the function ged to infer cellular popu-
lation from the gene expression of bulk RNA-seq data.
Besides, we tested additional methods which provided
considerably lower accuracy (least-squares fit [58], quad-
ratic programing [59]) or no significant difference (sup-
port vector regression [26] or latent variable analysis [60])
to the methods presented.
We selected the reference samples that provide the

most faithful transcriptomic profile for their respect-
ive cell types by following a LOOCV approach. We
trained iteratively deconvolution models using all but
one of the samples that was tested. Only samples pre-
dicted with a composition > 80% were kept for the
reference panel (Additional file 1: Table S2; Additional
file 1: Figure S2b).

Accuracy and robustness evaluation
Chimeric validation
To emulate heterogeneous tissue with known and
controlled cellular composition, we generated chimeric
libraries pooling reads (to a total of 400,000) contributed
from the human reference samples (see Additional file 1:
Table S2). This process was repeated 720 times, using
alternative reference samples to model each cell type.
The proportion of reads that the libraries of neurons,
astrocytes, oligodendrocytes, and microglia provided
to the chimeric libraries varied in predefined ranges
(Additional file 1: Figure S3). As a result, each of the
chimeric libraries contained reads that followed 32
different distributions (neuronal reads contributed
2–36% of reads, astrocytes 22–76%, oligodendrocytes
6–62%, and microglia 1–5%). Refer to Additional file 1:
Table S4 for detailed description of the 32 different distri-
butions. We quantified the chimeric reads using Salmon
(v0.7.2) [53] and employed the reference samples that did
not contribute reads to the chimeric library as reference
panel for the deconvolution methods.
Overall, we quantified the expression of 23,040 (720 ×

32) chimeric libraries. We evaluated the accuracy using
the root-mean-square error (RMSE, Eq. 1 to compare
the digital deconvolution cellular proportion estimates
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(method ssNMF) vs the defined proportion of reads spe-
cific to each of the chimeric libraries:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ŷi−yið Þ2

n

s

ð1Þ

ŷi−estimated value; yi−observed value

We also tested whether the deconvolution results were
dominated by the expression of any specific marker gene
and ascertained the robustness of the inferred cellular
population structure to any possibly altered expression
of marker genes. To do so, we performed the deconvolu-
tion analysis discarding each of the marker genes one at
a time and evaluated how these distributions differed in
comparison to the full gene reference panel.

Statistical analysis
We employed linear regression models to test the associ-
ation between cell-type proportions and disease status
(R Foundation for Statistical Computing, ver.3.3.3). We
used stepwise discriminant analysis (stepAIC function of
R package MASS, version 7.3–45) to determine signifi-
cant covariates and to correct for confounding effects.
We included RIN, batch, age at death, and post-mortem
interval (PMI) as covariates for the Mayo Clinic analyses.
For MSBB analyses, we corrected for RIN, PMI, race,
batch, and age at death. We also used linear-mixed
models to perform multiple-region association analysis,
employing random slopes and random intercepts group-
ing by observations and by donors [61], and correcting
for the same covariates previously described.
To analyze the DIAN and Knight-ADRC studies, we

applied linear-mixed models (function lmer and Anova,
R packages lme4 ver.1.1 and car ver.2.1, respectively),
clustering at family level to ascertain the effect of the
neuropathological status in the cell proportion and cor-
rected for RIN and PMI. For late-onset specific analyses
we also corrected for age at death.
Cellular composition shown as proportions were plot-

ted using R package ggplot2 (ver 2.2.1).

Results
Study design
To infer cellular composition from RNA-seq, we first
assembled a reference panel to model the transcriptomic
signature of neurons, astrocytes, oligodendrocytes, and
microglia. The panel was created by analyzing expres-
sion data from purified cell lines. We evaluated alterna-
tive digital deconvolution methods and selected the best
performing for our primary analyses. We tested the
digital deconvolution accuracy on iPSC-derived neu-
rons/microglia cells and neuronal TRAP-seq (Fig. 1).

