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RESEARCH ARTICLE
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Abstract

Manganese (Mn) is an essential micronutrient that is not readily available to pathogens dur-

ing infection due to an active host defense mechanism known as nutritional immunity. To

overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to

compete with host metal-binding proteins. Despite the established role of Mn in bacterial

pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis.

Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We

discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named

MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions.

The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain)

led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids

(serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually

complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary

tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and

MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of

efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to cal-

protectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in

mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic

infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA

and MntH2 in these sites could be attributed, at least in part, to the differential expression of

efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study dem-

onstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates

Mn uptake systems as promising targets for the development of new antimicrobials.
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Author summary

Enterococcus faecalis is a leading cause of hospital-acquired infections that are often diffi-

cult to treat due to their exceptional multidrug resistance. Manganese (Mn) is an essential

micronutrient for bacterial pathogens during infection. To prevent infection, the host lim-

its Mn bioavailability to invading bacteria in an active process known as nutritional

immunity. To overcome this limitation, bacteria produce high-affinity Mn uptake systems

to scavenge Mn from host tissues. Here, we identified the main Mn transporters of E. fae-
calis and show that, by working collectively, they are essential for growth of this opportu-

nistic pathogen in Mn-restricted environments. Notably, the inability to acquire Mn

during infection rendered E. faecalis virtually avirulent in different animal models,

thereby revealing the essentiality of Mn acquisition to enterococcal pathogenesis. The

results reported here highlight that bacterial Mn transport systems are promising targets

for the development of novel antimicrobial therapies, which are expected to be particu-

larly powerful to combat enterococcal infections.

Introduction

While normal residents of the gastrointestinal (GI) tract of animals and humans, enterococci

are also the third most frequent cause of hospital-acquired infections and a major threat to

public health due to the alarming rise of multidrug-resistant isolates [1]. Enterococcal infec-

tions in humans are mainly caused by Enterococcus faecalis and Enterococcus faecium, with the

great majority of infections (~70%) caused by E. faecalis. Collectively, enterococci rank as the

third leading etiological agent in infective endocarditis (IE) [2], second in complicated urinary

tract infections (UTI) [3], and one of the leading causes of device-associated infections and

bacteremia [1]. Despite the recent introduction of new antibiotics active against both E. faecalis
and E. faecium (i.e. daptomycin, linezolid, tigecycline), the indiscriminate use of antibiotics

and the rise in elderly and severely ill populations susceptible to infection continues to contrib-

ute to a worldwide increase in enterococcal infections [4, 5]. The pathogenic potential of E. fae-
calis, and more generally, of all enterococci, has been largely attributed to their harsh and

extremely durable nature, which includes intrinsic tolerance to commonly-used antibiotics

(such as cephalosporins), chlorine, alcohol-based detergents, and an ability to survive extreme

fluctuations in temperature, pH, oxygen tension, humidity and nutrient availability [1].

We recently showed that virulence-related phenotypes of a strain unable to synthesize the

nutritional alarmone (p)ppGpp, known as (p)ppGpp0 strain, were directly linked to manga-

nese (Mn) homeostasis, as important phenotypes of the (p)ppGpp0 strain could be reverted by

addition of Mn to laboratory growth medium or serum [6]. Mn is an essential micronutrient

for bacterial pathogens and hosts alike [7]. In lactic acid bacteria such as E. faecalis, Mn is the

co-factor of enzymes of central metabolic pathways, such as energy generation and DNA bio-

synthesis, and has been shown to play an important role in oxidative stress responses [6, 8].

Similarly, vertebrates require Mn for a variety of cellular pathways such as lipid, protein, and

carbohydrate metabolism [9, 10] and, depending on the tissue, Mn levels range from 0.3 to

2.9 μg per gram of tissue [11, 12]. While the lowest range concentration found in tissues is

more than enough to promote bacterial growth, the mammalian host restricts the availability

of essential metals such as Mn and iron (Fe) to invading pathogens by producing small

molecules and proteins that tightly bind to metals, an active process termed nutritional

immunity [13]. For example, Fe-binding proteins such as transferrin (TF) and lactoferrin (LF)

are utilized by the host to chelate Fe in serum (TF) and mucose (LF), thereby restricting its
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bioavailability to invading pathogens [14]. The bioavailability of Mn and zinc (Zn) in the host

is restricted, at least in part, by calprotectin, a Mn/Zn-sequestering protein of the S100 family

that accounts for more than 40% of the total protein content of neutrophils [15]. In addition,

macrophages express an Nramp (Natural Resistance-Associated Macrophage Protein)-type

Fe/Mn transporter that starves phagocytosed bacteria to promote clearance in the phagolyso-

some [7]. Notably, mice defective of calprotectin or the Nramp-type macrophage transporter

are significantly more susceptible to bacterial infections [16, 17].

To overcome host-imposed Mn restriction, bacteria produce their own high-affinity Mn

transporters. Presently, three classes of Mn transporters are known in bacteria: i) ABC-type

permeases, ii) Nramp-type H+/Mn transporters, and iii) the less common P-type transporters

[7]. Not surprisingly, Mn uptake systems have been identified as major virulence factors for

several gram-negative and gram-positive pathogens [7, 8, 18]. For instance, in Salmonella
enterica serovar Typhimurium, deletion of the ABC transporter sitABCD alone or in combina-

tion with the Nramp transporter mntH led to virulence attenuation in a murine systemic infec-

tion model [19]. Similarly, in Staphylococcus aureus, combined inactivation of the ABC-type

transporter mntABC and the Nramp-type transporter mntH reduced staphylococcal virulence

in murine skin abscess [20] and systemic infection models [17]. In streptococci, which are

more closely related to the enterococci, deletion of the ABC-type Mn transporter attenuated

virulence of Streptococcus mutans, S. parasanguinis and S. sanguinis in rat or rabbit models of

IE as well as of Streptococcus pyogenes in a murine model of skin infection [21–25]. Remark-

ably, deletion of the ABC-type Mn transporter psaBCA rendered Streptococcus pneumoniae
completely avirulent in at least three different animal models [26].

The significance of Mn homeostasis and specifically Mn acquisition systems to E. faecalis
pathogenesis has not been explored in detail. In silico analysis indicates that the core genome

of E. faecalis encodes three putative Mn transporters: the ABC-type transporter EfaCBA and

two Nramp-type transporters designated MntH1 and MntH2 [27, 28]. Previous global tran-

scriptional (microarray) analysis revealed that transcription of these genes, particularly efaCBA
and mntH2, is strongly induced in blood or in urine ex vivo as well as in a murine peritonitis

model [29–31]. In addition, transcription of efaCBA, mntH2 and to a much lesser extent

mntH1 is induced in Mn-depleted laboratory medium while repressed in Mn-rich medium [6,

32–34]. Notably, an earlier study identified EfaA (the lipoprotein component of the EfaCBA

complex) as a prominent antigen in enterococcal IE that can be used as an immunodiagnostic

tool to discriminate E. faecalis from other IE-causing bacteria [35, 36]. Finally, virulence of a

strain lacking efaA was slightly attenuated in the murine peritonitis model [36].

To determine the significance of Mn homeostasis in the pathophysiology of E. faecalis, we

generated a panel of single (Δefa, ΔmntH1, ΔmntH2), double (ΔefaΔmntH1, ΔefaΔmntH2,

ΔmntH1ΔmntH2) and triple (ΔefaΔmntH1ΔmntH2) deletion mutants in strain OG1RF and

tested their ability to grow under metal-restricted conditions and to cause infection in three

different animal models. We found that production of only one of the three Mn transporters

is sufficient to support growth of E. faecalis in Mn-depleted media, a finding that is sup-

ported by the drastic reduction in cellular Mn levels in the triple ΔefaΔmntH1ΔmntH2
mutant but not in single or double mutant strains. Loss of efaCBA alone impaired growth in

serum or in the presence of calprotectin in vitro. In most cases, inactivation of mntH2 exacer-

bated the phenotypes of the Δefa mutant, suggesting that EfaCBA and MntH2 are the pri-

mary high-affinity Mn transporters of E. faecalis. While only ΔefaΔmntH1ΔmntH2 showed

virulence attenuation in the Galleria mellonella invertebrate model, both ΔefaΔmntH2
double and ΔefaΔmntH1ΔmntH2 triple mutant strains were virtually avirulent in the two

mammalian models tested (i.e., rabbit IE and murine catheter-associated UTI). Collectively,

this investigation highlights the essentiality of Mn acquisition to E. faecalis pathogenesis,
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suggesting that pathways associated with Mn homeostasis are promising targets for the

development of new antimicrobials.

Results

EfaCBA, MntH1 and MntH2 work in concert to promote growth of E.

faecalis in Mn-restricted environments

The annotations of EF2074-2076 (OG1RF11677-11679), EF1901 (OG1RF11567) and EF1057

(OG1RF10838) as efaCBA, mntH1 and mntH2, respectively, have been inferred based on their

similarities to previously characterized Mn transport systems and their Mn-dependent tran-

scriptional profiles [32–34]. To uncover the role of these systems in metal uptake, single (Δefa,

ΔmntH1, ΔmntH2), double (ΔefaΔmntH1, ΔefaΔmntH2, ΔmntH1ΔmntH2) and triple

(ΔefaΔmntH1ΔmntH2) deletion strains were generated using a markerless system [37]. Brain

Heart Infusion (BHI) broth has been previously reported to contain relatively low levels of Mn

when compared to other laboratory media, such as the chemically-defined FMC medium [6,

25]. Using inductively coupled plasma-optical emission spectrometry (ICP-OES), we con-

firmed this to also be the case for BHI prepared in our laboratory—Mn, Fe and Zn concentra-

tions were ~ 1.1 μM (Mn), ~ 3.9 μM (Fe) and ~ 11.3 μM (Zn) (Fig 1A). With those values in

mind, all mutant strains were isolated on BHI plates supplemented with 150 μM MnSO4.

