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Dietary Nitrate Enhances the Contractile Properties
of Human Skeletal Muscle
Andrew R. Coggan1,2 and Linda R. Peterson3,4

Departments of 1Kinesiology and 2Cellular and Integrative Physiology, Indiana University Purdue University
Indianapolis, Indianapolis, IN; and Departments of 3Medicine and 4Radiology, Washington University School of
Medicine, St. Louis, MO

COGGAN, A.R. and L.R. PETERSON. Dietary nitrate enhances the contractile properties of human skeletal muscle. Exerc. Sport
Sci. Rev., Vol. 46, No. 4, pp. 254–261, 2018. Dietary nitrate, a source of nitric oxide (NO), improves the contractile properties of
human muscle. We present the hypothesis that this is due to nitrosylation of the ryanodine receptor and increased NO signaling via the
soluble guanyl cyclase-cyclic guanosine monophosphate-protein kinase G pathway, which together increase the free intracellular Ca2+

concentration along with the Ca2+ sensitivity of the myofilaments themselves. Key Words: dietary nitrate, nitric oxide, muscle contractile
function, free intracellular calcium, calcium sensitivity, ryanodine receptor, cyclic guanosine monophosphate

Key Points

• Ingestion of nitrate (NO3
−), found in green leafy vegetables

and especially beets, increases the production of nitric ox-
ide (NO).

•Acute or chronic (NO3
−) intake also improves muscle con-

tractile function in a variety of subject populations, includ-
ing healthy young and middle-aged individuals, athletes,
patients with heart failure, and the elderly.

• Precisely how dietary (NO3
−) intake enhances the contractile

properties of human muscle is still unclear.
• We hypothesize that such improvements are the result of
increased NO bioavailability and hence changes in Ca2+

signaling in muscle.

INTRODUCTION
In recent years, a burgeoning number of studies have ex-

amined the effects of dietary nitrate (NO3
−) on various phys-

iological responses. This is because it is now recognized that
inorganic NO3

− can be a significant source of nitric oxide

(NO) in the body ((1); see as follows). Because NO is a po-
tent vasodilator, work in this area originally focused on
changes in blood pressure (e.g., (2)). In 2007, however,
Larsen et al. (3) reported that ingestion of NO3

− at a dose of
100 μmol·kg−1 per day for 3 d lowered the steady-state rate
of O2 uptake (V̇O2) during submaximal exercise. This O2-
sparing effect of NO3

− supplementation (often in the form
of beetroot juice (BRJ)) has since been replicated in many,
albeit not all (4), subsequent investigations, and seems to be
especially evident in untrained subjects and during higher in-
tensity exercise (cf. (5) for review). Dietary NO3

− also has
been shown to enhance muscle blood flow during exercise
in both rats (6) and humans (7). At least in rats, the relative
increase in flow is greatest in primarily fast-twitch muscles
with lower baseline blood flows, but is also present, albeit
to a lesser extent, in primarily slow-twitch muscles (6). Presum-
ably as a consequence of these changes in O2 demand and
supply, and hence in muscle energetics, dietary NO3

− im-
proves endurance performance, as measured by average
power, or, conversely, time-to-completion, during high-
intensity, time trial–type exercise tests by ~2% (8,9). Because
of the shallow slope of the exercise intensity-duration relation-
ship beyond the first few minutes, time-to-fatigue during
constant-intensity exercise may be enhanced by up to 16%
(5,6). For additional discussion of the effects of dietary NO3

−

on the responses to endurance exercise, readers are referred to
these recent reviews (5,8,9).

More recently, dietary NO3
− (or nitrite (NO2

−)) also has
been shown to enhance the inherent contractile properties of
human muscle (10–20). Positive effects have been found in a
wide range of subjects, that is, younger untrained individuals
(10–12,14), trained athletes (13,15–17), patients with heart fail-
ure (HF) (18), and the elderly (19,20), and can occur in the ab-
sence of changes in submaximal V̇O2 in the same population and
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even in some of the same individuals (i.e., (4) vs (18)). Further-
more, NO3

−-induced improvements in muscle contractility have
been observed even when resistance to fatigue during high-
intensity exercise is unaltered (11,13–15). These results suggest
that the effects of dietary NO3

− onmuscle contractile properties
and on V̇O2/blood flow/energetics may be due to different
physiological/biochemical mechanisms, reflecting the widely
varying actions of NO in various tissues, including muscle.