Finally, we verified its accuracy by creating artificial ad-
mixture with pre-defined cellular proportions.
Once the deconvolution approach was optimized, we

calculated the cell proportion in AD cases and controls
from the different brain regions of Mayo and MSBB data-
sets. The RNA-seq data for the Mayo Clinic study (n = 191)
[18] and MSBB (n = 300) [39] are deposited in the
AMP-AD knowledge portal (synapse ID: syn5550404 and
syn3157743; Table 1). The Mayo study includes RNA-seq
from the TC and CB for AD affected and non-demented
controls, in addition to pathological aging (PA) participants
(Fig. 1). The MSBB also profiled four additional cerebral
cortex areas: APC; STG; PGH; and IFG; Table 1 and Fig. 1).
We restricted the case-control analysis to subjects with def-
inite AD and autopsy-confirmed controls. In addition, we
generated RNA-seq from parietal lobe for participants of
the Knight-ADRC (84 late-onset cases, carriers of genetic
risk factors and 16 controls; Additional file 1: Table S1) and
The Dominantly Inherited Alzheimer Network (DIAN; 19
carriers of mutations in APP, PSEN1, PSEN2) (Table 1;
Fig. 1). We employed the same pipeline to process all
of the samples in order to avoid any bias. Furthermore,
RNA-seq from the Knight-ADRC and DIAN studies
allowed us to compare the cell composition from
ADAD vs LOAD brains, and similarly to test for differ-
ences in brains of controls, sporadic AD who do not
carry any known high-risk variant, carriers of high-risk
variants in TREM2 (n = 20), PLD3 (n = 33), and APOE
ε4 allele.

Development of a reference panel to estimate brain
cellular population structure
Due to limited availability of brain cell-type-specific
transcriptomic data, we compiled reference samples
from different sources, including single-population
RNA-seq from mice and human (immunopan-purified
oligodendrocytes, neurons, astrocytes and microglia, and
iPSC-derived neurons and astrocytes).
We first tried to create a transcriptome-wide reference

panel by selecting the genes that are differentially
expressed among cell types [26, 60, 62]. However, the spe-
cies heterogeneity of the reference samples we compiled
ruled out this attempt, as the PCA showed that differences
between the human and mice donor samples dominated
the transcriptome-wide profiles (Additional file 1: Figure
S1a). For this reason, we curated a list of marker genes
that have been described to tag these distinct cell types
[31, 55, 56] (Additional file 1: Table S3). A visual inspec-
tion of the expression of these marker genes in the sam-
ples we compiled suggested a divergent transcriptomic
profile among the cell types (Additional file 1: Figure S2a).
The PCA showed that their expression was sufficient to
cluster samples of neurons, astrocytes, oligodendrocytes,
and microglia with their respective cell types, regardless of

Li et al. Genome Medicine  (2018) 10:43 Page 6 of 19



Fig. 1 (See legend on next page.)
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the species of the reference samples (Additional file 1:
Figure S1b; Additional file 1: Table S2). We observed that
some samples did not cluster with their expected cell
types and coincidently the LOOCV indicated that these
samples had an expression signatures that differed from
the other samples of the same cell type. However, we
found that all of these outliers correspond to samples not
correctly purified or that were sequenced in early stages of
differentiation (Additional file 1: Supplementary Results).
After discarding these samples, we assessed six digital de-
convolution algorithms implemented in the CellMix pack-
age [62] and found that the ssNMF [57] calculated the
most accurate estimates (see “Methods”). Our final refer-
ence panel (Additional file 1: Table S2; Additional file 1:
Table S3) had a very high confidence to predict cell
types with a mean predicted accuracy = 95.2%, s.d. = 4.3
(Additional file 1: Figure S2b), and a RMSE = 0.06
(Additional file 1: Table S5).

Optimization, validation, and accuracy estimation of the
reference panel and digital deconvolution method
Once we identified the optimal approach to perform
digital deconvolution from brain RNA-seq, we bench-
marked it by using three sets of independent pure cell
populations and simulated chimeric libraries.
We first validated the accuracy to predict neuronal com-

position by generating RNA-seq for eight iPSC-derived
cortical neurons (see “Methods”). We observed an accur-
ate prediction in these independent cell lines (mean neur-
onal proportion = 94.8%, s.d. = 1.1%; Additional file 1:
Figure S4a). We also ascertained the cellular composition
of mRNA extracted from the barrel cortex neurons iso-
lated by TRAP in 24 mice. TRAP is a method that cap-
tures cell-type-specific mRNA translation by purifying
tagged ribosomal subunit and capturing the mRNA it
bound to [45]. We observed an average of neuronal pro-
portion = 96.7% and s.d. = 1.2% (Additional file 1: Figure
S4b). Similarly, we assessed the RNA-seq data generated
for iPSC-derived microglia (n = 10) deposited in the
AMP-AD portal (synapse ID: syn7203233) and inferred
their cellular population structure and observed a mean

