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RESEARCH ARTICLE Open Access

Fibroblast bioenergetics to classify
amyotrophic lateral sclerosis patients
Csaba Konrad1, Hibiki Kawamata1, Kirsten G. Bredvik1, Andrea J. Arreguin1, Steven A. Cajamarca1,
Jonathan C. Hupf2, John M. Ravits3, Timothy M. Miller4, Nicholas J. Maragakis5, Chadwick M. Hales6,
Jonathan D. Glass6, Steven Gross7, Hiroshi Mitsumoto2 and Giovanni Manfredi1*

Abstract

Background: The objective of this study was to investigate cellular bioenergetics in primary skin fibroblasts derived
from patients with amyotrophic lateral sclerosis (ALS) and to determine if they can be used as classifiers for patient
stratification.

Methods: We assembled a collection of unprecedented size of fibroblasts from patients with sporadic ALS
(sALS, n = 171), primary lateral sclerosis (PLS, n = 34), ALS/PLS with C9orf72 mutations (n = 13), and healthy
controls (n = 91). In search for novel ALS classifiers, we performed extensive studies of fibroblast bioenergetics, including
mitochondrial membrane potential, respiration, glycolysis, and ATP content. Next, we developed a machine learning
approach to determine whether fibroblast bioenergetic features could be used to stratify patients.

Results: Compared to controls, sALS and PLS fibroblasts had higher average mitochondrial membrane potential,
respiration, and glycolysis, suggesting that they were in a hypermetabolic state. Only membrane potential was
elevated in C9Orf72 lines. ATP steady state levels did not correlate with respiration and glycolysis in sALS and PLS
lines. Based on bioenergetic profiles, a support vector machine (SVM) was trained to classify sALS and PLS with
99% specificity and 70% sensitivity.

Conclusions: sALS, PLS, and C9Orf72 fibroblasts share hypermetabolic features, while presenting differences of
bioenergetics. The absence of correlation between energy metabolism activation and ATP levels in sALS and PLS
fibroblasts suggests that in these cells hypermetabolism is a mechanism to adapt to energy dissipation. Results
from SVM support the use of metabolic characteristics of ALS fibroblasts and multivariate analysis to develop
classifiers for patient stratification.

Keywords: Bioenergetics, Mitochondria, ALS, Fibroblasts, PLS, Machine learning

Background
Amyotrophic lateral sclerosis (ALS) is the most common
form of adult onset motor neuron disease, with a yearly in-
cidence rate of 1–2.6 cases per 100,000. ALS leads to death
within 3–5 years from disease onset [1]. Typical ALS is
characterized by a rapidly progressive loss of upper and
lower motor neurons. However, milder forms of the dis-
ease, such as primary lateral sclerosis (PLS), cause only
upper motor neuron degeneration [2]. Unfortunately, most
ALS clinical trials have been unsuccessful [3], and as a

result there are only two currently approved drugs for
ALS, Riluzole and Edaravone, both of which only prolong
life by a few months. The ineffectiveness of candidate ther-
apies, the heterogeneity of the disease phenotype, and the
diversity of ALS-linked genes support the emerging con-
cept that distinct pathogenic mechanisms may participate
in the development of ALS. For this reason, research ef-
forts are increasingly concentrated on finding biomarkers
that allow stratifying patients into groups better suited for
targeted clinical trials.
Recently, a number of candidate biomarkers have been

proposed, including some obtained by neuroimaging [4, 5],
electrical impedance myography [6], and proteomics of
cerebrospinal fluid [7–10]. However, despite their potential
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link to disease pathogenesis, complex cellular functions
have not yet been explored as ALS biomarkers. Clearly,
functional measures in living cells from affected tissues,
such as the spinal cord, could be problematic, but one
could envision that more accessible cell types could serve
as surrogate samples. In ALS, skin fibroblasts display nu-
merous abnormalities [11–14], many of which are shared
with motor neurons [15–27]. This suggests that these
apparently unaffected cells may share common pathogenic
pathways with motor neurons. Furthermore, fibroblasts can
be propagated in culture, frozen, and stored almost indefin-
itely, and transformed in cell types that are severely affected
by the disease, such as motor neurons and astrocytes [28].
Furthermore, fibroblasts derived from ALS patients
were used to generate a tissue-engineered skin model,
which recapitulated many of the skin alterations found
in ALS [29, 30]. Therefore, studying complex functional
measures in fibroblasts from ALS patients could pro-
vide a promising source of new classifiers.
Here, we have investigated a large cohort of ALS fibro-

blasts and characterized their bioenergetic properties. We
used a battery of assays to study cellular energy metabol-
ism, and found a hypermetabolic phenotype in ALS, in-
volving both oxidative phosphorylation and glycolysis.
Importantly, using a machine learning approach on bio-
energetic profiles, we provide a proof of concept that
fibroblast bioenergetic markers could differentiate be-
tween ALS and PLS, and could therefore be proposed as
tools for discriminating among different forms of ALS.

Methods
Chemicals
All chemicals used were form Sigma (St. Louis, MO),
unless otherwise specified.

Skin biopsy and fibroblast cultures
After informed consent, a punch skin biopsy was obtained
from the volar part of the forearm. Skin biopsies were de-
identified to protect patients’ identity. Fibroblast samples
were provided to our laboratory as coded samples. Some
lines were obtained from the NINDS catalog of motor
neuron disease fibroblasts. Skin fibroblasts were cultured as
described previously [31] in Dulbecco’s modified Eagle
medium (DMEM) (Thermo Fisher Scientific, Waltham,
MA) supplemented with 25 mM glucose, 4 mM glutamine,
1 mM pyruvate, and 10% fetal bovine serum (hereafter
growth medium). All cultured fibroblast lines were studied
at passages ranging between 5 and 10. We have not ob-
served loss of contact inhibition in any of the lines or appar-
ent differences in growth between any of the groups.