The purpose of the present article is to review the previously
mentioned studies of the influence of dietary NO3

− on the con-
tractile properties of humanmuscle and to discuss possible mech-
anisms accounting for such effects. Although animal data are
considered, especially in formulating our mechanistic hypothe-
ses, we focus primarily upon humans because 1) most studies of
the effects of NO3

− intake on muscle function have been per-
formed in people and 2) there are significant differences be-
tween rodents and humans in dietary NO3

− metabolism (21),
NO3

−-induced changes in muscle protein expression (12,22),
fiber type-specific regulation of muscle contraction (23), and

NO production (24), etc., that could influence the results of
such research. As will be discussed, it is our hypothesis that dietary
NO3

− acutely enhances humanmuscle function by simultaneously
increasing both the free intracellular Ca2+ concentration ([Ca2+]i)
during contractions and the Ca2+ sensitivity of the myofilaments
themselves (Figure). These twin effects are hypothesized to result
from nitrosylation of the ryanodine receptor (RyR) along with in-
creased NO signaling via the canonical soluble guanyl cyclase
(sGC)–cyclic guanosine monophosphate (cGMP)–protein kinase
G (PKG) pathway. Together, these two mechanisms could
explain the dietary NO3

−-induced changes in human muscle
contractile properties that have been reported.

NO Production in Muscle
Most NO in the body is produced by conversion of L-arginine

to citrulline, a reaction catalyzed by NO synthase (NOS) and re-
quiringO2 as well as other substrates and cofactors. NOS exists in
three isoforms, that is, neuronal (nNOS, or NOS-1), inducible

Figure. Proposedmechanisms bywhich dietary NO3
− influencesmuscle contractile function in humans. After ingestion, NO3

− is converted to NO2
− by bacterial

nitroreductases in the oral cavity and endogenous nitroreductases (e.g., xanthine oxidoreductase) in muscle itself. This increase in NO2
− in turn leads to enhanced

production of the free radical NO. Elevated NO bioavailability then results in multiple effects, as shown in the figure. These include nitrosylation of the
sarcroendoplasmic reticululm RyR, which increases Ca2+ release by “locking” this channel in the open configuration. The subsequent increase in free intracellular
[Ca2+]i contributes to the improvements in twitch force (Ftw), rate of force development (dF/dt), estimatedmaximal shortening velocity (Vmax), andmaximal power
(Pmax) of muscle that have been observed after dietary NO3

− intake. Simultaneously, however, the increase in [Ca2+]i also results in activation of skeletal muscle
myosin light chain kinase (skMLCK) via the Ca2+-CaM pathway and hence an increase in myosin regulatory light chain phosphorylation (pRLC). This results in
greater Ca2+ sensitivity of the contractile apparatus, thereby also contributing to the increases in Ftw, dF/dt, Vmax, and Pmax. Paralleling these events, the increase
in NO also results in activation of sGC and hence an increase in cGMP production. This increase in cGMP stimulates PKG activity, which in turn enhances regulatory
light chain phosphorylation and hence Ca2+ sensitivity, thus improving muscle contractile function. Finally, also shown are the effects of increased NO on TropI, on
themyosin heavy chain, and on the SERCA.An increase inNO can enhance nitrosylation of TropI in fast-twitch (but not slow-twitch) fibers, but this inhibits (lines) Ca2+

sensitivity, which is the opposite of what has been observed after dietary NO3
− supplementation. Similarly, elevation in NO could increase nitrosylation ofmyosin,

but this would diminish, not enhance, muscle contractile function. Elevated NO also can inhibit SERCA directly, but this would also tend to diminish muscle function,
by slowing the rate of relaxation and resulting in eventual depletion of sarcoplasmic reticulum Ca2+ stores. Thus, these other potential effects of NO cannot explain
the dietary NO3

−-induced improvements in contractility that have been found repeatedly. cGMP, cyclic guanosine monophosphate; NO, nitric oxide; NO2
−, nitrite;

NO3
−, nitrate; PKG, protein kinase G; RyR, ryanodine receptor; SERCA, sarcoendoplasmic reticulum Ca2+ ATPase; sGC, soluble guanyl cyclase.
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(iNOS, or NOS-2), and endothelial (eNOS, or NOS-3) (24).
Although all three types are present in muscle, NOS-1 is con-
sidered to be the primary source of NO in this tissue, and in ro-
dents, is almost exclusively expressed in fast-twitch muscle
fibers (24). In humans, however, NOS-1 expression is similar,
or even greater, in slow-twitch versus fast-twitch fibers (24).
NOS activity increases several-fold during muscle contractions,
apparently as a result of Ca2+-dependent activation of NOS-1,
and at least in mice is accompanied by a quantitatively-similar
increase in cGMP levels in fast-twitch but not slow-twitch mus-
cle (24). This contraction-induced increase in NO production
potentially influences numerous aspects of muscle physiology,
for example, blood flow, glucose uptake, mitochondrial respira-
tion, etc., via both cGMP-dependent and cGMP-independent
pathways (24). These effects are beyond the scope of this review
and hence will not be considered further here. Conversely, the
effects of NO muscle contractile properties are directly relevant
and in fact have been studied for many years, primarily in isolated
animal muscle using pharmacological inhibitors or activators of
NOS. In general, these studies have emphasized the possible sup-
pressive effects of NO on muscle function, especially maximal
isometric force (cf. (25) for review). As discussed by Maréchal
and Gailly (25), however, this direct “braking” effect seems to
be countered a cGMP-mediated enhancement of maximal short-
ening velocity, which improves contractile function during
twitch or isotonic contractions. The specific pathways by which
NO modulates skeletal muscle contraction are considered in
greater detail under the Mechanisms section.