Upon genetic confirmation that all gene deletions occurred as planned, we tested the capacity

of all mutant strains to grow on unsupplemented BHI. While single and double mutant strains

grew well on plain BHI plates, the triple ΔefaΔmntH1ΔmntH2 mutant could only grow on Mn-

supplemented BHI (Fig 1B). To confirm this initial observation, growth of the parent OG1RF

and mutant strains was monitored in the chemically-defined FMC medium depleted of Mn

(Mn < 90 nM) [6]. Growth of all mutant strains (singles, doubles and triple mutant strains) in

complete FMC (Mn-replete) was indistinguishable from growth of the parent strain (Fig 1C

and 1E). Single Δefa, ΔmntH1, and ΔmntH2, as well as double ΔefaΔmntH1 and

ΔmntH1ΔmntH2 behaved similarly to the parent strain when Mn was depleted from the

medium (Fig 1D and 1F). In contrast, the ΔefaΔmntH2 double mutant strain displayed an

extended lag phase and slightly reduced final growth yields in Mn-depleted FMC (Fig 1F).

Most notably, both growth rate and final growth yields were severely impaired in the triple

mutant strain under these conditions (Fig 1F). Ectopic expression of any one of the three Mn

transporters from a plasmid (pTG-efa, pTG-mntH1 or pTG-mntH2) partially rescued the

growth defect of the triple mutant on unsupplemented BHI agar and restored growth in Mn-

depleted FMC (Fig 1G and 1H). Collectively, these results strongly support that EfaCBA,

MntH1 and MntH2 are bona fide, functionally redundant, Mn transporters.

Next, we used ICP-OES to quantify cellular Mn content in the different Mn transport

mutants. In agreement with the results shown in Fig 1, single deletions of efaCBA, mntH1 or

mntH2 did not affect cellular Mn content (Fig 2A). However, combined deletion of mntH2
with either efaCBA or mntH1 (ΔefaΔmntH2 and ΔmntH1ΔmntH2) caused a significant reduc-

tion (~ 40%) in intracellular Mn pools (Fig 2B). Most notably, Mn pools were below detection

limit in the triple mutant strain, thereby providing unequivocal evidence of the cooperative

nature of EfaCBA, MntH1 and MntH2 in Mn acquisition. Taking into account that a balanced

Mn/Fe ratio is essential for cellular homeostasis, and that bacterial systems homologous to

EfaCBA have been shown to also transport Fe [7, 38], we used ICP-OES to also determine the

cellular Fe content in our panel of mutant strains. While Fe pools were not affected in single

and double mutants of Nramp-type transporters (ΔmntH1, ΔmntH2 and ΔmntH1ΔmntH2),

loss of EfaCBA, either alone or in combination with MntH1 and MntH2, led to ~ 40% reduc-

tion in cellular Fe content (Fig 2), indicating that, similar to streptococci, EfaCBA is a dual

Manganese transport in Enterococcus faecalis
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Mn/Fe transporter [7, 25]. To rule out that loss of mntH1, mntH2 or both can lead to further

reductions in intracellular Fe in the Δefa background strain, we repeated the ICP-OES analysis

of Δefa, ΔefaΔmntH1, ΔefaΔmntH2, and ΔefaΔmntH1ΔmntH2 strains in the same experiment.

Inactivation of mntH2 (or mntH1) in the Δefa background did not result in further reductions

in Fe content (S1 Fig, panel A).

Considering that EfaCBA participates in Fe uptake, we evaluated whether Fe supplementa-

tion (150 μM FeSO4) could restore growth of the ΔefaΔmntH1ΔmntH2 triple mutant strain on

BHI plates. We found that, different than Mn (Fig 1), Fe supplementation does not restore

growth of the triple mutant in BHI agar (S1 Fig, panel B). We also monitored growth of the dif-

ferent mutant strains in FMC depleted of Fe (FMC # Fe), or both Fe and Mn (FMC #Mn # Fe)

(S1 Fig, panels C-F). While the single Δefa strain displayed a moderate growth defect during

Fe limitation, the double and triple mutant strains were indistinguishable from the parent

strain. When Fe and Mn were simultaneously depleted from the medium, the ΔefaΔmntH2
and ΔefaΔmntH1ΔmntH2 mutants displayed an exacerbated growth defect when compared to

growth in Mn-depleted medium (FMC #Mn) (Fig 1, panel F), supporting the notion that Fe

and Mn can act as interchangeable co-factors in E. faecalis [6]. Collectively, these results indi-

cate that the growth defect of the ΔefaΔmntH1ΔmntH2 strain can be primarily associated to its

inability to acquire Mn.

Fig 1. EfaCBA, MntH1 and MntH2 promote growth of E. faecalis in Mn-restricted environments. (A) Total Fe, Mn and Zn content of BHI

medium determined by ICP-OES analysis. Error bars denote SD. (B) Growth of OG1RF (wild-type), Δefa, ΔmntH1, ΔmntH2, ΔefaΔmntH1,

ΔefaΔmntH2, ΔmntH1ΔmntH2 and ΔefaΔmntH1ΔmntH2 strains on BHI plates with or without Mn supplementation. Overnight cultures were

washed, diluted in PBS and 5 μl aliquots spotted on plates. Plates were incubated for 24 hours before being photographed. (C–F) Growth of

OG1RF and its derivatives in Mn-replete (+ Mn, panels C, E) and Mn-depleted (#Mn, panels D, F) FMC. Cells were grown to OD600 ~ 0.2 in

complete FMC and diluted 1:100 in either complete FMC or FMC depleted for Mn. Growth was monitored using a Bioscreen growth reader

monitor. (G-H) Growth of OG1RF on BHI plates (G) or in Mn-depleted FMC broth (H) compared to the triple ΔefaΔmntH1ΔmntH2 mutant

strain harboring either the empty plasmid (pTG-empty) or pTG-efa, pTG-mntH1 or pTG-mntH2. Bars show optical density at 600 nm after 14

hours incubation. The graphs show the average and standard deviations of three independent experiments. Statistically significant differences

were determined via ordinary one-way ANOVA with Dunnett’s multiple comparison post-test (����p� 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g001
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Virulence of the triple ΔefaΔmntH1ΔmntH2 strain is highly attenuated in

the invertebrate Galleria mellonella model

Metal sequestration is an ancient infection defense mechanism that spans various kingdoms of

life [39]. Insects, such as G. mellonella, produce Fe-chelating proteins homologous to mamma-

lian TF and ferritin and could theoretically use similar strategies to chelate Mn [40–42]. To

probe the significance of Mn transport in E. faecalis virulence, we first used the G. mellonella
larvae model of systemic infection. All single and double mutants killed G. mellonella at rates

that were comparable to the parent OG1RF strain (S2 Fig), with similar averages of larvae sur-

vival (~ 27%) 72 hours post-infection (Fig 3). However, virulence of the triple

ΔefaΔmntH1ΔmntH2 mutant was dramatically impaired with ~ 87% larvae survival after 72

hours (Fig 3, S2 Fig).

The EfaCBA system, and to a lesser extent MntH2, are required for

calprotectin tolerance

The Mn- and Zn-binding calprotectin is a major protein used by vertebrates to restrict the

availability of these two transition metals to microbes during infection [15]. Normally found

in circulating blood and tissues at relatively low levels, calprotectin rapidly accumulates to con-

centrations of up to 1mg ml-1 in response to inflammation and infection [15], thereby deplet-

ing Zn and Mn from the infected site. Of note, previous studies indicated that the

antimicrobial activity of calprotectin against E. faecalis is, at least in part, due to Mn sequestra-

tion [15]. Here, we assessed the ability of the Mn transport mutants to grow in the presence of

a sub-inhibitory concentration of purified calprotectin. At the selected concentration, addition

of calprotectin delayed growth of the parent OG1RF strain at the initial time-points, but did

not impact final growth yields after 24 hours of incubation when compared to untreated cells

(S3 Fig). Of note, growth of the ΔefaΔmntH1ΔmntH2 triple mutant strain was impaired even

Fig 2. EfaCBA, MntH1 and MntH2 are the main Mn transporters of E. faecalis. Cellular Mn and Fe quantifications of E. faecalis OG1RF with

(A) single Δefa, ΔmntH1, ΔmntH2, or (B) double ΔefaΔmntH1, ΔefaΔmntH2, ΔmntH1ΔmntH2 and triple ΔefaΔmntH1ΔmntH2 mutant strains.

Strains were grown to mid-log phase (OD600 ~ 0.5) in BHI prior to analysis. The bar graphs show the average and standard deviations of three

independent ICP-OES analyses. BDL: below detection limit. Statistically significant differences were determined via ordinary one-way ANOVA

with Dunnett’s multiple comparison post-test (�p� 0.05, �� p� 0.01, ���p� 0.001, ���� p� 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g002
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in the absence of calprotectin, most likely due to the low Mn levels present in this medium (S3

Fig). Loss of mntH1 (ΔmntH1) did not affect enterococcal tolerance to calprotectin when com-

pared to the parent strain. However, inactivation of mntH2, either by itself (ΔmntH2) or com-

bined with mntH1 (ΔmntH1ΔmntH2), moderately impaired growth of E. faecalis in the

presence of calprotectin (Fig 4 and S3 Fig). Interestingly, growth rates and growth yields of

any one of the efaCBA mutants was severely impaired by calprotectin. As expected, double

inactivation of efaCBA and mntH2 (ΔefaΔmntH2) rendered E. faecalis even more susceptible

to the inhibitory effects of calprotectin. These results revealed that EfaCBA, closely followed by

MntH2, is the primary Mn transporter used by E. faecalis to overcome the inhibitory effects of

calprotectin.