Measurements of TMRM and MTG fluorescence
Skin fibroblasts were seeded at the density of 1.5 × 104

cells/well in replicates of eights in 96-well tissue culture

plates in growth medium and incubated at 37 °C in 5%
CO2. The following day, cells were washed and loaded with
50 nM of the potentiometric dye Tetramethylrhodamine-
methyl-ester (TMRM, 544ex, 590em; Thermo Fisher Scien-
tific) and 450 nM MitoTracker Green (MTG, 490ex,
516em; Thermo Fisher Scientific) for 30 min at 37 °C in
phenol-free DMEM containing 5 mM glucose, 4 mM
glutamine, and 1 mM pyruvate. Samples were incu-
bated in the absence or the presence of 2 μM cyanide
p-trifluoromethoxyphenylhydrazone (FCCP) to com-
pletely depolarize mitochondria and obtain back-
ground TMRM and MTG fluorescence. After washing
with DMEM, MTG and TMRM fluorescence were
simultaneously recorded in a plate reader equipped
with a polychromator (Spectramax M5; Molecular De-
vices Sunnyvale, CA). Background fluorescence was
subtracted from the total fluorescence. MTG and
TMRM fluorescence values were expressed as relative
fluorescence units per milligram of total cellular pro-
teins measured with the DC Protein Assay (BioRad,
Hercules, CA).

Measurement of ATP content
Fibroblasts were seeded at the density of 1.5 × 104 cells/
well in replicates of nines in 96-well tissue culture plates
in growth medium incubated at 37 °C in 5% CO2. The
next day cells were incubated in triplicates in DMEM
containing 5 mM glucose, 4 mM glutamine, and 1 mM
pyruvate (ATP baseline), or DMEM containing 4 mM
glutamine, 1 mM pyruvate, and 5 mM 2-deoxy-D-glu-
cose (2DG) to bock glycolysis (ATP 2DG), or DMEM
containing 5 mM glucose, 4 mM glutamine, 1 mM pyru-
vate, and 1 μM oligomycin to block the mitochondrial
ATPase (ATP Oligo). After 90 min incubation, cells were
washed with phosphate buffered saline (PBS) and lysed
in 30 μl tichloroacetic acid (2.5% W/V) on ice for
30 min. Following lysis, 20 μl aliquots were transferred
into a separate plate for protein determination (DC Pro-
tein Assay). 45 μl Tris-acetate buffer (400 mM, pH = 8.0)
was added to the remaining lysate. Cellular ATP content
was measured after addition of 20 μl of luciferase re-
agent (Promega, Madison, WI) in a luminescence plate
reader (Spectramax M5). Luminescence values were nor-
malized against an ATP standard.

Measurements of oxygen consumption and extracellular
acidification
Oxygen consumption rate (OCR) and extracellular acid-
ification rate (ECAR) were measured with a XF96 Extra-
cellular Flux Analyzer (Agilent, Santa Clara, CA). Cell
lines were seeded in 12 wells of a XF 96-well cell culture
microplate (Agilent) at a density of 1 × 104 cells/well
(cells reach confluency on the experimental day) in
200 μL of growth medium and incubated for 24 h at 37 °
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C in 5% CO2. After replacing the growth medium with
200 μL of XF Assay Medium (Agilent) supplemented
with 5 mM glucose, 1 mM pyruvate and 4 mM glutam-
ine, pre-warmed at 37 °C, cells were degassed for 1 h be-
fore starting the assay procedure, in a non-CO2

incubator. OCR and ECAR were recorded at baseline
followed by sequential additions of 1 μM oligomycin,
2 μM FCCP and 0.5 μM Antimycin A plus 0.5 μM Rote-
none. Non-mitochondrial oxygen consumption (in the
presence of AA + Rot) was subtracted from all OCR
values and technical replicates outside of two standard
deviations of the means were discarded for both ECAR
and OCR. Values were normalized by the mean protein
value of each line. The measurement of OCR and ECAR
in galactose medium was performed as described above,
with the exception that the growth medium and assay
medium contained no glucose and was supplemented
with 5 mM galactose.

Lactate excretion rate measurement
Lactate production was measured using a kit (Enzy-
FluoTM L-lactate Assay Kit (EFLLC-100), BioAssay Sys-
tems) based on a fluorescent probe linked to NADH
generated from lactate. Cell lines were seeded in XF 96-
well cell culture microplates as described for OCR and
ECAR measurements. On the experimental day, the
growth medium was replaced with 200 μL of XF Assay
Medium supplemented with 5 mM glucose, 1 mM pyru-
vate and 4 mM glutamine, pre-warmed at 37 °C. Cells
were allowed to excrete lactate by incubation for
210 min at 37 °C in 5% CO2. Aliquots of the medium
were then collected, and diluted 5 fold for the assay.
Lactate standards diluted in Assay medium were used
for quantification.

Statistical analyses
Bioenergetic features were tested for normality by D’Agos-
tino-Pearson test (scipy v0.15.1; www.scipy.org), which
combines skewness and kurtosis to produce an omnibus
test of normality. Since none of the parameters passed the
normality test, we used non-parametric tests. Differences
amongst groups were compared using Kruskal–Wallis
one-way ANOVA, followed by Dunn’s multiple compari-
son test, as post hoc analysis (scipy v0.15.1). Correlations
amongst bioenergetic features were tested using Spearman
rank-order correlation coefficient. The p-values of correla-
tions were adjusted for multiple comparisons by
Benjamini-Hochberg correction with a false discovery rate
set to <0.05. Data in the text are presented as % average
(±95% confidence intervals of the differences). There were
no correlations between any of the measured bioenerget-
ics parameters and patient age, sex, or cell line passage
number. Therefore, no adjustment for these parameters
was necessary.

