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Suppression of Drug Resistance Reveals a Genetic Mechanism
of Metabolic Plasticity in Malaria Parasites

Ann M. Guggisberg,a Philip M. Frasse,a Andrew J. Jezewski,a Natasha M. Kafai,b Aakash Y. Gandhi,a* Samuel J. Erlinger,a*
Audrey R. Odom Johna,c

aDepartment of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
bMedical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, USA
cDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

ABSTRACT In the malaria parasite Plasmodium falciparum, synthesis of isoprenoids
from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin
(FSM) inhibits isoprenoid synthesis. In P. falciparum, we identified a loss-of-function
mutation in HAD2 (P. falciparum 3D7_1226300 [PF3D7_1226300]) as necessary for
FSM resistance. Enzymatic characterization revealed that HAD2, a member of the
haloacid dehalogenase-like hydrolase (HAD) superfamily, is a phosphatase. Har-
nessing a growth defect in resistant parasites, we selected for suppression of
HAD2-mediated FSM resistance and uncovered hypomorphic suppressor mutations
in the locus encoding the glycolytic enzyme phosphofructokinase 9 (PFK9). Meta-
bolic profiling demonstrated that FSM resistance is achieved via increased steady-
state levels of methylerythritol phosphate (MEP) pathway and glycolytic intermedi-
ates and confirmed reduced PFK9 function in the suppressed strains. We identified
HAD2 as a novel regulator of malaria parasite metabolism and drug sensitivity and
uncovered PFK9 as a novel site of genetic metabolic plasticity in the parasite. Our
report informs the biological functions of an evolutionarily conserved family of met-
abolic regulators and reveals a previously undescribed strategy by which malaria
parasites adapt to cellular metabolic dysregulation.

IMPORTANCE Unique and essential aspects of parasite metabolism are excellent tar-
gets for development of new antimalarials. An improved understanding of parasite
metabolism and drug resistance mechanisms is urgently needed. The antibiotic fos-
midomycin targets the synthesis of essential isoprenoid compounds from glucose
and is a candidate for antimalarial development. Our report identifies a novel mech-
anism of drug resistance and further describes a family of metabolic regulators in
the parasite. Using a novel forward genetic approach, we also uncovered mutations
that suppress drug resistance in the glycolytic enzyme PFK9. Thus, we identify an
unexpected genetic mechanism of adaptation to metabolic insult that influences
parasite fitness and tolerance of antimalarials.

KEYWORDS Plasmodium, antimalarial agents, drug resistance mechanisms,
fosmidomycin, glycolysis, isoprenoids, malaria, metabolic regulation, metabolism

Malaria remains a global health threat, infecting 216 million people per year and
causing nearly half a million deaths, mainly of pregnant women and young

children (1). Resistance to current therapies has limited efforts to control malaria (2, 3).
New drugs and a deeper understanding of drug resistance mechanisms are urgently
needed.

Malaria is caused by infection with unicellular eukaryotic parasites of the genus
Plasmodium. The species Plasmodium falciparum is responsible for most life-threatening
malarial disease. As an obligate intracellular parasite of human erythrocytes, Plasmo-
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dium falciparum has unique metabolic features that may be exploited to discover new
drug targets and develop new therapies. In the red blood cell niche, Plasmodium
parasites are highly dependent on glucose metabolism. Infection with Plasmodium spp.
results in a nearly 100-fold increase in glucose import in red blood cells (4–6). Despite
these energy requirements, the parasite demonstrates little aerobic respiration via the
tricarboxylic acid (TCA) cycle. Instead, it relies on anaerobic glycolysis to produce ATP
(7–10).

Besides ATP production, glucose also has a number of anabolic fates in P. falciparum.
One such fate is the synthesis of isoprenoids. Isoprenoids are a large class of hydro-
carbons with extensive structural and functional diversity (11). In the malaria parasite,
isoprenoids perform several important functions, including protein prenylation,
dolichylation, and synthesis of GPI anchors (12–14). Despite this diversity, all iso-
prenoids are synthesized from a common five-carbon building block, isopentyl pyro-
phosphate (IPP). Evolution has produced two distinct routes for IPP synthesis: the
mevalonate pathway, found in archaea, fungi, animals, and the cytoplasm of plants; and
the methylerythritol phosphate (MEP) pathway, found in most eubacteria, plant chlo-
roplasts, and apicomplexan parasites such as P. falciparum (15). Because it is both
essential for the parasite and absent from the human host, the MEP pathway is a
compelling target for antimalarial development. The antibiotic and antimalarial fos-
midomycin (FSM) is a competitive inhibitor of the first committed enzymatic step of the
MEP pathway, catalyzed by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR; EC
1.1.1.267) (16–18). FSM has been validated as a specific inhibitor of the MEP pathway
in P. falciparum (19) and is a valuable chemical tool to study MEP pathway biology and
essential metabolism in the parasite. In this study, we found that FSM is also a useful
tool for probing glycolytic metabolism upstream of the essential MEP pathway.

Parasites are likely to control the proportion of glucose used for energy production
versus production of secondary metabolites, such as isoprenoids. We previously used a
screen for FSM resistance to identify HAD1, a metabolic regulator whose loss results in
increased levels of MEP pathway intermediates and resistance to MEP pathway inhibi-
tion. HAD1 is a cytoplasmic sugar phosphatase that dephosphorylates a number of
sugar phosphate intermediates upstream of the MEP pathway (20, 21). HAD1 belongs
to the haloacid dehalogenase-like hydrolase (HAD) enzyme superfamily and, more
specifically, to the IIB and Cof-like hydrolase subfamilies (22). While HADs are found in
all kingdoms of life, HAD1 is most closely related to bacterial members of this super-
family (20, 23), which have been implicated in metabolic regulation, stress response,
and phosphate homeostasis (24–28). However, most members of this superfamily
remain uncharacterized.

In this report, we describe the discovery of HAD2, a second HAD family member in
P. falciparum. We found that HAD2 is a cytosolic phosphatase required for metabolic
homeostasis. Loss of HAD2 dysregulates glycolysis and misroutes metabolites toward
the MEP pathway, conferring drug resistance. In our study, we harnessed a fitness
defect in had2 parasite strains to employ an innovative screen for suppression of drug
resistance in the parasite. Selection for suppression of drug resistance identified
mutations in PFK9, which encodes the canonical glycolytic regulatory enzyme phos-
phofructokinase (PFK). Reduction in PFK9 activity rescued the metabolic dysregulation
in our resistant mutants and restored FSM sensitivity. Our unique approach thus reveals
PFK9 as a site of exceptional metabolic plasticity in the parasite and uncovers a novel
genetic mechanism by which P. falciparum malaria parasites may adapt to metabolic
stress and drug selective pressure.