A member of the S100 family, calprotectin forms a S100A8/S100A9 heterodimer with two

distinct metal-binding sites: a high-affinity Zn-binding site and a dual high-affinity Zn/Mn-

binding site. To confirm that the increased sensitivity of Δefa strains to calprotectin was due to

Mn sequestration and not to Zn sequestration, we tested the sensitivity of wild-type and

selected mutant strains against a calprotectin variant (ΔMn Tail calprotectin) that retains the

ability to chelate Zn but is unable to chelate Mn due to amino acid substitutions of key histi-

dine residues (His103 and His105) in the C-terminal tail of calprotectin [15]. The inability to

Fig 3. Virulence of the triple ΔefaCBAΔmntH1ΔmntH2 strain is attenuated in the G. mellonella model. Percent

survival of G. mellonella 72 hours post-infection. Each symbol corresponds to a group of 15 larvae injected with ~ 5 x

105 CFU of E. faecalis. Mean value is shown as a horizontal line. Final 72 hours survival of larvae infected with different

strains was compared via ordinary one-way ANOVA with Dunnett’s multiple comparison post-test. (����p� 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g003
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chelate Mn by the calprotectin ΔMn Tail variant restored final growth yields of all mutant

strains tested to wild-type levels (Fig 4, and S4 Fig, panel A), strongly suggesting that EfaCBA,

and to a lesser extent MntH2, promote tolerance to calprotectin in a Mn-dependent manner.

In line with this finding, the antimicrobial activity of native calprotectin could be fully over-

come by Mn supplementation (10 μM MnSO4) (S4 Fig). Because calprotectin has been shown

to also scavenge Fe in vitro [43], we also tested whether Fe supplementation (10 μM FeSO4)

could rescue calprotectin tolerance in E. faecalis. Addition of Fe rendered the wild-type and

ΔmntH2 strains even more sensitive to calprotectin, while partially restoring growth of the

Δefa single mutant (S4 Fig). More importantly, Fe did not rescue calprotectin tolerance of the

double ΔefaΔmntH2 strain. Collectively these results indicate that EfaCBA and MntH2 medi-

ate calprotectin tolerance by primarily facilitating Mn uptake.

EfaCBA is central for growth and survival in serum

Next, we monitored growth and survival of the Mn transport mutants in pooled human serum

at 37˚C—serum was used instead of whole blood to avoid free metal contamination released

Fig 4. EfaCBA and MntH2 are required for E. faecalis tolerance to calprotectin. Growth of OG1RF and its

derivatives in the presence of purified calprotectin (wild-type) or a calprotectin variant unable to chelate Mn

(CalprotectinΔMn Tail). Overnight cultures were diluted 1:50 in BHI and incubated at 37˚C for 1 hour prior to diluting

1:100 into CP medium and incubating the strains with 120 μg ml-1 of purified calprotectin. Growth was monitored

using a Bioscreen growth reader monitor for up to 24 hours. The bar graphs show the average and standard deviations

of three independent cultures. Growth differences in the presence of wild-type calprotectin were analyzed via a two-

way ANOVA with Tukey’s comparison post-test. (�p� 0.05, �� p� 0.01, ���� p� 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g004
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by lysing erythrocytes. While inactivation of mntH1 and mntH2, alone or in combination, did

not affect the ability of E. faecalis to grow and survive in serum, loss of efaCBA led to a signifi-

cant decrease in survival after 48 hours incubation when compared to the parent strain (~1.3

log Δefa, ~1.5 log ΔefaΔmntH1, ~2.3 log ΔefaΔmntH2, ~1.8 log, ΔefaΔmntH1ΔmntH2) (Fig 5A

and 5B). To determine if the survival defect of Δefa strains was due to an inability to scavenge

Mn or Fe from the environment, we supplemented serum with 1 mM MnSO4 or 1 mM FeSO4.

Of note, the metal stocks chosen for supplementation were 99% pure to minimize the presence

of other transition metals. The addition of either Mn or Fe restored serum growth and survival

of Δefa strains to wild-type OG1RF levels (Fig 5C). Moreover, Mn or Fe supplementation

increased final growth yields of all strains, including the parent strain, confirming that both

metals are growth-limiting factors in the human serum. Collectively, these results indicate that

the EfaCBA system plays a primary role in promoting E. faecalis serum survival, likely because

of its dual capacity to function as a Mn and Fe transporter.

EfaCBA and MntH2 contribute to virulence in a rabbit model of IE

Patients with enterococcal IE are known to generate specific antibodies against EfaA, the sub-

strate-binding lipoprotein component of the EfaCBA system [32, 35]. While an efaA single

mutant was previously shown to be slightly attenuated in a mouse peritonitis model [36], the

contribution of EfaCBA, or the other Mn transport systems MntH1 and MntH2, in enterococ-

cal IE has not been explored. Here, we used a catheterized rabbit IE model [44] to determine

the ability of selected Mn transport mutants to colonize a previously-formed sterile heart vege-

tation and, then, systemically spread to different organs by using spleen homogenates as a

readout. In the first experimental set, the parent OG1RF strain was co-inoculated systemically

(via ear vein injection) with single Δefa and triple ΔefaΔmntH1ΔmntH2 strains. Forty-eight

hours post-infection, an average of 7.5 (+/- 0.7 SD) and 4.1 (+/- 0.9 SD) log10 CFU E. faecalis
were recovered from hearts and spleens, respectively, confirming that E. faecalis can efficiently

colonize the injured heart endothelium and spread systemically in this model. PCR was used

to screen E. faecalis colonies (50 to 100 per animal and organ) to distinguish between the three

strains based on the different amplification products obtained using efaCBA and mntH2 flank-

ing primers. Of the total colonies screened from heart vegetations, ~ 55% corresponded to the

parent OG1RF and ~ 45% to the Δefa single mutant strain (Fig 6A). While the average recovery

rates of OG1RF and Δefa were not statistically significant (p>0.05), there was a great variation

from animal to animal, with the parent OG1RF corresponding to the large majority (>90%) of

colonies recovered in two animals and Δefa predominating at ~ 80% in the remaining three

animals (Fig 6A). Similar trends were observed in the corresponding spleens of the individual

animals (~ 49% OG1RF and ~ 51% Δefa, p>0.05) (Fig 6B), indicating that systemic dissemina-

tion is likely a direct consequence of bacterial seeding from the heart vegetation. Most impor-

tantly, none of the screened colonies in this experiment corresponded to the triple mutant

strain in either heart vegetations or spleens (Fig 6A and 6B).

Based on the strong growth defect of the double ΔefaΔmntH2 in the presence of calprotectin

and in serum (Figs 4 and 5), we next tested the ability of the parent OG1RF, ΔmntH2 and

ΔefaΔmntH2 strains to colonize the heart vegetations in a triple co-infection experiment. In

this second set of experiments, the average numbers of OG1RF and ΔmntH2 recovered from

heart vegetations and spleens were not significantly different (~ 40% OG1RF, ~ 60% ΔmntH2,

p>0.05) (Fig 6C and 6D). Interestingly, the double ΔefaΔmntH2 mutant phenocopied the tri-

ple mutant strain, as none of the colonies screened from each animal corresponded to the

ΔefaΔmntH2 strain. Of note, none of the mutant strains tested displayed a growth/fitness

defect in vitro when co-cultured in BHI supplemented with 150 μM MnSO4 (S5 Fig).
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Collectively, these results strongly support that EfaCBA and MntH2 are the primary Mn trans-

porters of E. faecalis during infection and further underscore the functional redundancy

shared by these two Mn transporters in vivo.

EfaCBA and MntH2 can individually support growth of E. faecalis in urine

Previous studies have shown that transcription of efaCBA and mntH2 is induced when E. fae-
calis is grown in urine, indicating that Mn is also a growth-limiting nutrient in the bladder

environment [30, 45]. We used ICP-OES to determine the Mn content in pooled human urine

obtained from healthy donors and found this batch to be low in Mn (~ 0.7 μM), which is

within the normal clinical range described elsewhere [10]. Copper (Cu) (~ 0.2 μM) and Fe (~

0.7 μM) levels were also low in pooled urine, whereas Zn levels (~ 9.2 μM) were comparatively

much higher. Nevertheless, it should be noted that these values represent total metal concen-

trations present in urine not taking into account their bioavailability. Next, we tested the ability

of the mutant strains to grow in human urine supplemented with bovine serum albumin

(BSA) at 37˚C—BSA was used to supplement urine to mimic protein infiltration during cathe-

ter-associated urinary tract infections (CAUTI), a condition shown to promote growth of E.

faecalis in the bladder environment [46, 47]. We found that both the double ΔefaΔmntH2 and

triple ΔefaΔmntH1ΔmntH2 mutant strains displayed a significant growth defect after 24 hours

of incubation (Fig 7A). While the parent, single and double mutant strains entered stationary

phase and maintained the same growth yields for up to 48 hours, the ΔefaΔmntH1ΔmntH2 tri-

ple mutant also displayed a survival defect after 48 hours (~ 1 log10 reduction in CFU ml-1,

p< 0.05) when compared to the other strains (S6 Fig). Importantly, MnSO4 supplementation

(1 mM) fully restored growth of the triple mutant strain in urine, while addition of FeSO4 (1

mM) only partially rescued the defective phenotype (Fig 7B).

Fig 5. Growth and survival profile of E. faecalis in human serum. Growth and survival of E. faecalis OG1RF with (A) single Δefa, ΔmntH1,

ΔmntH2 or (B) double ΔefaΔmntH1, ΔefaΔmntH2, ΔmntH1ΔmntH2, and triple ΔefaΔmntH1ΔmntH2 mutant strains in pooled human serum.

