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Surface Exposure and Packing of Lipoproteins into Outer
Membrane Vesicles Are Coupled Processes in Bacteroides

Ezequiel Valguarnera,a Nichollas E. Scott,b Philippe Azimzadeh,a Mario F. Feldmana

aDepartment of Molecular Microbiology, Washington University in Saint Louis, Saint Louis, Missouri, USA
bDepartment of Microbiology and Immunology, The University of Melbourne, Victoria, Australia

ABSTRACT Outer membrane vesicles (OMVs) are spherical structures derived from
the outer membranes (OMs) of Gram-negative bacteria. Bacteroides spp. are promi-
nent components of the human gut microbiota, and OMVs produced by these spe-
cies are proposed to play key roles in gut homeostasis. OMV biogenesis in Bacte-
roides is a poorly understood process. Here, we revisited the protein composition of
Bacteroides thetaiotaomicron OMVs by mass spectrometry. We confirmed that OMVs
produced by this organism contain large quantities of glycosidases and proteases,
with most of them being lipoproteins. We found that most of these OMV-enriched
lipoproteins are encoded by polysaccharide utilization loci (PULs), such as the sus
operon. We examined the subcellular locations of the components of the Sus system
and found a split localization; the alpha-amylase SusG is highly enriched in OMVs,
while the oligosaccharide importer SusC remains mostly in the OM. We found that
all OMV-enriched lipoproteins possess a lipoprotein export sequence (LES), and we
show that this signal mediates translocation of SusG from the periplasmic face of
the OM toward the extracellular milieu. Mutations in the LES motif caused defects in
surface exposure and recruitment of SusG into OMVs. These experiments link, for the
first time, surface exposure to recruitment of proteins into OMVs. We also show that
surface-exposed SusG in OMVs is active and rescues the growth of bacterial cells in-
capable of growing on starch as the only carbon source. Our results support the role
of OMVs as “public goods” that can be utilized by other organisms with different
metabolic capabilities.

IMPORTANCE Species from the Bacteroides genus are predominant members of the
human gut microbiota. OMVs in Bacteroides have been shown to be important for
the homeostasis of complex host-commensal relationships, mainly involving immune
tolerance and protection from disease. OMVs carry many enzymatic activities in-
volved in the cleavage of complex polysaccharides and have been proposed as pub-
lic goods that can provide growth to other bacterial species by release of polysac-
charide breakdown products into the gut lumen. This work shows that the presence
of a negatively charged rich amino acid motif (LES) is required for efficient packing
of the surface-exposed alpha-amylase SusG into OMVs. Our findings strongly suggest
that surface exposure is coupled to packing of Bacteroides lipoproteins into OMVs.
This is the first step in the generation of tailor-made probiotic interventions that can
exploit LES-related sequences to generate Bacteroides strains displaying proteins of
interest in OMVs.

KEYWORDS Bacteroides, OMV, hydrolases, lipoproteins, vesicles

Outer membrane vesicles (OMVs) are small spherical structures derived from the
outer membranes (OMs) of most Gram-negative bacterial species. OMVs are

composed of phospholipids, lipopolysaccharide (LPS), or lipooligosaccharide (LOS) and
OM and periplasmic proteins (1, 2). OMVs can mediate host-microbe interactions by
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facilitating long-distance delivery of virulence factors, by modulating the host immune
response, and by contributing to antibiotic resistance (1, 3–8). Despite these key roles
in bacterial physiology, OMV biology is poorly understood. Recent research indicates
that OMVs are produced by diverse mechanisms. For example, OMVs are proposed to
be generated by LPS remodeling in Porphyromonas gingivalis, Salmonella enterica, and
Pseudomonas aeruginosa (9–12). In contrast, OMVs from Haemophilus influenzae and
Vibrio cholerae are thought to be the result of an accumulation of phospholipids in the
OM outer leaflet mediated by their specialized VacJ/Yrb transporter (13). Thus, it
appears that there is not a universal mechanism of OMV biogenesis. For most species,
including Bacteroides spp., OMV biogenesis remains poorly understood (5).