(This article was submitted to an online preprint archive [29]).

RESULTS
An FSM-resistant (FSMr) strain possesses a nonsense allele of HAD2, homolog

of the MEP pathway regulator HAD1. The MEP pathway is responsible for the
synthesis of the essential isoprenoid precursors isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate (DMAPP). This pathway is specifically inhibited by the
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antibiotic FSM (19, 30, 31). We previously generated P. falciparum strains resistant to
FSM. Mutations in HAD1 (P. falciparum 3D7_1033400 [PF3D7_1033400]) cause the
resistance phenotype in a majority of these strains (20). However, the genetic and
biochemical basis of FSM resistance in strain E2 remained unknown. As previously
reported, we found that E2 is less sensitive to FSM than its wild-type (WT) 3D7 parental
line (Fig. 1A) (20). Strain E2 showed an FSM half-maximal inhibitory concentration
(IC50) of 4.8 � 1.2 �M, significantly greater than that shown by its parent strain
(0.9 � 0.06 �M) (P � 0.01 [unpaired Student’s t test]).

We found that this resistance phenotype was not due to changes in expression of
the genes encoding the first two (rate-limiting) steps of the MEP pathway, DXS and DXR
(32–35) (see Fig. S1A in the supplemental material). In addition, strain E2 does not have
genetic changes in the known FSM resistance locus and MEP pathway regulator, HAD1,
and HAD1 appears to be expressed in strain E2 (Fig. S1B).

To identify new genetic changes that may result in FSM resistance, we performed
whole-genome sequencing on strain E2 and identified an A469T mutation in
PF3D7_1226300 (PlasmoDB identifier [ID]), here referred to as HAD2 (36). Variant data
for strains sequenced in this study can be found in Data Set S1 in the supplemental
material. Sanger sequencing of the HAD2 locus in strain E2 confirmed the presence of
the A469T single nucleotide polymorphism (SNP). The A469T SNP yielded a truncated
(R157X) protein variant, and we therefore expected that HAD2 function would be lost
in strain E2. Interestingly, HAD2 is a close homolog of a known MEP pathway regulator,
the sugar phosphatase HAD1 (20). Sequence homology places both proteins in the
haloacid dehalogenase-like hydrolase (HAD) superfamily and, further, within the IIB and
Cof-like hydrolase subfamilies (Interpro IPR006379 and IPR000150, respectively) (22).
While no structural information exists for P. falciparum HAD2, the structure of the
Plasmodium vivax HAD2 (PVX_123945; P. vivax HAD2 [PvHAD2]) has been solved (PDB
ID 2B30). PvHAD2 (93% identical and 98% similar to P. falciparum HAD2 [PfHAD2])
contains the common structural motifs found in other HADs, including a core and cap
domain (Fig. 1B). HAD2 possesses the four conserved sequence motifs found in HAD
proteins (Fig. 1C), which are involved in binding of the substrate, coordination of the
phosphoryl group and Mg2� ion, and hydrolysis of the substrate phosphate (37–39).
Overall, HAD2 and HAD1 protein sequences share �29% sequence identity and �53%
sequence similarity (Fig. 1C). We hypothesized that HAD2, like HAD1, regulates metab-
olism in P. falciparum and that loss of HAD2-mediated metabolic control was respon-
sible for FSM resistance in malaria parasite strain E2.

HAD2 is a functional phosphometabolite phosphatase. We have previously
established that P. falciparum HAD1 is a promiscuous sugar phosphatase, with activity
against a wide range of phosphometabolites. Similarly, P. vivax HAD2 has been enzy-

FIG 1 FSMr strain E2 possesses a mutation in HAD2, a homolog of MEP pathway regulator HAD1. (A)
Representative FSM dose response of the parental strain and strain E2. (B) P. vivax HAD2 (teal; PDB 2B30)
is structurally similar to PfHAD1 (gray; PDB 4QJB). Ions (Mg2�, Ca2�, Cl-) are shown in yellow. (C) HAD2
is a homolog of HAD1 (29% identity and 53% similarity) and possesses all conserved HAD sequence
motifs required for catalysis (37).
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matically characterized and found to possess phosphatase activity against various
monophosphorylated substrates, including glycerol 2-phosphate (glc2P) and pyridoxal
phosphate (PLP) (40). Recombinant PvHAD2 also utilizes additional monophosphory-
lated substrates, such as AMP and glycerol 1-phosphate (glc1P), with moderate activity.

On the basis of the previous characterization of a close Plasmodium homolog, as
well as sequence homology to HAD1 and other HAD proteins, we predicted that
PfHAD2 would also function enzymatically as a phosphatase. We successfully purified
recombinant PfHAD2 in Escherichia coli and confirmed the phosphatase activity of
recombinant PfHAD2 using para-nitrophenyl phosphate (pNPP), a promiscuous, chro-
mogenic phosphosubstrate (Fig. 2A) (23, 41). Because E. coli expresses a number of
HAD-like phosphatases (23), we confirmed that the phosphatase activity was specific to
purified PfHAD2 by expression and purification of a catalytically inactive mutant
(HAD2D26A). The Asp26 residue was chosen for mutagenesis because the corresponding
residue in PfHAD1 (Asp27) has been previously shown to be required for catalysis (21).

We also established the activity of PfHAD2 against a panel of phosphorylated
substrates and determined that its substrate profile closely mirrors that of PvHAD2
(Fig. 2B). Overall, we found that PfHAD2 is a phosphatase with activity against small
phosphosubstrates, such as glc2P. These data suggest that, like HAD1 and related HADs
in microbes and plants (23, 42–44), HAD2 is a phosphatase with the potential to utilize
a variety of monophosphorylated phosphometabolites.

In vitro evolution of mutations suppressing FSM resistance. During routine
culturing of E2 FSMr parasites, we observed that the E2 strain appeared to be growth
attenuated compared to its parental parasite strain. Surprisingly, during prolonged
culture in the absence of FSM, this growth phenotype resolved, and improved growth
rates correlated with a return to FSM sensitivity (Fig. 3A). From these observations, we
hypothesized that had2R157X-mediated FSM resistance led to a fitness cost in cultured
parasites. We sought to harness this fitness cost to drive in vitro evolution of an
FSM-sensitive (FSMs) population possessing additional, novel mutations that might
suppress FSM resistance in had2R157X parasite strains.