Dietary NO3
− as a Source of NO in Muscle

In addition to the NOS pathway, NO also can be produced
via a NOS-independent, “backup” pathway, that is, via reduc-
tion of NO3

− to NO2
− by oral bacteria (1) or endogenous

nitroreductases (e.g., xanthine oxidase) (26), followed by fur-
ther reduction of NO2

− to NO within various tissues. As em-
phasized by Piknova et al. (26), the latter process would be
favored by the low pH and O2 tension found in resting and espe-
cially contracting muscle. Conversely, NO2

− and hence NO3
−

can be generated via oxidation of L-arginine-derived NO, or, al-
ternatively, obtained from dietary sources. Indeed, numerous
studies have demonstrated that acute ingestion of NO3

− increases
plasma NO3

− and NO2
− concentrations (e.g., (2,3,10,12–14,16–20)),

as well as the levels of NO in expired breath (frequently used
as a biomarker of whole-body NO production) (11,14,18,19).
Until very recently, though, no study had demonstrated directly
that dietary NO3

− supplementation increases muscle NO3
− or

NO2
− levels in either animals or humans. Working in Schechter’s

laboratory, however, Gilliard et al. (27) recently reported that feed-
ing rats a highNO3

− diet for 7 d increased (P< 0.05)muscleNO3
−

andNO2
− content by ~33% and >100%, respectively. Acute inges-

tion of 150μmol·kg−1 (~12.3mmol) ofNO3
−has also recently been

shown to more than triple (P < 0.001) the NO3
− content of muscle

biopsy samples from older men with diabetes (28), although the
small size of such samples apparently precluded measurement of
NO2

− content using the standard chemiluminescent approach.
Schechter’s group has reported also that strenuous endurance exer-
cise results in a dramatic reduction inmuscleNO3

− andNO2
− levels

in rats, which in the absence of NO3
− intake remain suppressed for

at least 12 h (26). Taken together, these data indicate that muscle
NO3

− and NO2
− are both highly responsive to, and highly

dependent upon, dietary intake. The effects of dietary NO3
− on

muscle contractile function as discussed as follows are presumably
the result of increased NO production via this NOS-
independent pathway. However, the precise mechanism by which
dietary NO3

− might alter human muscle contractile properties is
still unknown, and direct effects of NO2

− and other reactive nitro-
gen species (e.g., peroxynitrite) cannot be ruled out completely.
Dietary NO3

− and Muscle Contractile Function

In 2012, Hernández et al. (22) demonstrated that, in mice,
7 d of (NO3

−) supplementation markedly increased the force
generated by fast-twitch, but not slow-twitch, muscle during
lower frequency electrical stimulation. There were, though,
no changes at higher frequencies of stimulation, that is, in te-
tanic force, or in the rate of force development. The results of
this study will be considered in greater detail later. The first hu-
man study to touch upon the question at hand, however, was
that of Fulford et al. (29), who in 2013 determined the effects
of ingesting 10.2 mmol of NO3

− either acutely or daily for
5–15 d, including on the day of testing, during isometric knee
extensor exercise in healthy, untrained young men (Table). This
reduced the energetic cost of exercise, as determined using 31P
magnetic resonance spectroscopy, but maximal voluntary force
production was unchanged. No other measurements of muscle
function were obtained, however, nor was there any evidence
of any chronic effects of NO3

− supplementation on muscle en-
ergetics (i.e., similar results were obtained during all three trials).
The latter finding is consistent with the apparent absence of any
chronic effects of dietary NO3

− supplementation on human mus-
cle contractile properties, as will be discussed.

Haider and Folland (10) in 2014 were the first to extensively
assess the impact of dietary NO3

− on human muscle contractil-
ity, by determining the effects of ingesting 9.7 mmol of NO3

−/d
for 7 d, including on the day of testing, on voluntary and elec-
trically stimulated isometric knee extension exercise in healthy,
untrained young men. Although no differences were observed
during voluntary exercise, small (i.e., 3%–15%), but statisti-
cally significant (i.e., P < 0.01–0.05), improvements in twitch
force, force at 10 Hz, and force during the first 50 ms of contrac-
tion were found during transcutaneous electrical stimulation.
Similar, but slightly larger, improvements (P < 0.01–0.05) have
since been reported byWhitfield et al. (12) in healthy, untrained
young men ingesting 26 mmol of NO3

−/d for 7 d (including on
the day of testing).