Species from the phylum Bacteroidetes compose a major part of the human gut
microbiota (14, 15). OMVs from these organisms are proposed to play important roles
in the commensal-host relationship, including the delivery of immunomodulatory
molecules to host immune cells, an interaction that appears to help prevent colitis
flare-ups in the context of inflammatory bowel disease (IBD) (7, 8). Furthermore,
Bacteroides OMVs have been proposed to interfere with intracellular Ca2� signaling in
host cells (16). Most studies focus primarily on two predominant species in the human
gut, Bacteroides thetaiotaomicron and Bacteroides fragilis. These species produce large
amounts of uniformly sized OMVs that have a protein composition distinct from that of
the OM, indicating that these OMV particles are not by-products of bacterial lysis (5).
Most Bacteroides OMV-exclusive proteins are putative acidic lipoproteins with hydrolase
activity, suggesting that proteins with similar structural and physicochemical properties
are selectively sorted to OMVs (5). Many Bacteroides enzymatic lipoproteins are en-
coded on polysaccharide utilization loci (PULs), which constitute �20% of the B.
thetaiotaomicron genome and are essential for the breakdown and acquisition of plant,
fungus, and mucin complex polysaccharides (17–19). PULs typically consist of at least
one TonB-dependent receptor, or SusC-like protein, and one nutrient binding accessory
protein, or SusD, and they can also present other accessory proteins (20). PULs can also
carry two-component systems that sense nutrient variations in the medium, with
subsequent induction of polysaccharide utilization genes required for the utilization of
complex carbon sources (17–19, 21–24). Hence, Bacteroides cells can modify the
enzymatic compositions of OMVs according to available carbon sources (5). The enzy-
matic arsenal carried by Bacteroides OMVs appears to carry a “social” function, as the
products of OMV-mediated hydrolysis can be utilized by other bacteria within the gut
(25, 26).

Here, we further characterized the protein composition of B. thetaiotaomicron OMVs.
We confirmed that OMVs produced by this organism contain mainly putative acidic
lipoproteins with hydrolytic or carbohydrate-binding activities. Many of these OMV-
enriched lipoproteins were found to be encoded by PULs. We examined the subcellular
localization of the components of the archetypical PUL, the starch utilization system
(Sus) (20, 27), and found that the alpha-amylase SusG and other Sus lipoproteins are
highly enriched in OMVs. In contrast, the oligosaccharide importer SusC remains mostly
in the OM, as previously characterized (20, 27, 28). We show that the presence of a
lipoprotein export sequence (LES) mediates translocation of SusG from the periplasmic
face onto the extracellular milieu and is both required and sufficient for SusG to localize
preferentially to OMVs. Our results support the role of OMVs as “public goods” that can
be utilized by other organisms with different metabolic capabilities.

RESULTS
Proteomics analysis of membrane and OMV fractions from B. thetaiotaomicron.

Electron micrograph analysis confirmed that B. thetaiotaomicron produces large
amounts of uniform OMV particles (Fig. 1). We previously performed a proteomic
analysis of B. thetaiotaomicron OMs and OMVs by employing Triton X-100 for the
purification of OM proteins (5). In this work, we employed N-lauroylsarcosine (Sarkosyl),
which has been widely used for the separation of inner membrane (IM) and OM
fractions in Gram-negative bacteria (29–31) to verify that the apparent selective frac-
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tionation of proteins into OM and OMV was not due to the use of a specific detergent.
Using early-stationary-phase cultures from B. thetaiotaomicron, we prepared the differ-
ent membrane fractions as indicated in Fig. S1 in the supplemental material. In our
previous study, OMVs were not treated with the detergent employed to extract the IM
proteins from total membrane preparations. To rule out possible detergent effects, we
added an additional step consisting of incubating OMVs in 1% Sarkosyl prior to the
ultracentrifugation of the samples to recover an OMV supernatant (OMV-S) and an OMV
pellet (OMV-P). Samples were lyophilized for proteomic analysis by liquid chromatography-
tandem mass spectrometry (LC-MS/MS), and aliquots were visualized by Coomassie blue
staining (Fig. S1).

Our new data set with annotations and predicted functions and locations for
proteins in all fractions is provided as Table S1 in the supplemental material. We
confirmed our previous findings showing an enrichment of lipoproteins in the OMV
fraction in comparison with their level in the OM fraction (Table 1; Table S2) (5). Figure 2
highlights the top enriched proteins in the OMV. We found that 18 out of the 23
OMV-exclusive lipoproteins from our previous study are also enriched in the new OMV
preparations (5). We then cloned three OMV- and three OM-enriched proteins identified
in our studies into the expression vector pFD340 as C-terminal 6�His-tagged proteins
to confirm their localization by Western blotting. Figure 3a shows that a putative cell
surface protein (BT_1488), as well as a putative calpain-like protease (BT_3960) and a
putative zinc peptidase (BT_3237), is highly enriched in OMVs. Figure 3b shows that
BT_0418, BT_2844, and BT_2817, identified as OM-enriched proteins by MS, are re-
tained at the OM and are not present in OMVs. BT_0418 is a porin F ortholog
(8-�-strand protein with a peptidoglycan-binding domain), BT_2817 is a TonB-
dependent receptor (22-�-strand protein), and BT_2844 is a lipoprotein-containing
tetratricopeptide repeat (TPR) motif. Both BT_0418 and BT_2817 are not predicted to be
lipoproteins, they carry a signal peptidase I (SPI) cleavage site, and they do not contain
the lipoprotein attachment cysteine residue. Before cloning this group of OMV- and
OM-enriched proteins, we observed that the automated start codon annotation for

FIG 1 B. thetaiotaomicron produces outer membrane vesicles (OMVs). Transmission electron microscopy
of a single B. thetaiotaomicron cell together with OMVs in the extracellular milieu. B. thetaiotaomicron
cells were swabbed from a solid-medium plate, suspended in PBS, and processed for TEM. Images were
acquired at a direct magnification of �15,000. The scale bar represents 500 nm. (Image courtesy of
Wandy Beatty, Molecular Microbiology Imaging Facility, WUSTL.)
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some open reading frames (ORFs) (BT_0418 and BT_2844) seemed incorrect. Any
mistakes in start codon-predicted annotations were corrected accordingly (see Mate-
rials and Methods). These sets of experiments demonstrate that lipoproteins are indeed
differentially sorted between OMs and OMVs.

