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Background: A direct and independent role of inflammation in atherothrombosis was recently 

highlighted by the Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) 

trial, showing the benefit of inhibiting signaling molecules, eg, interleukins. Accordingly, we 

sought to devise a flexible platform for preventing the inflammatory drivers at their source to 

preserve plaque endothelium and mitigate procoagulant risk.

Methods: p5RHH-siRNA nanoparticles were formulated through self-assembly processes. 

The therapeutic efficacy of p5RHH-JNK2 siRNA nanoparticles was evaluated both in vitro 

and in vivo.

Results: Because JNK2 is critical to macrophage uptake of oxidized lipids through scavenger 

receptors that engender expression of myriad inflammatory molecules, we designed an RNA-

silencing approach based on peptide–siRNA nanoparticles (p5RHH-siRNA) that localize to 

atherosclerotic plaques exhibiting disrupted endothelial barriers to achieve control of JNK2 

expression by macrophages. After seven doses of p5RHH-JNK2 siRNA nanoparticles over 

3.5 weeks in ApoE-/- mice on a Western diet, both JNK2 mRNA and protein levels were sig-

nificantly decreased by 26% (P=0.044) and 42% (P=0.042), respectively. Plaque-macrophage 

populations were markedly depleted and NFκB and STAT3-signaling pathways inhibited by 

47% (P,0.001) and 46% (P=0.004), respectively. Endothelial barrier integrity was restored 

(2.6-fold reduced permeability to circulating 200 nm nanoparticles in vivo, P=0.003) and 

thrombotic risk attenuated (200% increased clotting times to carotid artery injury, P=0.02), 

despite blood-cholesterol levels persistently exceeding 1,000 mg/dL. No adaptive or innate 

immunoresponses toward the nanoparticles were observed, and blood tests after the completion 

of treatment confirmed the largely nontoxic nature of this approach.

Conclusion: The ability to formulate these nanostructures rapidly and easily interchange or 

multiplex their oligonucleotide content represents a promising approach for controlling deleteri-

ous signaling events locally in advanced atherosclerosis.

Keywords: siRNA, JNK2, peptide nanoparticles, perfluorocarbon nanoparticles, macrophages, 

atherosclerosis, plaque, ApoE-/- mice, thrombosis, endothelium, erosions, scavenger receptors

Introduction
Atherosclerotic lesions emerge from the interplay of numerous cell types, blood 

components, hemodynamic factors, and genetic predilections that engender a 

smoldering inflammatory process exacerbated by such risk factors as hypertension, 

diabetes, and smoking.1 Among the earliest events in lesion formation is the activa-

tion of endothelial cells lining blood vessels in atherosclerosis-prone sites by complex 

mechanical and fluid shear stresses,2,3 resulting in upregulation of surface receptors for 
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adhesion molecules, such as VCAM1, that facilitate entry, 

proliferation, and differentiation of monocytes in the intima. 

The uptake of oxidized lipids (eg, oxidized low-density 

lipoprotein [oxLDL]) by polarized macrophages to form 

foam cells generates a panoply of cytokines and chemok-

ines that accelerate endothelial injury, ultimately leading to 

extensive endothelial cell sloughing,4 plaque erosion, and/or 

plaque-cap rupture that exposes the inflamed procoagulant 

milieu to acute thrombosis.5–9

Recently, we reported that plaque endothelial barrier 

disruption and procoagulant activity in ApoE-/- mice on 

a Western diet was able to be mitigated rapidly within a 

few weeks by periodic treatment with thrombin-targeted 

nanoparticles.10 These particles carry PPACK (proline– 

phenylalanine–arginine–chloromethyl ketone), an irreversible 

inhibitor of thrombin around three orders of magnitude more 

selective for factor IIa than for Xa.11 When injected systemi-

cally, the therapeutic nanostructures passively permeate dam-

aged endothelial barriers, but not normal vascular barriers, 

and are retained in the plaque intima to exert sustained 

thrombin surveillance without inducing systemic bleeding 

diathesis. Restoration of endothelial barrier function and 

abrogation of thrombotic risk were accompanied by reduc-

tions in thrombin–antithrombin complexes, tissue factor, and 

classical inflammatory drivers (ie, NFκB) in endothelium and 

macrophages in conjunction with reduced plaque burden, 

despite persistent hypercholesterolemia (.1,000 mg/dL).

Taken together with recent reports of newer antico-

agulants used to forestall atherosclerosis, and in light of the 

recent Canakinumab Antiinflammatory Thrombosis Out-

come Study (CANTOS) clinical trial reporting the benefit of 

inhibiting inflammatory drivers of atherothrombosis (IL1β) 

despite hypercholesterolemia,12 these experimental data 

prompted us to inquire if more selective and highly specific 

anti-inflammatory plaque-targeted nanoparticle formulations 

could similarly normalize endothelial barrier function and 

thrombotic risk without affecting clotting function locally 

or systemically. While thrombin is clearly a local target for 

intervention in advanced plaques, it exerts highly pleiotropic 

procoagulant and inflammatory signaling effects (via PARs) 

in advanced plaques, but also serves a physiologic function 

as a critical wound-healing molecule. Therefore, we sought 

to interdict key inflammatory signaling events at their source, 

the plaque macrophage, without affecting either clotting or 

the physiological function of thrombin itself.

Accordingly, we selected the JNK pathway as a target 

for testing a new class of recently developed therapeutic 

nanoparticles that could be used to deliver highly specific 

siRNA for JNK protein knockdown in procoagulant plaques. 

JNKs are members of the MAPK family and play a critical 

role as proapoptotic responders to a variety of environmental 

stresses, cytokines, and growth factors.13–15 JNK2, one of three 

isoforms in the JNK family (also termed “stress-activated 

protein kinases”), is a principal mediator of foam-cell for-

mation through the scavenger-receptor-signaling pathway. 

JNK2 stimulates macrophage uptake and internalization of 

oxLDL to form resident foam cells by phosphorylating scav-

enger receptors.16 The scavenger-receptor-signaling pathway 

plays a critical role in macrophage uptake of oxidized lipids 

and foam-cell formation.17 Although JNK2 represents a 

therapeutic target for suppressing atherosclerosis,13,16 there 

are no selective pharmaceutical agents that might facilitate 

elucidation of JNK-isoform activities in vivo. The immediate 

goal was to develop a specific RNA-silencing approach for 

suppressing JNK2 locally in plaques as proof of concept for 

a flexible and interchangeable platform capable of targeting 

any mRNA of interest in inflamed plaques.

RNA interference induced by siRNA is based on complete 

base-pair match with the mRNA of interest and induced 

solely by mRNA cleavage. This interference mechanism 

enables multiple mRNAs to be degraded by one siRNA and 

achieve efficient and long-lasting knockdown effects. In fact, 

cell division is the only dilution limit in siRNA-induced 

mRNA knockdown.18 Although siRNA holds great promise 

as a therapeutic approach, its clinical translation has been 

limited, due to challenges in effective delivery to the site of 

interest. Besides viral-based delivery strategies, cationic lip-

ids, polymers, and peptides are employed for siRNA delivery. 

