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SUMMARY

Lung interstitial CD4+ T cells are critical for protec-
tion against pulmonary infections, but the fate of
this population during HIV-1 infection is not well
described. We studied CD4+ T cells in the setting
of HIV-1 infection in human lung tissue, humanized
mice, and a Mycobacterium tuberculosis (Mtb)/sim-
ian immunodeficiency virus (SIV) nonhuman primate
co-infection model. Infection with a CCR5-tropic
strain of HIV-1 or SIV results in severe and rapid
loss of lung interstitial CD4+ T cells but not blood
or lung alveolar CD4+ T cells. This is accompanied
by high HIV-1 production in these cells in vitro and
in vivo. Importantly, during early SIV infection, loss
of lung interstitial CD4+ T cells is associated with
increased dissemination of pulmonaryMtb infection.
We show that lung interstitial CD4+ T cells serve as
an efficient target for HIV-1 and SIV infection that
leads to their early depletion and an increased risk
of disseminated tuberculosis.

INTRODUCTION

HIV-1 infection results in loss of circulating CD4+ T cells, but only

after years of untreated infection (Okoye and Picker, 2013).

Investigation of HIV-1 and simian immunodeficiency virus (SIV)

revealed severe CD4+ T cell depletion in the gut early after infec-

tion before significant loss of cells in the circulation or secondary

lymph nodes (Brenchley et al., 2004; Li et al., 2005). Several

studies have examined the effect of HIV-1 on lung CD4+

T cells obtained from bronchoalveolar lavage (BAL) as a method

to sample the alveolar space as a proxy for the lung parenchyma.

These studies reported minimal to no CD4+ T cell loss during

acute or chronic HIV-1 infection in the alveolar space. This may

in part be due to concomitant HIV-1-induced lymphocyte alveo-

litis, which could partially compensate for CD4+ T cell loss

(Brenchley et al., 2008; Bunjun et al., 2017; Knox et al., 2010;

Neff et al., 2015). Few studies have examined human lung inter-

stitial CD4+ T cells, which are distinct from those in the alveolar

space and are believed to be critical for providing protection

against respiratory infections such as influenza and tuberculosis

(TB) (Sakai et al., 2014; Zens et al., 2016). Because of the diffi-

culty of assessing lung interstitial CD4+ T cells, our understand-

ing of the effect of HIV-1 infection on this population of protective

tissue-resident cells remains incomplete.

Mucosal CD4+ T cells constitute a large reservoir of HIV-1

target cells because of their high baseline activation state and

expression of the HIV-1 entry co-receptor CCR5. HIV-1 strains

that use CCR5 (CCR5-tropic) are primarily responsible for the

establishment of infection and generally predominate until devel-

opment of late-stage disease (Okoye and Picker, 2013). In

contrast, the appearance of HIV-1 strains that use the co-recep-

tor CXCR4 (CXCR4-tropic) is associated with progression to

AIDS and depletion of CXCR4-expressing memory CD4+

T cells in secondary lymphoid organs (SLOs) (Doitsh et al.,

2014; Penn et al., 1999). Lung CD4+ T cells express both

CCR5 and CXCR4 (Purwar et al., 2011), but the susceptibility

of these cells to HIV-1 and subsequent cell death have not

been well characterized. This is particularly important because

increased susceptibility to some respiratory infections, such as

Mycobacterium tuberculosis (Mtb), has been reported early in

HIV-1 disease, before systemic immune impairment is evident

(Diedrich and Flynn, 2011).

Animal models of human pulmonary Mtb infection have iden-

tified a key role for CD4+ T cells in protecting against active TB

(ATB) (Mogues et al., 2001). HIV-1 co-infection increases the

risk for ATB by 20- to 40-fold (Lawn and Zumla, 2011), with

high rates of extrapulmonary disseminated TB associated

with unfavorable treatment outcomes and high mortality rates
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(Kerkhoff et al., 2017). The risk for ATB generally correlates with

the decrease in circulating CD4+ T cells (Lawn and Zumla, 2011;

Sonnenberg et al., 2005). However, early in HIV-1 infection, indi-

viduals are at increased risk of ATB before significant loss of pe-

ripheral CD4+ T cells, suggesting that loss of CD4+ T cells in the

circulation may not entirely reflect their depletion at the site of

Mtb infection in the lung (Kerkhoff et al., 2017; Sonnenberg

et al., 2005). Tissue-resident memory-like (TRM-like) CD4+

T cells in the lung interstitium have a higher protective capacity

against TB than Mtb-specific T cells in the circulation (Sallin

et al., 2017). Whether HIV-1 infection results in depletion of pro-

tective CD4+ T cells in the lung interstitium and whether this

is associated with HIV-1-induced susceptibility to active or

disseminated TB is not well characterized.

We show that HIV-1 infection induces severe and early CD4+

T cell depletion in the lung interstitium using ex vivo infection of

human CD4+ T cells from lung tissue and in vivo HIV-1 infection

in a humanized mouse model. In contrast, alveolar CD4+ T cell

numbers are only marginally affected by HIV-1 infection. We

further demonstrate that early loss of lung interstitial, but not

alveolar, CD4+ T cells during SIV infection of nonhuman primates

(NHPs) is associated with dissemination of Mtb to extrapulmo-

nary organs during latent TB infection (LTBI). These findings indi-

cate that lung interstitial CD4+ T cell loss during early lentiviral

infection is significantly underestimated by sampling of the alve-

olar space and that loss of these cells may contribute to the

increased risk of Mtb dissemination seen in those with early

HIV-1 infection.

RESULTS

CCR5-Tropic HIV-1 Induced Severe Depletion of Human
Lung CD4+ T Cells
We examined lymphocytes collected from human lungs, tonsils,

and blood for CD4+ T cell phenotypes and HIV-1 co-receptor

expression. Consistent with other reports, CD4+ T cells in human

lungs and tonsils were enriched for CD69+CD45RO+CD62L�
TRM-like cells (Figure 1A; Kumar et al., 2017; Mahnke et al.,

2013). However, only lung memory CD4+ T cells demon-

strated high expression levels of the HIV-1 co-receptor CCR5

A B C

D E F

Figure 1. CCR5-Tropic HIV-1 Infection Induced Severe Depletion of Human Lung CD4+ T Cells

Single-cell suspensions were obtained from human lung, tonsil, and blood samples.

(A and B) The frequency of (A) TRM-like CD4+ cells (TCRa/b+CD45RO+CD62L�CD25�CD69+) and (B) HIV-1 co-receptor CCR5+ memory CD4+ T cells was

determined by flow cytometry.

(C–F) 0.5 3 106 cells were cultured in a V-bottom 96-well plate, and, where indicated, cells were incubated with antiretroviral (ARV) drugs (DRV, darunavir

[a protease inhibitor]; RAL, raltegravir [an integrase inhibitor]; AZT, zidovudine [a reverse transcriptase (RT) inhibitor]; EFV, efavirenz [an RT inhibitor]; MVC,

maraviroc [a CCR5 antagonist]) before infection with CCR5-tropic NL4-3 GFP HIV-1 and analyzed by flow cytometry.

(C) The percentage of viable CD4+ T cells was determined relative to untreated cells.

(D) The percentage of productively infected CD4+ T cells was determined by analyzing HIV-1 GFP+ CD4+ T cells.

(E) Correlation between percentage of viable CD4+ T cell and productively infected cells.

(F) Percentage of viable CD4+ T cells in mock-infected, HIV-1-infected, and HIV-1-infected samples pre-incubated with different ARVs.

The p values weremeasured by (A–D and F) Kruskal-Wallis and Dunn’smultiple comparisons tests or (E) by Spearman r test. Scatterplots are labeled withmedian

and interquartile range. Each data point represents the average of duplicates from one subject.

See also Figure S1.
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(Figure 1B). Given the high frequency of CCR5+ TRM-like cells in

the lung, we surmised that these cells would be highly suscepti-

ble to CCR5-tropic HIV-1 infection. We infected lung-, blood-,

and tonsil-derived lymphocytes with CCR5-tropic HIV-1 encod-

ing a GFP reporter and analyzed the frequency of infected cells.

For human lung tissue, we observed a significant decrease in

viable CD4+ T cells (Figure 1C; Figure S1A) but not CD8+

T cells (Figure S1B), accompanied by a higher frequency of

HIV-1 CCR5-tropic-infected CD4+ T cells compared with tonsils

and peripheral blood mononuclear cells (PBMCs) (Figure 1D).