Common features of OMV-enriched lipoproteins. Consistently with our previous
results, we found that lipoproteins enriched in OMVs are acidic, with an average
isoelectric point of 4.86 (5). We also determined that OMV-enriched lipoproteins
possess a negatively charged rich amino acid motif, S(D/E)3, adjacent to the cysteine
residue required for lipoprotein attachment (Fig. 4; Table S2). A similar motif [K-(D/E)2

or Q-A-(D/E)2] in the oral pathogen Capnocytophaga canimorsus, a member of the
Bacteroidetes phylum, has recently been described. The report showed that this motif
functions as a lipoprotein export signal (LES) required for surface exposure of OM
lipoproteins (32). The authors also showed that proteins carrying a LES from B. fragilis

TABLE 1 Top 20 most OMVp-enriched proteins, including protein name and enrichment
valuea

aLFQ, label-free quantification.
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were exposed when expressed in C. canimorsus. We found that many OMV-enriched B.
thetaiotaomicron lipoproteins are putative protein and sugar hydrolases required for
the breakdown of complex nutritional sources. The presence of a LES on OMV-enriched
proteins is consistent with their annotated functions, as they are required to face the
extracellular milieu to access their cognate substrates. Conversely, OM-enriched lipo-
proteins like BT_2844 do not carry a LES motif. These proteins have lower sequence
conservation and lower frequency of negatively charged amino acids along the resi-
dues adjacent to the lipoprotein attachment cysteine and are therefore expected to be
oriented toward the periplasmic face of the OM (Fig. 4b; Table S2).

SusG and other Sus lipoproteins are enriched in OMV, and SusC is retained at
the OM. In B. thetaiotaomicron, hydrolytic lipoproteins are encoded mainly in PULs. PUL
and PUL-like operons account for approximately 20% of the B. thetaiotaomicron ge-
nome. Thirty-six lipoproteins encoded in PUL and PUL-like operons were found in our
OMV-enriched proteins. One of the most studied lipoproteins from B. thetaiotaomicron
is the �-amylase SusG, encoded by the sus operon and essential for starch catabolism
(33, 34). The sus operon has been shown to be induced by starch and maltooligosac-
charides (35). Our MS data show that even under noninducing conditions, two lipo-
proteins encoded by the sus operon, SusD and SusE, are enriched in OMVs (Table S2).
Given the importance of starch in the mammalian diet, we investigated the subcellular
localization of the components of the Sus operon. We found that all Sus lipoproteins,
in particular SusG, are enriched in the OMV. The only exception was the porin SusC,
which is retained mostly at the OM (Fig. 5). We also observed considerable levels of

FIG 2 The B. thetaiotaomicron OMV pellet (OMVp) protein content is different from that of the OM. Three
hundred micrograms of each preparation and biological replicates of purified OM and OMVp proteins
were digested with trypsin. The resulting peptides were enriched and then analyzed via liquid chroma-
tography coupled to tandem mass spectrometry (LC-MS/MS) as explained in Materials and Methods,
followed by protein identification with the Mascot search engine using the UniProt database. Volcano
plot shows OM and OMVp protein populations. Red labels indicate the proteins with the highest OMVp
enrichment in comparison to that of OM.
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SusD in the OM, concomitant with its strong functional interaction with SusC (28). This
result suggests that PUL components can exert their biological effect not only at the
level of the outer membrane but also through OMVs. These findings represent a
localization split for the components of the sus operon exclusively and need to be
further validated for other sus-like systems through the B. thetaiotaomicron genome,
especially because we observed other SusC-like proteins enriched in both OMs and
OMVs (Table S2).

FIG 3 Validation of OMV- and OM-enriched proteins. Candidate ORFs that encode proteins identified in
our MS analysis as OMV or OM enriched were cloned into pFD340 with a C-terminal 6�His tag.
Constructs were introduced into B. thetaiotaomicron by conjugation, generated strains were grown in
TYG medium, and fractions were prepared. Ten micrograms of each fraction was subjected to 12%
SDS-PAGE and analyzed by Western blotting using anti-His polyclonal antibodies. (a) OMV-enriched
proteins; (b) OM-enriched proteins. The isoelectric point as well as the residues following the lipoprotein
attachment cysteine (for lipoproteins) are indicated below the protein name.