(C) Serum was supplemented with 1 mM FeSO4 or 1 mM MnSO4, and survival of OG1RF, Δefa and ΔefaΔmntH1ΔmntH2 strains was recorded

after 48 hours incubation. Control corresponds to serum without metal supplementation. Aliquots at selected time points were serially diluted

and plated on BHI + Mn plates for CFU enumeration. The graphs show the average log10-transformed CFU mean and standard deviations of at

least three independent experiments. In (A-B), mutant strains were compared against wild-type OG1RF by a two-way ANOVA with Dunnett’s

multiple comparison test. (�p� 0.05, ��p� 0.01,����p� 0.0001). Significant differences at (^) 4 hours of incubation: �Δefa, �ΔefaΔmntH2,
��ΔmntH1ΔmntH2; at (&) 8 hours of incubation: ��ΔmntH2; at (ϕ) 24 hours of incubation: ����Δefa, ��ΔmntH1 ����ΔefaΔmntH1,
����ΔefaΔmntH2, ����ΔefaΔmntH1ΔmntH2; at (ξ) 48 hours of incubation: ����Δefa, ��ΔmntH1, ����ΔefaΔmntH1, ����ΔefaΔmntH2,
�ΔmntH1ΔmntH2, ����ΔefaΔmntH1ΔmntH2. In (C), comparison of survival defects among strains and the effect of Fe or Mn supplementation

on the same strain (#) versus untreated, or between parent and mutant strains (�) under the same conditions were assessed via two-way

ANOVA with Tukey’s post-test on log10-transformed CFU values. (##p� 0.01, ###p� 0.001, ���� or ####p� 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g005
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MntH2, and to a lesser extent EfaCBA, contribute to E. faecalis virulence in

a murine CAUTI model

To determine whether Mn acquisition is also relevant to enterococcal UTI, we tested the par-

ent OG1RF and each individual mutant strain in a murine CAUTI model [48]. Twenty-four

hours post-infection, the OG1RF, Δefa and ΔmntH1 strains were recovered in similar numbers

from the bladders of infected animals, whereas the ΔmntH2 strain had a ~ 1.5 log10 CFU

reduction (p<0.05) in total bacteria recovered (Fig 8A). Inactivation of mntH1 did not exacer-

bate the phenotype of the mntH2 single gene inactivation (ΔmntH1ΔmntH2) but simultaneous

Fig 6. EfaCBA and MntH2 contribute to virulence in a rabbit model of IE. OG1RF and its derivatives (A-B) Δefa and ΔefaΔmntH1ΔmntH2
or (C-D) ΔmntH2 and ΔefaΔmntH2 were co-inoculated (1:1:1 ratio) into the ear vein of rabbits 24 hours after catheter implantation. After 48

hours, animals were euthanized and bacterial burdens determined in (A, C) hearts and (B, D) spleens. Graphs show the percent of each strain

recovered from these sites; each symbol represents an individual rabbit. To indicate that a particular strain was not recovered from the

corresponding animal, 0 was set to 1 for visualization purposes. The mean percent recovery is shown as a horizontal line. Statistically significant

differences in the percent of individual strains recovered from the rabbit IE experimental model were determined using an ordinary one-way

ANOVA with Tukey’s comparison post-test. (�p� 0.05, �� p� 0.01).

https://doi.org/10.1371/journal.ppat.1007102.g006
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inactivation of efaCBA and mntH1 (ΔefaΔmntH1) resulted in ~ 1 log10 CFU reduction in bac-

teria recovered from the bladder (p<0.05). In agreement with the mounting evidence support-

ing that EfaCBA and MntH2 are the primary systems for Mn acquisition, combined deletion

of efaCBA and mntH2 (ΔefaΔmntH2) or all three Mn transporters (ΔefaΔmntH1ΔmntH2) fur-

ther reduced bacterial loads recovered from the bladder to below or near the detection limit

(Fig 8A). The exact same trends found in the bladder were observed for bacteria recovered

from biofilms formed on the surface of the implanted catheters, i.e. significantly lower bacte-

rial burden for strains lacking mntH2 and very little to no bacterial cells recovered from strains

lacking both efaCBA and mntH2 (Fig 8B). Interestingly, the bacterial counts of strains with an

attenuated phenotype were lower on catheters than in the bladders, suggesting that Mn uptake

is especially critical for biofilm formation on urinary catheters. Moreover, while the parent

OG1RF was able to ascend to the kidneys in 55% of the mice and disseminate to spleen and

heart in ~ 30% of the animals infected, the Mn transport mutants were rarely recovered from

kidneys and were almost never isolated from more distant organs such as spleen and heart (S7

Fig). The overall impaired systemic dissemination of Mn transport mutants is in line with the

importance of Mn acquisition systems for enterococcal survival in serum (Fig 5) and for infec-

tion in the rabbit IE model (Fig 6).

Mn acquisition promotes biofilm formation in urine

Biofilm formation of E. faecalis on urinary catheters is a critical step in UTI and is primarily

mediated by the enterococcal surface adhesin EbpA [47, 49]. Notably, the metal ion-dependent

adhesion site (MIDAS) of EbpA is required for biofilm formation in urine and for virulence in

the experimental CAUTI model [47, 50]. While the identity of the metal bound to the tip of

EbpA remains elusive, we wondered if the colonization defect of strains lacking one or more

Fig 7. Growth and survival of E. faecalis in human urine. (A) Growth of OG1RF and derivatives in human urine.

Overnight cultures were diluted 1:1000 into pooled urine supplemented with 20 mg ml-1 BSA and incubated for 24 hours at

37˚C. (B) Human urine was supplemented with 1 mM FeSO4 or 1 mM MnSO4 and growth/survival of wild-type and

ΔefaΔmntH1ΔmntH2 strains recorded after 48 hours incubation. Control corresponds to urine without metal

supplementation. Aliquots at selected time points were serially diluted and plated on BHI + Mn plates for CFU enumeration.

The graphs show the average and standard deviations of three independent experiments. Mutant strains were compared

against wild-type OG1RF using one-way ANOVA followed by Sidak’s multiple comparison test. Comparison of the effect of

Fe or Mn supplementation on the same strain (#) versus untreated, or between parent and mutant strain (�) under the same

conditions, were assessed via two-way ANOVA with Tukey’s post-test. (�� and ##p� 0.01, ���� and ####p� 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g007

Manganese transport in Enterococcus faecalis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007102 September 20, 2018 12 / 30

https://doi.org/10.1371/journal.ppat.1007102.g007
https://doi.org/10.1371/journal.ppat.1007102


Mn transporters could relate to impaired biofilm formation and/or defects in EbpA produc-

tion. First, we tested the ability of the parent and mutant strains to form biofilms on the sur-

faces of tissue culture plate wells and plastic catheters that were pre-coated with fibrinogen to

promote biofilm formation in an EbpA-dependent manner [47]. After 24 hours of incubation

in urine supplemented with BSA, the single Δefa, double ΔefaΔmntH2 and triple

ΔefaΔmntH1ΔmntH2 mutant strains formed significantly less biofilm as measured by either

crystal violet staining of tissue culture plates (Fig 9A) or catheter immunostaining (Fig 9B). In

agreement with these findings, the double ΔefaΔmntH2 and triple ΔefaΔmntH1ΔmntH2
mutant strains displayed a ~ 1 log10 CFU reduction in catheter-associated bacteria when com-

pared to the parent strain (Fig 9C). While compatible with the slight reduction in biofilm for-

mation (Fig 9A and 9B), the ~ 0.5 log10 CFU reduction observed with the Δefa single mutant

on the catheter surface was not statistically significant (Fig 9C). Finally, we used ELISA to

quantify the surface expression levels of EbpA in the different strains grown under the same

conditions used in the biofilm assay, i.e. urine supplemented with BSA. Despite defects in bio-

film formation of Δefa, ΔefaΔmntH2 and ΔefaΔmntH1ΔmntH2 strains on fibrinogen-coated

surfaces, there were no apparent differences in EbpA levels between parent and mutant strains

(Fig 9D), suggesting that the defective biofilm phenotype is not EbpA-dependent.

efaA and mntH2 are differentially transcribed during IE and CAUTI

The results described above suggest that EfaCBA is the chief Mn transporter in bloodstream

infections while MntH2 appears to play a more prominent role in CAUTI. Given the

Fig 8. MntH2 and EfaCBA promote virulence of E. faecalis in a murine CAUTI model. OG1RF and its derivatives were inoculated into the

bladder of mice immediately after catheter implantation (n = 10 to 22). After 24 hours, animals were euthanized, and bacterial burdens in (A)

bladders and (B) catheters determined. Graphs show total CFU recovered from these sites, and each symbol represents an individual mouse.

Symbols on the dashed line indicate that recovery was below the limit of detection (LOD, 40 CFU). Data were pooled from at least two

independent experiments, and the median value is shown as a horizontal line. Two-tailed Mann-Whitney U tests were performed to determine

significance (��p< 0.005, ����p< 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g008
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functional redundancy of these Mn transporters, we wondered if efaCBA and mntH2 were

differentially expressed when E. faecalis is in the bloodstream or in urine, thereby providing

an explanation for the different phenotypic behaviors of Δefa and ΔmntH2 strains in different

sites of infection. To address this possibility, we used quantitative reverse transcription-

PCR (qPCR) to determine efaA, mntH1 and mntH2 transcription levels in vivo. When com-

pared to cells grown in trypsinized beef heart medium, we found that efaA transcription was

strongly induced in cells isolated from rabbit heart valves (~ 15-fold after two days and ~

100-fold after three-four days) (Fig 10A). On the other hand, transcription of mntH1 was

moderately repressed after infection (7-fold and 3-fold repression after two and three-four

Fig 9. High-affinity Mn acquisition promotes biofilm formation in urine. (A-B) Fibrinogen-coated (A) 96-well polystyrene plates or (B)

silicone catheters were incubated with E. faecalis strains for 24 hours in human urine supplemented with 20 mg ml-1 BSA. (A) Plates were

stained with 0.5% crystal violet, which was dissolved with 33% acetic acid and absorbance at 595 nm was measured. (B) Fixed catheters were

incubated with rabbit anti-Streptococcus group D antigen and Odyssey secondary antibody. Biofilm formation was quantified by infrared

scanning. (C) Catheters were vortexed and sonicated to retrieve biofilm-associated bacteria and plated for cell enumeration. (D) EbpA

expression in urine. Strains were grown in urine + BSA overnight prior to quantification of EbpA by ELISA. EbpA surface expression was

detected using mouse anti-EbpAFull and HRP-conjugated goat anti-rabbit antisera, and absorbance was determined at 450 nm. EbpA expression

titers were normalized against the bacterial titers. Experiments were performed independently in triplicate per condition and per experiment.