microglia proportion = 86.6% and s.d. = 7.1% (Additional
file 1: Figure S4c).
To evaluate the accuracy of digital deconvolution for

measuring cell-type proportion from cell-type admix-
tures, we simulated RNA-seq libraries by pooling reads
from individual cell types into well-defined proportions.
We combined randomly sampled reads from neurons,
astrocytes, oligodendrocytes, and microglia to create
chimeric libraries that mimic bulk RNA-seq from brain,
but with a range of pre-defined cell-type distributions
(Additional file 1: Figure S3). We then quantified the
gene expression for the chimeric libraries and inferred
the cell-type distribution (employing for the reference
panel samples that did not contribute reads to the
chimeric libraries). This process was repeated 23,040
times, choosing distinct human samples to represent
each cell type and varying the proportions in 32 alterna-
tive distributions (see “Methods” and Additional file 1:
Table S4). The overall error (RMSE) compared to known
proportions = 0.08.
Finally, we evaluated whether any gene included in the

reference panel was dominating the inference of cell
proportions. We re-calculated the cell-type distributions
of the chimeric libraries but dropping each of the genes
from the reference panel one at a time. We observed a
negligible difference between the cellular population
structure inferred using the full reference and the
gene-dropped panels (average RMSE = 0.022, s.d. < 0.01).
In this way, we verified that the proportions inferred
using the reference panel are not driven by the expres-
sion of a single gene. This reassured us the inference
should be robust to any bias introduced by the potential
association of a single gene included in the reference
panel with a particular trait.

Deconvolution of bulk RNA-seq of non-demented and AD
brains shows a characteristic signature for
neurodegeneration
Pathologically, AD is associated with neuronal death and
gliosis specifically in the cerebral cortex. We evaluated
whether we could exploit deconvolution methods using
our reference panel to detect altered cellular population

(See figure on previous page.)
Fig. 1 Study design development of the brain cell-type transcriptomic reference panel (left column): the expression signatures of key cell types of the
brain were curated by compiling publicly available RNA-seq data from neurons, astrocytes, oligodendrocytes, and microglia. The panel was curated
iteratively to retain only those samples that showed the most faithful expression signature, while evaluating alternative digital deconvolution methods.
The accuracy of digital deconvolution to estimate brain cellular proportion was validated using additional cell-type-specific samples and also by
generating chimeric libraries. To study cellular population structure in AD (right column), we accessed publicly available data from the AMP-AD, including
Mayo Clinic and MSBB datasets. In addition, we generated RNA-seq from participants of the Knight-ADRC and DIAN studies. These three studies
generated RNA-seq data from PA brains, AD cases, and neuropath-free controls in a total of six cerebral cortex regions and cerebellum. We quantified
the gene expression for all of the samples included in these studies using the same RNA-seq processing pipeline. Using digital deconvolution methods,
we estimated the brain cellular proportions of the samples and compared the proportion between AD cases and controls. We studied the cell structure
of brain carriers of Mendelian pathological mutations and variants that confer high-risk to AD. APC anterior prefrontal cortex, STG superior temporal
gyrus, PHG parahippocampal gyrus, IFG inferior frontal gyrus, MSBB Mount Sinai Brain Bank, AD Alzheimer’s disease, PA pathological aging
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structure from the bulk RNA-seq and whether this cor-
responded to known pathological alterations.
We initially analyzed the RNA-seq from the Mayo Clinic

Brain Bank that includes bulk RNA-seq from the TC and
CB for 191 participants [18] (Table 1). In the TC, we
observed a significant higher astrocyte relative proportion
(β = 0.23; p = 5.01 × 10−09; Table 2; Fig. 2; Additional file 1:
Table S6) in AD brains compared to control brains. We
also found a significant lower relative proportion of neu-
rons (β = − 0.17; p = 1.58 × 10−07; Table 2; Fig. 2; Additional
file 1: Table S6) and oligodendrocytes (β = − 0.07; p = 1.8 ×
10−02; Table 2; Additional file 1: Figure S5; Additional file 1:
Table S6). As expected given the absence of pathology, we
did not observe a significant difference in the cell-type
composition in the CB (Table 2).
The distribution of microglia was similar in the TC