FIG 4 OMV-enriched proteins show a conserved N-terminal LES motif. The top 91 OMV-enriched
proteins (a) and top 24 OM-enriched proteins (b) were aligned using the lipoprotein attachment cysteine
at the �1 position (not shown in the logo), followed by the 9 C-terminal contiguous residues. The
lipoprotein export sequence (LES) consensus was generated using WebLogo (https://weblogo.berkeley
.edu/logo.cgi) (56).
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LES is required for SusG exposure and packing into OMVs. All B. thetaiotaomi-
cron endoglycanases involved in the first step of polysaccharide breakdown, including
SusG, are surface-exposed lipoproteins (33, 36). Because all OMV-enriched lipoproteins
contain a LES motif, we investigated the link between surface exposure and packing
into OMVs. SusG contains only two Asp residues following the �2 Ser residue, and
therefore, for the purpose of this work, we provisionally define its LES motif as CSDD.
We performed a mutational analysis on the LES motif of SusG and analyzed the
localization of the protein by fractionation and Western blotting (Fig. 6). We cloned
wild-type (WT) His-tagged SusG and a set of SusG derivatives carrying amino acid

FIG 5 Sus lipoproteins are OMV enriched, while SusC is OM enriched. B. thetaiotaomicron cells
containing a tagged genomic copy of susC with a 3�Flag tag were grown in TYM medium (TYG recipe
with 0.5% maltose instead of glucose for induction of the sus operon). Fractions were prepared and
analyzed by 12% SDS-PAGE and Western blotting using specific anti-Sus, anti-Flag, and anti-RNApol
antibodies.

FIG 6 SusG LES is required for efficient packing into OMVs. (a) SusG LES point mutants were generated
on pFD340/susG-6�His using Quick site-directed mutagenesis. (b) Constructs were introduced in the
ΔsusG background, and generated strains were grown in minimal medium with glucose as the only
carbon source. Fractions were prepared and analyzed by SDS-PAGE and Western blotting using anti-SusG
antibodies. (c) OMV/OM ratios were calculated using the fluorescence signal values for each protein and
are plotted as a percentage of the WT OMV/OM ratio (100%). Statistical significance was determined by
unpaired t test of each LES variant in comparison with values for the wild-type LES strain. *, P values �
0.03. NS, not significant. The experimental results are representative of those of three biological
replicates; shown are mean values with standard deviations (SD) for two technical replicates.
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replacements in the LES (Fig. 6a) and expressed them in the ΔsusG strain (37).
Replacement of the lipid attachment site (C23) by Ala resulted in abrogation of SusG
recruitment into OMVs. Furthermore, substitution of a single Asp residue with Ala
(CSAD, CSDA, CAAD) decreased OMV packaging (�50% relative to that in the WT),
while mutation of both Asp residues by either Ala or Lys (CSAA, CAAA, CAKK) had a
more dramatic effect (�15% relative to that of the WT) (Fig. 6c). Conservative replace-
ment of Asp by Glu (CSEE) displayed a WT-like behavior. These results indicate that the
LES motif CS(D/E)2 is required for SusG packaging into OMVs.

The LES motif has been defined as a surface exposure tag in C. canimorsus (32). We
used the WT LES SusG construct as well as the non-Asp variants (CSAA, CAAA) to
determine whether this motif is also required for surface exposure in B. thetaiotaomi-
cron. Whole cells and OMVs from the different strains were subjected to proteinase K
(ProK) sensitivity analysis. Only the WT SusG was degraded by ProK (Fig. 7). As a control,
we employed a periplasmic soluble protein that localizes into the lumens of OMVs
(BT_0766) and is therefore protected from ProK degradation. Taken together, these
experiments confirm that LES mediates both SusG surface exposure and enrichment in
OMVs.

OMVs containing SusG rescue the �susG strain’s growth in starch. Our exper-
iments demonstrated that SusG is surface exposed and packed into OMVs. OMVs
carrying certain glycosyl hydrolases can digest complex polysaccharides, providing
essential nutrients to bacteria unable to degrade these substrates (25, 26). The ΔsusG
strain is unable to grow on minimal media with starch as the sole carbon source (Fig. 8).
We investigated whether surface exposure of OMV-delivered SusG can rescue the
ΔsusG growth phenotype on starch. For this, we employed OMVs produced by the
ΔsusG strain expressing WT SusG and SusG with a mutated LES (ASDD, CSAA, and
CAAA). The ASDD mutation renders soluble SusG in the periplasm, while the CSAA and
CAAA SusG variants face the periplasmic side of the OM (Fig. 7). Purified OMVs were
added to the ΔsusG strain in minimal media containing starch. Only WT OMVs restored
the growth of the ΔsusG strain to wild-type levels (Fig. 8). OMVs from the susG
deletion-carrying vector control (pFD340) or expressing the nonlipoprotein mutant
(ASDD) or the CSAA mutant were unable to rescue the expression of SusG, while the
CAAA mutant displayed an intermediate phenotype. All together, our results indicate

