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A B S T R A C T

A platform for studying spinal cord organogenesis in vivo where embryonic stem cell (ESC)-derived neural
progenitor cells (NPC) self-organize into spinal cord-like tissue after transplantation in subarachnoid space of the
spinal cord has been described. We advance the applicability of this platform by imaging in vivo the formed graft
through T2w magnetic resonance imaging (MRI). Furthermore, we used diffusion tensor imaging (DTI) to verify
the stereotypical organization of the graft showing that it mimics the host spinal cord. Within the graft white
matter (WM) we identified astrocytes that form glial limitans, myelinating oligodendrocytes, and myelinated
axons with paranodes. Within the graft grey matter (GM) we identified cholinergic, glutamatergic, serotonergic
and dopaminergic neurons. Furthermore, we demonstrate the presence of ESC-derived complex vasculature that
includes the presence of blood brain barrier. In addition to the formation of mature spinal cord tissue, we
describe factors that drive this process. Specifically, we identify Flk1+ cells as necessary for spinal cord for-
mation, and synaptic connectivity with the host spinal cord and formation of host-graft chimeric vasculature as
contributing factors. This model can be used to study spinal cord organogenesis, and as an in vivo drug discovery
platform for screening potential therapeutic compounds and their toxicity.

1. Introduction

Spinal cord is derived from embryonic stem cells (ESCs) through a
coordinated organogenesis. Formation of the neural tube and sub-
sequent expansion of the neuroepithelium gives rise to neural pro-
genitor cells (NPCs) that further differentiate into multiple cell lineages
that form the brain and spinal cord (Aiba et al., 2006; Edlund and
Jessell, 1999). Cellular diversity of the central nervous system (CNS)
depends on highly regulated cell fate decisions (Edlund and Jessell,
1999). In addition to NPCs, a subpopulation of the cells that express
Flk1, also known as vascular epithelial growth factor (VEGF) receptor
2, has been suggested to play a role in early neurogenesis. Flk1 in-
duction has been demonstrated in ESC-derived NPCs and in NPCs of
adult mouse brain (Jin et al., 2002a; Schanzer et al., 2004a; Shen et al.,
2004). Flk1+ cells go on to differentiate into neural and endothelial

precursors (Clarke et al., 2000; Tropepe et al., 2001). While Flk1+ cells
are critical for vasculature development (Kabrun et al., 1997), their role
in CNS organogenesis remains unclear.

The ability of ESCs to differentiate into cells with a wide array of
molecular phenotypes makes them good candidates in therapeutic in-
terventions. In vitro, ESCs have been shown to differentiate into cells
that constitute several tissue types including, blood and blood vessels,
heart, muscle, and CNS (Bjorklund et al., 2002; Doevendans et al.,
2000; Kaufman et al., 2001; Klug et al., 1996; Lee et al., 2000; Lumelsky
et al., 2001; Palacios et al., 1995; Wichterle et al., 2002; Yamashita
et al., 2000). In addition to clinical utility, ESC-derived tissues provide a
platform for studying mechanisms that regulate organogenesis and re-
generation. Toward this, ESCs have been used to generate complex
tissue such as cortical tissue, retina and pituitary gland (Eiraku and
Sasai, 2012; Eiraku et al., 2011; Suga et al., 2011), cerebral organoids
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(Lancaster et al., 2013), and the patterned neural tube formation
(Meinhardt et al., 2014). While the formation of mature spinal cord
tissue has not been reported in vitro, there is one report showing for-
mation of such tissue in vivo (Ao et al., 2011).

Here, in a model of spinal cord organogenesis (Ao et al., 2011), we
show that formation of self-organized tissue from ESC-derived NPCs can
be imaged in vivo with T2w MRI while the stereotypical organization of
the graft can be discerned by DTI. We also demonstrate that complex
features of the spinal cord are found within the graft. In validation of
the ability of this platform to study intrinsic molecules of ESCs that
drive spinal cord organogenesis, we show that Flk1+ cells are necessary
for the formation of the graft following transplantation ESC-derived
NPCs.

2. Material and methods

2.1. Cell culture

B5 mouse ESCs (from Dr. Andras Nagy) that express GFP ubiqui-
tosusly were cultured as previously described (Bain et al.,
1995;McDonald et al., 1999a). Briefly, undifferentiated ESCs were
propagated in the presence of leukemia inhibitory factor (LIF; Life
Technologies). Cells were cultured as EBs in ESC induction medium
(ESIM; described by Bain et al. (Bain et al., 1995)) for 4 days, and then
treated for 4 days with retinoic acid (all-trans-RA, 500 nM; Sigma Al-
drich) (Bain et al., 1995). On the ninth day, EBs were dissociated with
0.25% trypsin plus EDTA (5min at 37 °C). The resulting single-cell
NPCs were resuspended in ESIM, and transplantated or depleted of
Flk1+cells. A source of dead ESCs were produced by repeated freeze
thaw cycles (see sham group below). We confirmed the lack of viable
ESCs by the presence of trypan blue in the cells used for transplantation
in the sham group.

2.2. Depletion of Flk1+cells by complement cascade, and inhibition of Flk1
signaling

Dissociated ESC-derived NPCs (2×106cells/mL) were treated with
rat monoclonal anti-Flk1 IgG at 1:50 or normal rat IgG for 20min,
followed by rabbit complement at 1:25 or normal rabbit serum for
45min. Cells were washed, and reconstituted for transplantation in
ESIM at 1× 106 cells/mL. In addition, batches of ESC-derived cells
were treated with 1mM ZM323881 (Santa Cruz Biotech), a specific
Flk1 inhibitor(Xiao et al., 2007), from day 2 to day 8. We measured the
diameter of EB spheres treated with ZM323881.