Although cationic lipid is the best characterized and most effi-

cient delivery approach, clinical translation has been limited, 

due to its cytotoxicity19 and systemic immunoresponses.20 

The protonatable moieties of the cationic polymers, includ-

ing polyethylenimine, cyclodextrin, and polysaccharide 

chitosan,21 provide robust endosomolysis for siRNA endo-

somal escape. However, increased cytotoxicity from desta-

bilization of cell membrane and reactive oxygen-species 

production limits their clinical translation.22,23 Because of pro-

moted endocytosis and lack of cytotoxicity, cationic peptides 

have gained popularity in siRNA delivery. Unfortunately, the 

application of peptide vectors is limited by endosomal entrap-

ment and serum instability.24,25 Accordingly, we recently 

developed a novel peptide that overcomes the limitations of 

other cationic peptides, and incorporated pH-sensing resi-

dues to release siRNA and enable endosomal escape.26–28

We report herein the application of this flexible peptide-

based siRNA-delivery system26–28 for selective silencing of 
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JNK2 in atherosclerotic plaques of ApoE-/- mice on a Western 

diet. We describe an engineered 21-amino acid, amphipathic, 

cationic peptide (p5RHH) that condenses oligonucleotides 

into a 55 nm particle in a simple mixing procedure ready 

for injection. These nanostructures produce no measurable 

innate or adaptive immunoresponses and no apparent organ 

toxicity. We show that p5RHH-JNK2 siRNA nanoparticles 

rapidly penetrate disrupted plaque endothelial barriers to 

downregulate local JNK2 expression, resulting in attenua-

tion of vessel-procoagulant activity, recovery of endothelial 

barrier integrity, and reduction in plaque macrophages after 

sequential dosing for ,1 month. Additionally, we demon-

strate that JNK2 silencing reduces plaque inflammation in 

part by inhibiting NFκB and STAT3 signaling.

Methods
p5rhh-sirNa-nanoparticle preparation
Peptide structures for condensation of siRNA into 55 nm 

particles have been described in prior publications.26,27 

p5RHH peptide was synthesized by GenScript and siRNAs 

with or without fluorescence labeling were ordered from 

Sigma-Aldrich (St Louis, MO, USA). p5RHH peptide 

(NH
2
-VLTTGLPALISWIRRRHRRHC-COOH) was pre-

pared at 20 mM in molecular biology-grade water (46-000-CI; 

Corning, New York, NY, USA), while siRNAs were prepared 

at 100 µM in siRNA buffer diluted from 5× siRNA buffer 

(B-002000-UB-100; Thermo Fisher Scientific, Waltham, 

MA, USA). The peptide:siRNA mole ratio was 100:1. For 

in vitro applications, p5RHH-siRNA nanoparticles were for-

mulated by mixing p5RHH and siRNA in Hanks’ Balanced 

Salt solution (HBSS) (14025-092; Thermo Fisher Scientific) 

and incubated at 37°C for 40 minutes, followed by albumin 

stabilization, as previously reported.27 For in vivo studies, 

peptide and siRNA mixtures in HBSS were incubated on ice 

for 10 minutes prior to intravenous (IV) injection with 0.5 mg 

siRNA/kg. Physical characterizations of albumin-coated 

p5RHH-siRNA nanoparticles showed a particle size of 55 nm 

with polydispersity of 0.282 and ζ-potential of -33.24 mV.

Perfluorocarbon-nanoparticle formulation
Perfluorocarbon (PFC) nanoparticles were produced using 

previously described methods.29 Briefly, a lipid mixture of 

99 mol% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 

1 mol% 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

(850355P and 850705P, respectively; Avanti Polar Lipids, 

Alabaster, AL, USA) was prepared in a chloroform–methanol 

mixture (3:1 v:v). The solvents were then evaporated to 

generate a lipid film that was dried overnight in a vacuum 

oven at 50°C. The lipid film (2.0% w:v), perfluoro-15-

crown-5-ether (CE; 20% w:v; Gateway Specialty Chemicals, 

St Peters, MO, USA), and Milli-Q water were sonicated and 

emulsified for five passes at 20,000 psi (138,000 kPa) in an 

ice bath (LV-1; Microfluidics, Newton, MA, USA). The 

emulsion was modified to replace the crown ether core with 

perfluorooctyl bromide (PFOB) for use as a 19F magnetic 

resonance spectroscopy (MRS) reference standard for quan-

tification of nanoparticle concentration in plaques.

cell culture
Mouse monocytic RAW 264.7 cells (Washington University 

Tissue Culture Support Center, St Louis, MO, USA) were 

maintained in DMEM (30-2001; ATCC, Manassas, VA, 

USA) with 10% v:v heat inactivated fetal bovine serum (FBS) 

(F2442; Sigma-Aldrich) in a humidified environment with 

5% CO
2
. RAW 264.7 cells were seeded in six-well plates 

and maintained in the aforementioned culture conditions 

for 24 hours before p5RHH-siRNA-nanoparticle treatment. 

p5RHH-siRNA nanoparticles were formulated and incu-

bated with RAW 264.7 cells at siRNA concentration of 

50 nM for 4 hours. Then, cells were washed twice with PBS 

(14040117; Thermo Fisher Scientific) and incubated with the 

aforementioned culture medium for another 24–72 hours, 

before reverse-transcription polymerase chain reaction 

(RT2-PCR) or Western blot.

confocal imaging
RAW 264.7 cells were cultured on glass coverslips and 

treated with p5RHH-siRNA nanoparticles generated by 

using Cy3-labeled siRNA (Sigma-Aldrich). At 48 hours after 

treatment, cells were washed three times in PBS with Ca2+ 

and Mg2+ and fixed in 4% paraformaldehyde (157-4-100; 

Electron Microscopy Sciences, Hatfield, PA, USA) before 

being mounted on glass slides using mounting medium 

with 4′,6-diamidino-2-phenylindole (H-1200; Vector Labs, 

Burlingame, CA, USA). Cells were imaged with confocal 

microscopy (Meta 510; Carl Zeiss, Oberkochen, Germany).

Two-photon imaging
ApoE-/- mice fed a Western diet for 3.5 months received IV 

injections of p5RHH-Cy3-labeled siRNA nanoparticles or 

control nanoparticles without fluorescence labeling and were 

euthanized 24 hours later to collect aortas. En face imaging 

of aorta samples was performed on a custom-built video-rate 

two-photon microscope equipped with a Chameleon Vision 

Sapphire IITi laser (Coherent, Santa Clara, CA, USA).
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IVIS fluorescence imaging
ApoE-/- mice fed a Western diet for 3.5 months received IV 

injections of p5RHH-Cy5.5-labeled siRNA nanoparticles 

or control nanoparticles without fluorescence labeling. 

At 24 hours after injection, aortas were collected for ex vivo 

IVIS imaging (Xenogen IVIS Spectrum; PerkinElmer, 

Waltham, MA, USA). The following settings were used for 

image acquisition: excitation 675 nm, emission 720 nm, bin-

ning factor 8, field of view 12.9, exposure time 0.5 seconds, and 

f-value 2. The pseudocolor “efficiency image” was presented 

to illustrate fluorescence-labeled nanoparticle distribution 

in the aortas. Fluorescence data were calibrated quantita-

tively in units of radiant efficiency or photon flux per unit 

excitation intensity (photons/sec/cm2/steradian)/(µW/cm2).

real-time Pcr
Total RNA from RAW 264.7 cells or aortas was isolated 

using an RNeasy minikit (74104; Qiagen, Venlo, the 

Netherlands). RNA (1 µg) was used to synthesize cDNA by 

reverse transcription with an RT2 first-strand kit (330401; 

Qiagen). Real-time PCR analysis was performed on an ABI 

7300 system (Thermo Fisher Scientific) with RT2 first SYBR 

green/ROX PCR master mix (330530; Qiagen). Specific 

primers for each gene were purchased from Qiagen. Genes 

of interest were normalized to mouse β-actin.