FSM-resistant strain E2 was cultured through multiple passages in the absence of
FSM selection. Through limiting dilution, we derived five E2-based clones in the
absence of drug pressure (Fig. 3B). Of the five clones, three (designated clones E2-R1,
E2-R2, and E2-R3) remained FSMr, but two of these (designated E2-S1 and E2-S2) were
found to be FSMs (Fig. 3B and 4A). To validate our novel suppressor screen approach,
we independently repeated this genetic selection with the three FSMr E2 clones by
again culturing in the absence of FSM for �1 month (Fig. 3B). As before, these strains
(E2-S3, E2-S4, and E2-S5) also lost their FSM resistance phenotype (Fig. 4A).

Consistent with our initial observation that our had2R157X FSM-resistant strain grew
poorly, we found that the FSMr clones (E2-RX) grew at a significantly reduced rate

FIG 2 PfHAD2 is a phosphatase. (A) HAD2 is an active phosphatase, and HAD2D26A is a catalytic mutant
(cat. mut.) that can be used as a negative control for HAD2-specific activity. “No enz.” represents a
no-enzyme control. Data shown represent the enzyme activities seen using the synthetic phosphatase
substrate pNPP. Error bars represent standard errors of the means (SEM) (****, P � 0.0001 [unpaired t
test]; n.s., not significant). (B) Activity of HAD2, normalized to the activity of the catalytic mutant
(HAD2D26A), for a variety of substrates (2-GlcP, 2-glycerol-phosphate; M6P, mannose-6-phosphate; FBP,
fructose-2,6-bisphosphate; dAMP, deoxy-AMP). Error bars represent SEM.
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compared to the parental strain, while the FSMs clones (E2-SX) had restored growth
rates similar to that of the wild-type parental strain (Fig. 4B).

Loss of FSM resistance might have occurred by reversion of the had2R157X mutation
in E2-derived strains. Instead, we found that all E2-SX clones maintained loss of HAD2
via the had2R157X mutation. We hypothesized that the FSMs E2 clones, driven by a
fitness advantage, had acquired a new suppressor mutation(s) at an additional locus.
We performed whole-genome sequencing on the original five E2 clones to identify
any genetic changes that segregated with FSM sensitivity. Sequencing revealed that

FIG 3 Leveraging resistance-associated growth attenuation to identify genetic changes that modulate FSM
sensitivity. (A) Prolonged culture resulted in loss of FSM resistance in strain E2. Shown are FSM dose responses of
the strain E2 before (day 9) and after (day 79) prolonged culture without FSM. Nine days after thawing resistant
strain E2, we observed an FSM IC50 of 4.9 �M, while after 79 days of culture without FSM, E2 had an FSM IC50 of
1.3 �M. The dose responses were part of routine evaluation of individual strain phenotypes at discrete points in
time. Each data point is representative of the mean from two technical replicates. Error bars represent SEM. (B)
Parasites are colored according to FSM phenotype (teal, FSMs; purple, FSMr). Cloned strains are named according
to FSM phenotype (E2-SX, sensitive; E2-RX, resistant). An FSMs parental strain was selected under conditions of FSM
pressure to enrich for FSMr strain E2 (had2R157X). After relief of FSM pressure, a fitness advantage selected for
spontaneous suppressor mutations in PFK9 (pfk9mut; yellow star) that resulted in FSM sensitivity. FSMr clones were
grown without FSM pressure, and a fitness advantage again selected for suppressor mutations in PFK9 that resulted
in an increased growth rate and loss of FSM resistance.

FIG 4 Suppressor strains with PFK9 mutations display changes in FSM tolerance and growth. (A) Sup-
pressed clones have significantly lower FSM IC50s (****, P � 0.0001). Error bars represent SEM. HAD2 and
PFK9 genotypes for each strain are indicated. For reference, the parental (par) strain data are shown in the
black column. All data are representative of results from �3 independent experiments. (B) FSM resistance
results in a fitness cost. FSMr clones with the had2R157X allele (R1 to R3, purple lines) had reduced growth
rates compared to the wild-type parental (par) strain (black) (*, P � 0.05). The growth defect was rescued
in clones with mutations in PFK9 (S1 to S5, teal lines). Growth was normalized to parasitemia on day 0. Error
bars represent SEM of results from �3 independent growth experiments.
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a new mutation (C3617T) in the locus encoding phosphofructokinase-9 (PFK9;
PF3D7_0915400) was present in both of the suppressed (FSMs) E2 clones but in none
of the three FSMr E2 clones (Fig. 3B; see also Data Set S1). The C3617T mutation results
in a PFK9T1206I protein variant. PFK9 contained the only SNP that segregated with the
change in FSM tolerance. Two other loci had indels that also segregated with our FSM
phenotype. These loci encode a tyrosine recombinase (MAL13P1.42) (45) and an
erythrocyte surface protein (PIESP1; PFC0435w). Given their predicted functions and the
presence of A/T indels in poly(A) and poly(T) tracts, we concluded that mutations in
these loci were unlikely to result in our suppressed phenotype and prioritized PFK9 as
the likely locus of our suppressor mutation.

To verify whether mutations in PFK9 were responsible for suppressing FSM resis-
tance in all of our suppressed strains, we investigated HAD2 and PFK9 in the E2-S3, -S4,
and -S5 strains, which were derived through independent evolution of the E2-R1, -R2,
and -R3 populations in the absence of FSM. By Sanger sequencing, we found that, as
before, all strains maintained the had2R157X mutation and acquired new, independent
PFK9 mutations (Fig. 4A). The independent acquisition of four different PFK9 alleles
during selection, each of which was associated with both improved growth and loss of
FSM resistance, strongly indicates that loss of PFK9 function is responsible for these
phenotypes in strains lacking HAD2.