and CB from AD and control brains (Table 2; Additional
file 1: Figure S5). The proportion of microglia was lower
than any other cell types. The Mayo dataset also
includes brains from individuals with PA (Table 1);
which is neuropathologically defined by amyloid-beta
(Aβ) senile plaque deposits but little or no neurofibril-
lary tau pathology [18, 63]. We observed a significant
lower relative proportion of microglia in PA brains com-
pared to AD in both TC and CB (Additional file 1: Table
S7; Additional file 1: Figure S6). Therefore, we specu-
lated that the lack of changes in the AD microglial
population was neither due to low statistical power nor
the inability of our method to estimate the microglial
proportions but reflected unaltered neuropathological
observations in AD brains.
We also analyzed data from the MSBB, which con-

tains bulk RNA-seq for four additional cerebral cortex
areas (APC, STG, PHG, IFG). Replicating our findings
from the Mayo dataset, we observed a significant lower
relative proportion in neurons and increase in astro-
cytes in all four areas (Table 2; Fig. 2; and Additional
file 1: Table S6). The strongest effect size was detected
in the PHG and STG (p < 3.49 × 10−07) (Table 2;
Additional file 1: Table S8). Neuropathological studies
have described that the PHG is one of the first brain
areas in which AD pathology occurs [64–66]. We also
observed a significant and strong correlation between
neuronal and astrocyte relative proportions and the last
ascertained clinical status (CDR), the number of
amyloid plaques and Braak staging (Table 2; Fig. 2;
Additional file 1: Figure S7).

The cellular population structure differs between ADAD
vs LOAD
While the loss of neurons is a common feature of AD,
it is not clear whether the mechanism holds true
across different forms of AD or AD cases carrying dif-
ferent genetic risk variants. Therefore, we investigated

whether AD with distinct etiologies showed different
cellular compositions. We generated RNA-seq data
from the parietal lobe of participants enrolled in
Knight-ADRC (84 LOAD, 3 ADAD, and 16
neuropath-free controls) and DIAN (19 ADAD) studies
(Table 1; Additional file 1: Table S1). We selected the
LOAD and ADAD participants to match for CDR at
death, brain weight, and sex distributions (see
Additional file 1: Table S1).
Using digital deconvolution, we determined the

cellular composition for these brains. We observed a
significant lower relative proportion of neurons (β = −
0.02, p = 2.66 × 10−02) and significant higher relative
proportion of astrocyte in AD (β = 0.03, p = 5.48 ×
10−03) for the combined LOAD and ADAD brains
compared to controls (Table 3; Fig. 3; Additional file 1:
Table S9), consistent with our findings in the Mayo
and MSBB datasets. Similarly, the joint analysis of the
brains from Knight-ADRC and DIAN showed signifi-
cant associations between the neuronal and astrocyte
relative proportions and neuropathological measures
(Braak staging: β = − 0.03, p = 8.51 × 10−06 for neurons
and β = 0.03, p = 3.83 × 10−06 for astrocytes; Table 3;
Fig. 3b) as well as for clinical measures (CDR: β = −
0.02, p = 2.66 × 10−02 for neurons and β = 0.03 and p =
5.48 × 10−03 for astrocytes; Table 3; Fig. 3c). We did
not observe a significant difference in the composi-
tions of microglia or oligodendrocytes (Table 3;
Additional file 1: Figure S8).
Next, we compared the cell proportion of LOAD vs