Biofilm quantification assays and presence of surface EbpA were analyzed by a two-tailed Mann-Whitney U test. Differences in log10 CFU on

catheters were assessed via a one-way ANOVA with Dunnett’s post-test (�p� 0.05, �� p� 0.01, ���� p� 0.0001).

https://doi.org/10.1371/journal.ppat.1007102.g009
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days, respectively), whereas mntH2 transcription remained largely unaltered over time (Fig

10A). Strikingly, mntH2 was the only gene up-regulated (~ 10-fold induction) in cells recov-

ered from the bladders of mice 24 hours post-infection, while efaA and mntH1 transcription

was not significantly altered (Fig 10B). Since Mn plays a crucial role in promoting oxidative

stress tolerance in lactic acid bacteria [6], in part by acting as the co-factor of superoxide dis-

mutase (sodA), we also determined the transcription levels of sodA (EF0463, OG1RF10348) as

a readout for oxidative stress in IE and CAUTI. Surprisingly, sodA transcription was downre-

gulated (~ 15-fold) at the early stage of endocarditis infection (two days) and did not differ

from the inoculum condition at the later stage of infection (three-four days) (Fig 10A). Simi-

larly unexpected, cells recovered from the bladders of infected mice displayed a ~ 25-fold

reduction in sodA one day post-infection (Fig 10B).

Discussion

In this study we confirm previous in silico predictions that the E. faecalis core genome encodes

three bona fide Mn transporters: one ABC-type (EfaCBA) and two Nramp-type transporters

(MntH1 and MntH2) [27]. Early studies showed that the virulence of an E. faecalis efaA
mutant was slightly delayed in a mouse peritonitis model despite the fact that the strain failed

to display noticeable phenotypes in vitro [33, 36]. Here, we provide an explanation for such

findings by showing that only the simultaneous inactivation of two or all three transporters

can drastically impair Mn homeostasis under laboratory as well as in vivo conditions. Specifi-

cally, the ΔefaΔmntH1ΔmntH2 triple mutant strain was unable to grow (or grew very poorly)

in Mn-restricted environments—a condition commonly encountered in human tissues—and

was unable to robustly infect vertebrate and invertebrate animal hosts. To our knowledge, this

is the first description of an E. faecalis mutant strain being virtually avirulent in multiple ani-

mal infection models. Moreover, this is also the first demonstration that the ability to acquire

Mn using high affinity transporters within the urinary tract environment was shown to be an

important aspect for the development of bacterial UTI.

Fig 10. Transcription of efaA, mntH1, mntH2 and sodA is differentially regulated during infection. OG1RF wild-type cells were harvested

from (A) rabbit heart valves at 2 (early infection) and 3–4 (advanced infection) days post-infection (IE rabbit model, n = 5–8 independent

animal samples) or from (B) mouse bladders 1 day post-infection (CAUTI mouse model, 3 pooled bladders/sample, n = 3). RNA was extracted,

and transcript levels of efaA, mntH1, mntH2, and sodA were determined by qRT-PCR. The data points show fold-change of each individual

sample relative to inoculum growth conditions. Horizontal lines and error bars denote geometric means and 95% confidence intervals.

Confidence intervals that do not cross y = 1 (representing no fold-change in expression) are significantly different from the inoculum control (�

p<0.05).

https://doi.org/10.1371/journal.ppat.1007102.g010
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While EfaCBA, MntH1 and MntH2 appear to be functionally redundant, simultaneous

inactivation of efaCBA and mntH2 often phenocopied the triple mutant strain. Specifically, the

double ΔefaΔmntH2 mutant strain was highly sensitive to calprotectin, displayed a biofilm for-

mation defect in human urine and was virtually avirulent in the IE and CAUTI models. None

of these phenotypes were further exacerbated in the triple mutant strain that also lacked

mntH1. Considering that mntH1 transcription is not as strongly affected by in vitro Mn fluctu-

ations as efaCBA and mntH2 [6, 34], it is tempting to speculate that EfaCBA and MntH2 are

the primary high-affinity Mn transporters of E. faecalis responsible for maintaining Mn

homeostasis in Mn-restricted environments. In contrast, MntH1 may serve as a housekeeping

transporter, possibly with lower affinity for Mn than EfaCBA and MntH2, under Mn-replete

conditions. The specificity and affinity (high/low) of each transport system for Mn, as well as

other important transition metals such as Cu, Fe and Zn, will be determined in future studies.

Lactic acid bacteria like enterococci and streptococci are notoriously Mn-centric organ-

isms, having a much higher nutritional demand for Mn than other bacterial groups [38]. This

metabolic particularity might explain why the striking loss of virulence observed here contrasts

with the moderate virulence attenuation of Mn transport mutants in gram-negative and other

gram-positive pathogens [7, 8, 17]. Indeed, the complete loss of virulence of ΔefaΔmntH2 and

ΔefaΔmntH1ΔmntH2 strains shown here is only comparable to the virulence defects of strepto-

coccal strains lacking EfaCBA orthologs [25, 51, 52]. Interestingly, the observation that E. fae-
calis produces three highly conserved Mn transporters instead of two, such as most

streptococci [53], may be an indication that this opportunistic pathogen is better equipped to

acquire Mn from the host environment than some of the closely-related pathogenic species

such as S. pyogenes and S. pneumoniae. Alternatively, it is possible that E. faecalis may simply

have a higher cellular demand for Mn than streptococci, having to rely on multiple Mn trans-

porters to meet such high demand. This would resemble Lactobacillus plantarum, a non-path-

ogenic organism with five annotated Mn transporters (one P-type, one ABC-type, and three

Nramp-type transporters) that has one of the highest cellular requirements for Mn among

gram-positive and gram-negative bacteria [38, 54].

While Mn is the co-factor of several growth-promoting bacterial enzymes, Mn is thought to

mediate bacterial virulence mainly by protecting cells from host-derived reactive oxygen spe-

cies (ROS) [7, 8, 18, 44, 53, 55]. Previous studies have shown that Mn contributes to elimina-

tion of damaging ROS via three distinct mechanisms: (i) by direct non-enzymatic scavenging

of superoxide radicals, (ii) by serving as the co-factor of the Mn-dependent superoxide dismut-

ase (SOD) enzyme, and (iii) by replacing Fe as an enzymatic co-factor thereby protecting Fe-

binding proteins from Fenton chemistry damage [8, 38, 56]. Not surprisingly, Mn transport

mutants of different bacterial species display enhanced sensitivity to oxidative stresses in vitro
and reduced macrophage survival [18, 19, 53, 57]. We were previously able to show that Mn

availability is critical for enterococcal tolerance to hydrogen peroxide [6]. Here, we demon-

strate that similar to S. aureus and Neisseria gonorrhoeae [20, 58], inability to acquire Mn with

high affinity increases the sensitivity of the E. faecalis ΔefaΔmntH2 strain to paraquat, a super-

oxide generator (S8 Fig). Addition of Mn to the medium fully restored paraquat tolerance of

the mutant strain to wild-type levels, indicating that EfaCBA and MntH2 contribute to super-

oxide tolerance only in Mn restricted environments. Global transcriptional analyses of E. fae-
calis grown in whole blood or urine ex vivo or isolated from a murine peritonitis model

showed that transcription of several genes associated with ROS detoxification, including sodA,

is induced when compared to cells grown in laboratory medium, indicating that bacterial cells

have to cope with ROS stress during invasive infections [29–31]. Unexpectedly, we found that

transcription of sodA was downregulated in the early stages of IE and CAUTI infection (Fig

10). While further studies are needed to determine if E. faecalis does not encounter oxidative
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stress during these infections, it is possible that the downshift in sodA is a response mechanism

to lower the cellular Mn requirement when this nutrient is already restricted. In support of

this possibility, sodA transcription has been previously shown to be repressed in E. faecalis dur-

ing Mn limitation in vitro and in cells recovered from a rabbit subdermal abscess model 8

hours post-infection [6, 59]. Nevertheless, the discrepant transcriptional induction of sodA in

different studies remains to be resolved. One possibility is that, during infection, oxidative

stress fluctuates according to the dynamic and temporal immune responses mounted by the

host.

By obtaining the transcriptional profile of efaA, mntH1 and mntH2 during IE and CAUTI,

we found that the transcriptional responses of each system to different environmental cues in
vivo can greatly differ. This was particularly noticeable for efaA and mntH2, since efaA was

strongly induced in cells recovered from heart valves whereas mntH2 was induced in CAUTI

(Fig 10). In contrast, transcription of mntH1 was repressed in heart valves while remaining

largely unaltered in CAUTI. Considering that efaCBA, mntH1 and mntH2 have been previ-

ously shown to be regulated by EfaR [33], a metalloregulator from the DtxR family, the differ-

ent transcriptional profiles of these genes were somewhat unexpected. However, the same

study proposed that, similar to Bacillus subtilis and S. enterica, there could be other factors reg-

ulating transcription of Mn transport genes in E. faecalis [8, 33, 60, 61]. In fact, in silico analysis

of the E. faecalis OG1RF genome identified two Fur-binding consensus sequences upstream

efaC, the first gene in the efaCBA operon, indicating that this dual Fe/Mn transporter may also

be regulated in response to Fe availability, oxidative stress or both. Future studies are war-

ranted to identify the environmental cues present in blood and urine that trigger the different

transcriptional responses of efaCBA and mntH2, as well as the potential cis and trans-acting

elements regulating these responses.

In addition to differences in expression and, possibly, metal-binding affinity, the distinct

behaviors of efaCBA and mntH2 mutants in the context of IE and CAUTI may have additional

explanations. For instance, EfaA homologs of S. sanguinis (SsaB), S. parasanguinis (FimA) and

S. pneumoniae (PsaA) have been proposed to act as adhesins to a variety of relevant surfaces

[53]. While the role of Mn ABC transport permeases as moonlighting proteins that participate

in cell adhesion is a subject of debate [53], the possibility that EfaA can also function as a sur-

face adhesin should not be completely excluded at this point. Alternatively, considering that

the availability of free Mn and Fe is greatly restricted in the bloodstream, it is possible that the

dual ability of EfaCBA to import both metals, as suggested by cellular metal quantifications of

efa mutants in this and other studies [62], is physiologically relevant during bloodstream infec-

tions but not during UTI. In support of this possibility, both Fe and Mn are growth-limiting

factors for E. faecalis in serum (Fig 5) [6], while only Mn could fully rescue the growth defect

of the triple Mn transport mutant in urine (Fig 7). Importantly, the biological significance of

Fe to bacterial infection is highlighted by the high incidence of opportunistic infections in

individuals with elevated levels of circulating free Fe due to hemochromatosis [14]. Similarly,

elevated tissue levels of Mn were recently show to promote staphylococcal abscess formation

in the murine heart [55], collectively supporting the notion that Fe and Mn availability facili-

tates bloodstream infections.