2.3. Animals

All surgical procedures and animal care were done in compliance
with Animal Studies Committee of Washington University in St Louis
School of Medicine and Johns Hopkins University IACUC. Female Long-
Evans rats (200–220 g) were housed in 12 h light/dark cycle with ad
libitum access to food and water.Table 1summarizes the groups of ani-
mals used in this study.

2.4. Transplantation, treatment and control groups

We transplanted ESC-derived NPCs at five different doses 5, 10, 20,
or 40 million. Three animals constituted a sham group that was trans-
planted with dead ESCs. The freeze-thaw cycle used to generate dead
ESCs was started with 40 million cells. In the depletion of Flk1+cells by
complement cascade experiment the control group was transplanted
with B5 ESC-derived NPCs while the experimental group was trans-
planted with Flk1+depleted B5 ESC-derived NPCs. Animals were an-
esthetized with ketamine/medetomidine (75,0.5 mg/kg i.p.).
Laminectomy was performed in anesthetized animals at L5–6 and cells
were injected into the L5–6 subarachnoid space. Anesthesia was re-
versed with antipamezole (1.0 mg/kg s.c.). All animals received im-
munosuppression (cyclosporine, 10mg/kg, s.c.) starting 24 h prior to
the transplantation, and daily thereafter. Animals were perfused with
4% paraformaldehyde in 0.1 M PBS. Spinal cord was dissected, and
post-fixed for 2 h. Spinal cord tissue was examined for GFP expression
with a fluorescent dissection microscope to assess ESC-derived graft.
Three of the spinal cords were further processed for ex vivo MRI. Other
spinal cords were cryoprotected in 30% glucose overnight, frozen and
sectioned at 14 μm at transverse or longitudinal plane. Relationship
between the number of transplaned cells and graft formation was
analysed by linear regression analysis with Prism 6 (GraphPad
Software).

2.5. In vivo MRI

At 2.5 months after transplantation, 10 animals were anesthetized
with 2% isoflurane, received in vivo MRI scans to assess graft formation.
The animals that received in vivo MRI scans were transplanted with 40
million cells. Scans were performed in a horizontal 9.4 T NMR spectro-
meter (Bruker; maximum gradient strength imaging= 400mT/m.
Images were acquired with a 70-mm diameter volume coil as the radio
frequency transmitter and receiver. T2w images covering the entire
lumber sacral spinal cord were acquired with rapid acquisition with
refocused echoes (RARE) sequence with the following parameters:
TE= 30ms, TR=4600ms, echo train length= 4, four signal averages,
FOV=51.3mm×51.3mm, 2mm slice thickness, and an in-plane re-
solution of 0.27mm×0.40mm. Seven out of the 10 animals that were
imaged using in vivo MRI formed grafts.

2.6. ex vivo MRI

Ex vivo scans were performed in a vertical 11.7 T NMR spectrometer
(Bruker) equipped a 10-mm diameter volume coil as the radio fre-
quency transmitter and receiver. DTI data were acquired using the
diffusion weighted 3D GRASE sequence with the following parameters:
TE of 33ms, TR of 800ms, and 4 signal averages. The imaging FOV, and
matrix size were 10.0 mm×8.0mm×11.0mm and 128×96×180
respectively, and the native resolution was 78×84×60mm3. The
spectral data were apodized by a symmetric trapezoidal function with
10% ramp widths on either side of the trapezoid and zero-filled before
Fourier transformation. For DTI, six diffusion weighted images (b-value
1700 s/mm2) and two non diffusion-weighted images were acquired
with d=3ms, D=15ms. Signal-to-noise ratios in the spinal cord in
non-diffusion weighted images were>40. Diffusion tensors were cal-
culated using a log-linear fitting method. Maps of fractional anisotropy
(FA) were calculated on a voxel-by-voxel basis from the diffusion tensor
using DTIStudio (Jiang et al., 2006).

2.7. Neuronal tract tracing with pseudorabies virus (PRV)

Four days prior to experimental endpoint, 7 animals that received
ESC-derived NPCs were anesthetized with isoflurane. The left sciatic
nerve was exposed, and we performed a 2-μL intra-nerve injection of
the Bartha strain of PRV (1×108 PFU/mL, provided by Dr. Lawrence

Table 1
Summary of cell dosage and animal groups.

Injection dose
(millions of
cells)

Number of
animals in the
group

Number of
animals with
graft growth

Ratio of
animals with
graft (%)

Median
BBB score

0 3 0 0 21
2.5 8 3 37.5 21
5 12 6 50 21
10 10 4 40 21
20 13 7 54 21
40 24 16 66.7 21
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Schramm). The muscle and skin incisions were closed separately.
Animals injected with PRV were allowed to survive for 90 h (Pan et al.,
2005).

2.8. Immunohistochemistry

For neuron labeling we used antibodies against: choline acetyl-
transferase (ChAT, Millipore); vesicular glutamate transporter 1
(vGlut1, Millipore); hydroxytryptamine (5-HT, Millipore); tyrosine hy-
droxylase (TH, Millipore). Oligodendrocytes: myelin basic protein
(MBP, Dako). Astrocytes: glial fibrillary acidic protein (GFAP, Incstar).
Vasculature: Flk1 (BD), and CD31 (Dako). Transplanted cells were
identified with anti-green fluorescent protein (GFP). For PRV infected
neurons, a swine polyclonal anti-PRV antibody was used (provided by
Dr. Arthur Loewy). Corresponding secondary antibodies conjugated
with Alexa 488, Cy3 or Cy5 were used (Jackson Immunoresearch), and
sections were counterstained with Hoechst 33342 (Molecular Probes).