Western blot
Radioimmunoprecipitation assay (RIPA) buffer (R0278-

500ML; Sigma-Aldrich) with protease inhibitors (4906837001; 

Sigma-Aldrich) per 10 mL RIPA buffer and phenylmethyl-

sulfonyl fluoride (8553; Cell Signaling Technology, Danvers, 

MA, USA) at a final concentration of 1 mM was used to 

extract proteins from RAW 264.7 cells or aortas. Briefly, cells 

were disrupted and sonicated in the aforementioned buffer 

and protein lysates obtained by centrifugation for 10 minutes 

at 12,000× g at 4°C. For the aortas, homogenization was per-

formed with a Bullet Blender Storm (Next Advance, Troy, 

NY), followed by the same centrifugation. Protein concentra-

tion was quantified with BCA protein assay (23225; Thermo 

Fisher Scientific). Under reducing conditions, equivalent 

amounts of total protein were fractionated using sodium dode-

cyl sulfate polyacrylamide-gel electrophoresis. Membranes 

were probed with rabbit anti-JNK2 or anti-STAT3 (1:1,000 

dilution, 4,672S or 12,640S, respectively; Cell Signaling 

Technology) and rabbit anti-GAPDH (1:1,000 dilution, 

sc-25778; Santa Cruz Biotechnology, Dallas, TX, USA). 

Membranes were washed and incubated with secondary 

antibody antirabbit HRP (1:10,000 dilution, sc-2313; Santa 

Cruz Biotechnology). Bands were visualized with Pierce ECL 

Western blotting substrate (32106; Thermo Fisher Scientific) 

using ChemiDoc MP (Bio-Rad Laboratories, Hercules, CA, 

USA). Knockdown of proteins was quantified using ImageJ 

(National Institutes of Health, Bethesda, MD, USA).

Foam-cell-formation assay
At 48 hours after p5RHH-JNK2 siRNA-nanoparticle 

treatment, RAW 264.7 cells were treated with or without 

50 µg/mL acetylated LDL (acLDL; RP-045; Intracel 

Resources, Frederick, MD, USA) for an additional 24 hours. 

To visualize foam-cell formation, RAW 264.7 cells under-

went oil red O staining as previously published.27

Immunofluorescence imaging
Aortas were embedded in optimal cutting-temperature 

compound before sectioning and staining. Briefly, the fro-

zen aorta sections of 8 µm were fixed in acetone at -20°C 

for 20 minutes before incubation with rabbit anti-JNK2 

(1:200 dilution, ab76125, Abcam, Cambridge, UK), rat anti-

monocyte+ macrophage (Moma2; 1:200 dilution, ab33451; 

Abcam), or rabbit anti-NFκB p65 (D14E12) XP (1:200 

dilution, 8242; Cell Signaling Technology), followed with 

incubation in appropriate secondary antibodies: goat pAb to 

rabbit IgG (DyLight 488; 1:500 dilution, ab96899; Abcam) 

or goat pAb to rat IgG (Alexa Fluor 594; 1:500 dilution, 

ab150160; Abcam). All images were acquired using an 

Olympus microscope at the same exposure times and ana-

lyzed with ImageJ. The percentage of acellular (anucleate) 

area in plaques was evaluated in blinded fashion by an 

experienced reviewer (HY) in these same aorta sections in 

mice with or without treatment based on regions of interest 

segmented in semiautomated objective fashion with the use 

of ImageJ to select all regions devoid of blue-counterstained 

nuclei. This method was consistent with what has been 

reported, and yielded comparable percentile ranges for plaque 

acellular compartments in ApoE-/- mice.30

atherosclerosis induction and treatment
Male ApoE-/- mice (4–6 weeks old; Jackson Laboratory, 

Bar Harbor, ME, USA) were fed a Western diet (TD.88137; 

Envigo, Huntingdon, UK) for 14 weeks before treatment with 

p5RHH-JNK2 siRNA nanoparticles at 0.5 mg siRNA/kg or 

HBSS via tail-vein injection for 3.5 weeks, with a total of 

seven doses. During treatment, all mice were maintained on the 

Western diet. Animals were killed 24 hours after the final dose.

carotid-artery thrombosis methodology
To define vessel-procoagulant activity, mice were anes-

thetized with a cocktail of xylazine and ketamine (37 and 
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87 mg/kg, respectively), and for carotid-artery photochemical 

injury, to measure the time required for vessel occlusion, as 

previously reported.10,31,32 Time to occlusion was recorded 

and used as a quantitative index of procoagulant activity and 

global thrombotic risk. Detailed methodology is included in 

Figure S1.

19F MRS quantification of nanoparticle 
deposition in aortic plaques
19F MRS of isolated whole aortas was measured by using a 

Varian 11.7 T scanner with an in-house-designed solenoid 

radiofrequency coil and procedures as published previously.33 

Aortas were placed in centrifuge tubes and measured together 

with an internal standard of 0.1% PFOB nanoparticles. 
19F MRS (flip angle 90°, number of averages 2,048 (aortas) 

using spin-echo sequence) was recorded for quantitative 

evaluation of PFC (crown ether) nanoparticle accumulation 

in the aortas. The crown ether 19F signal was compared with 

the distinct 19F signal of the PFOB standard containing a 

known concentration of 19F atoms. The calibrated crown 

ether nanoparticle amount was normalized to the weight of 

the aorta sample and expressed as picoliters per milligram 

(pL/mg), representing the content of PFC nanoparticles taken 

up by aortic plaques.

Compared to static endothelial staining methods for 

vascular barrier assessment, the use of semipermeating 

PFC nanoparticles with 250 nm diameter in vivo circulat-

ing provides a selective and functional metric for evaluating 

endothelial barrier damage in the atherosclerotic plaques, 

as these PFC nanoparticles do not penetrate vessels without 

missing endothelium. Moreover, these PFC nanoparticles 

do not register endothelial dysfunction with tight-junction 

weakening, and instead are specific to stages of atheroscle-

rosis with plaque endothelial disruption, which correlates 

with procoagulant activity directly.32 Quantitative measure-

ment based on 19F spectroscopy is objective, because a 

full aortic sample is used. Therefore, it is not subjective to 

selection bias.

hematologic parameters and serum 
chemistry
Blood was collected from left ventricles and evaluated for 

blood counts and serum chemistry. All tests were done at 

the Department of Comparative Medicine, Washington 

University.

splenic cell-subpopulation analysis
Spleens were collected and dissociated mechanically to 

get single-cell suspensions. R-phycoerythrin-conjugated 

anti-CD25 (561065, PC61; BD Biosciences, San Jose, CA, 

USA), R-phycoerythrin-conjugated anti-NK1.1 (12-5941-63, 

PK136; Thermo Fisher Scientific), fluorescein isothiocya-

nate- or peridinin–chlorophyll–protein complex-conjugated 

anti-CD4 (550280, L3T4; BD Biosciences), fluorescein 

isothiocyanate-conjugated anti-CD19 (550284, 1D3; BD 

Biosciences), peridinin–chlorophyll–protein complex- or 

allophycocyanin-conjugated anti-CD8 (553032, 53-6.7; 

BD Biosciences), and Gr1 (14-5931-81, Ly-6G; Thermo 

Fisher Scientific) were used. Briefly, 106 cells were used 

and blocked in the anti-FcR monoclonal antibody 2.4 G
2
, 

followed with staining by incubation with the indicated 

antibodies at 4°C for 20 minutes. Cells were then washed 

and resuspended before flow-cytometry analysis. A FoxP3 

staining kit (71-5775; Thermo Fisher Scientific) was used 

to investigate FoxP3 expression. A FACSCalibur cell 

analyzer was used for flow-cytometry evaluations and Cell-

Quest Pro software used for data analysis (BD Biosciences).