At this time, the dominant role of MntH2 in CAUTI is less clear. Recent work in Streptococ-
cus agalactiae showed that the Nramp-type MntH is induced at low pH and facilitates macro-

phage and acid stress survival [63]. It is thus possible that the transcriptional induction of

mntH2 in the urinary tract is attributed to a low pH response. Alternatively, we hypothesized

that MntH2 might contribute to Cu detoxification during CAUTI. Specifically, Cu and cerulo-

plasmin—the major mammalian Cu-binding protein—were recently found to accumulate

during bacterial UTI and uropathogenic Escherichia coli (UPEC) has been shown to up-
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regulate Cu efflux systems during clinical UTI to avoid Cu toxicity [64, 65]. Thus, we tested

the ability of parent and ΔmntH2 strains to grow in human urine supplemented with Cu. How-

ever, both strains were completely resistant to physiological concentrations of Cu (up to

0.5 μm) and showed identical levels of Cu sensitivity at supra-physiological concentrations (S9

Fig). While in need of further study, it appears that the prominent role of MntH2 in CAUTI

could be simply attributed to its higher expression levels in the bladder environment when

compared to EfaCBA.

In summary, here we show that maintenance of Mn homeostasis is an essential trait

enabling E. faecalis to fully exert its full pathogenic potential. Specifically, simultaneous inacti-

vation of efaCBA and mntH2 renders E. faecalis avirulent in two mammalian infection models

while only a triple ΔefaΔmntH1ΔmntH2 mutant strain was attenuated in the G. mellonella
invertebrate model. These results expand the knowledge that bacterial Mn transport systems

are promising targets for the development of novel antimicrobial therapies, which should be

particularly effective to combat E. faecalis infections [66]. Work will soon be underway to

uncover the significance of dietary Mn in the pathophysiology of E. faecalis, to elucidate the

organ-dependent differential transcriptional regulation of each Mn transporter, and to under-

stand the contribution of Mn-dependent responses to oxidative stress survival in the context

of infection.

Materials and methods

Bacterial strains, standard growth conditions and antibodies

Bacterial strains and plasmids used in this study are listed in Table 1. All E. faecalis strains

were routinely grown overnight at 37˚C in BHI supplemented with 150 μM MnSO4. When

Table 1. Bacterial strains and plasmids used in this study.

Strains Relevant characteristics Source

E. faecalis

OG1RF Reference sequenced strain; RifR FusR Laboratory stock

ΔefaCBA efaCBA deletion This study

ΔmntH1 mntH1 deletion This study

ΔmntH2 mntH2 deletion This study

ΔefaCBA ΔmntH1 efaCBA deletion; mntH1 deletion This study

ΔefaCBA ΔmntH2 efaCBA deletion; mntH2 deletion This study

ΔmntH1 ΔmntH2 mntH1 deletion; mntH2 deletion This study

ΔefaCBA ΔmntH1 ΔmntH2 efaCBA deletion; mntH1 deletion; mntH2 deletion This study

OG1RF + pTG001 Empty vector, ErmR This study

ΔefaCBA ΔmntH1 ΔmntH2 + pTG001 Triple mutant, empty vector, ErmR This study

ΔefaCBA ΔmntH1 ΔmntH2 + pTG-efa Triple mutant, efaCBA+, ErmR This study

ΔefaCBA ΔmntH1 ΔmntH2 + pTG-mntH1 Triple mutant, mntH1+, ErmR This study

ΔefaCBA ΔmntH1 ΔmntH2 + pTG-mntH2 Triple mutant, mntH2+, ErmR This study

CK111 OG1Sp upp4::P23repA4, SpecR [37]

E. coli

EC1000 Host for RepA-dependent plasmids [68]

DH10B Cloning host for pTG001 Laboratory stock

Plasmids

pCJK47 Donor plasmid, carries P-pheS�; ErmR [37]

pTG001 Expression vector, ErmR This study

https://doi.org/10.1371/journal.ppat.1007102.t001
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required, 10 μg ml-1 erythromycin was added to the growth medium for stable maintenance of

plasmids in the complemented strains. The primary antibodies used in the study were rabbit

anti-Streptococcus group D antigen (anti-E. faecalis lipoteichoic acid) [67] and mouse anti-

EbpAFull [47]. Horseradish peroxidase (HRP)-conjugated goat anti-mouse and goat anti-rabbit

antisera from KPL and IRDye 680LT goat anti-rabbit from LI-COR Biosciences were used as

secondary antibodies.

Construction of Mn transport deletion strains

Deletion of efaCBA, mntH1, and mntH2 from the E. faecalis OG1RF strain was carried out

using the pCJK47 markerless genetic exchange system [37]. Briefly, ~ 1 kb PCR products flank-

ing the efaCBA, mntH1, or mntH2 coding sequences were amplified with the primers listed in

S1 Table. The amplicons included the first and last residues of the coding DNA to avoid unan-

ticipated polar effects. Cloning of amplicons into the pCJK47 vector, electroporation and con-

jugation into E. faecalis strains and final isolation of single mutant strains were carried out as

previously described [37]. Double mutants were obtained by conjugating the different pCJK

constructs accordingly into Δefa, ΔmntH1 or ΔmntH2 single mutants. A triple mutant was

obtained by conjugating the pCJK-mntH2 plasmid into the ΔefaΔmntH1 double mutant. All

gene deletions were confirmed by PCR sequencing of the insertion site and flanking sequences

in single, double and triple mutants. BHI agar was supplemented with 150 μM MnSO4 to

enable isolation of the triple mutant strain.

Construction of complementation strains

The shuttle vector pTG001, a modified version of the nisin-inducible pMSP3535 plasmid [69]

with an optimized RBS and additional restriction cloning sites (a gift from Dr. Anthony Gaca,

Harvard Medical School), was used to complement the ΔefaΔmntH1ΔmntH2 triple mutant

strain. Briefly, the coding sequence of efaCBA, mntH1, or mntH2 was amplified from OG1RF

(efaCBA, mntH1, mntH2) using the primers listed in S1 Table, digested with the appropriate

restriction enzymes and ligated into pTG001 digested with compatible restriction enzymes to

yield plasmids pTG-efa, pTG-mntH1 and pTG-mntH2. Upon propagation in E. coli DH10B,

pTG001 (empty plasmid) and the complementation vectors were electroporated into OG1RF

wild-type or ΔefaΔmntH1ΔmntH2 strains using a standard protocol [70] modified such that

electroporated cells were immediately recovered in BHI supplemented with 0.4 M sorbitol.

Presence of plasmids were confirmed via PCR amplification of the DNA insert region using

plasmid-specific primers.

Growth assays in Mn-depleted media

In vitro growth of strains in metal-depleted medium was performed using the chemically-

defined FMC medium [71] depleted for Mn, Fe, or Mn and Fe as previously described [6].

When indicated, the Mn and Fe concentrations were depleted from ~ 110 μM (Mn) and ~

75 μM (Fe) in metal-replete FMC to< 90 nM in Mn- and/or Fe-depleted FMC. Overnight cul-

tures were diluted 1:40 in complete FMC (metal-replete) and grown aerobically at 37˚C to an

OD600 of 0.25 (early exponential phase). Then, cultures were diluted 1:100 into fresh FMC

depleted for Mn, Fe, or Mn and Fe, and cell growth was monitored using the Bioscreen growth

reader monitor (Oy Growth Curves AB Ltd.). To assess colony formation on BHI plates, over-

night cultures were washed once in sterile PBS containing 0.1 mM EDTA to chelate extracellu-

lar divalent cations, followed by a second PBS wash to remove EDTA. Washed cells were

diluted 1:100 in PBS, and 5 μl aliquots were spotted on plain BHI agar plates or BHI plates con-

taining 150 μM MnSO4, or 150 μM FeSO4. Plates were incubated overnight at 37˚C before
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growth was recorded. For growth assessment of E. faecalis strains in the presence of 35 mM

paraquat, overnight cultures were first diluted 1:40 in BHI and grown to an OD600 of ~ 0.25

prior to inoculation (1:100) into fresh BHI with or without 150 μM MnSO4 and 35 mM para-

quat. Growth was monitored using the Bioscreen growth reader monitor over a 24 hours

period. Growth in the presence of purified calprotectin and the His (103–105)—Asn calprotec-

tin variant (a gift from Dr. Walter Chazin and Dr. Eric Skaar, University of Vanderbilt) was

adapted from previous reports [15, 72, 73]. Briefly, overnight cultures were diluted 1:50 in

fresh BHI broth and incubated 1 hour at 37˚C. Then, cultures were diluted 1:100 into calpro-

tectin medium, consisting of 38% BHI and 62% CP buffer [20 mM Tris pH 7.5, 100 mM NaCl,

3 mM CaCl2, 5 mM β-mercaptoethanol]. Native calprotectin and its variant unable to bind

Mn [15] were added at a sub-inhibitory concentration (120 μg ml-1), and growth at 37˚C was

recorded at 30 min intervals for up to 24 hours. When indicated, 10 μM MnSO4, ZnSO4, or

FeSO4, were added to the medium to test for growth rescue.

ICP-OES

Total metal concentration in BHI, human urine and within bacterial cells was determined as

previously described by inductively coupled plasma—optical emission spectrometry

(ICP-OES) at the University of Florida Institute of Food and Agricultural Sciences Analytical

Services Laboratories [6]. Briefly, for quantification of metals in liquids, 18 ml BHI or urine

were digested with 2 ml trace-metal grade 35% HNO3 prior to analysis. For quantification of

the cellular metal content of bacterial cells, overnight cultures were washed twice with BHI

and subsequently used to inoculate fresh BHI (1:20) and incubated statically at 37˚C. After

reaching an OD600 ~ 0.5, cells were harvested by centrifugation, washed twice in ice-cold PBS

supplemented with 0.5 mM EDTA to chelate extracellular divalent cations, and aliquots were

collected for metal analysis. Bacterial pellets were resuspended in 1 ml 35% HNO3 and digested

at 90˚C for 1 hour in a high-density polyethylene scintillation vial (Fisher Scientific). Digested

bacteria were diluted 1:10 in reagent-grade H2O prior to ICP-OES metal analysis. Metal com-

position was quantified using a 5300DV ICP Atomic Emission Spectrometer (Perkin Elmer),

and concentrations were determined by comparison with a standard curve. Metal concentra-

tions were normalized to total protein content determined by the bicinchoninic acid (BCA)

assay.