ADAD and found that the cell composition differs be-
tween them. We first selected the LOAD brains (n = 25)
to match the Braak staging distribution of ADAD brains
(n = 17). The ADAD brains showed a significant lower
relative neuronal proportion compared to LOAD brains
(β = − 0.08; p = 1.03 × 10−02; Table 3) and an increased
relative astrocyte proportion (β = 0.11; p = 9.26 × 10−04;
Table 3). Then, we analyzed the entire Knight-ADRC
LOAD brains, by extending the model to correct for
Braak stages. We also observed significant lower relative
neuronal proportion (β = − 0.09; p = 4.71 × 10−03; Table 3;
Fig. 3a; Additional file 1: Table S9) and increased relative
astrocyte proportion (β = 0.11; p = 5.24 × 10−04; Table 3;
Fig. 3a; Additional file 1: Table S9) in ADAD brains
compared to LOAD. We observed the same cellular dif-
ferences when we corrected for CDR at death (β = −
0.12; p = 2.11 × 10−03 for neurons and β = 0.13; p =
6.29 × 10−04 for astrocytes; Table 3; Fig. 3b, c). In sum-
mary, our results indicate that ADAD individuals
present a higher neuronal loss even in the same stage of
the disease, suggesting that in ADAD neuronal death
plays a more important role in pathogenesis compared
to sporadic AD, in which other factors such as inflam-
mation or immune response may be involved.
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Specific genetic variants confer a distinctive cell
composition profile
A variety of genetic variants increase risk of LOAD;
however, it is unclear if the cellular mechanisms are the
same across these distinct risk factors. Therefore, we
tested the hypothesis that distinct genetic causes of
LOAD have characteristic cellular population signatures.
We initially ascertained the effect of APOE ε4 on the

cell-type composition. We observed a significant lower
relative proportion of neurons (β = − 0.06 for each of the
ε4 alleles; p = 9.91 × 10−03) and increase of relative propor-
tion of astrocytes (β = 0.10; p = 4.15 × 10−02) from the TC
included in the Mayo Clinic dataset (Additional file 1:
Table S10; Fig. 4a; Additional file 1: Figure S9a). This

finding was replicated when we performed a multi-area
analysis of the MSBB dataset (β = − 0.04; p = 2.60 × 10−03

and β = 0.05; p = 1.31 × 10−03 for neurons and astrocytes,
respectively; Table 4; Fig. 4a; Additional file 1: Table S10;
Additional file 1: Figure S9a). Given the strong risk
conferred by the APOE ε4 allele [4], we studied its effects
on the cell-type composition by restricting our analysis to
AD brains. We observed a significant association in the
multi-area analysis of the MSBB dataset (β = − 0.03 p =
4.01 × 10−02; Table 4; Fig. 4b; Additional file 1: Table
S11; Additional file 1: Figure S9b) and also a significant
increase in relative proportion of astrocytes (β = 0.03;
p = 1.23 × 10−02; Table 4; Fig. 4b; Additional file 1:
Table S11; Additional file 1: Figure S9b). We also

a b

c d

Fig. 2 Cell-type distributions of the samples included in the Mayo Clinic and MSBB. Mean neuronal (blue) and astrocytic proportion (red) for (a) AD
affected brains and controls (bars indicate standard deviations). The numbers of participants for each group are shown below the x-axis. Distribution
for additional clinical and pathological phenotypes reported for the MSBB: (b) CDR scores and (c) Braak staging. d Brain cell-type proportions (x-axis)
plotted against the mean number of amyloid plaque (values > 0; y-axis). Standard errors were depicted in shaded area with LOESS smooth curve fitted
to cell-type proportions derived from deconvolution. (**p < 0.01; ***p < 1.0 × 10−3; and ****p < 1.0 × 10−4)
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Table 3 Cellular population structure altered in the parietal lobe from AD brains in the DIAN study and Knight-ADRC brain bank

Disease status Sample
size

Neuron Astrocyte Oligodendrocyte Microglia

n Effect p value Effect p value Effect p value Effect p value

AD status

ADa vs Control 122 − 0.11 5.52 × 10−04 0.14 2.48 × 10−05 − 0.03 6.5 × 10−02 − 2.64 × 10−03 2.49 × 10−01

ADAD vs Control 38 − 0.19 3.94 × 10−07 0.24 1.57 × 10−10 − 0.04 8.5 × 10−03 − 0.01 7.77 × 10−05

LOAD vs Control 100 − 0.09 5.67 × 10−03 0.12 3.34 × 10−04 − 0.02 1.06 × 10−01 − 1.70 × 10−03 4.57 × 10−01

ADAD vs LOAD

Braak matched 42 − 0.08 1.03 × 10−02 0.11 9.26 × 10−04 − 0.03 7.1 × 10−02 − 1.46 × 10−03 7.01 × 10−01

Braak corrected 91 − 0.09 4.71 × 10−03 0.11 5.24 × 10−04 − 0.02 1.77 × 10−01 − 2.41 × 10−03 4.25 × 10−01

CDR corrected 94 − 0.12 2.11 × 10−03 0.13 6.29 × 10−04 − 0.02 3.8 × 10−01 − 3.11 × 10−03 2.41 × 10−01