Purification and stimulation of CD4+ 
T cells
To isolate CD4+ T cells from mouse spleens, positive mag-

netic sorting was performed using an AutoMACS separator 

(130-104-454, MACS CD4+ microbeads; Miltenyi Biotech, 

Bergisch Gladbach, Germany). Fluorescence-labeled anti-

CD4, anti-CD8, and anti-CD19 monoclonal antibodies (BD 

Biosciences) were used to verify isolated CD4+ popula-

tion purity using flow cytometry. After purification, 2×106 

cells/mL CD4+ T cells were resuspended in RPMI 1640 

supplemented with 1% v:v NEAA, 10% v:v FBS, 2 mM 

l-glutamine, 1% v:v sodium pyruvate, 10 mM HEPES, 

100 µg/mL streptomycin, 50 µM 2-mercaptoethanol, and 

100 U/mL penicillin, then seeded at 2×105 cells/well in flat-

bottomed 96-well microtiter plates coated with 5 µg/mL anti-

CD3 monoclonal antibody (555273; BD Biosciences). Cells 

were cultured for 72 hours, before collection of culture super-

natants for cytokine evaluations using BD cytometric bead 

arrays (552364 mouse inflammation kit; BD Biosciences).

complement activation
Mice received IV injections of p5RHH-JNK2 siRNA nanopar-

ticles at 0.5 mg siRNA/kg. At 30 minutes postinjection, blood 

was drawn from the inferior vena cava. To prevent further 

ex vivo complement activation, blood was transferred imme-

diately into tubes with 10 mM EDTA to get fresh plasma, 

which was used for C3a enzyme-linked immunosorbent assay 

(ELISA).34 Briefly, rat antimouse C3a (4 µg/mL) monoclonal 

antibody (558250; BD Biosciences) was used to coat plates by 

overnight incubation at 4°C. After blocking (1% BSA in PBS 
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at room temperature for 1 hour) and washing (three times with 

0.05% v:v Tween 20 in PBS), plates were incubated with 100 

µL freshly collected 1:100-diluted plasma samples at room 

temperature for 1 hour. Plates were then washed three times 

and incubated with biotinylated antimouse C3a at 250 ng/

mL at room temperature for 1 hour. Plates were then washed 

and incubated with 400 ng/mL streptavidin–peroxidase for 

30 minutes. After the incubation and wash, 100 µL peroxide–

chromogen solution was added per well, and a SpectraMax 

Plus reader (Molecular Devices, Sunnyvale, CA, USA) was 

used to read at 450 nm. The standard curve was established by 

using mouse recombinant C3a (558618; BD Biosciences).

Immunoresponses to nanoparticles
To evaluate IgM- or IgG-specific response to p5RHH-JNK2 

siRNA nanoparticles, 96-well plates (3855; Immulon 4 HBX; 

Thermo Fisher Scientific) coated with nanoparticles were for-

mulated as previously reported.35 Plates were washed and then 

blocked with 1% BSA in PBS before the addition of diluted 

mouse sera (1:10–1:100 dilution) to wells. After incubation at 

room temperature for 1 hour and washing, HRP-conjugated goat 

antimouse IgM or goat antimouse IgG (1021-05 or 1030-05, 

respectively; Southern Biotechnology Associates, Birmingham, 

AL, USA) antibody was added. After the incubation and wash, 

100 µL peroxide–chromogen solution was added to each well, 

and the SpectraMax Plus reader was used to read at 450 nm.

statistics
Data are represented as means ± standard error (SE). Unpaired 

two-tailed Student’s t-tests were performed to assess differ-

ences between two groups. For comparison between more 

than two groups, one-way analysis of variance (ANOVA) 

followed with Scheffé post hoc test was performed. P,0.05 

was considered statistically significant.

animal study approval
Animal experiments were completed in compliance with US 

federal laws and in accordance with Washington University 

Division of Comparative Medicine guidelines. The animal 

protocol is reviewed annually and approved by the Washington 

University Animal Studies Committee.

Results
p5rhh-JNK2 sirNa decreases plaque 
JNK2 expression in hypercholesterolemic 
apoe-/- mice
In vivo delivery of p5RHH-JNK2 siRNA was tested for 

efficacy by measurements of JNK2 mRNA and protein in 

ApoE-/- mice after seven serial doses administered over 

3.5 weeks, starting at 14 weeks after initiation of a Western 

diet. Compared to controls, which were ApoE-/- mice treated 

with HBSS, JNK2 mRNA levels decreased by 26% in the 

whole aorta from the ApoE-/- mice receiving p5RHH-JNK2 

siRNA nanoparticles (P=0.044; Figure 1A). However, 

p5RHH-scrambled siRNA-nanoparticle treatment over the 

same duration in the age-matched ApoE-/- mice receiving 

the same diet regimen exerted no effect on JNK2 mRNA 

levels (Figure 1A). Moreover, JNK1 mRNA levels were 

not altered by p5RHH-JNK2 siRNA-nanoparticle treatment 

(Figure 1B), thereby confirming isoform specificity of the 

p5RHH-JNK2 siRNA nanoparticles. Because nanoparticles 

packaged with scrambled siRNA did not alter the target 

JNK2 mRNA expression in vivo, ApoE-/- mice receiving 

HBSS treatment served as controls to evaluate in vivo inhi-

bition of JNK2 protein expression and functional effects of 

p5RHH-JNK2-nanoparticle treatments. JNK2 protein levels 

were reduced by 42% in whole aortas from ApoE-/- mice 

receiving p5RHH-JNK2 siRNA nanoparticles compared 

to those in the control group (P=0.042; Figure 1C and D). 

Examples of p5RHH-siRNA nanoparticles residing in plaque 

are illustrated in Figure S2.

JNK2 silencing reduces thrombotic risk
To evaluate the effect of p5RHH-JNK2 siRNA-nanoparticle 

treatment on vessel prothrombotic activity, ApoE-/- mice 

with p5RHH-JNK2 siRNA treatment or HBSS control 

treatment underwent a carotid-artery-injury procedure10,11,32 

to elicit focal clotting, in order to quantify vascular proco-

agulant activity as previously reported. In this widely used 

procedure,36–38 shorter occlusion times indicate more aggres-

sive clotting and heightened thrombotic risk. As illustrated 

in Figure 2A, the time to complete occlusion of siRNA 

nanoparticle-treated ApoE-/- mice increased 200% over 

that of the control subjects (47.2±4.4 vs 22.4±6.8 minutes, 

treated vs control; P=0.02), indicating that even relatively 

short-term therapy with p5RHH-JNK2 siRNA nanoparticles 

dramatically attenuated thrombotic risk.

restoration of endothelial barrier 
function by JNK2 silencing
To probe postulated mechanisms associated with reduced 

thrombotic risk, the status of endothelial vascular barriers in 

ApoE-/- mice receiving p5RHH-JNK2 siRNA-nanoparticle 

treatment or HBSS control treatment was elucidated by 

quantifying the plaque uptake of semipermeating PFC 

nanoparticles that diffuse passively in vivo across damaged 
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endothelium, but not intact vasculature. As reported 

previously,10,32,39 PFC nanoparticles of nominal 200 nm 

diameter will passively penetrate deeply and rapidly into 

atherosclerotic plaques exhibiting endothelial disruption, 

but are excluded from adjacent vessel regions with intact 

endothelial barriers. Based on the unique 19F MR signature 

of the PFC nanoparticles, absolute quantification of PFC 

nanoparticles accumulating in the plaque components of the 

aorta after 2 hours of in vivo circulation can be calculated 

by registering the 19F MR spectrum and comparing it to a 

known fluorine-calibration standard. Accordingly, quanti-

fication of PFC nanoparticles in the whole aorta provides 

an objective index of vascular barrier disruption. Figure 2B 

illustrates the accumulation of PFC nanoparticles in aortas 

from ApoE-/- mice on a Western diet. Those mice receiving 

p5RHH-JNK2 siRNA nanoparticles manifested a 62% 

reduction in 19F signals emanating from plaque-trapped 

nanoparticles compared to control mice (0.150±0.046 pL/mg 

vs 0.365±0.047 pL/mg for treated vs controls, P=0.003), 

representing a 2.6-fold decrease in barrier permeability and 

disruption after treatment.