Support vector machines
The complexity and performance of the SVM model is
controlled by tunable parameters (class weights, kernels,
penalties and gamma values). For each classification
problem (i.e., control vs. disease, sALS vs. PLS), we
tested an array of 1120 different sets of model parame-
ters (grid search). A less complex model would have
lower performance, but a more complex one would
“overfit” the data, and the resulting decision boundary
would follow the noise of the samples rather than inher-
ent patterns that generalize well to the population. To
find the best performing SVM that does not overfit, we
used the well-established metod of k-fold cross-validation
as a measure model performance: first the data was ran-
domly divided into 10 sets, then for each set of model pa-
rameters the SVM was trained on 9 and validated on one
set of the data. This step was repeated 10 times, using a
different set as the validation set each time. Model per-
formance was calculated as the average of the 10 valid-
ation performances (% accuracy). Fitting SVMs and
generating receiver operating characteristic (ROC) curves
were performed using scikit-learn v0.18 (www.scikit-lear-
n.org). ROC curves are the averages of the 10 cross-
validation sets.

Results
Clinical features of study subjects
Table 1 summarizes the clinical characteristics of the
sALS, PLS, C9Orf72, and control subjects whose de-
identified fibroblasts were utilized for this study. sALS
patients (n = 171) were clinically defined based on defin-
ite or probable ALS diagnosis. sALS patients did not
have family history of ALS are were negative for SOD1
and C9orf72 mutations. PLS patients (n = 34) were clin-
ically defined on the basis of pure upper motor neuron
disease, >5 years after symptom onset, normal electro-
myogram, and no definable causes. As expected, there
were more males in both the sALS and PLS groups, con-
sistent with higher frequency of the disease in males
[32]. Also predictably, the rate of progression (i.e., the
rate at which the ALS Functional Rating Scale, ALSFRS,
worsens) and the forced vital capacity (FVC) decline
were significantly less severe in the PLS group than in
sALS (mean: 17.7%, CI: 7.2 to 27.7%, p = 1.9E-18 and
mean: 117.8%, CI: 107.1 to 128.1%, p = 2.9E-4 respect-
ively), consistent with the milder phenotype in PLS. The
age of disease onset was significantly earlier in the PLS
group (mean: 89.6%, CI: 84.2 to 95.0%, p = 6.1E-05). We
included in the study fibroblasts from patients with
C9orf72 expansion who had ALS (n = 12) or PLS
(n = 1). However, we did not compare the clinical fea-
tures of the genetically defined C9orf72 group, because
of the relatively low number of samples available.
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Bioenergetic characterization of sALS, PLS, and C9Orf72
fibroblasts
To generate a comprehensive bioenergetic profile of fibro-
blast lines in disease and control groups we measured the
following parameters: mitochondrial membrane potential,
cellular ATP content, cell respiration, and glycolysis. The
fluorescence intensity of tetramethylrhodamine methyl
ester (TMRM), an indicator of mitochondrial membrane
potential, was significantly higher in all disease groups
relative to controls (sALS mean: 127.6%, CI: 112.5 to
142.8%; PLS mean: 165.1%, CI: 142.1 to 189.3%; C9Orf72
mean: 155.1%, CI: 125.5 to 191.5%, Fig. 1a). To determine
whether increased mitochondrial membrane potential
could be attributed to differences in mitochondrial con-
tent, we measured the fluorescence of MitoTrackerGreen
(MTG), a dye that is trapped and enriched in mitochon-
dria, with minimal dependence on membrane potential
[31], and can therefore be used as a readout of mitochon-
drial content. sALS and C9Orf72 lines showed no differ-
ences in MTG fluorescence relative to controls (Fig. 1b),
whereas PLS had a significant decrease in MTG fluores-
cence (mean: 62.1%, CI: 36.3 to 88.8%). Since increased
TMRM fluorescence in sALS and PLS was not matched
by proportional increases in MTG fluorescence, we in-
ferred that higher TMRM fluorescence was attributable to
increased mitochondrial membrane potential, and not to
mitochondrial content. Note that the number of samples
tested for TMRM and MTG fluorescence was smaller
than the total number of sALS lines available, because a
subset of them were assessed for these two bioener-
getic parameters in a previous study, which also indi-
cated higher TMRM values in a smaller cohort of
sALS and PLS lines [31].
Next, we measured mitochondrial OCR (Fig. 2a, blue

curve) using flux analysis. In this experiment, baseline
OCR is first measured, followed by the addition of the
ATPase inhibitor oligomycin, which decreases OCR, as
the proton motive force cannot be used for ATP produc-
tion. The oligomycin sensitive OCR is calculated by sub-
tracting oligomycin OCR rate from baseline. Then, the
proton motive force is dissipated using the uncoupler
FCCP, which allows the respiratory chain to consume
oxygen at its fastest rate. The FCCP OCR rate is