Viral replication and the loss of viable CD4+ T cells were depen-

dent on HIV-1 co-receptor-mediated entry because the CCR5

receptor antagonist maraviroc inhibited CD4+ T cell loss and

viral replication (Figures 1C and 1D). In contrast, tonsil CD4+

T cells were more susceptible to productive infection and deple-

tion by a CXCR4-tropic virus (Figures S1C and S1D). Following

in vitro infection, the decrease in viable CD4+ T cells correlated

with the frequency of productively infected HIV-1 CCR5-tropic

GFP+ CD4+ T cells (Figure 1E). Next we investigated viral

functions required to induce significant cell loss by testing

antiretrovirals (ARVs) that target different stages of the HIV-1

life cycle. The protease inhibitor darunavir (DRV), the integrase

inhibitor raltegravir (RAL), the nucleoside analog reverse tran-

scriptase (RT) inhibitor zidovudine (AZT), the non-nucleoside

analog RT inhibitor efavirenz (EFV), and the viral entry inhibitor

maraviroc (MVC) were all able to reduce HIV-1-induced CD4+

T cell loss with no significant difference in viable CD4+ T cells

compared with mock-infected controls (Figures 1F and S1E).

Productive HIV-1 infection has been reported to induce cas-

pase-3-dependent cell death, whereas abortive infection in-

duces caspase-1 or inflammasome-mediated pyroptosis (Doitsh

et al., 2014; Jekle et al., 2003). The pan caspase inhibitor Z-VAD

and the caspase-3 inhibitor Z-DEVD fully rescued HIV-1-induced

CD4+ T cell loss, whereas the caspase-1 inhibitor had no effect

(Figure S1F). Likewise, CCR5-tropic HIV-1 induced secretion of

the pro-inflammatory cytokine CXCL10 but not the caspase-1

or inflammasome-induced cytokine interleukin-1b (IL-1b) (Fig-

ures S1G and S1I). Together, our data indicate that lung CD4+

T cells are highly permissive to productive viral infection with

CCR5-tropic HIV-1, which caused rapid caspase-3-mediated

CD4+ T cell death in human lung tissue.

Lung Interstitial CD4+ T Are Cells Severely Depleted
during Acute HIV-1 Infection In Vivo

Our ex vivo experiments with human lung tissue indicated that

lung CD4+ T cells are more affected by HIV-1 than previously

estimated from studies of human BAL (Bunjun et al., 2017).

The humanized mouse has been used to study early HIV-1

infection in tissue and, therefore, offered an opportunity to

investigate depletion of BAL and lung interstitial CD4+ T cells

following HIV-1 infection in vivo (Deruaz et al., 2017). Human-

ized mice were challenged intravaginally with CCR5-tropic

HIV-1 JR-CSF or saline control. Lung CD4+ T cells were char-

acterized 4 and 7 weeks after infection, at stages that reflect

acute and early chronic HIV-1 infection, respectively (Dudek

and Allen, 2013; Dudek et al., 2012; McMichael et al., 2010).

CD4+ T cells were only significantly depleted in the lung inter-

stitium, where they were reduced by 6.6-fold at week 7 (Figures

2A–2D). This depletion was significantly higher compared with

paired BAL samples at week 4 and week 7 (Figures 2E and

2F). In BAL samples, we observed a trend for increased BAL

CD8+ T cell numbers, with a significantly higher fold increase

of BAL CD8+ T cells from HIV+ humanized mice at weeks 4

and 7 compared with paired lung interstitial CD8+ T cells (Fig-

ures S2A–S2F). Further, the number of T cells (CD4+ and CD8+

T cells combined) correlated with the presence of the T cell-re-

cruiting chemokine CXCL10 in BAL but not the lung interstitium,

suggesting recruitment of T cells to the alveolar space (Figures

S2G and S2H). Using quantitative immunohistochemistry, we

confirmed severe depletion of lung interstitial CD4+ T cells

in vivo (Figures 2G–2I). Given that CD4+ T cell loss in lung tis-

sue in vitro was accompanied by a high frequency of produc-

tively infected CD4+ T cells, we measured the HIV-1 viral

load in the lungs and spleens of HIV-1-infected humanized

mice. We observed that the viral load in total lung tissue was

significantly higher compared with the spleen 7 weeks after

infection (Figure 3A). Further, we also quantified viral RNA

from sorted CD4+ T cells and CD14+ monocytes from spleen

and lung tissue and found 5.5-fold more HIV-1 gag RNA in

lung versus spleen CD4+ T cells, whereas detection of viral

RNA from sorted monocytes was below the limit of detection

in most samples (Figure 3B). Additionally, we stained HIV-1

p24 protein in tissue sections and found a significantly higher

ratio of p24+:CD4+ cells in lung tissue sections compared

with the spleen (Figures 3C and 3D). Thus, HIV-1 infection in

humanized mice with a CCR5-tropic HIV-1 strain resulted in

high levels of productive infection and profound loss of CD4+

T cells in the lung interstitium, where depletion was more se-

vere than in the blood, spleen, and alveolar space.

CD45iv� Lung Interstitial CD4+ T Cells Are Most
Significantly Depleted by HIV-1
CD4+ interstitial TRM-like cells are characterized by their effector

memory phenotype, expression of CD69, high expression of

CD11a, and their inaccessibility to antibodies in the circulation

introduced by intravenous injection (CD45iv�) (Anderson et al.,

2014). To further differentiate resident interstitial versus vascular

CD4+ T cells in the lungs of the humanized mouse, we in vivo-

labeled vascular cells with an antibody binding to human CD45

3 min before sacrificing the mice and analyzed CD45iv� CD4+

interstitial TRM-like cells by flow cytometry (Figure S3). Lung

T cells consisted of a CD45iv� and CD45iv+ population,

whereas other compartments were primarily CD45iv� (BAL

and spleen) or CD45iv+ (blood) (Figure 4A). CD45iv� CD4+

T cells in the lungs showed significantly higher loss compared

with blood CD4+ T cell loss (Figure 4B). CD45iv� and CD45iv+

lung CD4+ T cells had an increased frequency of memory

T cells and the lung recruiting chemokine receptor CXCR3 (Fig-

ures S4A and S4B). However, only lung interstitial CD45iv�
CD4+ T cells had high expression of the TRM cell markers

CD69 (Figure 4C) and CD11a (Figure S4C) and showed higher

expression of the HIV-1 co-receptor CCR5 compared with

vascular CD45iv+ lung CD4+ T cells (Figure 4D). Furthermore,

lung CD45iv� CD4+ T cells had the highest frequency of HIV-1

p24+ cells, and the number of lung interstitial CD45iv� CD4+

T cells, but not blood CD4+ T cells, correlated with the frequency
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of HIV-1 p24+ CD4+ T cells (Figure S4D; Figures 4E and 4F).

Taken together, CD45 in vivo labeling revealed the presence

of a CD4+CD45iv�CD45RO+CD62L�CD69+CD11ahigh intersti-

tial TRM-like cell population in the lung, which demonstrated se-

vere depletion with HIV-1 infection that was not reflected by

sampling of cells in the alveolar space.

Mtb/SIV Co-infection in NHPs Leads to Severe CD4+
T Cell Depletion in the Lungs and Increased
Disseminated TB
Increased risk of ATB correlates with the loss of circulating CD4+

T cells during AIDS progression. However, HIV infection in-

creases the risk for ATB before significant CD4+ T cell loss in

A B E

FDC

G

H I

Figure 2. HIV-1 Infection Results in Severe Depletion of Lung Interstitial CD4+ T Cells In Vivo

Humanized mice from 2 different batches were intravaginally infected with 50,000 infectious particles of HIV-1 (JR-CSF) (n = 14) or left uninfected as controls

(n = 13).

(A–D) 4 and 7 weeks after infection, cells from (A) the lung interstitium, (B) BAL, (C) the spleen, and (D) the blood were analyzed for CD4+ T cell loss by comparing

CD4+ T cell numbers with uninfected control animals using flow cytometry.

(E and F) CD4+ T cell loss in paired BAL and lung samples was analyzed as fold change compared with the median CD4+ T cell count of uninfected animals (E)

4 weeks or (F) 7 weeks after infection.

(G) Depletion of CD4+ T cells 7 weeks after infection in lungs compared with the spleen was confirmed by immunohistochemistry (IHC) staining for CD4.

(H and I) CD4+ cells in (H) the lungs and (I) the spleen were quantified using Histoquest software.

The p values were measured by Kruskal-Wallis and Dunn’s multiple comparisons tests and (H and I) Mann-Whitney U test. Scatterplots are labeled with median

and interquartile range. Each data point represents one humanized mouse sample.

See also Figure S2.
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the blood (Sonnenberg et al., 2005). We hypothesized that,

during early HIV-1 infection, lung interstitial CD4+ T cell loss is

associated with TB disease progression. The humanized mouse

is highly susceptible to even non-pathogenic mycobacterium

infection, and the generalizability of HIV-1-induced lung

interstitial CD4+ T cell depletion is unclear (Lee et al., 2013).