G. mellonella model of systemic infection

Larvae of G. mellonella was used to assess virulence of OG1RF and its derivatives as described

elsewhere [74]. Briefly, overnight cultures were washed to reduce Mn carryover. Groups of 15

larvae (200–300 mg in weight) were injected with 5 μl of bacterial inoculum containing ~

5x105 CFU. Larvae injected with heat-inactivated E. faecalis OG1RF (30 min at 100˚C) were

used as negative control. After injection, larvae were kept at 37˚C and G. mellonella survival

was recorded at selected intervals for up to 72 hours. Experiments were performed indepen-

dently at least six times with similar results.

Growth and survival in serum and urine

Survival of strains in pooled human serum and pooled human urine (Lee Biosolutions) was

monitored as previously described [6]. Briefly, overnight cultures grown in BHI+Mn were

washed in sterile PBS as indicated above to remove excess Mn and inoculated 1:200 in human

serum or urine. Cultures were incubated aerobically at 37˚C and, at selected time points, ali-

quots were serially diluted and plated on Mn-supplemented BHI plates for colony-forming

unit (CFU) determination. For determination of growth in human urine, overnight cultures
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were normalized to an OD600 of 1.0 in BHI+Mn. Cells were washed 3 times with 1X PBS fol-

lowed by 1:1000 dilution into undiluted pooled female urine supplemented with 20 mg ml-1 of

BSA and incubated at 37˚C. Bacterial growth was monitored by quantifying CFU as described

above. When indicated, serum and urine were supplemented with a final concentration of 1

mM FeSO4 (99%, Sigma), 1 mM MnSO4 (99%, Sigma) or with increasing concentrations

(0.5 μM, 0.5 mM or 1 mM) of CuSO4 (99%, Acros Organics). Urine was pooled from 3 healthy

female donors, clarified by centrifugation, filter-sterilized, and adjusted to pH 6.5 prior to use.

All urine samples were collected after obtaining written consent as per the study approval

from the Washington University School of Medicine Internal Review Board (approval ID

#201207143).

Experimental rabbit IE model

Male and female specific pathogen-free New Zealand White rabbits (2–4 kg; RSI Biotechnol-

ogy) were utilized in an endocarditis model to assess virulence as previously described [25].

Prior to surgery, the rabbits were sedated and anesthetized with a cocktail of ketamine, xyla-

zine and buprenorphine. A 19-gauge catheter was inserted into the aortic valve by way of the

right carotid artery to induce minor damage. Each catheter was trimmed and sutured in place

and the incision was closed with staples. Later the same day, duplicate inoculum preparation

began by inoculating all strains into BHI for overnight growth in 6% O2. For the

ΔefaΔmntH1ΔmntH2 strain only, BHI medium was supplemented with 100 μM Mn. The next

morning, cultures were diluted 1:10 in fresh BHI with Mn supplementation and incubated

with lids tight at 37˚C until an OD600 of ~0.8 was obtained. The cells were then washed twice

with 7 ml Chelex-treated (Bio-Rad) PBS containing 0.1mM EDTA. As determined in previous

pilot experiments, a portion of the duplicate resuspended cells was removed and diluted to

achieve equal strain representation and a total inoculum of ~107 CFU/ml. From each sample,

1 ml was removed, sonicated and plated for enumeration, while 0.5 ml were injected into the

peripheral ear vein of each of three rabbits per inoculum. A total of six animals were used for

each set of experiments. However, one animal per group had to be euthanized before the set

time point and was not included in the final analysis. Forty-eight hours after inoculation, rab-

bits were euthanized via intravenous injection of Euthasol (Med-Pharmex Inc.). Catheter

placement was verified upon necropsy. Harvested cardiac vegetations and spleens were placed

into PBS, homogenized and plated on Mn-supplemented BHI agar plates. Resulting colonies

were picked and patched onto a new BHI plate supplemented with Mn as appropriate. PCR

screens were used to determine the frequency with which each strain was recovered from

heart vegetations and spleens. Thus, 50 to 100 colonies per organ and animal were randomly

chosen and screened by colony PCR (primers listed in table S1) for their efaCBA and mntH2
status (either wild-type or deleted gene). To verify that the ΔefaΔmntH2 and the

ΔefaΔmntH1ΔmntH2 strains are not growth inhibited in vitro when co-cultured with the par-

ent OG1RF and their respective single mutant strains (Δefa or ΔmntH2), overnight cultures

were diluted in PBS to an initial inoculum of ~ 2 x 103 CFU of each strain. Then, we co-cul-

tured OG1RF with Δefa and ΔefaΔmntH1ΔmntH2, or with ΔmntH2 and ΔefaΔmntH2 strains

in BHI supplemented with 150 μM MnSO4. After 9 hours of incubation, PCR screens were

used to determine the frequency with which each individual strain was recovered from the

medium as described above.

Mouse catheter implantation and infection

The mice used in this study were 6-week-old female wild-type C57BL/6Ncr mice purchased

from Charles River Laboratories. Mice were subjected to transurethral implantation and
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inoculated as previously described [48]. Mice were anesthetized by inhalation of isoflurane

and implanted with a 5-mm length platinum-cured silicone catheter. When indicated,

mice were infected immediately following catheter implantation with 50 μl of ~2 × 107 CFU

of bacteria in PBS introduced into the bladder lumen by transurethral inoculation as previ-

ously described [48]. To harvest the catheters and organs, mice were euthanized 24 hours post-

infection by cervical dislocation after anesthesia inhalation, and bladder, kidneys, spleen and

heart were aseptically harvested. Subsequently, the silicone implant was retrieved from the

bladder.

Biofilm assays on fibrinogen-coated silicone catheters and 96-well

polystyrene plates

Silicone catheters (1 cm, Nalgene 50 silicone tubing, Brand Products) or 96-well polystyrene

plates (Grenier CellSTAR) were coated overnight at 4˚C with 100 μg ml-1 human fibrinogen

free of plasminogen and von Willebrand Factor (Enzyme Research Laboratory). The next day,

E. faecalis overnight cultures were diluted to an optical density (OD600) of 0.2 in BHI broth.

The diluted cultures were centrifuged, washed three times with 1x PBS, and diluted 1:100 in

urine supplemented with 20 mg ml-1 BSA. Bacterial cells were allowed to attach to the fibrino-

gen-coated silicone catheters or 96-well polystyrene plates for 24 hours at 37˚C under static

conditions. After bacterial incubation, catheters and microplates were washed with PBS to

remove unbound bacteria. Half of the catheters were vortexed for 30 sec, sonicated for 5 min,

and vortexed again for 30 sec to retrieve bacteria in the biofilm for CFU quantification. The

other half of catheters were used to visualize biofilms. Briefly, catheters were fixed with forma-

lin for 20 min and then washed three times with PBS. Catheters were blocked at 4˚C with 5%

dry skin milk PBS, followed by three washes with PBS-T. After the washes, plates were incu-

bated for an hour at room temperature with rabbit anti-Streptococcus group D antigen antisera

(1:500) in dilution buffer. Plates were washed with PBS-T, incubated with the Odyssey second-

ary antibody (goat anti-rabbit IRDye 680LT, diluted 1:10,000) for 45 min at room temperature

and washed three times with PBS-T. As a final step, plates were scanned for infrared signal

using the Odyssey Imaging System (LI-COR Biosciences). Fibrinogen coated-catheters were

used as a control for any auto-fluorescence. For assessment of biofilm formation on fibrino-

gen-coated 96-well polystyrene plates, microplates were stained with 0.5% crystal violet for 10

min at room temperature. Excess dye was removed by rinsing with sterile water and then

plates were allowed to dry at room temperature. Biofilms were resuspended with 200 μl of 33%

acetic acid and the absorbance at 595 nm was measured on a microplate reader (Molecular

Devices). Experiments were performed independently in triplicate per condition and per

experiment.

Expression of EbpA on the cell surface of Mn transporter mutants

Surface expression of EbpA by E. faecalis OG1RF parent and Mn transporter mutants was

determined by ELISA as previously described [75] Bacterial strains were grown for 18 hours in

urine supplemented with 20 mg ml-1 of BSA. Then, cells were washed three times with PBS,

normalized to an OD600 of 0.5, resuspended in 50 mM carbonate buffer (pH 9.6) containing

0.1% sodium azide and used to coat (100 μl aliquots) Immulon 4HBX microtiter plates over-

night at 4˚C. The next day, plates were washed three times with PBS-T (PBS containing 0.05%

Tween 20) to remove unbound bacteria and blocked for 2 hours with 1.5% BSA–0.1% sodium

azide–PBS (BB) followed by three washes in PBS-T. EbpA surface expression was detected

using mouse anti-EbpAFull antisera, which was diluted 1:100 in PBS dilution buffer (PBS with

0.05% Tween 20, 0.1% BSA, and 0.5% methyl α-d-mannopyronoside) before serial dilutions
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were performed. A 100-μl volume was added to the plate, and the reaction mixture was incu-

bated for additional 2 hours. Subsequently, plates were washed three times with PBS-T, incu-

bated for 1 hour with HRP-conjugated goat anti-rabbit antisera (1:2,000), and washed again

three times with PBS-T. Detection was performed using a TMB substrate reagent set (BD).

The reaction mixtures were incubated for 5 min to allow color to develop, then the reactions

were stopped by the addition of 1.0 M sulfuric acid. The absorbance was determined at 450

nm. Titers were defined as the last dilution with an A450 of at least 0.2. As an additional con-

trol, rabbit anti-Streptococcus group D antiserum was used to verify that whole cells of all

strains were bound to the microtiter plates at similar levels. EbpA expression titers were nor-

malized against the bacterial titers at the same dilution.