The data of Haider and Folland (10) and later Whitfield et al.
(12) clearly demonstrate that ingestion of NO3

− can alter human
muscle contractile function, at least during electrically stimulated
isometric exercise. In contrast, using very similar methods, Hoon
et al. (30) found no changes in maximal voluntary force or in
twitch force, the rate of force development, the rate of relaxa-
tion, or in force at 10–100 Hz of electrical stimulation after
3 d of NO3

− supplementation at (ostensibly) 8.8 mmol·d−1 plus
17.6 mmol on the day of testing. (NO3

− supplementation did
attenuate the rate of fatigue development during repetitive
stimulation for ≥80 s, but only when blood flow was restricted.)
Although it might be tempting to speculate that these largely
negative results are due to the shorter supplementation period,
this seems unlikely given that improvements in muscle function
have been observed even after an acute dose of NO3

− (see as
follows). The reasons why Hoon et al. (30) did not find any
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changes in unfatigued muscle are unclear, although it is
worth noting that these investigators used a BRJ product of
unverified NO3

− content and did not measure any markers
of NO bioavailability (e.g., plasma NO2

−, breath NO).
Given the data previously discussed, it is natural to wonder

whether dietary NO3
− can influence human muscle function

during voluntary, dynamic exercise. Indeed, contemporane-
ous with Haider and Folland’s (10) research, we used
isokinetic dynamometry to address this question in healthy,
young and middle-aged men and women (11). We found that
a single dose of 11.2 mmol of NO3

− 2–3 h before testing did
not increase maximal isometric force or the force (torque)
generated at slower velocities of knee extension. Acute
NO3

− ingestion did, however, enhance force at higher veloc-
ities, resulting in 11% and 6% increases (both P < 0.05) in
calculated maximal speed (Vmax) and power (Pmax), re-
spectively. Subsequently, we found even greater improve-
ments in Vmax and Pmax (i.e., of 12% and 13%,
respectively; both P < 0.05) in response to the same dose of
NO3

− in middle-aged patients with HF (18), presumably be-
cause such patients are NO deficient (31,32). Because NO
bioavailability also decreases with age (33), we have since ex-
amined the effects of acute NO3

− ingestion on the Vmax and
Pmax of the knee extensors of healthy, elderly subjects (19).
Although preliminary in nature, the data from this study

indicate that older subjects also demonstrate improvements
in Vmax and Pmax, at least provided that the dose of NO3

−

ingested is >125 μmol·kg−1. The conclusion that NO3
− in-

gestion can improve contractile function even in aged mus-
cle is supported by the findings of Justice et al. (20), who
found that daily supplementation with NO2

− for 10 wk in-
creased (P < 0.01) the rate of force development during vol-
untary knee extension and flexion in healthy, middle-aged
and older men and women. Finally, we have expanded re-
cently upon our original study (11) to investigate determi-
nants of interindividual differences in the effects of dietary
NO2

− on muscle function in a larger cohort (14). As before,
we observed significant increases in Vmax and Pmax (both
P < 0.05) in response to NO3

− intake, with the size of these im-
provements being positively associated with the magnitude of
the increase in plasma NO2

− concentration (P < 0.01) and pos-
sibly female sex (P < 0.08), but not with other parameters, in-
cluding baseline Vmax or decline in force during a 50
contraction fatigue test (in vivo indicators of muscle fiber type
distribution).

All of the data described previously were obtained during iso-
lated contractions performed by a single muscle/muscle group
acting across a single joint. To determine whether dietary
NO3

− also improves contractile performance during repeated
multi-muscle, multi-joint movements, we collaborated with

TABLE. Studies of the effects of dietary NO3− on human muscle contractile properties

Reference Subjects Exercise Mode Dose Relevant Findings

Fulford et al. 2013 (29) Healthy young men (n = 8) Isometric knee
extension (voluntary)

10.2 mmol NO3− 2.5 h
before testing or daily for
5 or 15 d including 2.5 h
before testing

↔ MVF

Haider and Folland, 2014 (10) Healthy young men (n = 19) Isometric knee extension
(voluntary and
electrically stimulated)

9.7 mmol NO3−/d for 7 d
including 2.5 h before testing

↔ MVF,↔ dF/dt, during voluntary exercise
↑ Ftw, ↑ F @ 1–20 Hz, ↑ dF/dt during

electrical simulation
Coggan et al., 2015 (11) Healthy young and middle-aged

men and women (n = 12)
Isometric and isokinetic

knee extension (voluntary)
11.2 mmol NO3− 2.5 h

before testing
↔ MVF,↔ F at 1.67, 3.14, and

4.71 rad·s−1, ↑ F at 6.28 rad·s−1,
↑ Pmax, ↑ Vmax

Coggan et al., 2015 (18) Middle-aged patients with
HF (n = 9)