2.9. Quantitative image analysis

For quantification, images were captured on a Zeiss Axio Imager Z1
microscope (Zeiss). Mean fluorescence intensities for ChAT+ neurons,
vGlut1+, 5HT+, and TH+ axons from a region of interest (ROI) from
the host spinal cord and the graft were obtained with Zeiss Zen 2012
software for measuring signal intensity (Zeiss). Mean fluorescence in-
tensities are reported for ROIs obtained from three animals, and t-test
was used for comparison of neuronal markers with Prism 6 (GraphPad
Software). In this work, we use the mean fluorescence intensities for
each neuronal marker as a correlate for the number of the respective
neurons.

2.10. Electron microscopy (EM)

Spinal cord and ESC cell graft were processed using standard
methods (Liu et al., 2000). Tissue was trimmed and postfixed in os-
mium, and embedded in Epon. Thin sections were obtained and stained
for citrate/uranyl acetate. Electron micrographs were acquired using a
JEOL 100CX transmission EM.

3. Results

Self-organization of transplanted ESC-derived NPCs into spinal cord-

like tissue is independent of the number of transplanted cells.
Mouse ESCs were differentiated into NPCs by removal of leukemia

inhibitory factor (LIF) and subsequent addition of retinoic acid (RA)
(Bain et al., 1995). After 4 days without LIF, and another 4 days in the
presence of RA, mouse ESCs-derived NPCs predominantly expresses
nestin (98.45 ± 1.96%, n=2825), an NPC marker. Mouse ESC de-
rived cells did not express Oct4 (1.55 ± 1.96%, n=4970, a marker of
undifferentiated ESCs (Fig. 1A–C). Previously, transplantation of 50
million mouse ESC-derived NPCs in the subarachnoid space showed
formation of mature neuronal tissue that resembles the spinal cord (Ao
et al., 2011). To determine if the ability of ESCs-derived NPCs to self-
organize depends on the number of transplanted cells, we transplanted
a lower number of ESC-derived NPCs into the subarachnoid space at
lumbosacral level of adult rat spinal cord; specifically, we transplanted
2.5, 5, 10, 20, and 40 million cells. In an attempt to streamline the
characterization of the grafts for future studies, we screened the lum-
bosacral spinal cords for the formation of ESC-derived grafts using in
vivo T2w MRI (Fig. 1D) in 10 animals that were transplanted with 40
million cells (7 animals in this cohort formed grafts). The rostro-caudal
dimension of the grafts ranged from 0.2mm to 25mm (Fig. 1E).
Transplantation of all five doses of ESC-derived NPCs resulted in graft
formation. In total, 36 out of 67 transplanted animals had grafts
(Table 1) whereas no grafts were observed in animals transplanted with
dead NPCs. We used linear regression analysis to determine if number
of transplanted cells, the common independent variable, can predict the
ability of the transplanted cells to form grafts, the dependent variable.
Based on the values of coefficient of determination (R2=0.5618) and
its corresponding p value (p= .0862) we concluded that the formation
of the grafts does not depend on the number of cells that are trans-
planted (Supplementary Fig. S1 visualizes the linear regression analyses
from data in Table 1). In addition, transplantation of various numbers
of mouse ESC-derived NPCs did not lead to teratomas.

Next, we utilized DTI to investigate the organization of the trans-
planted ESC-derived NPCs. Diffusion of water within highly organized
graft structure should be limited to the same extend as it is in the host
spinal cord reflecting similarities in fiber density, axon diameter and
myelination. Indeed, FA maps show that the spatially distinct areas
within the graft grossly resemble WM and GM tissue of the host spinal
cord (Fig. 1F). In addition, FA maps also show that the self-organization
of the graft reconstitutes the stereotypical inside-out organization of the
mature spinal cord (Fig. 1F).

All the transplanted animals had normal gait achieving a perfect

Fig. 1. Presence and stereotypical self-organization
of intrathecally transplanted ESC-derived NPCs can
be ascertained by MRI. (A) Differentiation of ESCs
into NPCs prior to transplantation is confirmed by
expression of nestin, a marker of NPCs (2825 cells
were counted from 6 EBs; 93.07 ± 1.96% of cells
expressed nestin). (B) Prior to transplantation ESC-
derived NPCs do not express Oct4, a marker of
pluripotent stem cells (4970 cells were counted from
10 EBs; 1:55 ± 1:96% of counted cells express
Oct4). (C) Quantification of nestin+ and Oct4+ cells
in panels A and B, respectively. (D) In vivo T2w
image with a 3D reconstruction of the graft (green);
V, ventral; C, caudal; L, left; R, right. (E) Segments of
the lumbosacral cord illustrate GFP-fluorescence
around the host spinal cord (white arrows point at
the graft, white arrowhead points at the spinal
roots); R, rostral; C, caudal. (F) FA map, from L5-L6
level of the spinal cord, illustrates the relationship
between host and graft tissue highlighting the inside-
out stereotypical self-organization of graft (white
matter, WM; grey matter, GM; orange *, graft GM-
like tissue; orange #, graft WM-like tissue; dotted

orange circles, spinal cord). Scale bars A-B=15 μm; D-F= 0.5mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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score on the Basso, Beattie and Bresnahan (BBB) open-field locomotor
test (Table 1) (Basso et al., 1995), and exhibited no signs of pain or
discomfort (signs of discomfort that were monitored where vocalization
when handled, decreased body weight, poor grooming, and reduction
in free movement).These findings demonstrate that as few as 2.5 mil-
lion transplanted ESC-derived NPCs self-organize in tissue whose gross
architecture closely resembles the normal spinal cord without com-
promising the host spinal cord. In addition, T2w MRI can be used to
assess graft formation in live animals making this spinal cord organo-
genesis model more applicable for developmental and toxicology stu-
dies.