JNK2 silencing reduces plaque necrotic 
area and macrophage prevalence
As shown in Figure 2, the acellular plaque area (Figure 2C–E) 

was reduced by 58% (P=0.004), suggesting reduced necrosis. 

Macrophage staining was quantified to define the role of anti-

JNK2 siRNA on plaque-macrophage burden. As demonstrated 

in Figure 2F–H, macrophage populations in the atheroscle-

rotic plaques were reduced significantly in the plaques of 

ApoE-/- mice treated with p5RHH-JNK2 siRNA nanopar-

ticles compared to mice receiving HBSS control treatment.

Figure 1 p5rhh-JNK2 sirNa NPs selectively inhibit JNK2 expression at both mrNa and protein levels in aorta from apoe-/- mice on a Western diet.
Notes: (A) rT2-Pcr results demonstrate the JNK2-mrNa knockdown by p5rhh-JNK2 sirNa NPs (n=7) compared to hBss control (n=6, P=0.044) and p5RHH-scrambled 
sirNa NPs (n=6, P=0.027; one-way aNOVa followed with scheffé post hoc test). (B) JNK1 mrNa expression is not affected by p5rhh-JNK2 sirNa NP treatment (n=6) 
compared to hBss control (n=6). (C and D) Western blot results illustrate JNK2 protein knockdown by p5rhh-JNK2 sirNa NPs (n=5) compared to hBss control (n=6, 
P=0.042; unpaired two-sided Student’s t-test). gaPDh was used as internal control. Data presented in dot plots with means ± se. *P,0.05.
Abbreviations: ANOVA, analysis of variance; HBSS, Hanks’ Balanced Salt solution; NPs, nanoparticles; PCR, polymerase chain reaction; RT, reverse transcription; SE, 
standard error.
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JNK2 silencing reduces inflammatory 
signaling
Because NFκB signaling is a pivotal driver of inflamma-

tion and a transcriptional mediator of numerous athero-

sclerotic gene families,34,40–42 NFκB-activation status was 

evaluated after p5RHH-JNK2 siRNA-nanoparticle treat-

ment. Immunostaining of p65, a canonical NFκB protein, 

was performed on aorta sections from ApoE-/- mice receiving 

p5RHH-JNK2 siRNA treatment or HBSS control treatment. 

Confocal images on the plaque region revealed significantly 

more cells harboring both cytoplasmic and nuclear p65 in the 

sections from the ApoE-/- mice with HBSS control treatment 

(Figure 3A) than in those treated with the p5RHH-JNK2 

siRNA nanoparticles (Figure 3B). Semiquantification of 

Figure 2 p5rhh-JNK2 sirNa NPs reduce thrombotic risk, restore endothelial integrity, and decrease necrotic plaque area and macrophages.
Notes: (A) shorter occlusion times for untreated apoe-/- mice indicate more aggressive clotting (ie, heightened thrombotic risk) compared to mice treated with p5rhh-
JNK2 sirNa NPs (n=6), which manifest prolonged occlusion times compared to hBss control (n=5, P=0.02). (B) 19F MRS demonstrates significantly less perfluorocarbon 
(ce volume) NP accumulation in apoe-/- mice after p5rhh-JNK2 sirNa NP treatment (n=8) compared to those treated with hBss (n=7) (P=0.003), confirming restoration 
of endothelial barrier integrity that now prohibits passive permeation of perfluorocarbon NPs. (C and D) representative aorta sections demonstrate that necrotic plaque 
area is reduced in p5rhh-JNK2 sirNa NP-treated animals (D) (n=8) compared to those treated with hBss (C) (n=4, bar 100 µm). (E) Necrotic plaque areas from mice 
treated with p5rhh-JNK2 sirNa NPs are reduced compared to mice receiving hBss (P=0.004). (F and G) Representative immunofluorescence stains demonstrate 
significantly fewer Moma-positive cells in atherosclerotic plaque from ApoE-/- mice treated with p5rhh-JNK2 sirNa NPs (G) (n=36) compared to hBss control mice (F) 
(n=17, P,0.001; scale bars: 200 µm). (H) Quantification of Moma-positive cells in the intima. Unpaired two-sided Student’s t-test used for statistical analysis and data 
presented in dot plots with means ± standard error. *P,0.05; **P,0.01; ***P,0.001.
Abbreviations: CE, perfluoro-15-crown-5-ether; HBSS, Hanks’ Balanced Salt solution; MRS, magnetic resonance spectroscopy; NPs, nanoparticles.
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immunofluorescence-stained sections indicated that 42.66% 

of all cells in plaques from control animals exhibited acti-

vated NFκB signaling, whereas only 22.48% of cells were 

positive in animals undergoing treatment (Figure 3C); a 

47% reduction. Given the cross talk between NFκB and 

STAT343–46 and the crucial role of STAT3 signaling in the 

progression of atherosclerosis,47–49 STAT3 protein expres-

sion in the whole aorta was evaluated (Figure 3D and E). 

p5RHH-JNK2 siRNA nanoparticle-treated animals exhibited 

a 46% reduction in whole-aorta STAT3 expression (P=0.004) 

compared to controls.

effects of p5rhh-JNK2 sirNa on 
macrophages
JNK2 expression has been reported to be two- to threefold 

higher in human atherosclerotic plaques compared to normal 

arteries.50 To define potential cell type(s) that could be 

affected by the local delivery of p5RHH-JNK2 siRNA nano-

particles, the expression of JNK2 within different cell types, 

macrophages, smooth-muscle cells, and endothelial cells was 

evaluated. Costaining of JNK2 and markers for macrophages, 

smooth-muscle cells, and endothelial cells demonstrated 

that macrophages were the principal source of plaque JNK2 

(Figures S3 and S4). Therefore, we evaluated consequences 

of p5RHH-siRNA-nanoparticle treatment of cultured RAW 

264.7 macrophages. To investigate cytoplasmic delivery 

of siRNA to RAW 264.7 cells, Cy3-labeled eGFP siRNA 

nanoparticles were prepared and visualized by confocal 

microscopy. Macrophages were incubated with either 

p5RHH-Cy3-labeled eGFP siRNA nanoparticles or free 

Cy3-labeled eGFP siRNAs for 48 hours before microscopic 

imaging. Surface rendered Z-stack series demonstrated sig-

nificantly more uptake of siRNAs packaged into nanoparticles 

(Figure 4A) than for free Cy3-labeled siRNAs (Figure 4B). 

Moreover, higher-magnification confocal images illus-

trated siRNA endosomal escape and release of siRNAs into 

cytoplasm directly abutting nuclear structures (Figure 4C).

To understand the effects of p5RHH-JNK2 siRNA 

nanoparticles on macrophage JNK2 mRNA and protein 

levels and their role in foam-cell formation, macrophages 

were challenged with acLDL. First, RAW 264.7 cells were 

treated with p5RHH-JNK2 siRNA nanoparticles at siRNA 

concentration of 50 nM and harvested at 24, 48, and 72 hours 

for RNA extraction. Macrophages treated with p5RHH-

JNK2 siRNA nanoparticles after 24, 48, and 72 hours 

exhibited JNK2 mRNA diminution of 79%±3%, 80%±2%, 

and 75%±2%, respectively, vs cells without p5RHH-JNK2 

siRNA-nanoparticle treatment (Figure 5A).