FIG 7 The LES is required for SusG surface exposure. WT SusG and the LES mutants were assessed for
their surface exposure by proteinase K assays using whole cells (a) and OMVs (b). Proteinase K (PK) was
added and incubated at 37°C; at different times (in minutes), aliquots were TCA precipitated and
analyzed by SDS-PAGE and Western blotting using anti-SusG antibodies. We used 3�Flag-tagged
BT_0766, a periplasmic soluble protein found in OMVs, as an outer membrane and OMV integrity control.
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that OMVs carrying only surface-exposed SusG can mediate cross-feeding of other
bacteria.

DISCUSSION

The human gut microbiome is composed largely of species from the Bacteroides
genus. Bacteroides spp. are important for gut homeostasis (14, 15). They establish
ecological interactions with each other and are also involved in host-commensal
relationships, especially regarding the development of the immune system (7, 8, 16).
Here, we show that B. thetaiotaomicron produces large amounts of uniformly sized
OMVs. Using an optimized methodology for the purification of different membrane
fractions, we confirmed that OMVs are highly enriched with lipoproteins, particularly
glycosyl hydrolases. Our MS data identified the presence of a lipoprotein exposure
sequence (LES) in all OMV-enriched lipoproteins. Employing the �-amylase SusG as a
model, we confirmed that the LES is required for surface exposure and showed that it
also mediates recruitment into OMVs. To our knowledge, this is the first identification
of coupling surface exposure to protein sorting into OMVs.

A few lipoprotein surface transport mechanisms in Gram-negative bacteria have
been described (38–41). Shuttling of a group of Neisseria meningitidis lipoproteins to
the surface is dependent on proteins Slam1 and Slam2, although the sorting mecha-
nism has not been defined (41, 42). Moreover, the well-studied Bam system for folding
of beta-barrel proteins in the outer membrane has been shown to export specific
lipoproteins (39). We have not identified orthologs of Slam1 or Slam2 by sequence
similarity in any Bacteroides genomes. The existence of LES motifs in B. thetaiotaomicron
lipoproteins, together with the discovery of the LES in C. canimorsus, suggests the
existence of a conserved phylum-wide mechanism that flips specific lipoproteins
toward the extracellular milieu among Bacteroidetes. Defining a functional LES in
Bacteroides spp. constitutes the first step toward the identification of the machinery
that mediates lipoprotein surface exposure in these organisms. Our experiments con-
firmed that the two Asp residues in positions �3 and �4 respecting the lipid attach-
ment site (�1) are essential components of SusG LES. The proposed B. thetaiotaomicron
LES motif CS(D/E)2 is similar but not identical to the K-(D/E)2 or Q-A-(D/E)2 LES proposed
for C. canimorsus. An exhaustive mutagenesis analysis of multiple proteins from several
species will be required to exactly define a consensus sequence for the LES motif
among Bacteroidetes.

MS results show that OMV-enriched lipoproteins contain a LES motif, suggesting

FIG 8 OMVs displaying WT SusG can rescue a strain with a ΔsusG growth phenotype on starch as the
carbon source. WT and ΔsusG strains were grown overnight in TYG medium. Cultures were washed with
minimal medium without any carbon source and normalized by OD. Minimal medium with 0.5% starch
as the only carbon source was inoculated with WT or ΔsusG strains to a final OD600 of 0.05. OMVs purified
from the ΔsusG strain containing different pFD340 derivatives were added to the ΔsusG cultures in
minimal medium with starch (1-�g/ml final concentration of OMVs). Aliquots were taken at different
times, and the OD600 was measured to determine growth. Statistical significance when two growth
curves were compared was determined by performing one pair of an unpaired t test analysis per each
time point. *, P values � 0.01. The experiment is representative of three biological replicates; shown are
mean values with SD for three technical replicates.
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that most if not all OMV-enriched lipoproteins are surface exposed in a LES-dependent
manner (Fig. 9). We can speculate with two models to account for this correlation
between surface exposure and OMV recruitment of lipoproteins. One possibility is that
the LES sequence is somehow recognized by a putative OMV sorting machinery,
packaging them preferentially into vesicles. Alternatively, exposed lipoproteins might
be recruited into OMVs based on their biophysical properties. Uncoupling surface
exposure with OMV packaging is currently not possible, and future work will be
required to unravel the molecular basis of the link between these two processes.