Isometric and isokinetic
knee extension (voluntary)

11.2 mmol NO3− 2.5 h before testing ↔ MVF,↔ F at 1.67 and 3.14 rad·s−1,
↑ F at 4.71 and 6.28 rad·s−1,
↑ Pmax, ↑ Vmax

Hoon et al., 2015 (30) Healthy young men and
women (n = 18)

Isometric knee extension
(voluntary and
electrically stimulated)

8.8 mmol NO3−/d for 3 d plus
17.6 mmol NO3− 2–4 h before testing

↔ MVF during voluntary exercise
↔ dF/dt,↔ Ftw, ↔ -dF/dt,↔ F @ 10–100 Hz

during electrical stimulation
Rimer et al. 2016 (15) Collegiate team sport and

endurance athletes (n = 13)
Inertial load and isokinetic

cycling (voluntary)
11.2 mmol NO3− 2.5 h before testing ↑ Pmax, ↑ RPMopt

Kramer et al. 2016 (16) Male CrossFit athletes (n = 12) Isometric and isokinetic
knee extension and
flexion (voluntary)

8 mmol NO3−/d for 6 d with
last dose ≥24 h before testing

↔ MVF,↔ F at 1.05 and 3.14 rad·s−1
during isokinetic exercise

↑ Wpeak during cycling
Wingate test (voluntary)

Coggan et al., 2017 (19) Healthy older men
and women (n = 6)

Isometric and isokinetic
knee extension (voluntary)

11.2 mmol NO3− 2.5 h
before testing

↔ MVF,↔ F at 1.67, 3.14 and 4.71
rad·s−1, ↑ F at 6.28 rad·s−1 (4 of 6),
↑ Pmax (4 of 6), ↑ Vmax (5 of 6)

Whitfield et al., 2017 (12) Healthy young men (n = 8) Isometric knee extension
(voluntary and
electrically stimulated)

26 mmol NO3−/d for 7 d including
1.5 h before testing

↔ MVF during voluntary exercise ↑ Ftw,
↑ F @ 10 Hz, ↑ dF/dt, ↑ -dF/dt
during electrical stimulation

Domínguez et al., 2018 (13) Healthy young men (n = 15) Wingate test (voluntary) 5.6 mmol NO3− 3 h before testing ↑ Wpeak, ↓ time to Wpeak
Coggan et al., 2018 (14) Healthy men and women

(n = 20, including data
from n = 12 in Ref. 9)

Isometric and isokinetic
knee extension (voluntary)

11.2 mmol NO3− 2.5 h before testing ↑ Pmax, ↑ Vmax

Jonvik et al., 2018 (17) Recreational (n = 10), competitive
(n = 22), and elite (n = 10)
male and female athletes

Repeated (n = 3) 12.9 mmol·d−1 for 6 d including
3 h before testing

↔ Wpeak, ↓ time to Wpeak
Wingate tests
(voluntary)

↔, unchanged; ↑, significantly increased; ↓, significantly decreased; dF/dt, rate of force development; -dF/dt, rate of relaxation; Ftw, twitch force; F, force;MVF, maximal voluntary force; NO3

−, nitrate; Pmax, maximal power during single-leg knee extension (Refs. 9, 12, 16, 17) or two-legged cycling (Ref. 13); RPMopt, pedaling cadence resulting in Pmax; Vmax, maximal velocity of
knee extension; Wpeak, peak power during two-legged cycling.
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Dr. Jim Martin and Ernie Rimer at the University of Utah to
determine the effects of acute supplementation with 11.2 mmol
of NO3

− on performance during inertial load sprint cycling
(15). Similar to our isokinetic dynamometry results, we found
that NO3

−intake increased (P < 0.05) both cycling Pmax and
the associated pedaling rate by 6% in a heterogeneous group
of endurance and collegiate team sport athletes. These results
have since essentially been confirmed by Domínguez et al.
(13), who found that ingestion of 5.6 mmol of NO3

− 3 h before
a Wingate cycling test increased (P < 0.05) peak power by 6%.
Time-to-peak power also tended to be reduced (P = 0.06).
Jonvik et al. (17) also recently reported that ingestion of
12.9 mmol of NO3

−/d for 6 (including 3 h before testing) signif-
icantly (i.e., P < 0.01) reduced time-to-peak power (by 3%)
during Wingate testing of speed skaters, although peak power
itself was unchanged.
Along the same lines, Kramer et al. (16) recently found that

ingesting 8 mmol of NO3
−/d for 6 d improved the peak power of

male CrossFit athletes during a Wingate test by 7% (P < 0.01),
even though it did not alter force during isometric or isokinetic
knee extension or flexion at slow velocities. Unlike in other
studies, however, subjects were tested ≥24 h after the last dose
of NO3