JNK2 protein knockdown was determined at the 72-hour 

time point in macrophages receiving either p5RHH-JNK2 

siRNA nanoparticles, p5RHH-scrambled siRNA nanopar-

ticles, or free JNK2 siRNA, all at siRNA concentration 

Figure 3 p5RHH-JNK2 siRNA NPs reduce inflammatory signaling in atherosclerotic plaque.
Notes: (A and B) Representative confocal images of immunofluorescence stains exhibit reduced nuclear localization of p65 in atherosclerotic plaques from treated ApoE-/- 
mice (B) (n=10) compared to hBss control (A) (n=16, P,0.001). arrows point to cells harboring nuclear p65. Insets highlight cells with (A) and without (B) nuclear p65. 
A and B were captured at magnification of 60×. (C) Quantification of cells with nuclear p65 in plaques. (D and E) Western blot results illustrate sTaT3 protein knockdown 
by p5rhh-JNK2 sirNa NPs (n=5) compared to hBss control (n=6) (P=0.004). GAPDH was used as internal control. Unpaired two-sided Student’s t-test used for statistical 
analysis. **P,0.01; ***P,0.001.
Abbreviations: HBSS, Hanks’ Balanced Salt solution; NPs, nanoparticles.
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Figure 4 Delivery of siRNA into RAW 264.7 cells by p5RHH-siRNA nanoparticles.
Notes: (A) Representative confocal images of RAW 264.7 cells in vitro exposed to fluorescently-labeled siRNA (red) nanoparticles reveal abundant cytoplasmic signal 
(imaged at 24 hours after initial exposure). (B) Representative confocal images of RAW 264.7 cells exposed to naked siRNA exhibit little cellular uptake. (C) confocal images 
of individual cells at high magnification show more diffuse cytoplasmic localization, indicating endosomal release of siRNA. Blue, nuclei; red, siRNA. A and B were captured 
at magnification of 60× and C was captured at magnification of 60× with digital zoom of 2×.

Figure 5 p5RHH-JNK2 siRNA NPs inhibit JNK2 expression at both mRNA and protein levels and restrict cellular acLDL uptake in RAW 264.7 cells.
Notes: (A) rT2-Pcr results demonstrate the JNK2 mrNa knockdown by p5rhh-JNK2 sirNa NPs (n=3 per group). (B) Western blotting shows JNK2 protein knockdown 
specifically by p5RHH-JNK2 siRNA NPs but not by p5RHH-scrambled siRNA NPs or free JNK2 siRNA (n=3 per group). (C and D) Knockdown of JNK2 results in prominent 
reduction of lipid accumulation (oil red O staining) in RAW 264.7 cells (D) when incubated with 50 µg/ml aclDl for 12 hours compared to untreated cells (C) (n=4 per 
group). ***P,0.001. C and D were captured at magnification of 4×.
Abbreviations: aclDl, acetylated low-density lipoprotein; NPs, nanoparticles; Pcr, polymerase chain reaction; rT, reverse transcription.
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of 50 nM. Macrophages without treatment served as addi-

tional controls. Only macrophages treated with p5RHH-

JNK2 siRNA nanoparticles manifested significant JNK2 

protein knockdown (Figure 5B).

To assess the functional consequences of JNK2 knock-

down in macrophages, the effect of p5RHH-JNK2 siRNA 

nanoparticles on macrophage acLDL cellular uptake was 

evaluated. RAW 264.7 cells were treated with p5RHH-

JNK2 siRNA nanoparticles at JNK2 siRNA concentration of 

50 nM, and cells without treatment served as controls. After 

48 hours, cells were incubated with 50 µg/mL acLDL for 

another 24 hours, and then oil red O staining was applied to 

delineate cellular uptake of acLDL. Treatment with p5RHH-

JNK2 siRNA nanoparticles substantially inhibited the cel-

lular uptake of acLDL (Figure 5C) compared to controls 

(Figure 5D). These results confirmed that p5RHH-JNK2 

siRNA nanoparticles were capable of decreasing JNK2 

expression at both mRNA and protein levels to inhibit foam-

cell formation.

safety of p5rhh-JNK2 sirNa-
nanoparticle treatment
Blood chemistry, off-target immune-cell functions, and 

innate/adaptive immunoresponses were evaluated. Blood was 

collected after ApoE-/- mice had received serial IV injection 

of seven doses of p5RHH-JNK2 siRNA nanoparticles at 

0.5 mg siRNA/kg over 3.5 weeks, which is the same regimen 

used for therapeutic evaluation. Blood from HBSS-treated 

mice served as control. Blood-chemistry results from the 

serum evaluation are summarized in Table 1, which indicates 

that multiple doses of p5RHH-JNK2 siRNA nanoparticles 

did not alter electrolyte profiles, liver/kidney function, or red 

blood cell/platelet counts.

To evaluate the effect of p5RHH-JNK2 siRNA nano-

particles on the functions of immune cells, 24 hours after 

the last dose, spleens from ApoE-/- mice that had received 

p5RHH-JNK2 siRNA-nanoparticle treatment and the control 

group were harvested for splenocyte-subpopulation analysis. 

As illustrated in Figure 6A, the number of splenocytes was 

significantly lower in ApoE-/- mice treated with p5RHH-

JNK2 siRNA nanoparticles compared to those without treat-

ment (55.00±14×106 vs 94.33±16×106, treated vs control). 

Figure 6B indicates that spleen weights also were 54% lower 

in treated vs HBSS control mice (0.13±0.07 g vs 0.28±0.17 g, 

treated vs control; P=0.001). Moreover, spleen weights in 

treated ApoE-/- mice approximated more those of C57BL/6 

mice on normal chow (0.13±0.07 g vs 0.08±0.01 g, treated 

ApoE-/- mice vs C57BL/6; Figure 6B), and the post-hoc test 

suggested that spleen weights of ApoE-/- mice treated with 

p5RHH-JNK2 siRNA nanoparticles were not significantly 

different from C57BL/6 mice (P=0.511).

Splenocyte-subpopulation differences were examined 

in treated vs untreated ApoE-/- mice: CD8+ and CD4+ T cells, 

FoxP3+ T-regulatory cells, NK1.1+ natural killer cells, and 

GR1+, and CD19+ B cells. Figure 6C depicts the similarity 

between splenocyte subpopulations in these two groups. 

Additionally, following treatment with p5RHH-JNK2 

siRNA nanoparticles, immune-cell function was assessed 

by ex vivo stimulating isolated and purified splenic 

CD4+ T cells with anti-CD3 monoclonal antibody. The 

results (Figure 6D) suggested that under anti-CD3 acti-

vation, CD4+ T cells from control and treated animals 

released comparable amounts of cytokines, including IL10 

(1.72±0.75 vs 0.80±0.12 ng/mL), IL6 (0.106±0.037 vs 

0.04±0.006 ng/mL), TNFα (0.94±0.14 ng/mL vs 0.61±0.04), 

and IFNγ (7.87±0.86 ng/mL vs 6.28±0.50) for treated vs 

control groups, respectively, indicative of preserved immune-

system functionality after anti-JNK2 siRNA treatment.