We therefore used the NHP Mtb/SIV co-infection model. NHPs

were infected with a low dose of Mtb CDC1551 to establish

LTBI 9 weeks before co-infecting a subgroup with SIVmac239

for 11�13 weeks. SIV infection significantly increased reactiva-

tion of LTBI (Figure S5A). At the time of necropsy, the number

of bulk and effector memory lung interstitial CD4+ T cells was

significantly reduced (Figure 5A; Figure S5B), whereas CD4+

T cells in BAL, blood, bronchial lymph nodes (Br LNs), and the

spleen were not significantly decreased (Figures 5B and 5C; Fig-

ures S5C–S5F), consistent with our findings with human lung

tissue and humanized mice. Lung interstitial CD4+ T cell loss

was significantly higher compared with paired BAL samples

(Figure 5D), and BAL CD8+ T cell numbers showed a trend of

increased numbers in SIV-co-infected compared with SIV-

uninfected animals (Figure S5G).

Patients with clinical HIV-1/TB co-infection often present with

extrapulmonary TB (Lawn and Gupta-Wright, 2016). Because

CD4+ TRM-like cells have been described as important for con-

trol of pulmonary Mtb infection, we hypothesized that the early

loss of lung interstitial CD4+ T cells in NHPs latently infected

with Mtb would also contribute to the dissemination of Mtb to

other organs. We found an increased extrapulmonary Mtb

burden in SIV-infected animals compared with those that were

uninfected, with a significantly higher bacterial burden in the liver

A B

C D

Figure 3. CD4+ T Cells in the Lungs Are

Highly Susceptible to Productive HIV-1

Infection In Vivo

(A and B) 7 weeks after infection, RNA was ex-

tracted from lung and spleen (A) total tissue or (B)

from sorted CD4+ T cells from the lungs and

spleen. HIV-1 RNA was detected by HIV-1 gag

qPCR and quantified by using a linear HIV-1

standard and normalized to CD4+T cell counts.

(C and D) Production of virus in lung CD4+ cells

was confirmed by protein staining of HIV-1 p24

using IHC (C). The ratio of p24+ cells:CD4+ cells in

the lungs and spleen was quantified using Histo-

quest software (D).

The p values were measured by (A and D) Mann-

Whitney U test and (B) Kruskal-Wallis and Dunn’s

multiple comparisons tests. Scatterplots are

labeled with median and interquartile range. Each

data point represents one humanized mouse

sample.

(Figure 5E) and with similar trends for the

spleen and kidneys (Figures S5H and

S5I). Interestingly, decreasing lung inter-

stitial CD4+ T cell numbers significantly

correlated with Mtb burden in the liver

(Figure 5F) and spleen (Figure S5J) in

NHPs with LTBI. In comparison, BAL or

blood CD4+ T cells did not correlate with extrapulmonary burden

(Figures S5K and S5L). In summary, early SIV infection resulted

in severe depletion of lung interstitial CD4+ T cells but not those

in the alveoli. Importantly, this lung interstitial CD4+ T cell loss

was strongly associated with dissemination of pulmonary TB

before reactivation of LTBI.

DISCUSSION

HIV-1 primarily infects CD4+ T cells, which leads to the loss of

this important arm of the immune response and contributes to

increased susceptibility to opportunistic infections. Our study re-

vealed that, unlike CD4+ T cells in the alveolar space or circula-

tion, lung interstitial CD4+ T cells are severely depleted by HIV-1

early in infection in human lung tissue ex vivo, in humanized mice

in vivo, and by SIV in NHPs. HIV-1-induced lung interstitial CD4+

T cell depletion was accompanied by high virus production and

was rescued by ARVs or caspase-3 inhibition in vitro. Further,

CD45 in vivo labeling revealed that lung interstitial CD4+ TRM-

like cells showed the highest HIV-1 infection rates, which was

associated with their depletion. The severe loss of lung interstitial

CD4+ T cells in Mtb/SIV co-infected NHPs correlated strongly

with dissemination of Mtb into extrapulmonary organs.

Although mucosal CD4+ T cells in the intestinal tract have

been reported to be depleted early during infection with HIV-1

or SIV, the fate of lung interstitial CD4+ T cells has been less

well characterized. Here we describe early severe depletion of

lung interstitial CD4+ T cells in vitro and in vivo, induced by

HIV-1 in human cells and by SIV in NHPs. Previously, human

studies of lung CD4+ T cells in HIV-infected subjects have
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used BAL as a surrogate for interstitial tissue cells and have

suggested minimal or no depletion of CD4+ T cells in this

compartment (Brenchley et al., 2008; Bunjun et al., 2017; Mwale

et al., 2018). A study in NHPs reported transient BAL CD4+ T cell

depletion that was rapidly reversed by infiltrating CD4+ T cells

with increased anti-viral resistance (Verhoeven et al., 2014).

Our studies in the humanized mouse and NHPs allowed us to

simultaneously compare paired BAL and lung interstitial CD4+

T cells in vivo. Although BAL CD4+ T cells had a similar pheno-

type as lung interstitial T cells, the CD4+ T cell loss in BAL

compared with SIV-uninfected NHPs was more comparable

with the blood and spleen and consistent with the observations

in BAL from human cohort studies. It is possible that the lympho-

cytic infiltration into alveoli during HIV-1 infection that has been

described in humans and NHPs might compensate for CD4+

T cell loss. The observed differences in CD4+ T cell depletion

in the lung interstitium versus BAL highlights that sampling of

the alveolar space does not fully reflect HIV-1 infection of lung

interstitial CD4+ T cells. Therefore, our data suggest that the

severity of lung CD4+ T cell depletion has been underestimated,

with early and severe lung CD4+ T cells depletion similar to those

found in the gut.

Intestinal CCR5+ CD4+ effector memory T cells (TEM cells) are

a preferred target cell for HIV-1 replication in vivo (Dillon et al.,

2016; Mattapallil et al., 2005; Steele et al., 2014; Veazey et al.,

2000). We also found that enrichment of this cell type in the lungs

had consequences for their susceptibility to HIV-1 infection and

depletion. We showed that CCR5-tropic HIV-1 replication was

high in these cells in the lung in vitro, whereas CXCR4-tropic

HIV-1 efficiently replicated in tonsil CD4+ T cells. In both cases,

A

B

E

C

F

D

Figure 4. CD69+ Memory CD45iv� Lung Interstitial CD4+ T Cells Are Most Significantly Affected by HIV-1-Induced CD4+ T Cell Loss

HIV-1-infected humanized mice (n = 6) or uninfected control mice (n = 12) were labeled by injection of an anti-human CD45 antibody for 3 min prior to sacrifice.

CD45iv– and positive CD4+ T cells were analyzed in the lungs, BAL, spleen, and blood by flow cytometry.

(A) Representative plots of CD45iv+ and CD45iv� CD4+ T cells in the lungs, BAL, spleen, and blood.

(B–D) The TRM-like phenotype of CD45iv+ or CD45iv� CD4+ T cells was further characterized by flow cytometry.

(B) Fold lung CD4+T cell loss was analyzed by comparing CD4+ T cell numbers from infected with median uninfected control animals.

(C) The percentage of all CD4+ T cells with surface expression of CD69+ was analyzed by gating on viable CD4+ TCRa/b+CD45RO+CD62L�CD25� T cells.

(D) The percentage of all CD4+ T cells with surface expression of CCR5+ was analyzed by gating on viable CD4+ T cells.

(E and F) Correlation between intracellular HIV-1 p24+ CD4+ T cells 4 weeks after infection and number of (E) lung CD45iv� CD4+ T cell and (F) blood CD45iv+

CD4+ T cells.

The p values were measured by (A–D) Kruskal-Wallis and Dunn’s multiple comparisons tests and (E and F) Spearman test. Scatterplots are labeled with median

and interquartile range. Each data point represents one humanized mouse sample.

See also Figures S3 and S4.
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the high frequency of productively infected CD4+ T cells was

accompanied by severe CD4+ T cell loss. In contrast to mucosal

tissue, CXCR4-tropic HIV-1 preferentially infected CD4+ T cells

from SLOs, suggesting that viral replication at this site may be

more relevant during later stages of infection in patients where

the CXCR4-tropic virus has emerged (Doitsh et al., 2010; Glush-

akova et al., 1999; Grivel et al., 2007; Grivel et al., 2000a, 2000b).

Inhibition of viral replication by ARVs or by a caspase-3 inhibitor

was sufficient to completely rescue CD4+ T cell loss. Prior

reports support our finding that productive infection of CD4+

T cells activates caspase-3-mediated cell death, whereas in-

flammasome and caspase-1 activity cause CD4+ T cell death

during abortive infection (Badley et al., 2000; Doitsh et al.,

2010; Li et al., 2005). The caspase-1 pyroptosis pathway in

abortively infected cells was shown to be activated by the accu-

mulation of viral cDNA, and treatment with the integrase inhibitor

raltegravir did not rescueCD4+ T cell death (Monroe et al., 2014).

However, these studies were conducted with the CXCR4-tropic

virus and SLO-derived CD4+ T cells, which suggests that there

are important differences in the mechanism of cell death in

mucosal tissue versus SLOs. In contrast to SLOs, but similar to

lung tissue, CD4+ T cells in the intestinal tract are highly suscep-

tible to CCR5-tropic HIV-1 infection and HIV-1-mediated cell

death early during infection (Brenchley et al., 2004; Li et al.,

2005).