3.1. Principal cellular components within the ESC-derived graft are
functional

Previous investigation showed that ESC-derived grafts contain
neurons, astrocytes and oligodendrocytes, three principal components
of the CNS (Ao et al., 2011). We aimed to examine the functionality of
these components; therefore, we examined functional and anatomical
features formed by neurons, oligodendrocytes and astrocytes. Toward
this, we first probed the interaction of oligodendrocytes and neurons
within the graft WM where we found that MBP+ myelin sheaths wrap
NFT+ axons (Fig. 2A-B). Indeed myelination of axons within the graft
leads to the formation of Caspr+ paranodal structures, a component of
the machinery that enables saltatory conduction (Fig. 2A and C)
(Einheber et al., 1997a). An illustrative electron micrograph of the WM
within the graft confirms the formation of paranodes adjacent to myelin
sheaths (Fig. 2D). In addition, the presence of compact myelin sheaths
enwrapping axons corroborates the functionality of interactions be-
tween oligodendrocyte and neurons in the graft WM (Fig. 2D). Myeli-
nation by ESC-derived oligodendrocyte in the graft resembles myeli-
nation of larger diameter axons by host oligodendrocytes. The graft also
contains unmyelinated axons (Fig. 2D), and we do not observe

myelination of dendrites or non-neuronal cell processes.
Second, we aimed to show that the previously described dense outer

zone of radial astrocytes in the graft WM forms a glial limitans
(Alghamdi and Fern, 2015). Electron micrograph illustrated in Fig. 2E
depicts the soma of a highly ramified astrocyte with glial filaments that
the astrocyte contributes to the glial limitans. The astrocyte illustrated
in Fig. 2E ensheaths several axons within the graft WM. Presence of
tight junctions in the dense outer zone populated by astrocytes con-
firmed the formation of the glial limitans in the graft WM (Fig. 2E, E
inset). Finally, in an area adjacent to host spinal roots, we observed
morphology features strongly resembling transitional zones that are
characteristic of the dorsal root entry zones (Fig. 2A and F). In these
zones, PNS patterns of myelination, characterized by myelinating
Schwann cells (Fig. 2F) with adjacent collagen fibers (Fig. 2F), transi-
tion into CNS-like patterns of WM, characterized by axons and oligo-
dendrocyte (Fig. 2F). The presence of functional and anatomical fea-
tures formed by the three principal neural cells within the graft
supports the notion that these cells are functional, and validate this
platform as a model for spinal cord organogenesis.

3.2. Molecular phenotypes of ESC-derived neurons resemble spinal cord
neurons

Having shown that the stereotypical inside-out organization of the
graft resembles the spinal cord, and that the three principal neural
components within the graft are functional, we aimed to determine if
the molecular phenotypes of ESC-derived neurons within the graft re-
semble neurons found in the host spinal cord (Fig. 3A). First, we ex-
amined expression and distribution of ChAT, a marker of cholinergic
neurons, in the graft. Cholinergic neurons in the graft appear in clusters
and possess large processes (Fig. 3B) resembling cholinergic motor
neurons found in the host spinal cord ventral horn, as seen within the
same section (Fig. 3B). In addition to the distribution, we aimed to

Fig. 2. (A) Schematic diagram of a coronal section of the lumbar spinal cord with the graft (green) where the letters correspond to individual panels (BeF) (*, nerve
roots; #, anterior spinal artery). (B) MBP (red) and NFT (white) labeling illustrates myelin wrapped axons in the graft (yellow arrow). (C) Myelinated axons (NFT,
white) form paranodal structures (yellow arrow, paranodes). (D) EM micrograph within the WM tissue of the graft shows oligodendrocytes myelination of axons is
developmentally appropriate (green arrows, myelin sheaths; green arrowheads, unmyelinated axons; and yellow arrow, paranodes). (E) The external surface of the
graft depicts a glial limitans with tight junctions between cells on the surface (inset, green arrow) (As, astrocyte; white arrowheads, astrocyte processes; green
arrowheads, axons ensheathed by astrocyte processes). (F) The graft-host interface resembles the dorsal root entry zone with myelinating Schwann cells (red *, cell
body; red arrowhead, myelin sheath), collagen (red arrow), oligodendrocytes (green arrow, cell body) and axons (green arrowhead). Scale bars: B-C=10 μm;
D=0.2 μm; E=2 μm; F= 0.5 μm.
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assess the quantity of each neuronal phenotype by using the intensity of
immunofluorescence for each marker as a correlate for the number of
neurons. Initially, we assessed the quantity of cholinergic neurons by
ChAT immunofluorescence (Supplemental Fig. S2A). We found that the
number of cholinergic neurons found within the graft (4166 ± 227) is
lower than in the host spinal cord (5621 ± 346; p < .01). Second, we
examined expression of vGlut1, a marker of glutamatergic neurons in
the graft (Fig. 3C). Glutamatergic neurons with numerous vGlut1
bouton-like terminals are found in the graft GM, and they resemble
glutamatergic profiles in the dorsal horn of the host spinal cord
(Fig. 3D). Unlike cholinergic neurons, the number of glutamatergic
neurons, assessed by vGlut1 immunofluorescence (Supplemental Fig.
S2B), within the graft (9894 ± 474) is higher than in the host spinal
cord (6992 ± 347; p 〈001). Third, we examined expression of 5-HT
(Fig. 3E), a marker of serotonergic neurons, and TH (Fig. 3G), a marker
of dopaminergic neurons, in the graft. Serotonergic and dopaminergic
neurons are found in the graft GM and have numerous terminals with
bouton-like structures that are 5-HT+ (Fig. 3E) and TH+ (Fig. 3G),
respectively, resembling serotonergic (Fig. 3F) and dopaminergic
(Fig. 3H) neurons of the host spinal cord. The number of serotonergic
neurons, assessed by 5-HT immunofluorescence (Supplemental Fig.
S2C) is lower in the graft (2523 ± 56) than in the host spinal cord
(3892 ± 73, p < .001) while the number of dopaminergic neurons,
assessed by TH immunofluorescence (Supplemental Fig. S2D), is higher
in the graft (6028 ± 161) than in the host spinal cord (5537 ± 94,
p < .01). Therefore, similarities in the presence, appearance, and dis-
tribution of ESC-derived ChAT+, vGlut1+, 5-HT+, and TH+ neurons in
the graft confirm that neuronal molecular phenotypes from the graft are
very similar to neurons in the host spinal cord whereas the quantity of
these markers highlights the variability in the numbers of neurons in
graft versus the host spinal cord. Such variability could be a con-
sequence of the selection of ROIs within the same transverse version of
the host spinal cord, and could be different in other levels of the graft.