Host innate immunoresponses to p5RHH-JNK2 siRNA 

nanoparticles were assessed. Plasma from ApoE-/- mice 

was collected 30 minutes after IV injection of HBSS 

Table 1 effect of p5rhh-JNK2 sirNa nanoparticles on blood 
chemistry and counts

Test HBSS 
(mean±SD)

JNK2 siRNA 
NP* (mean±SD)

rBc (ml/mm2) 9.81±1.51 9.53±0.76
hemoglobin (g/dl) 13.70±2.13 13.65±1.08
hematocrit hc (%) 42.33±7.26 43.40±2.74
Mean corpuscular volume 
(µm3)

43.13±1.52 45.60±1.12

Mean corpuscular hemoglobin 
(pg)

14.00±0.44 14.33±0.05

Mean corpuscular hemoglobin 
concentration (g/dl)

32.43 ±0.50 31.43±0.74

Platelets (thsn/cu mm) 1,151.33±20.60 1,113.75±69.31
BUN (mg/dl) 23.75±3.33 27.50±0.71
creatinine (mg/dl) 0.86±0.29 1.01±0.31
asT (U/l) 102.38±41.76 99.00±29.82
alT (U/l) 50.57±9.03 39.75±10.72
Total protein (g/dl) 10.24±2.65 9.86±3.04
glucose (mg/dl) 283.63±30.09 214.50±48.79
sodium (mmol/l) 144.80±3.3 145.20±2.5
Potassium (mmol/l) 4.6±1.1 4.5±0.5
chloride (mmol/l) 118.6±13.3 117.2±12.0

Notes: *after intravenous injection of seven doses of JNK2 sirNa nanoparticles 
(0.5 mg sirNa/kg) over 23 days. Blood counts: hBss n=3 and p5rhh-JNK2 sirNa 
nanoparticles n=4. Kidney function: HBSS n=8 and p5rhh-JNK2 sirNa nanoparticles 
n=6. liver function: hBss n=8 and p5rhh-JNK2 sirNa nanoparticles n=3. glucose: 
hBss n=8 and p5rhh-JNK2 sirNa nanoparticles n=5. Blood electrolytes: hBss 
n=5 and p5rhh-JNK2 sirNa nanoparticles n=5.
Abbreviations: HBSS, Hanks’ Balanced Salt solution; HC, hematocrit; NP, nano-
particles; rBc, red blood cells.

 
In

te
rn

at
io

na
l J

ou
rn

al
 o

f N
an

om
ed

ic
in

e 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/ b
y 

12
8.

25
2.

17
4.

22
0 

on
 2

3-
O

ct
-2

01
8

F
or

 p
er

so
na

l u
se

 o
nl

y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1



International Journal of Nanomedicine 2018:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5198

Pan et al

(as control) or p5RHH-JNK2 siRNA nanoparticles for quan-

tification of C3a, a degradation product of C3, which is an in 

vivo indicator of complement activation. As demonstrated in 

Figure 6E, observed was a minimal increase in C3a level in mice 

that received p5RHH-JNK2 siRNA nanoparticles compared 

to HBBS controls (504.86±39.01 vs 339.71±24.61 ng/mL, 

treated vs control). In contrast, Figure 6E indicates that 1,2-

dioleoyloxy-3-(trimethylammonium)propane (DOTAP), 

Figure 6 p5rhh-JNK2 sirNa NPs neither suppress systemic immune-cell function nor induce innate/adaptive immunoresponses.
Notes: (A) After seven sequential doses of p5RHH-siRNA NPs over 3.5 weeks, spleens were extracted and splenocytes enumerated 24 hours after the last dose. ApoE-/-

mice treated with p5rhh-JNK2 NPs (n=4) exhibit significantly fewer splenocytes compared to HBSS control (n=3) (P=0.02). (B) Spleen sizes of mice treated with p5RHH-
JNK2 sirNa NPs (n=19) are significantly smaller than from mice with HBSS treatment (n=12, P=0.001) and approximate spleen sizes of control C57BL/6 mice (n=9, P=0.511; 
one-way aNOVa followed with scheffé post hoc test). (C) Distribution of splenic immune-cell subpopulations was not affected by the p5rhh-JNK2 sirNa NP treatment 
(n=4) compared to HBSS control (n=3; FoxP3+ p5rhh-JNK2 sirNa NP treatment, n=6; hBBs, n=5). (D) Splenic CD4+ T cells stimulated with anti-cD3 monoclonal antibody 
responded normally (hBss, n=5; p5rhh-JNK2 sirNa NPs, n=6). (E) c3a assay indicates that p5rhh-JNK2 sirNa NPs (n=5) do not activate complement (innate immune 
response) compared with DOTaP NPs known to activate strongly (n=5). C3a level of the mice treated with the p5RHH-JNK2 siRNA NPs is significantly smaller than those of 
mice treated with DOTaP NP (P,0.001) and approximates c3a level of hBss control (n=12, P=0.06; one-way aNOVa followed with scheffé post hoc test). (F) IgM and Igg 
specific for serial p5RHH-JNK2 siRNA NP treatment (n=11) were not detected in mouse serum, indicating that treatment does not elicit adaptive immunoresponse (hBss 
control, n=9, unpaired two-sided Student’s t-test used for statistical analysis). Data presented in dot plots with means ± se. *P,0.05; **P,0.01; ***P,0.001.
Abbreviations: ANOVA, analysis of variance; DOTAP, 1,2-dioleoyloxy-3-(trimethylammonium)propane; HBSS, Hanks’ Balanced Salt solution; NPs, nanoparticles; SE, 
standard error.
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a known lipidic complement activator, enhanced C3a 

release and complement activation nearly sixfold (C3a 

2,900.40±91.93 ng/mL), indicative of the relative safety 

margin against immediate immunoresponsiveness.

To evaluate the adaptive immunogenicity of p5RHH-

JNK2 siRNA nanoparticles, IgG- and IgM-antibody responses 

against p5RHH-JNK2 siRNA nanoparticles were evaluated 

after the completion of treatment with seven serial total doses 

over 3.5 weeks (IV administration twice a week). Sera were 

collected from mice that were treated with either p5RHH-JNK2 

siRNA nanoparticles or HBSS, and IgG and IgM antibodies 

specific for p5RHH-JNK2 siRNA nanoparticles were assessed 

by ELISA assays on plates coated with p5RHH-JNK2 siRNA 

nanoparticles. There was no significant difference observed 

between control and treatment groups (Figure 6F), demon-

strating that p5RHH-JNK2 siRNA nanoparticles did not elicit 

appreciable adaptive immunoresponses at these time points.

Discussion
The goal of interfering with macrophage uptake of modified 

lipoproteins seeks to curtail atherosclerosis by removing 

a major stimulus for elaboration of numerous factors that 

perpetuate plaque inflammation. In this report, we describe 

plaque-homing peptide-based siRNA nanoparticles for 

in vivo RNA silencing of critical members of the MAPK-

signaling system (JNK) that focally suppress inflammatory 

drivers of atherosclerotic plaques. Significant new obser-

vations arising from this study were: anti-JNK2 siRNA 

nanoparticles rapidly attenuated thrombotic risk, restored 

endothelial barrier integrity, reduced plaque necrosis, and 

depleted plaque-macrophage content after only a few weeks; 

JNK2 inhibition exerted suppression of proinflammatory 

molecules (eg, NFκB, STAT3); and nanoparticle treatment 

did not compromise critical systemic innate or adaptive 

immunoresponsiveness, and thus the approach exhibits a 

benign safety profile.

JNK2 expression has been reported to be two- to three-

fold higher in human atherosclerotic plaques compared to 

normal arteries.50 ApoE-/-JNK2-/- animals develop fewer 

atherosclerotic plaques, due to suppression of JNK2-

mediated foam-cell formation.16 Moreover, it has been 

reported that enhanced local macrophage proliferation 

caused by scavenger-receptor A-mediated oxLDL uptake 

by macrophages is a key driver of plaque growth.51 In this 

report, focal plaque-macrophage targeting likely resulted from 

endothelial barrier disruption, which occurs in advanced plaques 

prior to neovascularization. In prior studies, we have observed 

no significant plaque angiogenesis at the time points studied in 

this ApoE-/- model,32 which accords with the observations of 

Moulton et al that ApoE-/- mice require at least 6 months on 

a Western diet to develop significant neovascularization.52,53 

Nevertheless, for human atherosclerotic plaques, neovascular-

ization accompanies chronic inflammation,54–59 which might be 

expected to facilitate intimal access via leaky neovasculature 

penetrating from adventitia. Under other experimental condi-

tions, such as collagen antibody-induced arthritis, neovascular 

routes to inflammatory macrophages for p5RHH-siRNA 

nanoparticles may be operative.35

The origin of macrophages in atherosclerotic plaques 

remains an intriguing and debated question.60 Although 

further studies are required to elucidate fully the mechanism 

of the reduction of plaque-macrophage content observed in 

this study, it is possible that both reduced recruitment and 

decreased local proliferation contributed. It has been reported 

that proliferation of local macrophages accounts for most 

of the macrophage population in atherosclerotic plaques51 

and oxLDL uptake promotes macrophage proliferation.61–64 

In light of the fact that JNK2 inhibition is known to reduce 

oxLDL uptake by macrophages,16 Figure 5 (C and D) con-

firms that knockdown of JNK2 with peptide-siRNA nano-

particles in macrophage cell lines significantly decreased 

intracellular accumulation of modified LDL. Because oxLDL 

internalization induces proliferation,61–64 one likely avenue 

for the therapeutic efficacy of p5RHH-JNK2 siRNA pertains 

to reduced local macrophage proliferation (Figure 4A–C). 