Loss of HAD2 is necessary for FSM resistance in had2R157X parasites. HAD2 was
not the sole genetic change in FSMr strain E2. In addition, because intraerythrocytic P.
falciparum parasites are haploid, we cannot distinguish recessive from dominant or
gain-of-function mutations. Therefore, we sought to establish whether restoring HAD2
expression in trans in a had2R157X strain would restore FSM sensitivity. Using a previ-
ously described expression system enabled by the piggyBac transposase (20, 46), we
expressed HAD2-green fluorescent protein (HAD2-GFP) driven by the heat shock
protein 110 (Hsp110) promoter (47). We confirmed that the transfected had2R157X E2-R2
clone maintained the had2R157X allele at the endogenous locus and successfully ex-
pressed HAD2-GFP (Fig. 5A). Additionally, the had2R157X allele does not appear to result
in a truncated protein product, as evidenced by immunoblotting of the E2-R2 clone and
the corresponding rescued strain (Fig. 5A). This suggests that complete loss of HAD2,
as opposed to a truncated protein isoform, is responsible for the observed phenotypes
in the E2-RX mutants. Expression of HAD2-GFP in had2R157X parasites results in resto-
ration of FSM sensitivity (Fig. 5B; see also Fig. S2), confirming that loss of HAD2 is
necessary for FSM resistance in this strain. The resistant clone (E2-R2) has an FSM IC50

of 3.9 � 0.2 �M, significantly higher than that of the wild-type parent strain
(0.9 � 0.06 �M, P � 0.001 [one-way analysis of variance {ANOVA} and Sidak’s posttest]).
Expression of HAD2-GFP in E2-R2 results in an IC50 of 0.6 � 0.02 �M for FSM, signifi-

FIG 5 Loss of HAD2 is necessary for FSM resistance. (A) Successful expression of pTEOE110:HAD2-GFP
in strain R2 (had2R157X, PFK9) was confirmed by immunoblotting. Marker units are indicated in kilodaltons
(kDa). The top blot was probed with anti-HAD2 antiserum (expected masses: HAD, 33 kDa; HAD2-GFP,
60 kDa). The bottom blot was probed with anti-heat shock protein 70 (Hsp70) antiserum as a loading
control. (B) Representative FSM dose response demonstrating that expression of HAD2-GFP in strain R2
(had2R157X PFK9) resulted in restored sensitivity to FSM. Strain R2 had an elevated FSM IC50 compared to
the parental (par) strain. When HAD2 expression was restored in strain R2, the resulting strain showed
an IC50 near that of the parent strain. Data shown are from a representative clone (clone 1) of the
HAD2-rescued strain. Additional clones displayed a similar phenotype (see Fig. S2).
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cantly lower than that seen with the E2-R2 strain (P � 0.001) but not significantly
different from that of the parental strain (P � 0.5).

Using fluorescence microscopy, we also investigated the localization of HAD2-GFP in
our E2-R2 Hsp110:HAD2-GFP strain. We observed that HAD2-GFP was diffusely present
throughout the cytoplasm in asexual P. falciparum trophozoites and schizonts but
excluded from the digestive food vacuole (Fig. S3). This finding is consistent with the
lack of a predicted signal sequence for HAD2 as determined using SignalP, PlasmoAP,
and PlasMit algorithms (48–50).

PFK9 mutations in suppressed strains are hypomorphic. The PFK9 locus encodes
the enzyme phosphofructokinase (PFK; EC 2.7.11), which catalyzes the first committed
and canonically rate-limiting step of glycolysis, which is the conversion of fructose
6-phosphate to fructose 1,6-bisphosphate. PFK9 is comprised of two domains, alpha (�)
and beta (�), which are typically encoded by independent genes in nonapicomplexans
(51) (Fig. 6A). While in other systems the � domain is regulatory, previous work on P.
falciparum PFK9 has demonstrated catalytic activity for both domains (51–55).

Of the four PFK9 variants identified in this study, three variants map to the �

domain, while one variant (S335L) maps to the � domain (Fig. 6A). We projected our
mutations onto a three-dimensional model of PfPFK9 to reveal a possible structural
basis for altered PFK function. Three variants (S335L, T1206I, and S1267L) align to and
model currently available crystal structures of PFK, while a fourth allele (N1359Y) does
not. While three (T1206I, S1267L, and N1359Y) of the four mutations map to the �

domain of PfPFK9, these mutations do not appear to cluster in any particular region. All
mutations affect amino acid residues that are physically distant from the substrate-
binding pocket of either domain and are not predicted to impact binding or specific
catalytic residues.

FIG 6 PFK9 alleles in suppressed strains are hypomorphic. (A) Schematic of suppressor mutations found
in PFK9. Strain names and resulting amino acid changes are indicated. Three of the four mutations are
found on the structural model of PfPFK. The parts of the protein represented by the model are notated
by the teal arrows under the � and � domains. The total protein length is 1,418 amino acids. N1359Y fits
outside the model. The other mutations are represented by their stick model structure, with the resulting
change shown in magenta. Orientations of the closeup representations of the mutations are indicated
where they differ from the main model. (B) Measurement of PFK activity of P. falciparum lysate indicated
that E2-SX clones with PFK9 suppressor mutations have significantly reduced PFK activity (****,
P � 0.0001 [ANOVA, Sidak’s posttest]). Error bars represent SEM. Assay data are linear with respect to
protein content and specific for PfPFK9 activity (Fig. S3).
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Consistent with a previous study on PfPFK9 (51), attempts to purify recombinant
full-length PFK9 were unsuccessful. Thus, to understand the enzymatic impacts of our
PFK9 variants, we quantified the native PFK-specific activity in P. falciparum (51, 56)
(Fig. 6B; see also Fig. S4). Lysates from strains possessing PFK9 mutations (E2-SX strains)
have markedly reduced specific activity of PFK compared to the parental strain (Fig. 6B).
Combined with the diverse mutation locations (Fig. 6A), the reduced lysate PFK activity
in E2-SX strains suggests that a variety of genetic strategies to alter PFK function can
lead to resistance suppression.

Metabolic profiling reveals mechanisms of resistance and suppression in HAD2
and PFK9 mutant parasites. Reduced activity of PFK9, which catalyzes the canonical
rate-limiting step in glycolysis, is associated with restored FSM sensitivity of had2
mutant strains. Therefore, we anticipated that metabolic changes might underlie both
resistance and suppression in our E2 clones. We performed targeted metabolic profiling
on the parental parasite strain as well as E2 clones R1 to R3 and S1 and S2 (Fig. 7A; see
also Table S1 and Fig. S5 in the supplemental material). We found that levels of the MEP
pathway intermediate DOXP (1-deoxy-D-xylulose 5-phosphate) were significantly in-
creased in FSMr (had2R157X PFK9) strains (Fig. 7A) (P �0.05 [one-way ANOVA and Sidak’s
posttest]). FSM is competitive with DOXP for inhibition of its target enzyme, DXR.
Therefore, our data are consistent with the hypothesis that FSMr strains achieve
resistance via increased levels of DOXP, which outcompetes FSM. We also observed a
significant increase in the downstream MEP metabolite, MEcPP (2-C-methyl-D-erythritol-
2,4-cyclopyrophosphate), in our FSMr strains (P � 0.05).