For example, the number of glutaminergic neurons in one level of the
graft could resemble the number of glutaminergic neurons at a different
level of the host spinal cord. Alternatively the variability could be due
to differences in developmental cues in the adult host spinal cord versus
within the graft.

3.3. Astrocyte migration and neuronal connectivity can provide cues for
spinal cord organogenesis

The similarity of the molecular phenotypes between neurons of the
host spinal cord and ESC-derived neurons within the graft prompted us
to examine interactions between the graft and the host spinal cord.
Initially, we examined the interface between the graft and the host
where we find ESC-derived neurons (NeuN+/GFP+) that migrate into
the host spinal cord (Fig. 4A), and host neurons (NFT+/GFP−) that
project axons into the graft (Fig. 4B). Additionally, at the interface we
found that host astrocytes (GFAP+/GFP−) migrate into the graft
(Fig. 4C). The finding that host neurons project their axons into the
graft introduces the possibility that host and graft neurons form neu-
ronal networks. For a more detailed assessment of connectivity between
the neurons in the host and graft, we injected transsynaptic retrograde
tracer PRV in the sciatic nerve. We found PRV+ neurons in the GM of
the host spinal cord at the caudal lumbosacral level (Fig. 4D–E). Ad-
ditionally, we found PRV+ neurons scattered in the GM of the graft
suggesting that the neurons in the graft form synaptic neuronal circuits
with the host spinal cord neurons (Fig. 4D–F″). Taken together – the
presence of host astrocytes within the graft, and formation of circuitry
between the host and graft neurons – these results allow the possibility
that the host CNS plays an active role in directing spinal cord organo-
genesis within the graft.

Fig. 3. Molecular phenotypes of neurons in
the graft resemble neurons in the host
spinal cord. (A) Schematic drawing through
the lumbar spinal cord showing letters that
correspond to the locations of panels BeH
(*nerve roots, # anterior spinal artery). (B)
Ventral horn of the host spinal cord and the
graft contain clusters of ChAT+ cholinergic
neurons (white arrow, ChAT+ neurons in
the spinal cord; yellow arrow, ChAT+ neu-
rons in the graft; white dotted line, graft-
host boundary). (C-D) vGlut1 labeling graft
GM shows dense glutaminergic nerve
terminals in the graft (C), similar to that in
the ventral horn of the host spinal cord (D).
(E-F) 5-HT labeled axons (arrowhead) in the
graft GM (E) resemble those in the ventral
horn of the host spinal cord (F). (G-H)
Similarly, TH+ axons (arrowhead) in the
graft GM (G; arrow highlights the cell body
of a TH+ dopaminergic neuron) are similar
to those in the ventral horn of the host
spinal cord (H). Scale bars B=50 μm; C-
H=10 μm.
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3.4. Formation of vasculature in the graft

Vasculogenesis and angiogenesis are essential for organogenesis
since they enable oxygen and nutrient exchange, and they provide in-
structive signals to non-vascular tissue during organ development.
Therefore, we wanted to determine the level of vasculogenesis or an-
giogenesis within the graft as well as the role they play in the process of
spinal cord organogenesis. First, we examined expression of Flk1, an
early endothelial marker (Kabrun et al., 1997; Yamashita et al., 2000;
Yamaguchi et al., 1993). Flk1+/GFP+ cells were identified as in-
dividual cells (Fig. 5A) and as part of vasculature within the graft
(Fig. 5B). In addition, we found Flk1+ vasculature that ran continuous
between the host and the graft (Fig. 5C) indicating that the vasculature
within the graft is chimeric. Formation of chimeric vasculature that is
shared between the host and the graft introduces another avenue
through which the host spinal cord can play a role in directing spinal
cord organogenesis within the graft. Second, we examined the expres-
sion of a mature endothelial marker, CD31 (Fig. 5D). Unlike Flk1+

cells, we only find CD31+ cells within the graft vasculature. The pre-
sence of CD31+/GFP+ cells indicates that the mature vasculature that
forms within graft originates from the transplanted cells. Third, we
examined expression of Glut1, a marker of endothelial cells that com-
prise the blood-brain barrier (Fig. 5E). The presence of GFP+Glut1+

cells in the vasculature of the graft indicates vasculogenesis initiated
from the transplanted cells has resulted in complex vasculature that
includes elements of CNS vasculature such as blood-brain-barrier
(Fig. 5E) that also contain tight junctions (Fig. 5F–F′) (Engelhardt,
2003; Kuhnert et al., 2010). Taken together these findings show that

transplanted ESC-derived cells initiate the process of vasculogenesis
that results in complex vasculature within the graft including the pre-
sence of the blood-brain-barrier. Additionally, the chimeric nature of
the vasculature within the graft shows that angiogenesis from the host
contributes to the vasculature within the graft possibly influencing
spinal cord organogenesis in the graft.