Fig. 1 Higher mitochondrial membrane potential in fibroblasts from
patients with motor neuron disease. Scatter plots of TMRM a Control
mean: 743.4, SD: 298.5; sALS mean: 948.3, SD: 380.3, PLS mean: 1227.3,
SD: 456.7, C9Orf72 mean: 1153.0, SD: 397.5) and MTG b Control mean:
5080.9, SD: 2886.7, sALS mean: 5918.7, SD: 3939.6, PLS mean: 3153.6,
SD: 2813.2; C9Orf72 mean: 5616.9, SD: 5911.8) values in sALS, PLS,
C9Orf72, and control fibroblast lines. Middle bars represent the average
values and error bars show standard deviations. RFU: relative
fluorescence units. p-values are indicated where there was a significant
difference between two groups. n.s.: no significant difference. n = 127
sALS, n = 33 PLS, n = 10 C9Orf72, n = 41 controls

Table 1 Clinical characteristics of study subjects

n Sex F/M Age at onset Age at biopsy ALSFRS Rate of progression FVC (%) BMI Onset S/B

Controls 91 0.88 – 60.3 (47–83) – – – NA –

sALS 171 0.67 58.3 (26–79) 59.7 (27–80) 34.2 (8–47) 1.0 (0.06–3.4) 76.1 (6–138) 26.4 (16.2–39.7) 1.98

PLS 34 0.79 51.7* (32–74) 59.2 (41–81) 33.2 (14–44) 0.2* (0.07–0.37) 89.6* (31–143) 26.9 (19–34.6) 2.67

C9Orf72 13 1.50 56.3 (40–70) 58.3 (38–72) 34.9 (30–41) 0.9 (0.24–2.0) 79.3 (38–115) 27.8 (20.5–50.4) 3.00

Values indicate averages and values in brackets indicate ranges. Sex F/M, is the female to male ratio; ALSFRS, is the ALS functional rating scale at time of skin
biopsy; Rate of progression is the % of ALSFRS decline per month; FVC is the forced vital capacity at time of skin biopsy expressed as % of normal; BMI is the
body mass index at time of skin biopsy; Onset S/B is the ratio of site of disease onset, spinal (S) or bulbar (B). NA not available
*p < 0.005 PLS vs. ALS, based on Mann-Whitney U test
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considered as maximal respiratory capacity, and the
spare respiratory capacity is calculated as the difference
between maximal and baseline OCR. Lastly, a mixture of
the respiratory chain complex III and I inhibitors (Anti-
mycin A and Rotenone, AA + Rot, respectively) are
added to assess non-mitochondrial respiration, which is
considered as background.
Relative to controls, sALS and PLS had elevated base-

line OCR (sALS mean: 123.7%, CI: 109.1 to 138.9%; PLS

mean: 172.8%, CI: 131.6 to 216.4%, Fig. 2b), oligomycin
sensitive OCR (sALS mean: 120.4%, CI: 105.3 to 136.0%;
PLS mean: 175.6%, CI: 134.5 to 220.5%, Fig. 2c), and
maximal respiratory capacity (sALS mean: 117.5%, CI:
100.8 to 135.0%; PLS mean: 179.6%, CI: 142.0 to 220.4%,
Fig. 2d). Spare respiratory capacity was only significantly
elevated in PLS lines (mean: 194.7%, CI: 149.4 to 243.7%,
Fig. 2e). Comparing sALS, PLS and C9Orf72, there was
no difference in baseline OCR and oligomycin sensitive

Fig. 2 Higher oxygen consumption rates in sALS and PLS fibroblasts. a Schematic illustration of a typical flux experiment and the calculated
metrics (1: OCR baseline, 2: oligomycin sensitive rate, 3: spare respiratory capacity, 4: maximal respiratory capacity, 5: ECAR baseline, 6: ECAR AA-
Rot). B-E: scatter plots of OCR baseline b Control mean: 2606.9, SD: 1290.5; sALS mean: 3224.0, SD: 1864.5; PLS mean: 4504.6, SD: 3259.3; C9Orf72
mean: 3338.2, SD: 1450.7), oligomycin sensitive rate c Control mean: 2248.2, SD: 1193.9; sALS mean: 2707.6, SD: 1656.9; PLS mean: 3947.9, SD:
2892.3; C9Orf72 mean: 2900.4, SD: 1251.4), maximal respiratory capacity d Control mean: 3784.6, SD: 2166.9; sALS mean: 4445.7, SD: 3048.2; PLS
mean: 6797.1, SD: 4247.2; C9Orf72 mean: 4443.5, SD: 2339.5), spare respiratory capacity e Control mean: 1177.7, SD: 1187.2; sALS mean: 1221.7, SD:
1476.5; PLS mean: 2292.5, SD: 1563.6; C9Orf72 mean: 1105.3, SD: 1195.8). Values are shown comparing sALS, PLS, C9Orf72, and control lines. Middle
bars represent the average values and error bars show standard deviations. p-values are indicated where there was a significant difference between
two groups. n.s.: no significant difference. n = 171 sALS; n = 34 PLS, n = 13 C9Orf72, n = 91 controls
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respiration, but relative to PLS sALS had lower maximal
capacity (mean: 65.4%, CI: 43.0 to 85.8%), and both sALS
and C9Orf72 had lower spare respiratory capacity (sALS:
mean: 53.3%, CI: 27.7 to 76.9%; C9Orf72: mean: 48.2%,
CI: 12.9 to 83.3% Fig. 2e).
In parallel to OCR, the flux analyzer allows for meas-

urement of ECAR (Fig. 2a, red curve). Relative to con-
trols, both sALS and PLS cells had higher baseline
ECAR (sALS: mean: 124.6%, CI: 111.0 to 138.0%; PLS:
mean: 192.0%, CI: 157.4 to 230.5%, Fig. 3a). ECAR
AA + Rot (i.e., maximal ECAR when the respiratory
chain is fully inhibited) was also higher (sALS: mean:
118.8%, CI: 17.0 to 130.5%; PLS: mean: 186.1%, CI: 153.5
to 222.9%, Fig. 3b). Moreover, PLS had higher ECAR
baseline (mean: 154.1%, CI: 126.5 to 185.1%, Fig. 3a) and
ECAR AA + Rot (mean: 156.6%, CI: 129.9 to 187.3%,
Fig. 3b) than sALS.
Taken together, these results showed that sALS and