Clinical Dementia Rating

ADa and Controls 110 − 0.02 2.66 × 10−02 0.03 5.48 × 10−03 − 0.01 2 × 10−01 − 4.63 × 10−04 4.77 × 10−01

ADAD and Controls 26 − 0.08 4.12 × 10−04 0.11 1.78 × 10−07 0.01 4.03 × 10−03 − 1.55 × 10−03 1.75 × 10−08

LOAD and Controls 100 − 0.02 3.22 × 10−02 0.03 7.01 × 10−03 − 0.01 1.81 × 10−01 − 4.64 × 10−04 5.11 × 10−01

Braak staging

ADa and Controls 106 − 0.03 8.51 × 10−06 0.03 3.83 × 10−06 − 4.24 × 10−03 2.04 × 10−01 − 2.52 × 10−04 6.81 × 10−01

ADAD and Controls 33 − 0.05 2.37 × 10−05 0.06 2.45 × 10−05 − 0.01 2.29 × 10−01 − 7.2 × 10−04 4.89 × 10−01

LOAD and Controls 88 − 0.03 7.41 × 10−04 0.03 4.63 × 10−04 − 3.72 × 10−03 3.29 × 10−01 − 1.66 × 10−04 7.86 × 10−01

aAD includes both autosomal dominant AD (ADAD) and late-onset AD (LOAD)
The cellular population structure was inferred using the ssNMF method. Effects and p-values for the association with disease status, clinical dementia rating and
Braak staging using generalized mixed models. We identified similar trends with approximately the same significance levels
AD Alzheimer’s disease, ADAD autosomal dominant AD, LOAD late-onset AD

a b

c d

Fig. 3 Neuron and astrocyte distributions from the DIAN and Knight-ADRC brains. a Mean neuronal (blue) and astrocytic (red) proportions for
carriers of pathogenic mutations in APP, PSEN1, or PSEN2 (ADAD), late-onset AD (LOAD), and neuropath-free controls (bars indicate standard
deviations). Neuronal and astrocytic proportions plotted against (b) Braak staging and (c) by CDR. d Cell-type distributions for carriers of AD
genetic risk factors. Lines indicate significance levels (*p < 0.05; **p < 0.01; ***p < 1.0 × 10−3; ****p < 1.0 × 10−4)
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observed a significant decrease in relative proportion
of neurons (β = − 0.06; p = 2.11 × 10−02; Table 4; Fig. 4c)
when we analyzed the LOAD and control brains from
the Knight-ADRC. When we restricted the analysis to

AD brains from the Knight-ADRC and compared the
APOE ε4 carriers (n = 44) to non-carriers (n = 40) we
also observed a decreased relative neuronal proportion
(β = − 0.06; p = 2.69 × 10−02; Table 4; Fig. 4d). We

a c

b d

e

Fig. 4 Effect of the APOE ε4 allele and TREM2 coding variants on the cellular population structure. Mean neuronal (blue) and astrocytic (red)
proportions for (a) AD cases and controls in the Knight-ADRC brains categorized by APOE ε4 carriers vs non-carriers and (b) AD cases of Knight-
ADRC brain bank (bars indicate standard deviations). c AD cases and controls in the Mayo Clinic and MSBB. d AD cases in the Mayo Clinic and
MSBB. e Neuronal (blue) and astrocyte (red) distributions for samples included in the MSBB stratified by TREM2 genetic status. APC anterior
prefrontal cortex, STG superior temporal gyrus, PHG parahippocampal gyrus, IFG inferior frontal gyrus (n.s. p > 0.05; *p < 0.05; ****p < 1.0 × 10−4)
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extended the models to correct for the Braak stages and
observed a significant association for the relative propor-
tion of neurons with the APOE ε4 allele in the
Knight-ADRC dataset (β = − 0.06; p = 3.66 × 10−02; Table 4)
and a significant association for the relative proportion of
astrocytes in the MSBB (β = 0.04; p = 4.89 × 10−02; Table 4).
Furthermore, we performed a meta-analysis to com-
bine the evidence of both studies and observed a sig-
nificant association of the relative neuronal proportion
with APOE ε4 allele (p = 1.86 × 10−02) and marginally
significant association for the relative astrocytic rela-
tive proportion (p = 0.09).
Next, we analyzed the cellular composition in PLD3