SIV infection in NHPs showed similar patterns for lung CD4+

T cell depletion as we observed for HIV-1 infection in lung

tissue. We extended our findings by using the experimental

NHP model for human LTBI to investigate the relevance of

CD4+ T cell depletion for dissemination of Mtb infection. The

NHP model reflects the high prevalence ofMtb/HIV-1 co-infec-

tion in sub-Saharan African countries, with the limitation that, in

Mtb/HIV-1 co-infected humans, re-infection is more likely than

reactivation (Andrews et al., 2012; Mahomed et al., 2011). We

found that SIV significantly induced reactivation of LTBI and

that, at the time of necropsy, only lung interstitial CD4+ T cell

were severely depleted. Our data suggest that, during early

viral infection, CD4+ T cells in BAL, circulation, and SLOs are

A B C

D E F

Figure 5. Mtb/SIV Co-infection in NHPs Leads to Severe CD4+ T Cell Depletion in the Lung Interstitium, which Is Associated with Increased

Disseminated TB

Rhesus macaques were infected withMtb CDC1551 via low-dose aerosol challenge to establish LTBI (n = 26). 9 weeks afterMtb infection, a subset of the NHPs

(n = 15) was co-infected with SIVmac239. Necropsy was performed 20–22 weeks afterMtb infection or after TB reactivation with collection of the lungs, spleen,

kidneys, and liver. BAL was performed prior to necropsy.

(A–C) None of the SIV-uninfected animals progressed from LTBI (circles) to active tuberculosis (ATB; triangles), whereas 8 animals in the SIV-infected group

developed ATB. CD4+ T cell numbers in lung tissue (A), BAL (B), and blood (C) were assessed by flow cytometry.

(D) CD4+ T cell loss relative to the median in the CD4+ T cell count in SIV-uninfected NHPs in paired BAL and lung samples was determined.

(E)Mtb burden in the liver was measured in SIV-infected and uninfected NHPs, and lung interstitial CD4+ T cell numbers were correlated with liver CFUs/g tissue.

The p values weremeasured by (A–C and E) Mann-Whitney U test, (D) Wilcoxon test, or (F) Spearman r test. Scatterplots are labeled with median and interquartile

range. Each data point represents one NHP.

See also Figure S5.
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not significantly depleted and associated with ATB. The protec-

tive role of circulating CD4+ T cells in humans has been sup-

ported by the fact that ATB correlates with the decline of blood

CD4+ T cells during chronic HIV-1 (Lawn et al., 2009). However,

other reports have found that CD4+ T cells in the blood are not

directly associated with protection against ATB. Adoptive intra-

venous transfer ofMtb-specific CD4+ T cells into the circulation

of mice infected with Mtb for 1 week does not reduce the bac-

terial burden (Gallegos et al., 2008), and protection against ATB

in Bacillus Calmette Guérin (BCG)-vaccinated adolescents

does not correlate with circulating Mtb-specific CD4+ T cell

responses (Kagina et al., 2010). We also did not find that deple-

tion of lung interstitial CD4+ T cells correlated with reactivation

of LTBI. Therefore, although CD4+ T cells are important for a

protective immune response, reduced CD4+ T cell numbers

in the blood or the lung interstitium alone may not explain

increased susceptibility to TB in Mtb/HIV-co-infected patients.

Location, phenotype, and their interaction with other cell types

are likely also important for their protective role (Foreman et al.,

2016; Sallin et al., 2017). However, our study is limited to

the role of CD4+ T cells in HIV-1-associated TB. HIV-1 impairs

other cell types, such as innate lymphoid cells, mucosa-associ-

ated invariant T cells, dendritic cells, and macrophages, which

might all contribute to increased susceptibility to TB (Diedrich

and Flynn, 2011; Kløverpris et al., 2016; Wong et al., 2013).

HIV-1 infection is associated with extrapulmonary TB. We

report that lung CD4+ T cell depletion correlated with extrapul-

monary Mtb burden in Mtb/SIV co-infection, suggesting that

lung interstitial CD4+ T cells are important for supporting a

localized immune response to prevent dissemination of Mtb.

We show an association between the severe loss of lung inter-

stitial CD4+ T cells and disseminated TB early in infection,

before loss of circulating CD4+ T cells. It has been reported

that lung Mtb-specific CD4+ T cells produce tumor necrosis

factor alpha (TNF-a), which is important in the maintenance of

granuloma structures and prevention of disseminated Mtb

(Lin et al., 2010). Whether specific SIV-mediated depletion of

lung interstitial TNF-a+ CD4+ T cells could be a potential mech-

anism for lung CD4+ T cell-associated extrapulmonary TB

should be further characterized.

In summary, HIV-1 and SIV infection of CD4+ T cells leads to

their severe depletion at mucosal sites. This has beenwell estab-

lished in the gut but less well characterized in the lung intersti-

tium. Our findings show a discordance between characterization

of the lung interstitium and alveoli following lentiviral infection.

This distinction is important in the context of Mtb co-infection

because CD4+ T cell loss in the lung interstitium, but not the alve-

olar space, is associated with extrapulmonary tuberculosis and

may help explain the high prevalence of disseminated TB even

in early HIV-1 infection.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human subjects

B Humanized mouse

B Non-human primates

B Cell lines

d METHOD DETAILS

B Human blood and tissue samples

B HIV-1 in vitro infection assay

B Flow cytometry

B HIV-1 in vivo humanized mouse infection

B HIV-1 gag RNA reverse transcriptase quantitative PCR

(RT-qPCR)

B Immunohistochemistry

B Mycobacterium tuberculosis / SIV infection in

nonhuman primates

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and two tables and can be

found with this article online at https://doi.org/10.1016/j.celrep.2019.01.021.

ACKNOWLEDGMENTS

D.S.K. and B.D.M. were supported by the NHLBI (U01HL121827) and D.S.K.

by the Burroughs Wellcome Fund. A.D.L. was supported by AI040618 and

AI112521. This work was also supported by the Human Immune System

Mouse Core subcontract (A.M.T., principal investigator) from the NIH Harvard

University Center for AIDS Research (CFAR) and NIH/NIAID P30 AI060354 (Dr.

Bruce Walker, principal investigator). A.E.S. was supported by awards

T32GM007753 and F30HL134566-02 from the National Institute of General

Medical Sciences. D.K. and S.A.K. were supported by AI111914, AI123780,

AI111943, AI089323, HL106790, and RR026006. We would like to thank the

pathology lab at MGH for tissue collection, Dr. Thorsten Mempel and Dr.

ThomasMurooka for kindly providing NL4-3 GFPHIV-1, and the CFAR human-

ized mouse core for their service.

AUTHOR CONTRIBUTIONS

Conceptualization, B.C., M.D., A.M.T., and D.S.K.; Methodology, M.D., V.D.V.,

A.M.T., A.D.L., D.K., and S.A.K.; Validation,M.D., A.N.B., andB.C.; Formal Anal-

ysis, B.C., A.E.S., D.S.K., A.N.B., and S.A.K.; Investigation, B.C., A.C.L.-P.,

S.J.G., J.M.P., M.D., G.S.O., B.A.B., V.D.V., A.E.S., and A.N.B.; Resources,

J.M.P., A.M.T., A.D.L., D.S.K., B.D.M., D.K., and S.A.K.; Data Curation, J.M.P.

and B.C.; Writing – Original Draft, B.C. and D.S.K.; Writing – Review & Editing,

B.C., D.S.K, A.D.L., M.D., D.S.K., A.N.B., A.C.L.-P., B.D.M., and B.A.B.; Visual-

ization, B.C. and D.S.K.; Supervision, B.C., D.S.K., B.D.M., A.M.T., A.D.L., D.K.,

and S.A.K.; Funding Acquisition, A.E.S., A.M.T., A.D.L., D.S.K., D.K., and S.A.K.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 16, 2018

Revised: November 25, 2018

Accepted: January 4, 2019

Published: February 5, 2019

REFERENCES

Anderson, K.G., Mayer-Barber, K., Sung, H., Beura, L., James, B.R., Taylor,

J.J., Qunaj, L., Griffith, T.S., Vezys, V., Barber, D.L., and Masopust, D.

(2014). Intravascular staining for discrimination of vascular and tissue leuko-

cytes. Nat. Protoc. 9, 209–222.

1416 Cell Reports 26, 1409–1418, February 5, 2019

https://doi.org/10.1016/j.celrep.2019.01.021
http://refhub.elsevier.com/S2211-1247(19)30030-0/sref1
http://refhub.elsevier.com/S2211-1247(19)30030-0/sref1
http://refhub.elsevier.com/S2211-1247(19)30030-0/sref1
http://refhub.elsevier.com/S2211-1247(19)30030-0/sref1


Andrews, J.R., Noubary, F., Walensky, R.P., Cerda, R., Losina, E., and Hors-

burgh, C.R. (2012). Risk of progression to active tuberculosis following reinfec-

tion with Mycobacterium tuberculosis. Clin. Infect. Dis. 54, 784–791.