In the current models for PUL systems, the hydrolytic enzymes and the oligosac-
charide importers are present at the outer membrane (20, 36). However, we determined
that functional glycosyl hydrolases are packed mainly into OMVs. We also found that
the glycosidases present in OMVs can provide substrates to support the growth of
other bacteria, in agreement with the previously proposed function of OMVs as public
goods (25, 26). We propose a model in which, in a process involving the LES, the
glycosidases are sequentially surface exposed and sorted into OMVs (Fig. 9). The
secreted OMVs, armed with an arsenal of hydrolases, can digest diverse dietary poly-
saccharides and host glycoconjugates, making the mono- and oligosaccharides avail-
able to all members of the microbiota. Depending on the diet composition, Bacteroides
spp. can induce and package different enzyme repertoires, and therefore, members of
the microbiota can act as donors or acceptors in their ecological niches. In addition,
pathogens such as Campylobacter, Salmonella, and Clostridium can also benefit from the
glycosidic activity contained in OMVs (43, 44). From an evolutionary and social stand-
point, it is not clear how beneficial OMV-mediated hydrolysis is for the producing
organisms. On one side, it is expected that hydrolytic OMVs make the nearby gut
environment more mixed in its nutritional composition, rendering the producers more
susceptible to cheating by consumers. On the other side, it is tempting to speculate
that OMVs might have counteracting benefits to the producers, such as a higher
efficiency of hydrolysis than that of OM-anchored enzymes (by increasing the enzy-
matic surface) and, potentially, an increase in the intestinal surface that could be
colonized by its being able to access substrates through a longer stretch of the colonic
niche.

We have identified a set of OMV- and OM-enriched proteins that may be employed

FIG 9 A model for SusG LES-mediated surface exposure and packing into OMV. The SusG lipoprotein is probably
transported to the OM by a machinery homologous to the LOL system. The presence of a LES sequence mediates the
surface exposure of SusG and its incorporation into OMVs. The LES might have a dual role, where it is required for both
surface exposure and OMV packing, or it might be involved only in surface exposure; biophysical properties of lipoproteins
would be determinant for packing into OMVs. Surface-exposed SusG in OMVs as well as in the OM hydrolyzes starch
molecules into oligosaccharides that can be imported by TonB-dependent receptors by the OMV-producing cell, as well
as other commensal and pathogen organisms.
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as markers to investigate the process of OMV biogenesis through the visualization of
OMV in the mammalian gut. For example, these markers would allow the differentiation
in vivo between bona fide OMV and cell lysis-derived material. Furthermore, the
identification for the first time of a role for the LES as a signal for protein transport into
OMVs constitutes a starting point for the design of novel probiotic interventions in
animal and human health. In the future, the LES of SusG or other OMV proteins might
be employed to engineer Bacteroides strains to secrete OMVs packed with medically
relevant proteins in the mammalian gut.

MATERIALS AND METHODS
Bacterial strains and growth conditions. Oligonucleotides, strains, and plasmids are described in

Table S3 in the supplemental material. Bacteroides strains were grown in an anaerobic chamber (Coy
Laboratories) using an atmosphere of 10% H2, 5% CO2, 85% N2. For liquid growth, tryptone-yeast
extract-glucose (TYG), TYM (TY medium supplemented with 0.5% maltose instead of 0.5% glucose), or
minimal media supplemented with 0.5% glucose or 0.5% potato starch were prepared as previously
described (17, 45). Brain heart infusion (BHI) agar with 10% defibrinated horse blood was used as a solid
medium. Antibiotics were used as follows: ampicillin at 100 �g/ml, erythromycin at 25 �g/ml, and
bromodeoxyuridine at 200 �g/ml.

Construction of plasmids, mutagenesis, and generation of the susC-3�Flag strain. Constructs
for overexpression were built on pFD340 (46). Inserts obtained by PCR were digested with restriction
enzymes, purified, and ligated onto the digested vector pFD340 as previously reported. For all 6�His-
containing constructs, the tag was added to the C terminus of the ORF product by including the 6�His
sequence in the reverse primer used for cloning into pFD340 (Table S3). In the cases of BT_0418 and
BT_2844, we detected that the putative correct start codons extend 9 and 10 amino acids into the N
terminus of the sequence, respectively, and included that information for the cloning of both genes. For
cloning of BT_0766-Flag into pFD340, purified PCR inserts were integrated into PCR-amplified pFD340
using an In-Fusion cloning kit (Clontech). Mutagenesis of pFD340/susG-6�His was carried out by inverse
PCR with Pfu Turbo (Agilent) using overlapping oligonucleotides carrying the mismatch required as
described elsewhere. Generation of a susC-3xFlag strain was carried out using the B. thetaiotaomicron
Δtdk strategy as previously described (47). Briefly, 1,000-bp upstream and downstream fragments of a
C-terminal susC-3xFlag translational fusion were cloned into pExchange-tdk. Constructs were conjugated
into B. thetaiotaomicron Δtdk cells using previously transformed Escherichia coli S17-1 �pir as a donor, and
strain plating and selection were performed as previously described (47).