−, after which plasmaNO3
− and NO2

− levels would be ex-
pected to have returned to near normal. Nonetheless, it seems
unlikely that the results of Kramer et al. (16) represent any sort
of long-term structural adaptation, because similar improvements
have been observed after just a single dose of NO3

− (13,15). Fur-
thermore, recent data from Whitfield et al. (12) demonstrate
that, unlike inmice (22), NO3

− supplementation of humans does
not alter the expression of key Ca2+ handling proteins in muscle
(seeMechanisms). Thus, the results of Kramer et al. (16) are pre-
sumably simply the result of a “loading” effect of previous NO3

−

intake on intramuscular NO3
− and NO2

− stores, versus any more
permanent adaptations in muscle.
Finally, several recent studies of male team sport athletes by

Jones et al. (34–36) also provide indirect evidence that dietary
NO3

− can enhance the contractile properties of human muscle.
In the first (34), ingestion of 12.8 mmol of NO3

−/d for 7 d (in-
cluding 2.5 h before testing) was shown to improve (i.e.,
P < 0.05) performance during the early phases of an intermit-
tent sprint cycling protocol designed to mimic the demands
of, for example, international field hockey. Similar results were
obtained by Wylie et al. (35) in subjects ingesting 8.2 mmol of
NO3

−/d for 5 d (including 2.5 h before testing) and performing
repeated 6 s (but not 30 or 60 s) all-out efforts. Finally, in another
study (35), supplementation with 6.4 mmol of NO3

−/d for 5 d
(including 2.5 before testing) was found to improve significantly
(i.e., P< 0.05) 0–5 and 5–10, but not 10–20,m split times during
an intermittent sprint running test. Although somewhat indi-
rect, the results of these studies are consistent with the dietary
NO3

−-induced increases in muscle contractility found both by
ourselves (11,14,15,18,19) and others (10,12,13,16,17,20).
In summary, numerous recent studies have demonstrated

that ingestion of NO3
− significantly enhances muscle contrac-

tile function in humans. This effect seems to be the result of
an increase in the number of active actomyosin cross-bridges
and in the rate of cross-bridge cycling under load, and not
an increase in the force generated per active cross-bridge.
This interpretation is based upon the improvements observed
in isometric twitch force (10,12), rate of isometric force

development (10,12,20), isometric force during low-frequency
electrical stimulation (10,12), isokinetic/dynamic force and
power during high-velocity muscle shortening (11,13–17),
and increased estimated maximal speed of shortening
(11,15,19), all in the absence of any significant improvement
in the force-generating capacity of muscle during maximal vol-
untary contractions (10–12,14,16,19,20,30) or at higher fre-
quencies of electrical stimulation (10,12). The specific
biochemical mechanisms by which dietary NO3

− might alter
the contractile characteristics of human muscle are considered
in greater detail as follows.

Mechanisms
As mentioned previously, using mice, Hernández et al. (22)

were the first to determine the effects of dietary NO3
− onmuscle

contractility. Along with the fast twitch fiber-specific changes
in function described previously, these authors found that
NO3

− supplementation increased [Ca2+]i in muscle, both at rest
and during tetanic contractions, and also shifted the force-Ca2+

relation, resulting in increased force at moderately high, but
sub-saturating, Ca2+ levels. These effects were ascribed to in-
creased expression of the Ca2+-handling proteins calsequestrin
(CSQ) and the dihydropyridine (DHPR) receptor. More recently,
however, Whitfield et al. (12) found that NO3

− supplementa-
tion did not alter the expression of CSQ, DHPR, or other
Ca2+-handling proteins, that is, RyR or the sarcoendoplasmic
reticulum Ca2+ ATPase (SERCA), in human muscle. Further-
more, changes in protein expression cannot explain the improve-
ments in muscle contractile function that we (11,14,15,18,19)
and others (13) have observed repeatedly after acuteNO3

− inges-
tion, nor could the changes in CSQ and DHPR reported by
Hernández et al. (22) seemingly explain the alteredCa2+ sensitiv-
ity that these authors also found.