Badley, A.D., Pilon, A.A., Landay, A., and Lynch, D.H. (2000). Mechanisms of

HIV-associated lymphocyte apoptosis. Blood 96, 2951–2964.

Boutwell, C.L., Rowley, C.F., and Essex, M. (2009). Reduced viral replication

capacity of human immunodeficiency virus type 1 subtype C caused by cyto-

toxic-T-lymphocyte escape mutations in HLA-B57 epitopes of capsid protein.

J. Virol. 83, 2460–2468.

Boutwell, C.L., Carlson, J.M., Lin, T.H., Seese, A., Power, K.A., Peng, J., Tang,

Y., Brumme, Z.L., Heckerman, D., Schneidewind, A., et al. (2013). Frequent

and variable cytotoxic-T-lymphocyte escape-associated fitness costs in the

human immunodeficiency virus type 1 subtype B Gag proteins. J. Virol 87,

3952–3965.

Brenchley, J.M., Schacker, T.W., Ruff, L.E., Price, D.A., Taylor, J.H., Beilman,

G.J., Nguyen, P.L., Khoruts, A., Larson, M., Haase, A.T., and Douek, D.C.

(2004). CD4+ T cell depletion during all stages of HIV disease occurs predom-

inantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759.

Brenchley, J.M., Knox, K.S., Asher, A.I., Price, D.A., Kohli, L.M., Gostick, E.,

Hill, B.J., Hage, C.A., Brahmi, Z., Khoruts, A., et al. (2008). High frequencies

of polyfunctional HIV-specific T cells are associated with preservation of

mucosal CD4 T cells in bronchoalveolar lavage. Mucosal Immunol. 1, 49–58.

Bunjun, R., Riou, C., Soares, A.P., Thawer, N., M€uller, T.L., Kiravu, A., Ginbot,

Z., Oni, T., Goliath, R., Kalsdorf, B., et al. (2017). Effect of HIV on the frequency

and number ofMycobacterium tuberculosis-specific CD4+ T cells in blood and

airways during latent M. tuberculosis infection. J. Infect. Dis. 216, 1550–1560.

Deruaz, M., Murooka, T.T., Ji, S., Gavin, M.A., Vrbanac, V.D., Lieberman, J.,

Tager, A.M., Mempel, T.R., and Luster, A.D. (2017). Chemoattractant-medi-

ated leukocyte trafficking enables HIV dissemination from the genital mucosa.

JCI Insight 2, e88533.

Diedrich, C.R., and Flynn, J.L. (2011). HIV-1/mycobacterium tuberculosis

coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect. Im-

mun. 79, 1407–1417.

Dillon, S.M., Lee, E.J., Donovan, A.M., Guo, K., Harper, M.S., Frank, D.N.,

McCarter, M.D., Santiago, M.L., and Wilson, C.C. (2016). Enhancement of

HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes

altered during chronic HIV-1 infection. Retrovirology 13, 5.

Doitsh, G., Cavrois, M., Lassen, K.G., Zepeda, O., Yang, Z., Santiago, M.L.,

Hebbeler, A.M., and Greene, W.C. (2010). Abortive HIV infection mediates

CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143,

789–801.

Doitsh, G., Galloway, N.L., Geng, X., Yang, Z., Monroe, K.M., Zepeda, O.,

Hunt, P.W., Hatano, H., Sowinski, S., Muñoz-Arias, I., and Greene, W.C.
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CD103 Biolegend Cat# 350212; RRID: AB_2561599

CD25 BD Biosciences Cat# 563159; RRID: AB_2738037

CD69 BD Biosciences Cat# 555530; RRID: AB_395915

CD62L Biolegend Cat# 304810; RRID: AB_314470

CXCR3 Biolegend Cat# 353728; RRID: AB_2563157

CD45RO BD Biosciences Cat# 560607; RRID: AB_1727500

CD49a Biolegend Cat# 328304; RRID: AB_1236407

CD11a BD Biosciences Cat# 563937

CD4 Biolegend Cat# 300555; AB_2564390

CCR5 BD Biosciences Cat# 300555; RRID: AB_2564390

HIV-1p24 Beckman Coulter Cat# 6604667; RRID: AB_1575989

CD4 BD Biosciences Cat# 550631; RRID: AB_393791

CD8 BD Biosciences Cat# 555369; RRID: AB_398595

CD3 BD Biosciences Cat# 557917; RRID: AB_396938

CD28 BD Biosciences Cat# 555726; RRID: AB_396069

CD95 BD Biosciences Cat# 555671; RRID: AB_396024

anti human CD4 Abcam Cat# ab67001; RRID: AB_1139906

Bacterial and Virus Strains

HIV-1 NL4-3 CCR5-tropic GFP Murooka et al., 2012 N/A

HIV-1 NL4-3 CXCR4-tropic GFP Murooka et al., 2012 N/A

HIV-1 JRCSF Boutwell et al., 2009 N/A

SIVmac239 Foreman et al., 2016 N/A

Mycobacterium tuberculosis CDC1551 Foreman et al., 2016 N/A

Biological Samples

Human PBMCs MGH blood donor center N/A

Tonsil tissue MGH Eye and Ear Infirmary N/A

Lung tissue MGH Pathology lab N/A

Chemicals, Peptides, and Recombinant Proteins

Histopaque 1077 Sigma Aldrich Cat# 10771

CD45 enrichment kit StemCell Cat# 18529

Live/Dead fixable Blue dead cell stain kit ThermoFisher Scientific Cat# L23105

HIV-1 p24 ELISA PerkinElmer Cat# NEK050B001KT

Maraviroc Sigma Aldrich Cat# PZ0002

AMD3100 Sigma Aldrich Cat# A5602

Zidovudine (AZT) Sigma Aldrich Cat# PHR1292

Efavirenz Sigma Aldrich Cat# SML0536

Raltegravir Santa Cruz Biotechnology Cat# CAS 871038-72-1

Darunavir Sigma Aldrich Cat# SML0937

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information for reagents and resources can be addressed to and will be fulfilled by the Lead Contact, Dr. Bjӧrn Corleis

(bcorleis@mgh.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
All work involving material from human subjects was approved by the Institutional Review Board (IRB) at Massachusetts General

Hospital (MGH). For PBMCs, cells were isolated from buffy coats of anonymous healthy blood donors obtained from the MGH blood

donor center (Boston, MA) after approval by the Partners Human Research Committee under protocol 2005P001218. Tonsil and lung

tissue was received as excess tissue from the Pathology Departments of MGH and the operating room at theMassachusetts Eye and

Ear Infirmary (Table S1). Sex, age and post-operation diagnosis of patient samples are summarized in Table S1. The use of surgical

excess tissue was approved by the Partners HumanResearch Committee under the approved protocol # 2010P000632. Sample size

was based on feasibility and availability of human excess tissue collections. Donor matched controls were used for all experimental

conditions.

Humanized mouse
Humanizedmicewere purchased from theMGHHuman Immune SystemMouseCore (Boston, USA). All humanizedmouseworkwas

approved by the Institutional Animal Care and Use Committee (IACUC) at MGH under the protocol # 2009N000136 adhering to the

United States Animal Welfare Act and the Animal Welfare Regulations. Humanized mice were all female and 6-8 weeks of age during

engraftment of human tissue.

Non-human primates
Non-human primate experiments and procedures were approved by the Institutional Animal Care and Use Committee of Tulane Uni-

versity, New Orleans, LA, and were performed in accordance with NIH guidelines and under the protocols # PO295, PO295R,

PO247R, PO065, PO324 and P0095. For this study, we analyzed 26 specific pathogen-free, retrovirus-free, mycobacteria-naive,

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Z-VAD-FMK R&D systems Cat# FMK001

Z-DEVD-FMK R&D systems Cat# FMK004

Z-WEHD-FMK R&D systems Cat# FMK002

Annexin-V buffer BD Biosciences Cat# 556454

Annexin-V APC BD Biosciences Cat# 550474

Fix & Perm buffer Life technology Cat# GAS003

progesteron (Depo-provera) Pfizer N/A

Critical Commercial Assays

RNAeasy microkit QIAGEN Cat# 74004

QuantiFAST SYBR green RT-PCR kit QIAGEN Cat# 204154

Experimental Models: Cell Lines

GHOST cell line NIH AIDS Research & Reference Reagent Program N/A

HEK293 T cell line NIH AIDS Research & Reference Reagent Program N/A

Experimental Models: Organisms/Strains

Humanized mouse MGH Human Immune system core N/A

Non-human primates Tulane National Primate Research Center N/A

Oligonucleotides

HIV-1 gag forward AGTGGGGGGACATCAAGCAGCCATGCAAAT Boutwell et al., 2013

HIV-1 gag reverse TGCTATGTCACTTCCCCTTGGTTCTCT Boutwell et al., 2013

Software and Algorithms

GraphPad Prism7 Graphpad software N/A

Flow Jo Vx0.7 FlowJo, LLC N/A
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male, adult Indian rhesus macaques (NHPs) between the ages of 3-12 years that were bred and housed at the Tulane National

Primate Research Center (TNPRC). NHPs were pair-housed during the duration of the study. Additional analysis has been performed

using experimental data originally generated in a prior study of SIV infected animals (Foreman et al., 2016), as well as additional an-

imals (Table S2).