carriers (n = 33). PLD3 carriers exhibited significantly
lower relative proportion of neurons compared to con-
trols (β = − 0.10; p = 1.60 × 10−04; Fig. 3d) and a signifi-
cant higher relative proportion of astrocytes (β = 0.13;
p = 2.84 × 10−03; Table 4; Fig. 3d). Sporadic AD
non-carrier cases also exhibited significantly lower rela-
tive proportion of neurons compared to controls (β = −
0.11; p = 5.45 × 10−03) and significant higher relative
proportion of astrocytes (β = 0.13; p = 2.95 × 10−04;
Table 4; Fig. 3d). The cell proportion between sporadic
AD non-carriers and PLD3 carriers did not show any
significant difference (p > 0.05).
Finally, we performed similar analyses with TREM2 car-

riers. TREM2 is involved in the immune response and its
role in amyloid-β deposition or clearance remains contro-
versial [67]. Our analysis on the Knight-ADRC data
showed significantly higher relative astrocytic proportion
in AD affected TREM2 carriers (n = 20) compared to con-
trols (β = 0.11; p = 1.05 × 10−02; Table 4; Fig. 3d). Despite
TREM2 carriers presenting lower neuron relative propor-
tion compared to controls, this difference was not statisti-
cally significant (p > 0.05; Table 4; Fig. 3d). We analyzed
whether the TREM2 carriers provided sufficient power to
detect a significant association. Our empirical estimates
showed that TREM2 sample size provides 96% of power
to detect an association with an effect size comparable to
that observed for sporadic AD (β = − 0.11). We also inves-
tigated the cellular proportion of the 11 TREM2 carriers
in the MSBB dataset. The multi-region analysis showed
TREM2 carriers do not show a significant difference in
relative neuronal proportion compared to controls
(p > 0.05; Table 4; Fig. 4e), whereas in the AD TREM2
non-carriers the relative neuronal and astrocytic pro-
portions are significantly different from controls (β = −
0.07; p = 1.91 × 10−08; and β = 0.08; p = 1.25 × 10−08

respectively; Table 4; Fig. 4e).
In fact, our analyses indicate that TREM2 carriers have

a unique cellular brain composition distinct than the other
AD cases. TREM2 brains showed significantly higher rela-
tive neuronal proportion (β = 0.05; p = 1.98 × 10−02) and
significantly lower relative astrocyte proportion than the

AD non-carries (β = − 0.05; p = 1.58 × 10−02; Table 4). The
distribution of CDR, mean number of amyloid plaques,
and Braak staging do not differ between strata. Nonethe-
less, we verified that the cellular proportions were still
significantly different after correcting for each of those
variables (Table 4). These results suggested that the mech-
anism that lead to disease in TREM2 carriers is less
neuron-centric than in the general AD population.

Discussion
We have developed, optimized, and validated a digital
deconvolution approach to infer cell composition from
bulk brain gene expression that integrates publicly avail-
able cell-type specific expression data while addressing
the heterogeneity of the phenotypic differences of sam-
ples and technical characteristics of transcriptome ascer-
tainment. We acknowledge that the accuracy of this
platform might be affected by the phenotypic diversity of
the reference panel or the disease-induced dysregulation
of genes it includes. However, the deconvolution
approach proved to be robust to the genes included in
the reference panel, as we demonstrated that the propor-
tions it inferred are not driven by the expression of any
single gene. This platform produced reliable cell propor-
tion estimates, as was shown by the evaluation of inde-
pendent datasets of iPSC-derived neurons and microglia,
mice cortical neurons (Additional file 1: Figure S4), and
simulated chimeric libraries.
We used this approach to deconvolve studies that in-

clude large numbers of neuropathologically defined AD
and control brains with their transcriptome ascertained
in distinct brain regions. We observed consistently
significant lower relative neuronal proportion and in-
creased relative astrocyte proportions in the cerebral
cortex suggesting neuronal loss and astrocytosis. Com-
patible with other studies, we also identified that the
altered cellular proportion is also significantly associated
with decline in cognition and Braak staging [68]. In
contrast, we did not identify a significant difference in
the cellular population structure in the cerebellum, a
region not affected in AD (Table 2; Fig. 2a).
We generated RNA-seq data from brains carrying