The inhibition of JNK2 expression observed in the whole-

aorta protein extracts (Figure 2) is consistent with decreased 

macrophage proliferation. Alternatively, Figure 5 (A and B) 

indicates that treatment reduced spleen size and number of 

splenocytes. It has been reported that monocytes originating 

from the spleen can migrate to plaques and contribute to 

plaque growth as a consequence of local expression of inflam-

matory cytokines/chemokines at atherosclerotic sites.65–67 

Reduced local plaque inflammation might attenuate homing 

signals for splenic monocyte populations.

The anti-inflammatory benefits of this approach are 

suggested by reduced levels of the key STAT3- and NFκB-

signaling pathways. A direct causal relationship between 

JNK2 expression and NFκB/STAT3 signaling is not specified 

by the current observations. It is possible that the JNK2 inhi-

bition engendered an overall downregulation of local inflam-

mation simply by inhibiting foam-cell formation. Indeed, our 

recent work with this siRNA-delivery system for inhibition of 

canonical and noncanonical NFκB in experimental models of 

rheumatism and osteoarthritis indicated that broad suppres-

sion of cytokine/chemokine production by macrophages and 

other activated cell types might be anticipated.35,68 Although it 

has been reported that macrophage-specific NFκB inhibition 
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was proatherogenic in LDL-receptor-deficient mice,69 the 

overall modulation of intense inflammatory plaque signal-

ing effected by inhibition of JNK2 in this study appears to 

prevail as a net-positive factor.

RNA silencing for suppressing JNK2-mediated foam-

cell formation rapidly exerts additional benefits for plaque 

healing in the form of improved vascular barrier integrity 

and reduced vascular procoagulant activity. Because endothe-

lial apoptosis promotes thrombosis,70,71 the rapid restoration 

of endothelial barrier integrity observed here lends support 

to mechanistic strategies aimed at preventing endothelial 

apoptosis, enhancing endothelial proliferation, or both. A cor-

relation was observed between endothelial barrier recovery 

and reduced plaque macrophages (Figures 3 and 4).

Although the cellular actions of these siRNA nanostruc-

tures appear to predominate in the local plaque environment, 

there may be responses at a distance. The observation of 

reduced spleen weight after JNK2 inhibition was unexpected, 

but intriguing. The sterile inflammation in the spleen that 

accompanies atherosclerosis has been characterized variously 

as both protective72 and contributory,73 based on the activation 

of selected cellular compartments. We detected no specific 

differences in splenic immune-cell populations (Figure 6) 

in treated or untreated mice, although spleen size differed 

dramatically. Evaluation of immunoactivity toward the 

peptide-nanoparticle agent itself revealed no specific innate 

or adaptive immunoresponses (Figure 6) that might have trig-

gered spleen expansion. Prior work on this peptide-siRNA 

nanoparticle has shown that these transfecting nanoparticles 

are not taken up in the spleen35 and exert no noticeable immu-

noactivation, perhaps militating against direct suppression of 

splenic immunoactivity to effect plaque healing. Moreover, 

body weights in the treated and control mice were similar, 

suggesting that a global effect on inflammation might not 

be operative. Rather, we propose that local resolution of 

plaque inflammation after JNK2 inhibition and the related 

depletion of circulating stimulatory factors within micropar-

ticles and/or exosomes that are released from plaque and 

traffic to distant sites, such as the spleen, could represent an 

alternative mechanism for future exploration. Nevertheless, 

current observations do raise the question of whether splenic 

targeting of JNK2 expression in reservoir macrophages with 

subsequent suppression of activated monocyte trafficking to 

plaques could play a supportive role in improved vascular 

barrier function, reduced procoagulant activity, and plaque 

healing that would be amenable to future study.

The present regimen could be useful for short-term inten-

sive therapies requiring rapid control of hypercoagulable 

plaques under such circumstances as recent non-ST-elevation 

myocardial infarction, unstable angina, refractory angina, 

stroke, and other related pathologies associated with vascular 

barrier disruption and heightened thrombotic risk. Moreover, 

because these nanostructures can be formulated with any 

siRNA or even mixtures of multiplexed oligonucleotides,68 

the approach could serve as a translational test bed for exam-

ining myriad signaling events of interest.
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Supplementary materials

Figure S2 Delivery of sirNa into atherosclerotic plaques with p5rhh-sirNa nanoparticles after intravenous injection in hypercholesterolemic apoe-/- mice (n=3).
Notes: (A) Representative whole-mount IVIS image illustrates siRNA (red) localization along the aorta (left). An aorta from a mouse injected with unlabeled siRNA 
nanoparticles serves as control (right). (B and C). Two-photon images demonstrate the accumulation of sirNa in the plaque intima (B) (red), whereas in the control plaque 
(C), injected with unlabeled siRNA nanoparticles, only autofluorescence (yellow) is observed. The autofluorescent signal in C is shown at amplified gain, due to its weaker 
signal compared with the much stronger signal from sirNa nanoparticles in B, shown at lower gain, which is insufficient to register the intimal autofluorescence signal in B.

Figure S1 carotid-artery photochemical injury to quantify functional procoagulant activity.
Notes: Mice were anesthetized with ketamine (87 mg/kg) and xylazine (37 mg/kg), followed by (1) isolation of the right common carotid artery through a midline cervical 
incision. (2) A Doppler ultrasound probe (Transonic Systems, Ithaca, NY, USA) was placed on the carotid artery to monitor blood-flow rate for the duration of the 
experiment. Mice were (4) administered a dose of 50 mg/kg rose bengal (Sigma-Aldrich, St Louis, MO, USA) saline to initiate thrombus growth following (3) illumination 
of the injury site with a 1.5 mW 540 nm He-Ne laser. The injury procedure concluded upon achieving .85% decrease in measured carotid blood-flow rate maintained 
for .5 minutes, indicative of stable occlusion of the carotid artery. (5) Time to carotid occlusion was measured as a metric of coagulability, where increased time to occlusion 
indicated reduced potential for coagulation.
Abbreviation: IV, intravenously.
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Figure S3 representative macrophages in apoe-/- atherosclerotic plaque express JNK2.
Notes: Upper and lower rows are lower- and higher-power images from encircled regions, respectively. Representative fluorescence-microscopy images of JNK2 and 
macrophage costaining of aortas of apoe-/- mice on high-fat diet. (A and D) Overlay images of JNK2 and macrophage costaining; (B and E) JNK2 staining; (C and F) 
macrophage staining. Magnification of D–F is 40×.
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Figure S4 representative smooth-muscle cells and endothelial cells exhibit undetectable JNK2 expression.
Notes: A–C illustrate smooth-muscle-cell costains of aortic sections from apoe-/- on high-fat diets, and D–F illustrate endothelial costains. (A) Overlay images of JNK2/
smooth-muscle-cell costaining; (B) JNK2; (C) smooth-muscle-cell actin; (D) JNK2/endothelial cell costaining; (E) JNK2 staining; (F) von Willebrand factor endothelial 
staining.
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