Cell lines
The human female kidney cell line, HEK293 (Graham et al., 1977), first isolated fromprimary embryonic kidney tissue and transformed

by sheared human adenovirus type 5 (Ad5DNA) and the human osteosarcoma cell line, GHOSTCXCR4+CCR5+ (Mörner et al., 1999),

first isolated from human osteosarcoma cells of unknown sex which were stably transduced with a MV7neo-T4 vector, the MLV-

CCR5 BABE-puro vector, the MX-CCR4 and MX-CCR5 vector and cotransfected with HIV-2 LTR-GFP, were obtained from the

NIH AIDS Reagent Program. Cells were maintained in DMSO (GIBCO) supplemented with 10% (v/v) FCS (Sigma), 2 mM Glutamine

(Corning), 100 I.U./ml penicillin (Corning) and 100 I.U./ml streptomycin (Corning). GHOSTCXCR4+CCR5+ cell cultureswere addition-

ally supplemented with 100 mg/ml hygromycin (Corning) and 1 mg/ml puromycin (Corning).

METHOD DETAILS

Human blood and tissue samples
PBMCswere separated by centrifugation on a histopaque gradient and used fresh. In all cases, we receivedmacroscopically healthy

disease-free tissue sections that were further examined by a pathologist in frozen sections and found to be histologically normal.

Human tissue was processed fresh and at 4�C. Blood contamination of tissues was minimized by exclusion of tissue sections which

demonstrated significant blood contamination by gross pathological examination. Further, tissues were washed 3 times with FACS

buffer (PBS+1%FCS+5mM EDTA). Fresh single cell suspensions from lung and tonsil tissue were made by mechanically disrupting

dissected tissue using a cell strainer and a 10mL syringe plunger. Frequency of CD45+ leukocytes was high in tonsil (> 98%), but low

in whole lung single cell suspension (1%–2%). Therefore, lung CD45+ leukocytes were enriched from whole lung tissue single

suspension using a CD45 enrichment kit (Stemcell) for magnetic-activated cell sorting (MACS) according to the manufacturer’s in-

structions. Blood or tissue single cell suspensions were collected in R10 (RPMI (Sigma), 10% (v/v) FCS (Sigma), 2 mM Glutamine

(Corning), 100 I.U./ml penicillin (Corning) and 100 I.U./ml streptomycin (Corning)) and used for further studies.

HIV-1 in vitro infection assay
HIV-1 NL4-3 CCR5-tropic, CXCR4-tropic GFP or JR-CSF HIV-1 virus was used for all in vitro experiments. The plasmids were kindly

provided by ThomasMurooka and Thorsten Mempel (Murooka et al., 2012). For production of HIV-1, viral plasmids were transfected

together with FuGENE-6 (Polysience) into HEK293 cells and incubated overnight at 37�Cand 5%CO2. Cell culture supernatants were

removed and replaced with fresh media for 48h under the same culture conditions. Cell culture supernatants were harvested and

centrifuged at 500xg for 10min at 4�C. Supernatants were aliquoted and frozen down at-80�C until further usage.Mock supernatants

were prepared under the same protocol without the addition of viral plasmids during the transfection steps. Titer of HIV-1 NL4-3 in-

fectious particles (i.p.)/ml was determined by infection of CD4, CCR5, and CXCR4 expressing GHOST cells (NIH AIDS Research &

Reference Reagent Program) (Kwon et al., 2002). Additionally, HIV-1 p24 protein levels were determined by ELISA (PerkinElmer)

following the manufacturer’s instructions. A viral stock with a titer of 2x106 i.p./ml (1.9x106 pg/ml p24gag protein) was used for all ex-

periments. 0.5x106 human leukocytes from blood, tonsil or lung cells were mixed with 0.1x106 infectious viral particles (MOI =

0.2 equivalent to 95ng p24gag) in a 96 well V-bottomed polystyrene plate in a total volume of 100 mL and kept at 4�C.Where indicated,

cells were pre-incubated with anti-retroviral drugs or chemical inhibitors for 30 min at 37�C before infection and were consistently

present throughout the experiment. Leukocyte/HIV cultureswere spin-infected for 90min at 4�Cand 800 x g andwere then incubated

at 37�C for 12 hr. Supernatants containing cell free virus were taken off and replaced with fresh media. Cells were harvested after

96 hr to analyze the number of live CD4+ T cells and the percentage of virus producing GFP+ cells. ART drugs were all purchased

from Sigma-Aldrich and used at the following effective and nontoxic concentrations: 40 mM maraviroc (MVA), 250 nM AMD3100

(AMD), 10 mM Zidovudine (AZT), 100 nM Efavirenz (EFV), 12.5 nM Raltegravir (RAL), and 25 nM Darunavir (DRV). For inhibition of

caspase activity, the following chemical inhibitors from R&D systems were used at a concentration of 10 mM: pan-caspase inhibitor

Z-VAD-FMK, caspase 3 inhibitor Z-DEVD-FMK, and caspase 1 inhibitor Z-WEHD-FMK.

Flow cytometry
Human cells from ex vivo or in vivo experiments were resuspended in FACS buffer (PBS+1%FCS+5mM EDTA) and centrifuged for

5 min at 1500 x g at 4�C. Cell pellets were stained with antibodies against cell surface antigens and with blue or green viability dye

(Invitrogen fixable viability dye) to exclude dead cells from analysis, for 20 min at room temperature (RT). Details for all specific and

titrated monoclonal antibodies are listed in the resource table. For analysis of T cells in human and humanized mouse samples, cell

pellets were stained with anti CD45 (HI30), CD3 (UCHT1), CD4 (RPA-T4) and CD8 (HIT8a). Tissue resident CD4+ T cells were as-

sessed by incubating cells with antibodies binding to TCRab (IP26), CD103 (Ber-ACT8), CD25 (2A3), CD69 (FN50), CD62L

(DREG-56), CXCR3 (G025H7), CD45RO (UCHL1), and CD11a (HI111). HIV-1 co-receptor expression was analyzed using an antibody

detecting humanCCR5 (2D7/CCR5). Memory CD4+ T cells in NHPswere defined using anti CD95 (DX2) and anti CD28 (CD28.2), with
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effector memory (TEM) CD4+ T cells CD95+CD28- and central memory (TCM) CD4+ T cells CD95+CD28+. For detection of apoptotic

cells, all washing steps were performed in Annexin-V washing buffer (BD Bioscience), before and after staining with Annexin V-APC

(BD Bioscience) for 10 min at RT. Cells were stained for intracellular HIV-1 gag p24 by incubating cells with fixation/permeabilization

buffer A (Invitrogen) for 20 min at RT, followed by a washing step with PBS and addition of perm/fix buffer B (Invitrogen) for 15 min at

RT. HIV-1 infected cells were stained with an antibody binding HIV p24 (KC57) and incubated for 30 min at 4�C. Cells were fixed with

2% PFA before running on a LSR Fortessa flow cytometer (BD Biosciences) within 4 hr, or immediately in case of Annexin-V stained

samples. Flow data were analyzed with FlowJo (TreeStar). Countbright beads (Invitrogen) were added to calculate total CD4+ T cells

in lung, tonsil and PBMCs samples following the manufacturer’s instructions.