PLS fibroblasts upregulate both oxidative phosphoryl-
ation and glycolysis. Furthermore, the extent of relative
OCR and ECAR increase was similar in the two groups,
suggesting that both bioenergetic pathways are similarly
upregulated. This was confirmed by calculating the ratio
between OCR baseline and ECAR baseline, which was
not different among the groups (Fig. 3c), indicating that
there was no metabolic shift towards either glycolysis or
oxidative phosphorylation. Of note, in highly aerobic
states, CO2 production from mitochondria can contrib-
ute to ECAR. However, it was empirically determined
that in cells with low baseline OCR/ECAR ratio (e.g., <
4) CO2 has a negligible contribution to ECAR [33]. Since
in fibroblasts the average OCR/ECAR ratio was approxi-
mately 1.5, the CO2 contribution to ECAR was likely not
significant, suggesting that glycolysis was the major con-
tributor to ECAR. Furthermore, since under conditions
of full respiratory chain inhibition CO2 production in
the Krebs cycle is strongly attenuated, the interpretation
of higher glycolysis is also supported by the higher
ECAR values in sALS and PLS after AA + Rot addition.
To test experimentally the assumption that ECAR re-
flects lactate excretion we measured lactate production
rates in a subset of 12 sALS, 12 PLS, and 12 control
lines, under baseline conditions. Lactate production rate
and ECAR baseline were significantly correlated
(p = 0.02, data not shown), indicating that medium acid-
ification reflects lactate excretion. Collectively, these re-
sults suggest that sALS and PLS fibroblasts have a
hypermetabolic phenotype involving both oxidative
phosphorylation and anaerobic glycolysis.
Next, we measured cellular steady-state ATP levels at

baseline and after 90 min treatment with either 2DG to
inhibit glycolysis or oligomycin to inhibit mitochondrial
ATP production. In sALS, we found higher baseline
ATP content compared to controls (mean: 114.9%, CI:

13.6 to 125.8%, Fig. 4a). Interestingly, PLS fibroblasts did
not show higher ATP content, despite having the highest
average respiration and glycolytic fluxes among all
groups. The decline in ATP content after 2DG (ATP
2DG delta) was greater in sALS relative to controls
(mean: 117.5%, CI: 106.4 to 128.7%, Fig. 4b). However,
neither PLS nor C9Orf72 lines had ATP 2DG delta
greater than controls. When oxidative phosphorylation
was inhibited (ATP Oligo delta), we observed no signifi-
cant decline in ATP content in controls or sALS, while
PLS showed a small but significant decline (−8.9%,
Fig. 4c). Overall, these results suggest that sALS lines are
more dependent on glucose utilization for ATP mainten-
ance than controls, PLS or C9Orf72. Additionally, PLS is
the only group that exhibits dependency on oxidative
phosphorylation for ATP maintenance.
We performed correlation analyses of bioenergetic pa-

rameters of fibroblasts to assess if the interdependence
of the parameters differed among groups (Table 2). The
underlying assumption was that parameters would cor-
relate when they were co-regulated. First, these analyses
confirmed that all groups were dependent on glycolysis
for energy production, as baseline ATP and sensitivity to
2DG (ATP 2DG delta) were strongly correlated. Second,
the maximal glycolytic rate (ECAR AA-Rot) significantly
correlated with the maximal OCR rate (OCR Max) in
both sALS and PLS. Similarly, there was a direct correl-
ation between OCR baseline and ECAR baseline in sALS
and PLS, but not in controls. Taken together, these cor-
relations suggest that in sALS and PLS lines glycolytic
and oxidative fluxes are co-regulated. Despite these simi-
larities, there were also differences between sALS and
PLS. For example, only in PLS there was a negative cor-
relation between the OCR/ECAR ratio and ATP content.
Furthermore, only PLS cells showed a negative correl-
ation between OCR/ECAR ratio and ATP 2DG delta.
To test the ability of fibroblasts to respond to forced

oxidative metabolism we grew a subset of lines in
medium containing galactose instead of glucose for 24 h.
In these conditions, fibroblasts are forced to oxidize
glycolysis-derived pyruvate for energy production, be-
cause galactose is not converted to glucose-6P as effi-
ciently as glucose [34]. We tested the 12 controls, 12
sALS, and 12 PLS lines that had ECAR and OCR values
closest to the average of their respective groups. As ex-
pected, in galactose medium baseline OCR was faster
than in glucose medium (compare Additional file 1: Fig-
ure S1A and Figure 2B), while ECAR was lower (com-
pare Additional file 1: Figure S1E and Figure 3A). This
was also apparent from the increase of the OCR/ECAR
ratio from approximately 1.5 in glucose to 3.5 in galact-
ose (compare Additional file 1: Figure S1F and Figure
3C). The differences in baseline OCR and ECAR be-
tween sALS and controls, PLS and controls, and sALS
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and PLS that was observed in glucose was not detected
in galactose (Additional file 1: Figure S1A and S1E).
These results suggest that control cells can upregulate
OCR in galactose to match sALS and PLS. Interestingly,
in galactose, the spare respiratory capacity was signifi-
cantly lower in sALS than controls (Additional file 1:
Figure D), while in PLS it was similar to controls. Since
in glucose the spare respiratory capacity was higher in
sALS and PLS than control (Fig. 2e), we interpret the re-
sult in galactose as an indication that ALS and PLS fi-
broblasts have respiration closer to maximal in glucose
and cannot upregulate it much more when placed in
galactose.