3.5. Flk1+ cells regulate embryoid bodies (EB) growth and graft formation

Following the observation that ESC-derived cells are part of the
vasculature within the graft, we wanted to determine if ESC-derived
Flk1+ cells are present in the EB, and if Flk1 regulates EB growth.
Toward this, we determined that at day 8 of EB growth, Flk1+ cells
constitute 6.9 ± 0.9% (total cells counted 21,005) of cells within EB.
Subsequently, we grew EBs in the presences of ZM323881 (1 μM), a
specific inhibitor of Flk1 kinase activity (Fig. 5G–I) (Xiao et al., 2007).
Inhibition of the Flk1 signaling resulted in EBs that were smaller and
less compact compared to vehicle-treated EBs (Fig. 5G–I)
(323.4 ± 64.49 μm vs 206.3 ± 42.66 μm; p < 0:001). Next, we
wanted to determine if ESC-derived Flk1+ cells play a role in graft
formation past the EB formation stage. To accomplish this, we lysed
Flk1+ cells through Flk1 antibody complement activation prior to
transplantation. Animals that were transplanted with Flk1 depleted
ESC-derived NPCs (n=10) did not form a graft whereas 5 out of 11
control animals that received ESC-derived NPCs without Flk1 antibody
complement activation demonstrated graft formation (Table 2) in-
dicating that Flk1+ cells are essential for formation of the ESC-derived
graft.

Fig. 4. Neural connections between the host spinal
cord and graft. (A) GFP+NeuN+ cells (arrows) from
the graft migrate into the host spinal cord (white
dotted line, graft-host boundary). (B) NFT+ neurons
from the host spinal cord (arrows) project axons in
the graft. (C) GFAP+ astrocytes from the host spinal
cord (arrows) migrate into the graft. (D) Pseudo-ra-
bies virus (transynaptic retrograde tracer) injected in
the sciatic nerve labels neurons in the GM of the host
lumbosacral spinal cord and the graft showing that
neurons from the graft form functional synaptically
connected circuitry with neurons in the host spinal
cord (yellow line in D, graft-host boundary). (E) Inset
from panel D (white box) showing PRV-labeled (red)
NeuN+ neurons (arrows) in the GM of the host spinal
cord. (F-F″) Inset from panel D (green box) showing
ESC-derived (GFP+) PRV-labeled (red) NeuN+ neu-
rons (arrows) in the GM of the graft. Scale bars: A-
C=50 μm, D=100 μm, E-F″=20 μm.
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4. Discussion

We validate a novel platform for studying spinal cord organogenesis
that enables studies of intrinsic molecules within ESCs that drive this
process, and factors within the adult spinal cord that contribute to or-
ganogenesis of the spinal cord. We show that formation of spinal cord
tissue from transplanted ESC-derived NPCs can be identified through in
vivo T2w MRI. The stereotypical organization of the newly formed
spinal cord tissue can be determined using DTI. We went on to identify
functional and anatomical features of the CNS that are formed within
the newly formed spinal cord tissue. As a proof-of-concept for the utility
of this platform, we demonstrate that Flk1+ESC-derived cells within
EBs are essential for spinal cord organogenesis. The study highlights
mechanisms through which the host spinal cord can provide cues for
formation of functional and anatomical features of the spinal cord.

Differentiation of ESCs into nestin+NPCs has been characterized
through functional gene expression (Leem et al., 2009), transcription
factor profiles (Yamamizu et al., 2013), and microRNA expression
profiles (Chen et al., 2010). In vitro, ESCs form rudimentary structures
such as beating clumps of cardiac cells (Meyer et al., 2000), adenohy-
pophysis tissue (Suga et al., 2011), and insulin secreting pancreatic
islet-like cells (Lumelsky et al., 2001). However, evidence for self-or-
ganization of ESCs into organs of the CNS is limited. ESCs have been
shown to self-organize into functional neural cell cultures (Lenka et al.,
2002), optic cup (Eiraku et al., 2011), cortical tissue (Eiraku and Sasai,
2012), and cerebral organoids (Lancaster et al., 2013). In these reports,
media with reagents and growth factors that drive lineage commitment
and regional specification of cells directed self-organization and dif-
ferentiation of ESCs. Using such methodology with RA as the primary
inducing factor, self-organization of ESCs in tissue resembling a pat-
terned neural tube was accomplished, and it was shown to be depen-
dent on paracrine factors (Meinhardt et al., 2014). The strong effect of
paracrine factors in self-organization of transplanted NPCs was evident
in our experiments as well, where despite reducing the number of
transplanted cells from the initial dose of 40 million to 2.5 million, we
continued to observed graft formation. The current experiments did
not.