To understand the role of PFK9 in conferring and suppressing FSM resistance, we
determined the steady-state levels of intermediates from glycolysis, metabolites of
which feed into the MEP pathway (Fig. 7A; see also Table S1 and Fig. S5). Hierarchical
clustering indicates that resistant clones are characterized by a metabolic signature of
increased levels of FBP (fructose 1,6-bisphosphatase), DOXP, and MEcPP (Fig. 7A). We
observed that the levels of abundance of DOXP and MEcPP are tightly correlated with
cellular levels of the PFK9 product, FBP (Fig. 7B) (P � 0.01), but not with those of the
other upstream glycolytic metabolites, such as glu6P/fru6P (Fig. 7C) (P �0.2).

Of note, the pfk9T1206I suppressor allele in strains S1 and S2 restored nearly parental
levels of FBP and downstream MEP pathway intermediates (Fig. 7A), consistent with our
finding that PFK activity was reduced in lysate from these strains (Fig. 6B).

FIG 7 HAD2 and PFK9 alleles alter FSM resistance and metabolite levels in P. falciparum. (A) Metabolic
profiling and clustering of parental (par) and E2 clone strains demonstrated a metabolic signature of
resistance, which included increased levels of MEP pathway intermediates DOXP and MEcPP and the
glycolytic metabolite and PFK product FBP. Glu6P/fru6P and DHAP/gly3P are isomer pairs that cannot be
confidently distinguished. Clustering was performed using the heatmap function in R. Data are also
summarized in Table S1 and Fig. S5. FSM IC50s are shown for reference. FC, fold change. (B) DOXP levels
were highly correlated to levels of the upstream glycolytic metabolic FBP (Pearson’s r � 0.95). (C) By
contrast, DOXP levels were not correlated to the glycolytic metabolites glu6P/fru6P (Pearson’s r � 0.57).
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DISCUSSION

Cells must control levels of critical metabolites in order to efficiently utilize carbon
sources for energy and biosynthesis of essential molecules. Cells may regulate their
metabolism via transcriptional, posttranscriptional, posttranslational, allosteric, or en-
zymatic mechanisms that are necessary for growth (57–60). In the glucose-rich red
blood cell niche, Plasmodium malaria parasites display a unique dependence on
glycolysis for energy and biosynthesis.

Using resistance to a metabolic inhibitor, we identified a phosphatase member of
the HAD superfamily, HAD2, as a novel regulator of metabolism in P. falciparum.
Importantly, HAD2 controls substrate availability to the parasite-specific MEP pathway
for synthesis of isoprenoids, which are promising drug targets for much needed new
antimalarials. We found that tolerance of inhibitors such as FSM is a robust and
sensitive readout of metabolic perturbation. HAD2 is necessary for metabolic homeo-
stasis in malaria parasites. Cells lacking HAD2 exhibit marked dysregulation of central
carbon metabolism, including altered steady-state levels of glycolytic intermediates
and isoprenoid precursors. We found that mutations in phosphofructokinase (PFK9)
restored wild-type growth rates and FSM sensitivity to our had2 mutant strains. Our
report thus genetically connects the function of HAD2, a HAD superfamily member, to
control of essential central carbon metabolism. In addition, our work revealed a
previously undescribed strategy by which malaria parasites may respond to cellular
metabolic dysregulation through mutation in the gene encoding the rate-limiting
glycolytic enzyme PFK9.

HAD2 is a member of the HAD superfamily and a homolog of the previously
described metabolic regulator HAD1. Together with our previous studies on HAD1 (20,
21), we define the cellular role of these proteins in P. falciparum and contribute to the
greater understanding of the HADs, an evolutionarily conserved and widespread
protein family. Both enzymes belong to the IIB (IPR006379) and Cof-like hydrolase
(IPR000150) subfamilies (22). HAD enzymes display diverse substrate preferences (23,
27, 43, 44, 61–64), and their biological functions are largely unknown. Like other HAD
homologs, including PfHAD1 (20), HAD2 appears to be a cytoplasmic phosphatase with
a preference for small, monophosphorylated substrates. While the HAD superfamily is
thought to consist of a highly evolvable pool of enzymes with broad substrate
specificity (37, 42), our work strongly suggests that, like HAD1 and HAD2, other
members of this superfamily are likely to perform specific and biologically important
cellular functions.

We found that HAD1 and HAD2 influence central carbon metabolism. In our studies
of fosmidomycin resistance, we were uniquely positioned to detect these related but
distinct mechanisms of metabolic regulation through the study of the MEP pathway,
whose substrate availability is closely linked to glycolysis. had2 mutations were found
at a lower rate than had1 mutations (20) and appeared to have a fitness cost in FSMr

parasites, suggesting that, despite their homology, HAD1 and HAD2 have distinct
metabolic roles in vivo. As has been suggested by others in the HAD field (42, 65, 66),
HADs are amenable to evolution of their substrate specificity and may quickly adopt
divergent cellular functions, which may result in different fitness phenotypes upon
mutation.

The exact mechanism by which HAD2 enacts its regulation on parasite glycolysis
remains unclear. Possible mechanisms include direct or indirect regulation of PFK9 by
HAD2, as well as HAD2-mediated regulation of glycolysis downstream of PFK9, such
that mutation of PFK9 is a “bypass” mechanism in had2 mutants (Fig. 8). HAD2 itself may
also be subject to regulation, and understanding this regulation may be key in
uncovering HAD2’s in vivo function and mechanism of glycolytic regulation. HAD2 from
P. vivax is sensitive to inhibition by free phosphate (40), which may influence its in vivo
substrate specificity in a cellular context. PfHAD2 has also appears to be phosphory-
lated in vivo (67, 68), and changes in phosphorylation often greatly influence enzymatic
activity in vivo. As P. falciparum has a smaller repertoire of HADs than bacterial species

Mechanism of Malaria Metabolic Plasticity ®

November/December 2018 Volume 9 Issue 6 e01193-18 mbio.asm.org 9

 on January 11, 2019 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

https://mbio.asm.org
http://mbio.asm.org/


and Plasmodium HADs influence easily quantified phenotypes (drug tolerance, growth,
metabolite levels), the malaria parasite may be an attractive system for study of the
molecular mechanisms by which HAD proteins control metabolic homeostasis and
growth.