OMV preparations. Outer membrane vesicles were purified by ultracentrifugation of filtered spent
media as previously described by our group (5). For MS analysis, OMV preparations were resuspended in
50 mM HEPES, pH 7.4, and N-lauroyl sarcosine was added to a 1% final concentration in 1.5 ml
polyallomer tubes (Beckman Coulter). Samples were incubated with gentle rocking for 1 h at room
temperature (RT) and ultracentrifuged at 100,000 � g for 2 h at RT. Supernatants were recovered (OMV-S)
and pellets (OMV-P) were resuspended in 50 mM HEPES, pH 7.4. Protein content was quantified using a
DC protein assay kit (Bio-Rad). Fractions were lyophilized for MS analysis.

Membrane preparations. Total membrane preparations were performed by cell lysis and ultracen-
trifugation as previously described (5). For separation of the inner membrane (IM) and OM, total
membranes were resuspended in 50 mM HEPES, pH 7.4, using a 2-ml glass tissue grinder with a
polytetrafluoroethylene (PTFE) pestle (VWR), and N-lauroyl sarcosine was added to a 1% final concen-
tration in 1.5-ml polyallomer tubes (Beckman Coulter). Samples were incubated with gentle rocking for
1 h at RT and ultracentrifuged at 100,000 � g for 2 h at RT. Supernatants were recovered (IM) and pellets
were resuspended in 50 mM HEPES, pH 7.4. Protein content was quantified using a DC protein assay kit
(Bio-Rad). Fractions were lyophilized for MS analysis.

Mass spectrometry analysis. (i) Protein cleanup and in-solution digestion. Lyophilized protein
preparations were solubilized in lysis buffer (4% SDS, 10 mM, 100 mM Tris, pH 8.5) by boiling them for
10 min, and the protein content was assessed by the bicinchoninic acid (BCA) protein assay according to
the manufacturer’s instructions. Three hundred micrograms of each preparation and biological replicate
was adjusted to a volume of 200 �l and precipitated overnight using 800 �l of ice-cold acetone (1:4,
vol/vol). Samples were spun down at 16,000 � g for 10 min at 0°C to the resulting protein precipitate,
and acetone was removed. Residue acetone was driven off at 70°C for 5 min. Protein precipitants were
resuspended in 6 M urea, 2 M thiourea, 40 mM NH4HCO3 and reduced/alkylated prior to digestion with
Lys-C (1/200, wt/wt) and then trypsin (1/50, wt/wt) overnight as previously described (48). Digested
samples were acidified to a final concentration of 0.5% formic acid and desalted with using C18 stage tips
(49, 50).

Label-free quantification (LFQ)-based quantitative proteomic LC-MS. Prepared purified peptides
were resuspended in buffer A* (2% acetonitrile, 0.01% trifluoroacetic acid) and separated using a
two-column chromatography setup composed of a PepMap100 C18 20-mm by 75-�m trap column and
a PepMap C18 500-mm by 75-�m analytical column (ThermoFisher Scientific). Samples were concen-
trated onto the trap column at 5 �l/min for 5 min and infused into an Orbitrap Q-Exactive Plus mass
spectrometer (ThermoFisher Scientific) at 300 nl/min via the analytical column using a Dionex Ultimate
3,000 ultrahigh-performance liquid chromatograph (UPLC) (ThermoFisher Scientific). One-hundred-
twenty-five-minute gradients were run, altering the buffer composition from 1% buffer B to 28% buffer
B over 95 min, from 28% buffer B to 40% buffer B over 10 min, and then from 40% buffer B to 100% buffer
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B over 2 min; the composition was held at 100% buffer B for 3 min and then dropped to 3% buffer B over
5 min and held at 3% buffer B for another 10 min. The Q-Exactive mass spectrometer was operated in
a data-dependent mode, automatically switching between the acquisition of a single Orbitrap MS scan
(60,000 resolution) and 15 MS-MS scans (Orbitrap HCD; 35,000 resolution; maximum fill time, 110 ms; and
AGC [automatic gain control] at 2 � 105).

Mass spectrometry data analysis. Identification and LFQ analysis were accomplished using Max-
Quant (v1.5.3.1) (51). Searches were performed against the B. thetaiotaomicron (strain ATCC 29148/VPI-
5482) proteome (UniProt proteome identifier UP000001414, downloaded 20 May 2017, 4,782 entries)
with carbamidomethylation of cysteine set as a fixed modification and with variable modifications of
oxidation of methionine and acetylation of protein N termini. Searches were performed with trypsin
cleavage specificity allowing 2 miscleavage events, with a maximum false discovery rate (FDR) of 1.0%
set for protein and peptide identifications. To enhance the identification of peptides between samples,
the Match Between Runs option was enabled with a precursor match window set to 2 min and an
alignment window of 10 min. For label-free quantitation, the MaxLFQ option within MaxQuant (52) was
enabled in addition to the requantification module. The resulting protein group output was processed
within the Perseus (v1.4.0.6) (53) analysis environment to remove reverse matches and common protein
contaminates prior. For LFQ comparisons, missing values were imputed using Perseus. Visualization was
done using Perseus and R. Predicted localization and topology analysis for proteins identified by MS was
performed using LipoP and TOPCONS (54, 55).