Stereotypical self-organization of transplanted ESC-derived NPCs
within the graft strongly resembled the host spinal cord stereotypical

Fig. 5. Vasculogenesis in the graft. (A) GFP+Flk1+

cells are present in the graft as individual cells. (B)
GFP+Flk1+ cells form vasculature in the graft. (C)
Flk1+ vasculature structures connect the graft with
the host spinal cord. (D) GFP+CD31+ endothelial
cells are found in the vasculature within the graft.
(E) Vasculature structures in the graft express the
blood-brain barrier marker Glut1. (F-F′) EM image
showing formation of blood-brain barrier vascu-
lature structures within the graft that contain tight
junction formed by an endothelial cell. (G-I) Flk1
inhibitor (ZM323881) results in EBs with smaller
diameters compared to non-treated EBs (p < .001).
Scale bars: A=10 μm; B-E=20 μm; F=1 μm; G-
H=100 μm.

Table 2
Summary of graft development data in animals that received ESC-derived NPC
with or without depletion of Flk1+ cells.

Groups Number of animals
in the group

Number of animals
with graft growth

Ratio of animals
with graft (%)

Control 11 5 45.5
Flk1 treated 10 0 0
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inside-out organization with the GM on the inside being surrounded by
the outside WM (Ao et al., 2011). Such self-organization of ESCs re-
sembling a mature CNS organ was described in vitro where cerebral
organoids resembled a mature brain (Renner et al., 2017). In case of the
patterned neural tube, the self-organized organ showed early signs of
neural tube formation and ventral-dorsal patterning but was not mature
enough to resemble the fully formed spinal cord (Cassady et al., 2014).
We confirm the stereotypical self-organization of the graft using water-
diffusivity which bypasses the need for perfusion of animals without
graft formation increasing the utility of this platform. In addition to the
stereotypical organization, graft WM and GM contains cells with ap-
propriate molecular phenotypes. The graft WM contained cells that had
predominantly differentiated toward a glial lineage, oligodendrocytes
and astrocyte while the GM predominantly had cells that were differ-
entiated into neurons (Ao et al., 2011). Beyond the appropriate mole-
cular phenotypes of the cells, within the graft WM, our work describes
ultrastructural features of mature spinal cord such as myelinated axons
and glial limitans. Differentiation of transplanted ESC-derived NPCs
into oligodendrocytes in the spinal cord was previously reported
(McDonald et al., 1999a). The functionality of such differentiation was
confirmed in experiments where remyelination by transplanted NPCs
but not shiverer NPCs (do not form compact myelin) was shown to
induce recovery of motor function after spinal cord injury (SCI) (Yasuda
et al., 2011). We note that despite the presence of myelinating ESC-
derived oligodendrocyte, not all axons are myelinated. Such finding
indicates that ESC-derived oligodendrocytes within the graft myelinate
only axons with appropriate developmental signals or that some ESC-
derived oligodendrocytes are not mature enough to myelinate axons.
Myelination depends on neuronal activity (Demerens et al., 1996)
therefore, demarcation of the paranodal regions in the axon-glial
junctions by axonal localization of Caspr is an indication of devel-
opmentally appropriate neuronal activity and myelination (Einheber
et al., 1997b).

The formation of another ultrastructural feature, glial limitans, was
noted on the surface of the graft WM. Glia limitans is a thin protective
barrier comprised of astrocytes that associate with the parenchymal
basal lamina and surround the brain and spinal cord (Liu et al.,
2013;Lyser, 1972). The glial limitans characterized by tight junctions
was appropriately formed on the outside of the graft WM, away from
the host spinal cord but not adjacent to the host spinal cord. Con-
sidering we transplanted ESC-derived NPCs adjacent to the host SCI, the
glia limitans could have formed in response to signals that surrounded
the graft; in turn the glial limitans formation could have preserved the
graft. As a consequence of the glial limitans formation, graft ESC-de-
rived cells did not cross the graft boundary but did cross into the host
spinal cord. Differentiation of transplanted ESC-derived NPCs into as-
trocytes following SCI in rodents has been previously reported (Roybon
et al., 2013), however, to our knowledge this is the first report that
shows that newly generated astrocytes form a glial limitans.

Mouse ESCs-derived NPCs are able to further differentiate into
functional neurons, in vitro (Bain et al., 1995;Okada et al., 2008) and in
vivo in the spinal cord (Okada et al., 2008;McDonald et al., 1999b;Peljto
et al., 2010). In vitro, ESC-derived neurons have tetrodotoxin-sensitive
transient inward current (Na+ current), and a sustained outward
current (delayed rectifier K+ current). Additionally, injection of a
sustained positive current induces firing of action potentials (Okada
et al., 2008). In vivo, ESC-derived NPCs have been shown to differ-
entiate into ChAT+, GAD+, 5-HT+, and TH+neurons that form sy-
napses with the host neurons following transplantation in the uninjured
spinal cord.(Okada et al., 2008) In this study, we confirm that ESC-
derived NPCs within the graft differentiated into neurons with the same
molecular phenotypes as the endogenous neurons within the host spinal
cord. The presence of ChAT+cholinergic motor neurons and
vGlut1+glutamatergic neurons is well established in the spinal cord but
the presence and function of TH+dopaminergic neurons, and 5-
HT+serotonergic neurons in the spinal cord is not as well characterized.

Dopaminergic neurons have been described in the autonomic nuclei
and superficial dorsal horn in L6-S3 spinal cord segments where they
have modulate the bladder reflex (Hou et al., 2016). In addition to
rodent spinal cord, 5-HT+profiles of serotonergic neurons have been
identified at the lumbar level in the ventral horn of human spinal cord
where they surround motorneurons. Additionally, in human spinal
cords 5-HT+profiles of serotonergic neurons have been identified in the
intermediolateral region, and superficial part (equivalent of Rexed la-
mina II) of the dorsal horn that has high levels of 5-HT(1A) receptors
(Perrin et al., 2011).