Measurement of efaA, mntH1, mntH2 and sodA transcription during

enterococcal IE and CAUTI

The aortic valve homogenate RNAs used for these experiments were collected and analyzed in

another study from rabbits infected with E. faecalis OG1RF in an experimental model of IE

[76]. Gene expression was studied in RNA samples collected from animals infected for two

days (early infection, n = 5 rabbits) or three to four days (advanced infection, n = 8 rabbits).

For transcript quantifications during CAUTI, OG1RF cells were recovered from bladders of

three infected mice, pooled and immediately placed in RNAlater solution (in triplicate, total

n = 9 animals). RNA extraction, reverse transcription and real-time PCR were carried out fol-

lowing standard protocols [6, 77].

Statistical analysis

Data were analyzed using GraphPad Prism 6.0 software unless otherwise stated. Differences in

cellular metal uptake, final growth in Mn-depleted FMC or human urine, the percentage of

strains recovered from the rabbit IE experimental model, and the log10-transformed CFU val-

ues recovered from in vitro catheter biofilms were determined via ordinary one-way ANOVA

followed by post-test comparisons. Log10-transformed CFU values from serum survival and

calprotectin growth experiments were analyzed via a two-way ANOVA followed by compari-

son post-tests. While differences in the G. mellonella killing rate of mutant strains was assessed

with the Mantel-Cox log-rank test, final 72 hour survival of larvae were similarly compared via

ordinary one-way ANOVA with Dunnett’s multiple comparison post-test. Of note, two outli-

ers (one for a ΔmntH1 replicate, another for a ΔefaΔmntH1ΔmntH2 replicate) were identified

using the ROUT method (Q = 1%) and removed from the final analysis. For CAUTI experi-

ments, biofilm assays and EbpA expression, data from multiple experiments were pooled and

Two-tailed Mann-Whitney U tests were performed. To determine statistical significance in

fold-change transcription of selected genes, fold-change values for each gene were plotted as

geometric mean with the corresponding 95% confidence interval (error bars). A line at y = 1

denotes equal transcripts in inoculum control vs in vivo condition. 95% confidence intervals

that did not cross y = 1 were significantly different (� p<0.05) from the inoculum control.

Ethics statement

Urine samples for growth curves were collected after obtaining informed written consent for

all subjects enrolled in the study as per the study approval from the Washington University

School of Medicine Internal Review Board (approval ID #201207143). Populations generally

classified as vulnerable, including children under the age of 18, were not enrolled in the study.

Only subjects 18 years of age or older at the time of consent were eligible for the study. No
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group or persons were excluded from the study due to race, ethnicity or gender. Case subjects

were enrolled solely based on the eligibility criteria.

Animal procedures for rabbit IE were approved by the Institutional Animal Care and Use

Committee of the Virginia Commonwealth University as part of protocol number AM10030

as well as the University of Minnesota Institutional Animal Care and Use Committee as part of

protocol number 0910A73332. The Washington University Animal Studies Committee

approved all mouse infections and procedures as part of protocol number 20150226. All ani-

mal care was consistent with the Guide for the Care and Use of Laboratory Animals from the

National Research Council and the USDA Animal Care Resource Guide.

Supporting information

S1 Fig. EfaCBA, MntH1 and MntH2 do not promote growth of E. faecalis in Fe-restricted

environments. (A) Cellular Fe quantifications of E. faecalis OG1RF with single Δefa, double

ΔefaΔmntH1, ΔefaΔmntH2, and triple ΔefaΔmntH1ΔmntH2 mutant strains. Strains were

grown to mid-log phase (OD600 ~ 0.5) in BHI prior to analysis. The bar graphs show the rela-

tive average Fe content of mutant strains relative to the wild-type and the standard deviations

of three independent ICP-OES analyses. (B) Growth of OG1RF (wild-type), Δefa, ΔmntH1,

ΔmntH2, ΔefaΔmntH1, ΔefaΔmntH2, ΔmntH1ΔmntH2 and ΔefaΔmntH1ΔmntH2 strains on

BHI plates with or without 150 μM FeSO4 supplementation. Overnight cultures were washed,

diluted in PBS and 5 μl aliquots spotted on plates. Plates were incubated for 24 hours before

being photographed. (C–F) Growth of OG1RF and its derivatives in Fe-depleted (# Fe, panels

A–B), and Fe- and Mn-depleted (#Mn # Fe, panels C–D) FMC. Cells were grown to OD600 ~

0.2 in complete FMC and diluted 1:100 in either complete FMC or FMC depleted for Fe, or Fe

and Mn. Growth was monitored using a Bioscreen growth reader monitor. The graphs show

the average and standard deviations of three independent experiments.

(TIF)

S2 Fig. G. mellonella survival rates. Kaplan-Meyer plots of G. mellonella larvae injected with

E. faecalis OG1RF or the single, double, or triple mutants. Each Kaplan-Meyer plot is a repre-

sentative of an experiment repeated at least six independent times. Differences in the G. mello-
nella killing rates of the mutant strains compared to the parent OG1RF strain were assessed

with the Mantel-Cox log-rank test. (�� p� 0.01).

(TIF)

S3 Fig. Growth of OG1RF and its derivatives in the presence of purified calprotectin. (A–

B) Growth curves of single (A), double and triple (B) mutant strains in CP medium in the pres-

ence (+ CP) or absence (- CP) of 120 μg ml-1 of native calprotectin. Overnight cultures were

diluted 1:50 in BHI and incubated at 37˚C for 1 hour prior to diluting 1:100 into CP medium

and incubating the strains with calprotectin. Growth was monitored using a Bioscreen growth

reader monitor for up to 24 hours. The graphs show the average and standard deviations of

three independent cultures.

(TIF)

S4 Fig. Mn supplementation restores tolerance of E. faecalis to calprotectin. (A) Growth of

wild-type OG1RF in the presence of the ΔMn Tail calprotectin variant (+ CPvar) unable to che-

late Mn when compared to growth without calprotectin (- CP). (B–E) Growth curves of

OG1RF wild-type (B), Δefa (C), ΔmntH2 (D), and ΔefaΔmntH2 (E) strains in the presence of

native calprotectin with or without Mn or Fe supplementation. Overnight cultures were

diluted 1:50 in BHI and incubated at 37˚C for 1 hour prior to diluting 1:100 into CP medium

and incubating the strains with 120 μg ml-1 of purified calprotectin. When indicated, 10 μM
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MnSO4 or FeSO4 was added to the medium. Growth was monitored using a Bioscreen growth

reader monitor for up to 24 hours. The graphs show the average and standard deviations of

three independent cultures.

(TIF)

S5 Fig. Growth of OG1RF and mutant strains in co-culture in vitro. Parent OG1RF was co-

cultured for 9 hours with (A) Δefa and ΔefaΔmntH1ΔmntH2, or with (B) ΔmntH2 and

ΔefaΔmntH2 strains at an initial inoculum of ~ 2 x 103 CFU (each) in BHI supplemented with

150 μM MnSO4. After 9 hours of incubation, PCR screens were used to determine the fre-

quency with which each individual strain was recovered from the medium. Graphs show the

average percent of each strain recovered from two individual experiments.

(TIF)

S6 Fig. Survival of Mn transport mutant strains in human urine. Survival of E. faecalis wild-

type (OG1RF) and Mn deletion strains (single Δefa, ΔmntH1, ΔmntH2, ΔefaΔmntH1,

ΔefaΔmntH2, ΔmntH1ΔmntH2, ΔefaΔmntH1ΔmntH2) in pooled human urine after 48 hours

of incubation. Aliquots at selected time points were serially diluted and plated on BHI + Mn

plates for CFU enumeration. The graphs show the average and standard deviations of three

independent experiments. (���P� 0.001).

(TIF)

S7 Fig. Systemic dissemination of E. faecalis strains during CAUTI. OG1RF and its deriva-

tives were inoculated into the bladder of mice immediately after catheter implantation. After

24 hours, animals were euthanized and bacterial burdens in (A) kidneys, (B) spleens and (C)

hearts determined. Graphs show total CFU recovered from these sites, and each symbol repre-

sents an individual mouse. Symbols on the dashed line indicate that recovery was below the

limit of detection (LOD, 40 CFU). Data were pooled from at least two independent experi-

ments, and median value is shown as a horizontal line. Statistical differences were analyzed by

a two-tailed Mann-Whitney U test (�p< 0.05, ��p< 0.005, ���p< 0.001).

(TIF)

S8 Fig. EfaCBA and MntH2 promote tolerance of E. faecalis to superoxide in Mn restricted

environments. Growth of OG1RF parent, single (A, B) and double (C, D) mutant strains in

BHI (A, C) or BHI supplemented with Mn (+ Mn, panels B, D) in the presence of the superox-

ide generator paraquat. Cells were grown to OD600 ~ 0.2 in BHI and diluted 1:100 in fresh BHI

with or without 150 μM MnSO4 and 35 mM paraquat. Growth was monitored using a Biosc-

reen growth reader monitor.

(TIF)

S9 Fig. MntH2 does not confer tolerance to Cu toxicity in urine. Survival of OG1RF wild-

type and ΔmntH2 strains in human urine supplemented with (A) 0.5 μM, (B) 0.5 mM, or (C) 1

mM CuSO4. Control corresponds to urine without CuSO4 supplementation. Aliquots at

selected time points were serially diluted and plated on BHI + Mn plates for CFU enumera-

tion. Survival of strains was recorded over 48 hours. The graphs show the average log10-trans-

formed CFU mean and standard deviations of at least three independent experiments

Differences were assessed via two-way ANOVA with Tukey’s post-test (�� p� 0.01,
���p� 0.001, ���� p� 0.0001).

(TIF)

S1 Table. Primers used in this study.

(DOCX)
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ten, José A. Lemos.

Investigation: Cristina Colomer-Winter, Ana L. Flores-Mireles, Shannon P. Baker, Kristi L.

Frank, Aaron J. L. Lynch, Todd Kitten, José A. Lemos.
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Resources: Kristi L. Frank, Scott J. Hultgren, Todd Kitten, José A. Lemos.
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