HIV-1 in vivo humanized mouse infection
JR-CSF HIV-1, was purchased from the virology core at the Ragon Institute of MGH, MIT and Harvard and was used for experiments

in the humanized mouse as described (Boutwell et al., 2009). Bone marrow/Liver/Thymus (BLT) humanized were purchased from the

MGH Human Immune System Mouse Core (HISMC, Boston, USA) as described in the ethical statement. Six to 8 weeks old female

BLT-NOD-scid IL2Rg�/� (NSG) mice (The Jackson Laboratory) were housed in a pathogen-free facility at MGH, and reconstituted

with human tissue by the HISMC as described previously (Deruaz et al., 2017). BLT-NSGmice were obtained after successful human

immune cell reconstitution (> 40% of lymphocytes were human CD45+ of which > 30% of were CD3+ and a minimum of > 200 CD4+

T cells/uL) 13-18weeks post-surgery. A total of 34 humanized BLT-NSGmice from 2 different batches generated with different donor

tissues were used. One mouse was excluded from the analysis due to the development of severe graft versus host disease (GvHD)

during the experiment. Mice were infected with atraumatic intravaginal (IVAG) application of 0.5x105 TCID50 HIV-1JRCSF in 10-20 ml

PBS as previously described (Deruaz et al., 2017).Micewere treated 5 days prior to challengewith a subcutaneous injection of 200 mg

of progesterone (Depo-Provera medroxyprogesterone acetate, Pfizer) in a total volume of 100 ml of PBS. HIV-1 JRCSF infected mice

and uninfected control mice were euthanized 4 or 7 weeks post infection. Intravascular staining of human CD45+ cells was adopted

from (Anderson et al., 2014). For this, 3 mg of anti-human CD45 v500 (clone HI100, Biolegend) were injected i.v. in a total volume of

200 mL PBS. 3 min after antibody injection, the animals were euthanized. The method allows to distinguish lung vascular from inter-

stitial and alveolar CD4+ T cells. Since the number of interstitial CD4+ T cells exceeds the number alveolar CD4+ T cells, we defined

CD45iv- cells as interstitial CD4+ T cells. The following samples were collected: BAL, lung, spleen, and blood. BAL was obtained by

injection and recovery of 1 mL PBS through the trachea. Single cell suspensions from spleen and lung tissues were obtained as

described for human surgical tissue. The post-caval lobe of the lung was reserved for immunohistochemistry and placed in 10%

formalin. The right middle lobe was stored at�80�C in RNAlater and reserved for HIV-1 RNA extraction. Similar proportions of spleen

tissue were processed the same way.

HIV-1 gag RNA reverse transcriptase quantitative PCR (RT-qPCR)
RNA was extracted from homogenized tissue and sorted cell populations using the RNAeasy kit (QIAGEN) following the manufac-

turer’s protocol. RNA was resuspended in RNase free water and stored in aliquots at �80�C. RT-qPCR was performed using

HIV-1 gag-specific primers (SK145 forward, AGTGGGGGGACATCAAGCAGCATGCAAAT and SK431 reverse, TGCTATGTC

ACTTCCCCTTGGTTCTCT), quantified using the QuantiTect SYBR green RT-PCR kit (QIAGEN) according to the manufacturer’s in-

structions and using a Roche 384 well plate Lightcycler 480-II (Roche). Concentrations of HIV-1 gag RNA were calculated from a

linear gag HIV-1 HxB2 standard kindly provided by Dr. Christian Boutwell (Boutwell et al., 2009). Results were normalized for tissue

weight (in ng) or total cell numbers for tissue samples and sorted cells, respectively.

Immunohistochemistry
Formalin fixed, paraffin embedded tissue from lung and spleen samples of HIV-1 infected and uninfected mice were cut in 4 mm sec-

tions. Antigen retrieval was carried out in a Decloaking Chamber (BioCare Medical), in citrate buffer pH 6 (Invitrogen). Sections were

incubated with anti-HIV-1 p24 (1:50; clone KC57 BeckmanCoulter) or anti-humanCD4 (1:50; clone 1F6 Abcam) antibody overnight at

4�C. Slides werewashed five times in Tris buffered saline with 0.05%Tween-20 (TBST). Secondary anti-mouse HRP conjugated anti-

body (Dako) was applied for 1 hr at RT. After another five washes with TBST, staining was visualized using DAB substrate (Dako).

Tissue samples were counterstained with Harris Modified Hematoxylin (Sigma). Whole tissue slide sections were scanned with an

Olympus TissueFAXSwhole slide scanning system and the number of p24+ or CD4+ cells were quantified using HistoQuest software

(TissueGnostics) and by taking the average of 2 consecutive tissue sections from per sample. Background was subtracted for each

sample by staining 2 consecutive tissue sections without the addition of the secondary antibody. The average number of unspecific

stained cells from 2 slides were subtracted from the average number of CD4+ or p24+ cells.

Mycobacterium tuberculosis / SIV infection in nonhuman primates
We retrospectively analyzed and compared CD4+ T cells in the lung and blood of SIV uninfected versus SIV infected animals (Table

S2). The experiment and data collection were performed as following and described previously (Foreman et al., 2016). All animals

were aerosol exposed to a low dose (�10-25 CFU implanted) of Mtb CDC1551 and after maintenance of LTBI for up to 9 weeks,

a subset of 15 of the macaques was co-infected with 300 TCID50 of SIVmac239 administered intravenously, as described previously

(Foreman et al., 2016, 2017; Kuroda et al., 2018; Mehra et al., 2011). Group distributions were assigned based on clinical outcomes
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duringMtb andMtb/SIV co-infection. LTBI in NHPs was defined as asymptomatic without clinical signs for the duration of the study

and as described previously (Mothé et al., 2015). Criteria for active tuberculosis (reactivation) during the study were described before

(Foreman et al., 2016) and included Mtb culture positive BAL, chest X-ray, body temperature, weight, and maintenance of a CRP

value above 3 mg/mL or more for 3 consecutive weeks. Early animal euthanasia due to discomfort, were performed as previously

described (Foreman et al., 2016). Clinical assessments and lung pathology post-necropsy (% lung involvement) were performed

by veterinary clinicians in a blinded fashion and previously described (Foreman et al., 2016; Kaushal et al., 2015). BAL samples

were obtained by bronchoscopy before necropsy, and total cell numbers and T cell phenotypes were assessed in 1/20 of the recov-

ered BAL volume by flow cytometry. Necropsy was performed 20-22weeks post-Mtb infection. Lung, spleen, bronchial lymph nodes

(Br LN), kidney and liver tissues were collected and processed with bacterial load analyzed by colony forming unit assay (CFU) as

described (Foreman et al., 2016; Mehra et al., 2011, 2015). CD4+ and CD8+ T cell numbers were analyzed in 1x106 total tissue cells

or 100 mL of whole EDTA blood by flow cytometry using anti-human or anti-NHPs antibodies against CD4 (L200), CD8 (RPA-T8), CD3

(SP34-2), CD28 (CD28.2), CD95 (DX2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments can be found in each figure legend. Nonparametric tests were used to compare medians between

groups. The Mann-Whitney test was used for 2 groups and the Kruskal-Wallis test followed by Dunn’s multiple comparison post

test was used for > 2 groups. Wilcoxon signed rank was used to compare continuous data between two time points. Spearman’s

correlation coefficients were used to examine associations between variables. Differences were considered significant at

p < 0.05. Prism 7 (Graphpad) was used for all analyses.
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Figure S1. Depletion of lung CD4+ T cells is associated with productively infected cells. Related to Figure 1. 

Isolation of cells and infection with HIV-1 was performed as described in Figure 1. (A and B) Total cell counts of (A) 

CD4+ and (B) CD8+ T cells was analyzed by flow cytometry in paired samples mock infected or infected with CCR5-

tropic HIV-1. Blood, tonsil or lung cells were infected with CXCR4-tropic NL4-3 GFP HIV-1, mock infected or left 

untreated. Where indicated, cells were incubated with the CXCR4 antagonist plerixafor (AMD3100) before infection. 

(C). Percentage of viable CD4+ T cells (D) was determined relative to untreated cells by flow cytometry. (E) Analysis 

of CCR5-tropic HIV-1 GFP+ CD4+ T cells from samples analyzed for viable CD4+ T cells in Figure 1F. (F) Lung 

cells were pre-incubated with the CCR5 antagonist maraviroc [MVA], the pan-caspase inhibitor Z-VAD-FMK [pan-

CASP], the caspase 3 inhibitor Z-DEVD-FMK [CASP3], or the caspase-1 inhibitor Z-WEHD-FMK [CASP1] before 

infection with HIV-1 as described in Figure 1, and CD4+ T cells were analyzed for viabilty by flow cytometry. (G 

and H) CXCL10 and IL1  protein level in cell culture supernatants were analyzed using the Luminex multiplex 

platform. p-value was measured by (A and B) Wilcoxon test or (C-H) Kruskal Wallis and Dunn’s multiple 

comparisons. Scatter plots are labeled with median and interquartile range. 
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Figure S2. CD8+ T cells are increased in BAL compared to lung tissue. Related to Figure 2. The same batch of 

mice described in Figure 2 was analyzed for CD8+ T cell numbers in (A) lung, (B) BAL, (C) spleen and (D) blood by 

flow cytometry. (E and F) CD8+ T cell increases in paired BAL and lung samples were analyzed as fold increase 

compared to the median CD8+ T cell count of uninfected animals at (E) 4 weeks or (F) 7 weeks post infection. The 

CD8 T cell recruiting chemokine CXCL10 was measured by Luminex in BAL fluid 9G) or supernatants from lung 

tissue single cell suspensions (H) in samples obtained 4 weeks post infection. p-value was measured by (A-D) Kruskal 

Wallis and Dunn’s multiple comparisons test, (E and F) Wilcoxon test or (G and H) by Spearman r test. Scatter plots 

are labeled with median and interquartile range. 
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Figure S3. Gating strategy for CD4+ TRM-like cells by flow cytometry. Related to Figure 4.  Representative gating 

strategy for TRM-like cells in humanized mouse lung tissue. Gating started on positive selection of the lymphocyte 

population by SSC/FSC. Viable T cells were selected by gating on CD3+ fixable cell death dye- lymphocytes. Lung 

parenchyma CD4+ T cells were separated from lung vascular CD4+ T cells by anti-human CD45 in vivo labeling of 

circulating cells 3 min before sacrificing the humanized mice.  This resulted in CD3+ populations which were either 