Identification of factors that drive the differentiation of neurons
within the graft remain to be idenfied, and is beyond the scope of this
study. One possibility is that these neurons aquired their phenotype in
vitro while another possibility is that factors within the host spinal cord
drive their differentiation. Host astrocytes and axons that penetrate into
the graft could enhance the survival, and drive differentiation of ESC-
derived cells. In case of astrocytes this induction could be mediated by
secreted factors or by cell-surface ligands (Bentz et al., 2006). However,
such an inductive affect from the host CNS neurons requires formation
of a functional neuronal circuitry with the graft (Song et al., 2012).
Retrograde tracing confirmed that the graft forms such circuitry with
the host spinal cord at lumbosacral level. An appropriate synaptic cir-
cuitry also enhances the survival of the neurons within the circuit (Buss
et al., 2006); indeed ESC-derived neurons survive better once trans-
planted into the spinal cord if they form synapses with the host neurons
(Okada et al., 2008).

Inductive effects of ESC-derived endothelial cells, and the vascu-
lature that they form are critical in the organogenesis of the liver and
pancreas (Lammert et al., 2001;Matsumoto et al., 2001). Such an effect
has also been shown in the regulation of neurogenesis in the adult brain
(Shen et al., 2004;Louissaint Jr. et al., 2002;Schanzer et al., 2004b).
Furthermore, improved angiogensis within ischaemic tissues following
a stroke induces neurogenesis and axonogenesis (Nih et al., 2018).
Conversly, self-assembled grafts that contain neuronal and glial popu-
lations provide the necessary developmental cues to guide the forma-
tion of vascular networks from human ESC-derived endothelial and
mesenchymal stem cells. One such cue is expression of VEGFA, a gene
that associated with vascular development (Schwartz et al., 2015). We
found early endothelial (Flk1+) cells distributed throughout the graft as
well as localized in newly formed chimeric blood vessels within the
graft; therefore, Flk1+cells could play a role in EB, and graft formation
by exerting an inductive effect. The role of Flk1+ cells in EB formation
is more complex since blocking of Flk1 kinase activity with ZM323881
is not sufficient to block RA induced EB formation; however, blocking
Flk1 kinase activity results in smaller and less compact EBs. Ablation of
Flk1+cells after EB formation but prior to the transplantation of ESC-
derived NPCs completely prevents graft formation suggesting a role for
Flk1+cells prior to formation of functional blood vessels. VEGF sig-
naling through Flk1 is shared by both endothelial and NPCs where these
signaling pathways control vascular, and neuronal growth and pat-
terning (Ambler et al., 2003;Hashimoto et al., 2006;Ruiz de Almodovar
et al., 2011;Sondell et al., 2000). Furthermore, NPCs can differentiate
into cells of vascular and neural lineage, which leads to collaborative
organogenesis (Ii et al., 2009). Indeed, Flk1 expression has been de-
scribed in NPCs of adult mouse brain (Ii et al., 2009;Jin et al., 2002b)
and NPCs derived from human ESCs (Reubinoff et al., 2001). It is
possible that Flk1+cells in EBs represent an earlier stage of neural
progenitors that possess the plasticity to differentiate to other lineages
(Clarke et al., 2000;Tropepe et al., 2001) including neural and en-
dothelial cells. Moreover, induction of endothelial progenitor cells is
essential for vasculogenesis that may provide 3D support and possibly
organ induction and remodeling (Lammert et al., 2001;Goldberg and
Hirschi, 2009;Yang et al., 2011). Inline with this, in addition to the
Flk1+cells within the graft (Yamaguchi et al., 1993), we note graft
derived-more mature CD31+endothelial cells that comprise blood
vessels (Feng et al., 2004), and tight junctions of brain blood barrier
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formed by Glut1+endothelial cells (Engelhardt, 2003;Virgintino et al.,
1997;Zheng et al., 2010). The vascular system delivers nutrients, re-
moves waste, and may play a crucial role in the delivery of signals that
regulate organ development (Lammert et al., 2001;Matsumoto et al.,
2001). Therefore, our results suggest Flk1+cells are important for
spinal cord organogenesis possibly by acting via a concerted process of
neurogenesis, angiogenesis, and vasculogenesis.

Implantation of human iPSC-derived cerebral organoids into a
cavity made in the retrosplenial cortex of immunodeficient mice leads
to the vascularization of the grafted organois (Mansour et al., 2018).
Unlike the spinal cord organogenesis platform we present, the vacu-
larization of the implanted organoids occurs exlusively from the the
host vasculature by angiogenesis. Additionally, because human iPSC-
derived cerebral organoids are differentiated extensively prior to im-
plantation this model does not allow for studies of the interactions of
NPCs and angiogenesis or vasculogenesis. The spinal cord organogen-
esis platform we present here remains the only such platform that can
be used to study the effects of vasculogenesis and angiogenesis on
spinal cord formation. In addition this plaform can be used to elucidate
how NPC and mature neurons interact with vascular niches.

5. Conclusion

Demonstration that transplanted ESC-derived NPCs into the sub-
arachnoid space mimic spinal cord organogenesis presents a unique
platform for the study of spinal cord organogenesis. Further under-
standing of the factors governing this process can contribute toward
development of effective therapeutic strategies for spinal cord repair.
By presenting imaging methods for identification of the graft, we ad-
vance the notion that this model of spinal cord organogenesis can be
used as an in vivo drug discovery platform for identification of novel
therapeutics in regenerative medicine, and to test the toxicity of such
compounds in vivo. As a proof-of-concept, we showed that Flk1+cells
are essential for the self-organization of ECS-derived NPC into spinal
cord tissue.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.scr.2018.09.001.
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