Stratification of ALS patients based on individual
bioenergetic features
We separated our cohort of sALS fibroblast in two equally
sized groups by the median values of key bioenergetic pa-
rameters: TMRM fluorescence (mitochondrial membrane
potential), ECAR AA + Rot (maximal glycolytic activity),
and oligomycin sensitive OCR (ATP synthesizing respir-
ation). We then compared the two groups (i.e., with above
median and below median values) for key clinical parame-
ters: sex, age of disease onset, site of onset (i.e., bulbar vs.
spinal), rate of disease progression, FVC at time of biopsy.
We found that patients with high ECAR AA + Rot had sig-
nificantly higher FVC (14%, p = 0.01) and more frequent
spinal onset (25%, p = 0.02). We also found that patients
with high TMRM had a faster rate of decline (18%,
p = 0.04). Similar analyses were not performed for PLS or
C9Orf72 lines, because the number of samples was too
small to obtain adequately sized groups. Indeed, although
interesting, the significant differences between upper and
lower halves of the sALS lines were not large. Furthermore,
significant liner correlations between individual key bio-
energetic and clinical parameters, after correction for mul-
tiple correlations, were not found (not shown). Therefore,
based on the available samples, we suggest that individual
bioenergetic parameters in fibroblast lines may not be ad-
equate to provide definite clinical classifications.

Fig. 3 Higher extracellular acidification rates in sALS and PLS fibroblasts.
Scatter plots of ECAR baseline a Control mean: 2035.9, SD: 987.4; sALS
mean: 2536.0, SD: 1237.8; PLS mean: 3909.1, SD: 2175.4; C9Orf72 mean:
3381.9, SD: 2988.0), ECAR AA-Rot b Control mean: 2631.1, SD: 1164.4;
sALS mean: 3126.2, SD: 1366.6; PLS mean: 4895.2, SD: 2661.5; C9Orf72
mean: 3426.1, SD: 2425.9), and OCR base/ECAR base c Control mean: 1.5,
SD: 0.8; sALS mean: 1.4, SD: 0.7; PLS mean: 1.2, SD: 0.6; C9Orf72 mean:
1.8, SD: 1.7) values are shown comparing sALS, PLS, C9Orf72, and control
lines. The method by which features were calculated is illustrated in Fig.
2a. Middle bars represent the average values and error bars show stand-
ard deviations. p-values are indicated where there was a significant dif-
ference between two groups. n.s.: no significant difference. n = 171
sALS; n = 34 PLS, n = 13 C9Orf72, n = 91 controls
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Supervised machine learning on bioenergetic profiles
classifies sALS and PLS fibroblasts with high specificity
As no individual bioenergetic measure had sufficient
sensitivity or specificity to be used as a tool for classifi-
cation by itself (data not shown), we took advantage of
the high dimensionality of the data gathered and per-
formed multivariate analysis. The following 12 features
from 301 records (control, sALS, PLS, and C9Orf72
combined) were used: TMRM, MTG, ECAR base, ECAR
AA-Rot, OCR baseline, oligomycin sensitive respiration,
spare respiratory capacity, maximal respiration, OCR
baseline/ECAR baseline, ATP baseline, ATP 2DG delta
and ATP Oligo delta. The goal was to determine if fibro-
blast groups could be clustered and predicted based
purely on their bioenergetic features. Importantly, con-
sidering that such tool could have translational applica-
tions in helping to stratify patients, we wanted to
establish proof of principle that multivariate analyses
could distinguish between sALS and PLS. To this end,
we utilized support vector machines (SVM), which are
trained to fit non-linear decision boundaries to high di-
mensional data.
First we sought to classify control fibroblasts versus all

disease groups combined (i.e., sALS, PLS and C9Orf72).
Receiver operating characteristics (ROC) curves were
generated based on the SVM classifier that yielded the
highest accuracy (probability of correct assignment of
samples to their respective groups). The best performing
SVM yielded good sensitivity (88.5%, CI: 84.2 to 92.7%),
but low specificity (38.1%, CI: 27.7 to 48.5%) (Fig. 5a).
Other parameters of the performance of this SVM classi-
fier included, positive predictive value (78.7%, CI: 73.6 to
83.8%), negative predictive value (56.1%, CI: 43.3 to
69.0%), false positive rate (61.9%, CI: 51.5 to 72.3%), false
negative rate (11.5%, CI: 7.3 to 15.8%), and false discov-
ery rate (21.3%, CI: 16.2 to 26.4%). Interestingly, our best
performing SVM to classify sALS versus PLS (Fig. 5b)
yielded good sensitivity (70.6%, CI: 55.3 to 85.9%), and
high specificity (98.8%, CI: 97.2 to 100.0%), with a