SDS-PAGE and OMV/OM ratio determination. Membrane and OMV fractions were analyzed by
standard 10 to 12% Tris-glycine SDS-PAGE, as described elsewhere. Briefly, 10 �g of each fraction
(transmembrane [TM]/IM/OM/OMV) was loaded onto an SDS-PAGE gel and transferred onto a nitrocel-
lulose membrane, and Western blotting was performed using the LI-COR system. Membranes were
blocked using Tris-buffered saline (TBS)-based Odyssey blocking solution (LI-COR). Primary antibodies
used in this study were rabbit polyclonal anti-His (ThermoFisher), mouse monoclonal anti-Flag M2
(Sigma), mouse monoclonal anti-E. coli RNApol subunit alpha (Biolegend), and mouse polyclonal anti-
SusD/E/F/G (Nicole Koropatkin/Eric Martens, University of Michigan). Secondary antibodies used were
IRDye anti-rabbit 780 and IRDye anti-mouse 680 antibodies (LI-COR). Imaging was performed using an
Odyssey CLx scanner (LI-COR).

For validation of MS data, duplicate SDS-PAGE gels were stained with Coomassie blue as described
elsewhere, and gel images were acquired to determine fraction quality and relative abundance (Fig. S2
and S3). For OMV/OM determination of SusG-6�His experiments, cells were grown in minimal medium
with glucose and fractions were prepared as described previously for OMV and membrane preparations
in this section. After transference of the preparations to SDS-PAGE gels, nitrocellulose membranes were
incubated with Revert total protein stain as described by the manufacturer (LI-COR) and imaged
immediately at 680 nm (Fig. S4). After the imaging, Western blotting using SusG antibodies was carried
out and membranes were scanned at 780 nm. Total intensity values were calculated for each lane using
the Odyssey scanner software (Image Studio; LI-COR). Total intensity values for each fraction, determined
by scanning each lane of the Revert stain image, were used to relativize each SusG signal. Relativized
OMV and OM SusG fluorescence signals were used to calculate an OMV/OM SusG ratio. Such a ratio was
considered 100% for the WT LES SusG construct. Statistical significance between different OMV/OM ratios
was determined by an unpaired t test for each pair of SusG LES variants.

Proteinase K assays. Strains from B. thetaiotaomicron were grown in minimal medium with glucose,
and cells were washed with phosphate-buffered saline (PBS) and normalized to an optical density at 600
nm (OD600) of 9/ml. PBS (540 �l) and 10 �l of a proteinase K (ProK) solution (20 mg/ml) were added to
450 �l of the cell suspension. Tubes were incubated at 37°C, and 200-�l aliquots were removed at
different time points and precipitated using trichloroacetic acid (TCA; final concentration, 20% [vol/wt]).
Precipitated aliquots were washed twice with acetone, and pellets were resuspended into Laemmli
buffer for Western blot analysis. A nontreated control of the cell suspension was incubated for the
longest time point of the experiment and TCA precipitated as described above. A similar procedure was
followed for OMV ProK treatments; 450 �l of purified OMVs was treated under the same conditions as
whole cells.

Growth curves and OMV complementation. For growth curves, wild-type or ΔsusG strains were
grown overnight in TYG medium. Cultures were washed with minimal medium (MM) without any carbon
source and normalized by their OD600 values. Minimal medium with 0.5% starch as the only carbon
source was inoculated with WT or ΔsusG strains to a final OD600 of 0.05. OMVs were purified from ΔsusG
strains containing different pFD340/susG-6�His derivatives grown in minimal medium with glucose and
were added to the ΔsusG cultures in minimal medium with starch (1 �g/ml final OMV concentration).
Aliquots were taken at different times, and the OD600 was measured to determine growth. Statistical
significance when two growth curves were compared was determined by performing one pair of an
unpaired t test analysis per each time point.

Transmission electron microscopy. For negative staining and analysis by transmission electron
microscopy, bacterial suspensions in PBS were allowed to absorb onto freshly glow-discharged Formvar/
carbon-coated copper grids for 10 min. Grids were washed in distilled H2O and stained with 1% aqueous
uranyl acetate (Ted Pella, Inc., Redding, CA) for 1 min. Excess liquid was gently wicked off, and grids were
allowed to air dry. Samples were viewed on a JEOL 1200EX transmission electron microscope (JEOL
United States, Peabody, MA) equipped with an 8-megapixel digital camera (Advanced Microscopy
Techniques, Woburn, MA).

Data availability. The mass spectrometry proteomics data have been deposited in the Proteome
Xchange Consortium via the PRIDE partner repository with the data set identifier PXD011378 (57).
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