Metabolic profiling reveals that loss of HAD2 function leads to metabolic dysregu-
lation, which is centered on the canonical rate-limiting step of glycolysis, catalyzed by
PFK9. While the cellular abundance of the PFK9 product FBP is increased in had2
parasites, HAD2 does not directly utilize FBP as an enzymatic substrate, suggesting an
indirect mechanism of HAD2-mediated metabolic regulation. However, the distinct
metabolic signature of had2 parasites, characterized by increased levels of the MEP
pathway metabolites DOXP and MEcPP and the key glycolytic metabolite FBP, suggests
that MEP pathway metabolism is precisely linked to FBP production. In other microbial
systems, FBP levels reflect metabolic flux and are cued to environmental perturbations
(69). FBP-centered metabolic regulation is also important for the related apicomplexan
Toxoplasma gondii, which constitutively expresses fructose 1,6-bisphosphatase (FBPase)
to fine-tune glucose metabolism (57). While P. falciparum does not appear to possess
an FBPase (necessary for gluconeogenesis), the parasite may possess alternative FBP-
sensing mechanisms to tune metabolism, perhaps via regulators such as HAD1 and
HAD2.

The metabolic dysregulation that we have observed in the had2 mutant strains
appears to be associated with a fitness disadvantage. Under conditions of FSM selective
pressure, the benefits of dysregulated metabolism outweigh the costs. However, in the
absence of FSM, had2 parasites achieve metabolic relief through secondary mutation in
PFK9. The improved growth of had2 pfk9 double mutant parasites, compared to
parasites with a had2 single mutation, argues that the growth and metabolic pheno-
types are linked. However, our complementation studies cannot strictly discern
whether restoring HAD2 directly increases the growth rate of the had2 strain, as
transfection and complementation of HAD2 inherently constitute additional selection
for increased fitness. Of note, two recent essentiality screens performed in Plasmodium
spp. found that HAD2 is dispensable for growth and that loss of HAD2 was not

FIG 8 Model of HAD2- and PFK9-mediated metabolic regulation. Abbreviations: fru6P, fructose 6-phos-
phate; FBP, fructose 1,6-bisphosphate; gly3P, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone
phosphate; pyr, pyruvate; PEP, phosphoenolpyruvate; DOXP, deoxyxylulose 5-phosphate, MEcPP, 2-C-
methyl-D-erythritol 2,4-cyclodiphosphate; IPP, isopentenyl pyrophosphate. Black circles represent me-
tabolites. Key metabolites (FBP, DOXP, and MEcPP) are shown in purple. The glycolytic metabolites DHAP
and PEP are imported into the apicoplast and are converted to gly3P and pyruvate, respectively (89, 90).
HAD2 may act as a negative regulator of PFK9, directly or indirectly, or may inhibit glycolysis downstream
of PFK9. Loss of HAD2 results in increased substrate availability to the MEP pathway. In had2 strains,
reduction in PFK9 activity may counteract or bypass metabolic perturbations due to loss of HAD2.
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associated with any significant fitness defect (70, 71). However, it is unknown whether
the mutant strains generated in these screens have also acquired additional suppressor
mutations, such as polymorphisms in PFK9, that have facilitated their growth.

Likewise, PFK9 provides an additional case study of the context dependence of gene
essentiality in Plasmodium spp. Given its involvement in the canonical rate-limiting step
in glycolysis, PFK9 is strongly predicted to be essential for asexual growth of malaria
parasites (70, 71). In the context of a had2 mutation, our strains readily develop
mutations in PFK9 that reduce function but are nonetheless associated with increased
fitness. Indeed, it is surprising that parasites that are entirely dependent on glycolysis
for ATP production tolerate such a significant loss of activity in this enzyme. Because we
identified mutations across the length of PFK9 in our suppressed strains, our studies do
not appear to point to a specific disrupted function, such as alterations in an allosteric
binding pocket or a dimer interface. The observed mutability of PFK9 points to a
remarkable and unexpected metabolic plasticity in the parasite. That is, even though
the parasite inhabits a highly controlled intraerythrocytic niche, a wide range of
metabolic states of P. falciparum growth are still permissive for parasite growth. This
previously undescribed metabolic plasticity centered on PFK9 should be considered in
future efforts to target essential metabolism in Plasmodium.

Combined with the study described above, our work highlights the central role of
the glycolytic enzyme PFK9. A recent kinetic model of parasite glycolysis confirms that
PFK has a high flux-control coefficient, is sensitive to competitive inhibition, and can
effectively reduce glycolytic flux (72, 73). Like HAD2, PFK9 is plant-like and evolution-
arily divergent from its mammalian homologs (51). These differences may be exploited
for PFK inhibitor design and may indicate that PFK9 can be specifically targeted for
antimalarial development. However, our work cautions that the parasite has a surpris-
ing capacity to adapt to perturbations in central carbon metabolism, which may
present challenges in targeting these pathways.

Finally, our approach demonstrates the power of forward genetics to uncover novel
biology in a clinically relevant, non-model organism. We employ a previously described
screen (20) to uncover a novel resistance locus and employ a second selection for
parasite fitness to identify changes that suppress our resistance phenotype. Of the 19
strains in our original FSM resistance screen (20), we identified only one had2 mutant,
likely due to the reduced fitness associated with resistance in this strain. While fitness
costs associated with antimalarial resistance are well known (74–77), this study repre-
sents, to our knowledge, the first to harness this evolutionary trade-off to identify
suppressor mutations in a nontarget locus. Additional methods to identify low-fitness
resistant mutants have recently been recently described (77), and fitness assessment of
resistance mutations may allow suppressor screening for other antimalarials or other
target pathways to reveal new aspects of biology and drug resistance in malaria
parasites.

MATERIALS AND METHODS
Parasite strains and culture. Unless otherwise indicated, parasites were maintained at 37°C in 5%

O2–5% CO2–90% N2 in a 2% suspension of human erythrocytes in RPMI medium (Sigma-Aldrich)
modified with 27 mM NaHCO3, 11 mM glucose, 5 mM HEPES, 0.01 mM thymidine, 1 mM sodium pyruvate,
0.37 mM hypoxanthine, 10 �g/ml gentamicin, and 5 g/liter Albumax (Thermo Fisher Scientific).