Fig. 4 ATP content in sALS and PLS fibroblasts. Scatter plots of
baseline ATP content a Control mean: 271.6, SD: 113.7; sALS mean:
312.1, SD: 122.2; PLS mean: 271.1, SD: 103.2; C9Orf72 mean: 296.1, SD:
103.8), ATP content lost after 2DG treatment b Control mean: 201.2,
SD: 87.8; sALS mean: 236.4, SD: 92.1; PLS mean: 220.1, SD: 81.4;
C9Orf72 mean: 234.7, SD: 94.6), and ATP content lost after
oligomycin treatment c Control mean: -17.3, SD: 78.1; sALS mean:
-16.6, SD: 72.4; PLS mean: 24.1, SD: 60.2; C9Orf72 mean: 18.6, SD: 55.1)
are shown comparing sALS, PLS, C9Orf72, and control lines. Groups
were compared using Kruskal–Wallis one-way analysis of variance
followed by Dunn’s post hoc analysis. Middle bars represent the
average values and error bars show standard deviations. p-values are
indicated where there was a significant difference between two
groups. n.s.: no significant difference. n = 171 sALS; n = 34 PLS,
n = 13 C9Orf72, n = 91 controls
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positive predictive value of 92.3%, CI: 82.1 to 100.0%,
negative predictive value of 94.4%, CI: 91.0 to 97.8%,
false positive rate of 1.2%, CI: 0.0 to 2.8%, false negative
rate of 29.4%, CI: 14.1 to 44.7%, and false discovery rate
of 7.7%, CI: 0.0 to 17.9%. In summary, the SVM analysis
of fibroblast bioenergetic features was most effective in
classifying the two forms of motor neurons disease,
sALS and PLS, as indicated by the high area under the
curve value (0.94) and the steep rise of true positive rate
of the mean ROC curve (Fig 5b).

Discussion
In this study, we characterized the bioenergetics of a large
number of sALS and PLS primary skin fibroblast lines with
the goal of finding disease classifiers. In addition, we studied
the bioenergetics of a smaller cohort of fibroblast lines from
the most common genetic form of fALS, C9orf72, to assess
if bioenergetic features generalized to this form of the dis-
ease. We found that compared to healthy controls, sALS,
PLS, and C9orf72 shared higher mitochondrial membrane
potential, and that sALS and PLS also shared features indi-
cative of hypermetabolism, characterized by higher mito-
chondrial respiration and glycolytic fluxes.
So far, studies on metabolic function in sALS and fALS

fibroblasts have been conducted in much smaller co-
horts. In a study of 6 sALS and 10 control fibroblast
lines, it was reported that sALS had a lower average
OCR baseline [34]. However, the number of the samples
was thirty-fold smaller than the one studied here. We
think that the sample size is important in this case, be-
cause of the variability observed among individual lines
in all bioenergetic assays. Importantly, when they looked
selectively at the older (≥70 years of age at onset) pa-
tients, they found that ECAR was significantly higher
than controls. This is in agreement with our results
showing increased ECAR in sALS, PLS. Therefore, ex-
cept for the OCR baseline result, which could differ
because of the difference in sample sizes, glycolytic flux
increase appears to be a common finding in the two
studies. Furthermore, mitochondrial function

measurements performed in 3 sALS fibroblast lines and
10 controls identified a defect of cytochrome c oxidase
in sALS, which correlated with a lower respiratory activ-
ity, but only when cells were forced to respire with suc-
cinate as substrate after blocking complex I with
rotenone [35]. In this study, we did not assess individual
respiratory chain complexes, and since fibroblasts do
not naturally utilize succinate as a major respiratory sub-
strate, we did not analyze this pathway because of rela-
tively low physiological significance. Instead, we
performed measurements of respiration in intact cells
allowed to utilize glucose and NADH-generating sub-
strates, such as glutamine and pyruvate. Therefore, the
differences in the findings may be attributable to the dif-
ferent sample size, but also to the different approaches
utilized. Lastly, a recent study of 4 C9orf72 and 4 control
fibroblast lines found increased mitochondrial mem-
brane potential in the C9orf72 lines [36] similar to that
found in our C9orf72 cohort.
In our sALS and PLS fibroblast cohorts hypermetabo-

lism was not accompanied by an increase in mitochon-
drial content or by a proportional increase in ATP
content. Taken together, the data could be best inter-
preted as an adaptation to higher ATP demands, involv-
ing both oxidative and glycolytic pathways of energy
generation. When cells were forced to maximize oxida-
tive phosphorylation in galactose medium, the sALS and
PLS were not capable of maintaining a faster respiratory
rate than controls, suggesting that their capacity was
close to maximal under glucose.
Further studies will be needed to dissect the mecha-

nisms leading to hypermetabolism in ALS fibroblasts.
However, we could hypothesize that several pathways
may contribute to high ATP expenditure, including ana-
bolic reactions, such as RNA and protein synthesis, cata-
bolic reactions, such as protein degradation, vesicle
acidification by V-ATPases, and ion homeostasis. The
average values of several bioenergetic features were sig-
nificantly different in PLS and sALS compared to con-
trols, but also between sALS and PLS. The latter is a less

Table 2 Correlations among bioenergetics features

Feature 1 Feature 2 Control sALS PLS C9Orf72

R p value R p value R p value R p value

ATP baseline ATP 2DG delta 0.922 6.45E-37 0.924 7.07E-71 0.941 4.61E-15 0.648 n.s.

ECAR AA-Rot OCR Max 0.638 9.62E-11 0.683 6.00E-24 0.826 2.07E-08 0.489 n.s.

ECAR baseline OCR baseline 0.234 n.s. 0.574 1.49E-15 0.551 3.01E-03 0.170 n.s.

OCR base/ECAR base ATP baseline 0.211 n.s. −0.017 n.s. −0.508 7.45E-03 0.384 n.s.

OCR base/ECAR base ATP 2DG delta 0.248 n.s. 0.012 n.s. −0.491 9.53E-03 0.264 n.s.

OCR baseline ATP baseline 0.182 n.s. 0.155 n.s. −0.434 2.42E-02 0.445 n.s.