CD45iv- or CD45iv+. Next, CD45iv- and CD45iv+ were separated into CD4+ and CD8+ T cells. CD4+ T cells were 

positively selected for memory cells by CD45RO+ and innate-like γδ T cells were excluded by positive selection of 

TCRαβ expressing CD45RO+ CD4+ T cells. Central memory and activated CD4+ T cells were excluded by negative 

selection of CD62L- and CD25- CD45RO+ CD4+ T cells, respectively. CD4+ TRM cells were defined as viable CD3+ 

CD4+ CD45RO+ TCRαβ+ CD25- CD62L-CD69+. Representative images for all analyzed compartments are shown.  
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Figure S4. Characterization of lung interstitium CD4+ T cells by flow cytometry. Related to Figure 4. HIV-1 

infected (4 weeks) humanized mice (n=6) or uninfected control mice (n=12) were iv injected with an anti-human 

CD45 antibody 3 mins prior to sacrifice. CD45iv negative and positive CD4+ T cells were analyzed in lung, BAL, 

spleen and blood by flow cytometry (see Figure S3 for gating strategy). The TRM phenotype of CD45iv labeled (lung 

iv+) or unlabeled CD45iv (lung iv-) CD4+ T cells was further characterized by flow cytometry. Percentage of all 

CD4+ T cells with (A) surface expression of CXCR3+ and (B) expression memory CD4+ T cell markers 

(CD45RO+CD62L-) was determined. (C) The median fluorescence intensity (MFI) of CD11a was analyzed. CD4+ T 

cells were gated on viable CD4+ TCRα/β+CD45RO+CD62L-CD25- T cells. (D) In vivo productively infected CD4+ 

T cells were analyzed by intracellular staining for HIV-1 p24+ and gating on all viable CD4+ T cells. p-value was 

measured by Kruskal Wallis and Dunn’s multiple comparisons test. Scatter plots are labeled with median and 

interquartile range. 
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Figure S5. SIV/Mtb co-infection leads to increased development of active and disseminated tuberculosis. 

Related to Figure 5. (A) 26 NHPs were infected with Mtb resulting in LTBI. After 9 weeks 15 NHPs were co-infected 

with SIV. 8 Mtb/SIV co-infected and 0 Mtb infected animals progressed to ATB. (B-F) CD4+ T cell loss in different 

compartments was analyzed in NHPs with LTBI or ATB by flow cytometry. (B and D) Cells were additionally stained 

with CD28 and CD95 and effector memory CD4+ T cells were defined as CD28-CD95+ (G) CD8+ T cells in BAL 

were analyzed in Mtb/SIV co-infected and Mtb infected NHPs by flow cytometry. Mtb burden was determined in (H) 

spleen and (I) kidney by CFU. Correlation of (J) spleen Mtb bacterial burden versus lung parenchymal CD4+ T cells 

and (K) liver bacterial burden versus BAL CD4+ T cells or (L) blood CD4+ T cells. p-value was measured by (A) 

Fisher’s exact, (B and D-I) Mann-Whitney U-test, (C) Kruskal Wallis with Dunn’s multiple comparisons test, or (J-

L) by Spearman r test. Scatter plots are labeled with median and interquartile range. 
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Table S1. Demographics and post-operative diagnosis of patient samples used for excess tissue experiments. 

Related to Figure 1. 

Sample 

ID 

Collection 

Date 

Sample 

Type Age Sex Post-Op Diagnosis 

LU1631 11/23/2015 Lung 70 Male Lung hamartoma 

LU1632 12/2/2015 Lung 68 Female Left upper lobe adenocarcinoma 

LU1637 12/11/2015 Lung 77 Female Squamous cell carcinoma of the lung 

LU1638 12/14/2015 Lung 52 Male Unknown source of hemoptysis 

LU1639 12/16/2015 Lung 37 Male Carcinoid tumor of right lower lobe 

LU1643 1/4/2016 Lung 60 Female Adenocarcinoma of the lung 

LU1654 2/1/2016 Lung 65 Female Adenocarcinoma of the lung 

LU1660 2/11/2016 Lung 65 Male Left local lobe adenocarcinoma 

LU1676 3/4/2016 Lung 76 Male Left upper lobe lung cancer 

LU1695 3/29/2016 Lung 65 Female Left upper lobe lung cancer 

LU1703 4/27/2016 Lung 43 Female Right lower lobe adenocarcinoma 

LU1705 5/2/2016 Lung 75 Female Lung carcinoma 

LU1708 5/16/2016 Lung 65 Male Adenocarcinoma, left lower lobe 

LU1711 5/20/2016 Lung 67 Female Right upper lobe nodule 

LU1712 5/20/2016 Lung 69 Male Ground-glass nodule, left upper lobe 

LU1715 5/31/2016 Lung 70 Male Lung carcinoma 

LU1735 7/14/2016 Lung 70 Female Right upper lobe lung cancer 

LU1746 7/25/2016 Lung 69 Female Adenocarcinoma, right lower lobe of lung 

LU1749 8/1/2016 Lung 36 Male Non-small cell lung cancer, left lung 

LU1752 8/9/2016 Lung 73 Female 

Mucinous cystic mass of the left lower lobe of 

the lung 

LU1767 9/7/2016 Lung 55 Male Probable lymphoma of lung 

LU1807 10/11/2016 Lung 85 Male Adenocarcinoma, left lower lobe of lung  

LU1821 10/19/2016 Lung 64 Female Metastatic sarcoma to left upper lobe of lung 
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LU1837 10/31/2016 Lung 56 Female Right lower lobe lung carcinoma 

LU1842 11/3/2016 Lung 60 Female Left lower lobe lung cancer 

LU1905 1/20/2017 Lung 72 Female Left lung cancer 

LU1926 2/3/2017 Lung 56 Female Metastatic colon cancer to right upper lobe 

LU1936 2/13/2017 Lung 79 Female Lung carcinoma 

LU1939 2/15/2017 Lung 44 Male 

Metastatic renal cell cancer to left upper lobe 

of lung 

TN1724 6/17/2016 Tonsil 3 Male 

Adenotonsillar hypertrophy and sleep 

disordered breathing  

TN1750  8/5/2016 Tonsil 5 Male 

Sleep-disordered breathing; Adenotonsillar 

hypertrophy 

TN1771 9/9/2016 Tonsil 3 Female 

Sleep-disordered breathing; Adenotonsillar 

hypertrophy 

TN1772 9/9/2016 Tonsil 4 Male Adenotonsillar hypertrophy 

TN1812 10/14/2016 Tonsil 3 Male 

Sleep disorder breathing; Adenotonsillar 

hypertrophy  

TN1813 10/14/2016 Tonsil 4 Female Sleep-disordered breathing 

TN1814 10/14/2016 Tonsil 6 Female Recurrent strep pharyngitis  

TN1869 12/2/2016 Tonsil 3 Female 

Adenotonsillar hypertrophy and sleep 

disordered breathing 

TN1870 12/2/2016 Tonsil 9 Male Adenotonsillar hypertrophy  

TN1882 12/2/2016 Tonsil 9 Male Adenotonsillar hypertrophy  

TN1887 12/2/2016 Tonsil 9 Male Adenotonsillar hypertrophy  

TN1888 12/2/2016 Tonsil 9 Male Adenotonsillar hypertrophy  
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Table S2. Overview non-human primates used in this study. Related to Figure 5. 

Animal TB Status SIV Status Reference 

FE10 LTBI negative Foreman et al 2016 

FJ05 LTBI negative Foreman et al 2016 

GP50 LTBI negative unpublished 

HA90 LTBI negative Foreman et al 2016 

HB74 LTBI negative Foreman et al 2016 

HC90 LTBI negative Foreman et al 2016 

HV02 LTBI negative unpublished 

JD72 LTBI negative unpublished 

JF47 LTBI negative unpublished 

JK54 LTBI negative unpublished 

JN75 LTBI negative unpublished 

EH92 LTBI positive unpublished 

HP22 LTBI positive Foreman et al 2016 

HP41 LTBI positive Foreman et al 2016 

ID91 LTBI positive Foreman et al 2016 

IF04 LTBI positive unpublished 

IP88 LTBI positive unpublished 

JE48 LTBI positive unpublished 

KG40 LTBI positive unpublished 

ER44 ATB positive Foreman et al 2016 

HB12 ATB positive Foreman et al 2016 

HV08 ATB positive Foreman et al 2016 

ID01 ATB positive Foreman et al 2016 

JF23 ATB positive unpublished 

JH07 ATB positive unpublished 

JI68 ATB positive unpublished 
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