FSMr strain E2 was generated by selecting a clone of genome reference strain 3D7 (MRA-102 from
MR4; ATCC, Manassas, VA) under conditions of continuous treatment with 3 �M FSM, as previously
described (20). Clones of strain E2 were isolated by limiting dilution.

Quantification of FSM resistance. Opaque 96-well plates were seeded with asynchronous cultures
at 0.5% to 1.0% parasitemia (percentage of infected red blood cells). After 3 days, media were removed
and parasitemia was measured via Picogreen fluorescence on a POLARStar Omega spectrophotometer
(BMG Labtech), as previously described (78). Half-maximal inhibitory concentration (IC50) values were
calculated using GraphPad Prism. Unless otherwise indicated, all IC50 data are representative of means
of results from �3 independent experiments performed with technical replicates.

HAD2 structural alignment. Structures were aligned using the TM-align algorithm in Lasergene
Protean 3D software (root mean square deviation [RMSD] of 1.9 Å).

Whole-genome sequencing and variant analysis. Library preparation, sequencing, read alignment,
and variant analyses were performed by the Washington University Genome Technology Access Center.
One microgram of parasite genomic DNA was sheared, end repaired, and adapter ligated. Libraries were
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sequenced on an Illumina HiSeq 2500 system in Rapid Run mode to generate 101-bp paired-end reads.
Reads were aligned to the P. falciparum 3D7 reference genome (PlasmoDB v7.2) using Novoalign
(V2.08.02). Duplicate reads were removed. SNPs were called using samtools (quality score of �20, read
depth of �5) and annotated using snpEff. Background variants were removed using previously se-
quenced genomes from parental and control strains (20). Mixed-variant calls and variants in highly
variable surface antigen loci (79, 80) were removed.

Sanger sequencing. The HAD2 (PlasmoDB PF3D7_1226300) A469T (R157X) SNP was amplified and
sequenced using the HAD2_R157X_F and HAD2_R157X_R primers. The PFK9 locus was amplified using
the PFK9_F and PFK9_R primers. PFK9 amplicons were sequenced using the PFK9_seq (1–8) primers.
Primer sequences can be found in Table S2 in the supplemental material.

Generation of recombinant HAD2. The predicted coding sequence of HAD2 was amplified using
the HAD2_LIC_F and HAD2_LIC_R primers (Table S2). A catalytic mutant (D26A) was also generated to
use as a negative control in activity assays. The had2D26A allele was created using the HAD2_D26A_F and
HAD2_D26A_R site-directed mutagenesis primers (Table S2).

Ligation-independent cloning was used to clone HAD2 and had2D26A into vector BG1861 (81), which
introduces an N-terminal 6�His fusion into the expressed protein. BG1861:6�His-HAD2 was transformed
into One Shot BL21(DE3)pLysS Escherichia coli cells (Thermo Fisher Scientific). Protein expression was
induced for 3 h with 1 mM isopropyl-�-D-thiogalactoside at mid-log phase (optical density at 600 nm
[OD600] of 0.4 to 0.5). Cells were collected by centrifugation and stored at 	20°C.

Cells were lysed in buffer containing 1 mg/ml lysozyme, 20 mM imidazole, 1 mM dithiothreitol, 1 mM
MgCl2 10 mM Tris HCl (pH 7.5), 30 U benzonase (EMD Millipore), and EDTA-free protease inhibitor tablets
(Roche). 6�His-HAD2 was bound to nickel agarose beads (Gold Biotechnology), washed with a mixture
containing 20 mM imidazole, 20 mM Tris HCl (pH 7.5), and 150 mM NaCl, and eluted in a mixture
containing 300 mM imidazole, 20 mM Tris HCl (pH 7.5), and 150 mM NaCl. This eluate was further purified
by size exclusion gel chromatography using a HiLoad 16/600 Superdex 200-pg column (GE Healthcare)
equilibrated in a mixture containing 25 mM Tris HCl (pH 7.5), 250 mM NaCl, and 1 mM MgCl2. The elution
fractions containing HAD2 were pooled and concentrated, and glycerol was added to reach a concen-
tration of 10% (wt/vol). Protein solutions were immediately flash frozen and stored at 	80°C.

HAD2 activity assays. The rate of para-nitrophenyl phosphate (pNPP; Sigma-Aldrich S0942) hydro-
lysis by HAD2 was determined by continuous measurement of absorbance at 405 nm. Assays were
performed at 37°C in a 50-�l volume consisting of 50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 10 mM pNPP,
and 1.2 �M enzyme.

Hydrolysis of other phosphorylated substrates by HAD2 was measured using an EnzChek phosphate
assay kit (Life Technologies). The reaction buffer was modified to contain 50 mM Tris-HCl (pH 8.0), 20 mM
MgCl2, 0.2 mM 2-amino-6-mercapto-7-methylpurine riboside (MESG), and 1 U/ml purine nucleoside
phosphorylase (PNP). Reaction mixtures contained 5 mM substrate and 730 nM enzyme. The activity of
catalytically inactive 6�His-HAD2D26A was measured for all substrates, and the data were used to
normalize the activity found for the WT HAD2 enzyme. Activity was normalized to that obtained from
catalytically inactive 6�His-HAD2D26A. All data represent means of results from �3 independent exper-
iments performed with technical replicates.

P. falciparum growth assays. Asynchronous cultures were seeded at 1% parasitemia. Media (no
drug) were exchanged daily. Samples were taken at indicated time points and fixed in phosphate-
buffered saline (PBS)– 4% paraformaldehyde– 0.05% glutaraldehyde. Cells were stained with 0.01 mg/ml
acridine orange, and parasitemia was determined on a BD Biosciences LSRII flow cytometer (Thermo
Fisher Scientific). All data represent means of results from �3 independent experiments.

pTEOE110:HAD2 plasmid construction. The pTEOE110 construct contains the heat shock protein
110 gene (PF3D7_0708800) 5= untranscribed region (UTR) and a C-terminal GFP tag (20). Human
dihydrofolate reductase (hDHFR) is present as a selectable marker. Inverted terminal repeats are included
for genome integration by a cotransfected piggyBac transposase (pHTH, MRA-912 from MR4; ATCC,
Manassas, VA).