ECAR baseline ATP baseline 0.012 n.s. 0.124 n.s. 0.005 n.s. −0.148 n.s.

Values indicate Spearman’s correlation coefficients (R) and p-values (corrected by the Benjamini-Hochberg method with a false discovery rate set to <0.05). n.s.,
not significant
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aggressive form of motor neuron disease as compared to
sALS, since it only affects the upper motor neurons and
progresses more slowly. In light of these findings, it
could be speculated that hypermetabolism could be a
functional adaptation to increased ATP demands common
to fibroblasts and neurons. Future studies utilizing neu-
rons differentiated from fibroblast derived induced pluri-
potent cells or directly derived from fibroblasts will test
the hypothesis that hypermetabolism is shared by fibro-
blasts and neurons.
We deemed that we could exploit the metabolic differ-

ences between disease and control lines and between sALS
and PLS to identify disease classifiers. Despite the significant
differences among groups in bioenergetic parameters, be-
cause of the large variability of the values, no single metric
performed well enough to be used individually as a predict-
ive classifier (e.g., to discriminate between controls, sALS
and PLS). To overcome the constraints associated with

single parameters, we opted to use multivariate analyses.
We implemented a widely employed machine learning
method of supervised multivariate analysis, the SVM, which
takes all bioenergetics parameters from each cell line as in-
put to make a prediction. This system generates its own hy-
pothesis based on a learning process and produces a model
for a decision boundary. The model was able to distinguish
control and disease lines (sALS, PLS and C9Orf72 com-
bined) with moderate accuracy, likely because the variability
among the disease groups. Importantly, we found that sALS
and PLS fibroblasts could be distinguished with high specifi-
city using the machine learning model.
This result suggests that a machine learning model based

on fibroblast bioenergetics may serve as a classifier to pre-
dict, prior to a definite clinical diagnosis, whether a patient
will develop sALS or the milder motor neuron disease PLS,
a prediction that would have clear prognostic implications.
Admittedly, machine learning works best with high number

Fig. 5 Receiver operating characteristic (ROC) curves of SVM classifiers distinguishes lines with motor neuron disease from controls (a), and sALS
from PLS (b). SVMs were trained to distinguish between two groups, based on 12 bioenergetics features. Each continuous orange ROC curve
represents the mean of 10 cross-validation curves, each shown as a dotted line. Values of the area under the curve for each ROC curve (0–9 fold
ROC and mean ROC) are indicated in the boxes
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of examples and more diverse features than the ones cur-
rently available to us. Although our collection of ALS fibro-
blast lines is likely one of the largest in existence, we predict
that expanding the database with additional lines and fea-
tures will increase the performance of the classification
model. In addition, since in this work we did not have
enough C9orf72 lines to be able to analyze them as a separ-
ate group, in the future it will be important increase the
C9orf72 cohort. This would allow us to include them in the
multivariate analyses of disease groups, for example to pre-
dict whether a C9orf72 patient will develop frontotemporal
dementia, ALS, or both. Another development could in-
clude patients with different neuropathies, such as spinal
muscular atrophy and hereditary spastic paraplegia, to assess
whether the model’s power of distinction between sALS
from PLS can be also extended to other forms of lower and
upper motor neuron degeneration.

Conclusions
We have identified bioenergetic markers of hypermetab-
olism in ALS fibroblasts. These findings will open new
avenues of investigation of the molecular and biochem-
ical mechanisms responsible for the bioenergetic modifi-
cations and their relationship to disease pathogenesis.
We have also devised a novel approach that utilizes bio-
energetic features to distinguish between fibroblast
groups, which performed well in discriminating between
sALS and PLS. Therefore, it is conceivable that analyses
of fibroblasts bioenergetic features will help to stratify
ALS patients into well-defined classes (e.g., hypermeta-
bolic vs. normometabolic), to preselect patients entering
clinical trials or to be used as post hoc criteria to inter-
pret trial results. They could also help developing
makers of prognosis and response to therapy, by imple-
menting longitudinal studies on ALS fibroblast bioener-
getics on subsequent skin biopsies obtained during
disease progression and during the course of treatments.

Additional file

Additional file 1: Figure S1. Flux analysis of control, sALS and PLS
fibroblasts under forced oxidative metabolism in galactose medium. Scatter
plots of OCR baseline (A; Control mean: 3850.0, SD: 1936.7; sALS mean:
3307.5, SD: 1430.7; PLS mean: 2989.2, SD: 1164.7), oligomycin sensitive
rate (B; Control mean: 3630.0, SD: 1772.0; sALS mean: 2835.0, SD: 1135.4;
PLS mean: 2707.5, SD: 1138.9), maximal respiratory capacity (C; Control
mean: 5325.8, SD: 2993.3; sALS mean: 3613.3, SD: 1662.5; PLS mean:
3741.7, SD: 2102.3), spare respiratory capacity (D; Control mean: 1478.8,
SD: 1385.2; sALS mean: 306.8, SD: 589.2; PLS mean: 754.5, SD: 1120.1),
ECAR baseline (E; Control mean: 1114.8, SD: 349.3; sALS mean: 1063.3, SD:
573.2; PLS mean: 1007.8, SD: 351.7), and OCR base/ECAR base (F; Control
mean: 3.6, SD: 1.3; sALS mean: 3.5, SD: 1.4; PLS mean: 3.3, SD: 1.4). Values
are shown comparing sALS, PLS, and control lines. Middle bars represent
the average values and error bars show standard deviations. p-values are
indicated where there was a significant difference between groups. n.s.:
no significant difference. n = 12 sALS; n = 12 PLS, n = 12 controls. (DOCX
132 kb)
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