In the absence of changes in protein expression,Whitfield et al.
(12) speculated that NO3

−-induced improvements in muscle
function may be due to enhanced production of reactive O2 spe-
cies. This hypothesis was based on the observations of Andrade
et al. (37), who reported that H2O2 reduces Ca

2+ release but in-
creases maximal tetanic force in isolated mouse muscle fibers.
However, Whitfield et al. (12) found no changes in the levels
of protein carbonylation or lipid peroxidation or in the ratio
of reduced to oxidized glutathione, which would argue against
significant changes in cellular redox status. More importantly,
dietary NO3

− actually increases Ca2+ release in mice (22) and
has failed routinely to increase either maximal voluntary or
maximal electrically stimulated force in numerous human stud-
ies ((10–12,16,18,19,30); Table), effects that are precisely the
opposite of those due to H2O2 (37). Increased production of reac-
tive O2 species also cannot account for the improvements in
muscle contractility that result from NO3

− intake.
Given that neither changes in protein expression nor in

redox state can seemingly explain dietary NO3
−-induced im-

provements in human muscle contractile function, what mech-
anism(s) is (are) responsible? Historically, NO was considered
to act exclusively via the sGC-cGMP-PKG pathway (38). In
the last few decades, however, it has become increasingly recog-
nized that NO also can influence cellular events more directly,
either by itself or after nitrosylation or transnitrosylation of
thiols, especially cysteine residues of proteins (39). In skeletal
muscle, however, most non–cGMP-mediated effects of NO
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are actually inhibitory, that is, they tend to diminish, not en-
hance, muscle contractile function. For example, it has been
shown that NO directly inhibits the activity of SERCA in rab-
bit fast twitch muscle (40). This would be expected to slow the
rate of relaxation and limit the amount of Ca2+ released (and
hence force generated) during subsequent contractions, due to
depletion of Ca2+ from the sarcoplasmic reticulum. Somewhat
along the same lines, high-intensity exercise has been found
to stimulate transnitrosylation of myosin in rat fast twitch mus-
cle (41), but this inhibited the Mg2+ ATPase activity of the
protein. All else being equal, this would reduce maximal short-
ening velocity. Increased NO availability may lead also to re-
versible transnitrosylation of troponin I (TropI) (42), but the
consequence of this is a reduction in Ca2+ sensitivity of rat
and human fast-twitch and no change in slow-twitch fibers.
All of these effects (i.e., decline in Ca2+ release, decrease in
speed of shortening, reduction or no change in Ca2+ sensitivity)
are the opposite of those that have been observed after dietary
NO3

− supplementation.
In contrast to the inhibitory effects described previously,

transnitrosylation of RyR may be one mechanism by which
NO could enhance muscle contractile function. This posttrans-
lational modification of the protein enhances Ca2+ release (43),
by increasing the probability of the channel being in the open
state (44). In particular, at low O2 tensions typical of skeletal
muscle in vivo even submicromolar concentrations of NO will
activate type 1 RyRs (45), as a result of transnitrosylation of a sin-
gle cysteine residue (46). This blocks the inhibitory effects of cal-
modulin (CaM) on RyR1, thereby enhancing Ca2+ release and
force production. Thus, although excessive nitrosylation of RyRs
and hence sustained elevations in [Ca2+]i in muscle are thought
to play a key role in exertional heatstroke and malignant hyper-
thermia (47), physiological (rather than pathophysiological)
increases inNO and hence in RyR nitrosylation andCa2+ release
as a result of dietary NO3

− intake could be responsible for the ac-
companying improvements in muscle contractile function. Spe-
cifically, under sub-saturating conditions dietary NO3

−-induced
increases in [Ca2+]i (22) would enhance twitch force, rate of
force development, shortening velocity, and power, whereas no
changes would be expected to occur under saturating conditions,
for example, during a sustained maximal isometric contraction.
These functional changes are, of course, precisely those that have
been observed in response to acute and chronic NO3

− supple-
mentation. An increase in [Ca2+]i during contractions due to
RyR nitrosylation could explain also the increase in Ca2+ sensi-
tivity observed by Hernández et al. (22), by enhancing myosin
regulatory light chain phosphorylation (pRLC) via the Ca2+-
CaM-skeletal muscle myosin light chain kinase (skMLCK) path-
way (23). Indeed, the effects of dietary NO3

− on muscle
contractile properties are essentially identical to those
resulting from increased pRLC (23). Together, these two effects
(i.e., an increase in [Ca2+]i and in Ca2+ sensitivity, both as a re-
sult of RyR nitrosylation) could account for all of the changes
in muscle contractile properties that have been observed in re-
sponse to dietary NO3

− intake.
Alternatively and in addition, enhanced NO signaling via the

original sGC-cGMP-PKG pathway is another possible mecha-
nism by which NO3

− supplementation improves muscle contrac-
tile function in humans. In this scenario, which is based on that
originally hypothesized by Maréchal and Beckers-Bleukx (48),

an increase in NO bioavailability resulting from dietary NO3
− in-

take results in activation of sGC, and hence an increase in
cGMP production. Increased cGMP levels in turn result in acti-
vation of PKG and hence in skMLCK activity, leading to an in-
crease in pRLC. This would enhance Ca2+ sensitivity of the
contractile apparatus, thereby accounting for all of the functional
changesmentioned previously. (An increase in skMLCK activity
would not explain the increase in Ca2+ release reported by
Hernández et al. (22), as the SR is not a target of this enzyme.)
In support of this hypothesis, Maréchal and Beckers-Bleukx
(48) demonstrated that sGC inhibitors or activators respectively
diminished or augmented the maximal shortening velocity of
mouse muscle without altering maximal isometric force, effects
that resemble those of dietary NO3