pathogenic mutations in APP, PSEN1, and PSEN2, which
cause alterations in Aβ processing and lead to ADAD, and
also generated RNA-seq from brains of LOAD and
neuropath-free controls. We observed altered cell com-
position in both ADAD and LOAD compared to controls.
However, we identified that ADAD brains have a different
cell-type composition than disease-stage-matched LOAD,
as the ADAD has a significantly lower relative neuronal
proportion and more pronounced astrocytosis. Given the
specific cellular population structure of the TREM2
carriers, we compared the neuronal and astrocytic
relative proportion of ADAD to that of LOAD
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non-carriers of variants in TREM2 and observed sig-
nificant differences (β = − 0.09 and p = 6.89 × 10−03 for
neurons and β = 0.10; p = 1.49 × 10–03 for astrocytes).
This indicates that the difference of the relative pro-
portion between ADAD and LOAD are not driven by
TREM2 carrier brains. Based on our results, we would
hypothesize that this change in Aβ processing of
ADAD would lead to more direct to neuronal death
than the pathological processes of LOAD. Similarly,
decreased neuronal and increased astrocyte relative
proportions were significantly associated with APOE ε4
allele. It has been reported APOE ε4 allele increases
the risk for AD by affecting APP metabolism or Aβ
clearance [69, 70], suggesting a direct link between
APP metabolism and neuronal death.
In contrast, the analysis of the Knight-ADRC brains

showed that the neuronal relative proportion decrease is
less pronounced in TREM2 carriers than in other LOAD
cases. We replicated this finding in a multi-area analysis
from the MSBB dataset. These results may implicate that
TREM2 risk variants lead to a cascade of pathological
events that differ from those occurring in sporadic AD
cases, which is also consistent with the known biology of
TREM2. Further longitudinal neuroimaging analysis is
required to validate our findings. TREM2 is involved in
AD pathology through microglia mediated pathways,
implicated on altered immune response and inflamma-
tion [71]. Recent studies in TREM2 knock-out animals
showed that fewer microglia cells were found surround-
ing Aβ plaques with impaired microgliosis [72]. Further-
more, TREM2 deficiency was reported to attenuate
tauopathy against brain atrophy [73]. We found no
significant difference in the proportion of microglia be-
tween AD cases and controls. However, we found signifi-
cantly decreased microglia in brains exhibiting PA
(Additional file 1: Table S7; Additional file 1: Figure S6),
proving that these studies are sufficiently powered to
identify significant differences. In any case, we cannot
rule out the possibility of a change in the activation stage
of microglia in these individuals. Overall, these results
suggest that TREM2 affects AD risk through a slightly
different mechanism to that of ADAD or LOAD in gen-
eral. Therefore, other pathogenic mechanisms should
contribute to disease. We believe that a detailed model-
ing of immune response cells, reflecting the alternative
microglia activation states, will generate more accurate
profiles to elucidate the immune cell distribution in AD.

Conclusions
There is a large interest in the scientific community to
use brain expression studies to try to identity novel
pathogenic mechanisms in AD and to identify novel
therapeutic targets. These efforts are generating a large
amount of bulk RNA-seq data, as single-cell RNA

(scRNA-seq) from human brain tissue in large sample
sizes is not feasible. Single-cell sorting needs to be
performed with fresh tissue [74], which restrains the
analysis of highly characterized fresh-frozen brains col-
lected by AD research centers. Our results indicate that
digital deconvolution methods can accurately infer rela-
tive cell distributions from brain bulk RNA-seq data, but
we recognize the importance of obtaining traditional
neuropathological measures to validate the results we
observed. Having this approach validated for AD can
have an important impact in the community, because
digital deconvolution analyses can: (1) reveal distinct
cellular composition patterns underlying different dis-
ease etiologies; (2) provide additional insights about the
overall pathologic mechanisms underlying different mu-
tations carriers for variants as in genes such as TREM2,
APOE, APP, PSEN1, and PSEN2; (3) correct the effect
that altered cell composition and genetic statuses have
in addition to downstream transcriptomic analyses and
lead to novel and informative results; and (4) help the
analysis of highly informative frozen brains collected
over the years.
In conclusion, our study provides a reliable approach

to enhance our understanding of the fundamental cellu-
lar mechanisms involved in AD and enable the analysis
of large bulk RNA-seq data that may lead to novel dis-
coveries and insights into neurodegeneration.
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