HAD2 was amplified with the HAD2_XhoI_F and HAD2_AvrII_R primers (Table S2) and cloned into
AvrII and XhoI sites in the pTEOE110 plasmid.

Parasite transfections. Transfections were performed as previously described (20). Briefly, 50 to
100 �g of plasmid DNA was precipitated and resuspended in Cytomix (25 mM HEPES [pH 7.6], 120 mM
KCl, 0.15 mM CaCl2, 2 mM EGTA, 5 mM MgCl2, 10 mM K2HPO4).

A ring-stage P. falciparum culture was washed with Cytomix and resuspended in the DNA/Cytomix
solution. Cells were electroporated using a Bio-Rad Gene Pulser II electroporator at 950 �F and 0.31 kV.
Electroporated cells were washed with media and returned to normal culture conditions. Parasites
expressing the construct were selected by continuous treatment with 5 nM WR92210 (Jacobus Pharma-
ceuticals). Transfectants were cloned by limiting dilution, and the presence of the HAD2-GFP construct
was verified by PCR using gene- and GFP-specific primers (HAD2_R157X_F and GFP_R; Table S2).
Maintenance of the endogenous HAD2 and PFK9 genotypes was verified by Sanger sequencing.

Antiserum generation. Polyclonal anti-HAD2 antiserum was raised against 6�His-HAD2 in rabbits,
with TiterMax as an adjuvant (Cocalico Biologicals). Antiserum specificity was confirmed by immuno-
blotting of lysate lacking HAD2. Polyclonal anti-HAD1 antiserum was previously described (MRA-1256
from MR4; ATCC) (20).

Immunoblotting. Lysates were separated on a polyacrylamide gel and transferred to a polyvi-
nylidene difluoride membrane. Membranes were blocked in 5% nonfat dry milk– 0.1% Tween 20 –PBS.
Rabbit polyclonal antisera were used at the following dilutions: 1:2,000 to 5,000 anti-HAD2 and 1:20,000
anti-HAD1 (20). For all blots, 1:20,000 horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG
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antibody was used as a secondary antibody (ThermoFisher 65-6120). Blots were stripped with 200 mM
glycine– 0.1% SDS–1% Tween 20 (pH 2.2) and reprobed with 1:5,000 rabbit anti-heat shock protein 70
(Hsp70) (AS08 371; Agrisera Antibodies) as a loading control. All blots shown are representative of results
from �3 independent experiments. Minimal adjustments were applied equally to all blot images.

PfPFK model construction. PfPFK subunits were searched against the HHpred server for protein
remote homology detection and three-dimensional (3D) structure prediction using statistics as previ-
ously described (82–85). The Borellia burgdorferi PFK structure (PDB 1KZH) (86) returned the highest
similarity for both PfPFK domains and was used to predict the 3D structure for each domain using the
program MODELLER. PFK product orientation in the active site of the model was predicted via the
alignment tool, using PyMOL software against the E. coli PFK crystal structure (PDB 1PFK) (87). The �

domain model encompasses amino acids 779 to 1347, and the � domain model encompasses amino
acids 110 to 638.

Assay of native PFK9 activity. Sorbitol-synchronized trophozites were isolated using 0.1% saponin.
Cells were washed in buffer containing 100 mM Tris-HCl (pH 7.5), 1 mM MgCl2, 1 mM dithiothreitol (DTT),
10% glycerol, and EDTA-free protease inhibitor tablets (Roche) and lysed by sonication at 4°C (Fisher
Scientific model 550 Sonic Dismembrator; amplitude of 3.5), followed by centrifugation at 4°C (10,000 �
g, 10 min). An “RBC carryover” control was comprised of the trace cellular material remaining after
saponin lysis, centrifugation, and washing of uninfected erythrocytes.

Lysate PFK9 activity was monitored by linking it to the oxidation of NADH, as previously described
(51, 56). Reaction mixtures contained 100 mM Tris-HCl (pH 7.5), 1 mM MgCl2, 1 mM DTT, 0.25 mM NADH,
1 mM ATP, 3 mM fructose 6-phosphate, and excess volumes of linking enzymes aldolase (7.5 U), triose-
phosphate isomerase (3.8 U), and glycerol 3-phosphate dehydrogenase (3.8 U). After fresh cell lysate (10
to 15 �g total protein) was added, absorbance at 340 nm was measured at 37°C for 40 min. Activity was
determined by linear regression using GraphPad Prism software. Unless otherwise indicated, data
represent means of results from �3 independent experiments.

Metabolite profiling. Approximately �1 � 109 sorbitol-synchronized early trophozites were isolated
using 0.1% saponin, washed with ice-cold PBS–2 g/liter glucose, and frozen at 	80°C. Samples were
extracted in 600 �l of ice-cold extraction solvent (chloroform, methanol, and acetonitrile [2:1:1 {vol/vol/
vol}]) using two liquid-nitrogen-cooled 3.2-mm-diameter stainless steel beads and homogenization in a
Tissue-Lyser II instrument (Qiagen) at 20 Hz for 5 min in a cold sample rack. Ice-cold water was added,
and samples were homogenized for 5 min at 20 Hz. Samples were centrifuged at 14,000 relative
centrifugal force (rcf) at 4°C for 5 min. The polar phase was lyophilized and redissolved in 100 �l water
and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS/MS was per-
formed on a 4000QTRAP system (AB Sciex) in multiple-reaction monitoring mode using negative
ioniziation and 10 mM tributylammonium acetate (pH 5.1 to 5.5) as the ion pair reagent. The specific
parameters used for analysis of MEP pathway metabolites have been previously described (19). Liquid
chromatography separation was performed using ion pair reverse-phase chromatography (88) with the
following modifications: (i) RP-hydro high-performance liquid chromatography column (Phenomenex)
(100 mm by 2.0 mm, 2.5-�m pore size); (ii) flow rate of 0.14 ml/min; (iii) solvent A, consisting of 10 mM
tributylammonium acetate–5% methanol; (iv) binary LC gradient (20% solvent B [100% methanol] from
0 to 2.5 min, 30% solvent B for 12.5 min, 80% solvent B for 5 min, and column equilibration at for 5 min);
and (v) a 20-�l autosampler injection volume.

Additional methods. Additional methods are provided in Text S1 in the supplemental material.
Accession number(s). All genome data have been deposited in the NCBI BioProject database

(PRJNA222697) and Sequence Read Archive (SRP038937).
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