−. Maréchal and Beckers-
Bleukx (48) also found that inhibition of NOS reduced basal
cGMP levels by 12%–27%, whereas others have reported (in ab-
stract) that NOS inhibition reduces pRLC by a similar amount
in C2C12 myotubes (49). Thus, although it remains to be dem-
onstrated that an increase in NO bioavailability as a result of di-
etary NO3

− intake results in an increase in either cGMP or in
pRLC in either animal or human muscle, this alternative or par-
allel mechanism may also be operative.

Effects of Muscle Fiber Type
As indicated previously, studies of rodents have demonstrated

that the effects of dietary NO3
− on contractile properties are spe-

cific to fast-twitchmuscle (22). In rats, however, muscle contrac-
tion results in an increase in pRLC only in fast-twitch fibers,
whereas in humans this occurs in both fast-twitch and slow-
twitch fibers (23). Furthermore, human (and rat) fast- and
slow-twitch muscle fibers primarily or even exclusively express
the same isoform of RyR, that is, RyR1 (50). Thus, based on
the mechanisms described previously, there would be no reason
to hypothesize a fiber type-specific effect of dietary NO3

− on
the contractile properties of humanmuscle, even though one ex-
ists in rats. In fact, as previously mentioned, we were recently un-
able to detect any relation between in vivo indicators in muscle
fiber type distribution and the magnitude of the dietary
NO3

−-inducted increase in Pmax (14). Muscle fiber type distribu-
tion was not determined directly in this study, however, so at least
at present a fiber type-specific benefit of dietary NO3

− supplemen-
tation on humanmuscle function cannot be ruled out completely.

Significance
Additional research is required to test the previous hypotheses

and may prove to be particularly challenging given the previ-
ously mentioned differences between humans and rodents, in-
cluding in the acute responses (21) and chronic adaptations
(i.e., (12) vs (22)) to dietary NO3

− supplementation. The
“crosstalk” between the proposed RyR and sGC-cGMP-PKG
pathways (at the level of pRLC) may also make it difficult to de-
termine the relative importance of nitrosylation versus canonical
NO signaling, as is true in other situations. Regardless of the pre-
cise mechanism(s) involved, however, the improvements in hu-
man muscle contractile function resulting from NO3

− ingestion
are potentially significant. This is true in the contexts of both
sports and general health and well-being. For example, as previ-
ously discussed (11), even a 1% improvement in performance
would double the probability of an elite athlete winning a partic-
ular competition. Comparatively speaking, the 4%–13%
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increase in maximal neuromuscular power resulting from dietary
NO3

− intake (11,13–16,18,30) is enormous. More importantly,
muscle power plays a key role in activities of daily living yet is
compromised markedly in, for example, patients with HF due
to systolic dysfunction (31). Indeed, reduced muscle contractile
function strongly contributes to the whole-body exercise intoler-
ance that is characteristic of the latter “cardiomuscular” disease,
and in fact is a powerful predictor of survival in those with HF
(31). In this context, as previously discussed (31), the magni-
tude of the dietary NO3

−-induced increase in maximal neuro-
muscular power we have found in HF patients (18) is
sufficient to have acutely erased approximately one third of their
expected deficit in this parameter. It is also similar to that
resulting from 2 to 3 months of resistance exercise training in
such individuals, which has been shown to result in improve-
ment in Minnesota Living with Heart Failure Questionnaire
Scores (18). Thus, significant improvements in skeletal muscle
contractility due to NO3

− ingestion could have a positive impact
on quality of life and possibly even lifespan in patients with HF,
as well as other subject groups.

Summary
Numerous recent studies, both by ourselves (11,14,15,18,19)

and by others (10,12,13,16,17,20), have demonstrated that
acute or chronic NO3

− (or NO2
−(20)) ingestion significantly

enhances the contractile properties of human skeletal muscle,
especially speed and hence power. Such improvements have
been observed in a wide range of subjects, including younger,
untrained individuals (10–12,14), trained athletes (13,15–17),
patients with HF (18), and the elderly (19,20). The precise
mechanisms responsible for this NO3

−-induced increase in hu-
man muscle contractility are still unknown, but changes in
Ca2+ signaling due to increased NO bioavailability are likely
to play a role. Additional research will be needed to test this hy-
pothesis and to determine the practical and clinical benefits of
using NO3

− supplementation to augment muscle function in
healthy and diseased populations.
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