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RESEARCH Open Access

Emergency department hyperoxia is
associated with increased mortality in
mechanically ventilated patients: a cohort
study
David Page3, Enyo Ablordeppey1,2, Brian T. Wessman1,2, Nicholas M. Mohr4,5, Stephen Trzeciak6,7, Marin H. Kollef3,
Brian W. Roberts7 and Brian M. Fuller1,2*

Abstract

Background: Providing supplemental oxygen is fundamental in the management of mechanically ventilated
patients. Increasing amounts of data show worse clinical outcomes associated with hyperoxia. However, these
previous data in the critically ill have not focused on outcomes associated with brief hyperoxia exposure
immediately after endotracheal intubation. Therefore, the objectives of this study were to evaluate the impact of
isolated early hyperoxia exposure in the emergency department (ED) on clinical outcomes among mechanically
ventilated patients with subsequent normoxia in the intensive care unit (ICU).

Methods: This was an observational cohort study conducted in the ED and ICUs of an academic center in the USA.
Mechanically ventilated normoxic (partial pressure of arterial oxygen (PaO2) 60–120 mm Hg) ICU patients with
mechanical ventilation initiated in the ED were studied. The cohort was categorized into three oxygen exposure groups
based on PaO2 values obtained after ED intubation: hypoxia, normoxia, and hyperoxia (defined as PaO2 < 60 mmHg, PaO2

60–120 mm Hg, and PaO2 > 120 mm Hg, respectively, based on previous literature).

Results: A total of 688 patients were included. ED normoxia occurred in 350 (50.9%) patients, and 300 (43.6%) had
exposure to ED hyperoxia. The ED hyperoxia group had a median (IQR) ED PaO2 of 189 mm Hg (146–249), compared to
an ED PaO2 of 88 mm Hg (76–101) in the normoxia group, P < 0.001. Patients with ED hyperoxia had greater hospital
mortality (29.7%), when compared to those with normoxia (19.4%) and hypoxia (13.2%). After multivariable logistic
regression analysis, ED hyperoxia was an independent predictor of hospital mortality (adjusted OR 1.95 (1.34–2.85)).

Conclusions: ED exposure to hyperoxia is common and associated with increased mortality in mechanically ventilated
patients achieving normoxia after admission. This suggests that hyperoxia in the immediate post-intubation period could
be particularly injurious, and targeting normoxia from initiation of mechanical ventilation may improve outcome.
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Background
Providing supplemental oxygen is ubiquitous in the
management of mechanically ventilated patients. Guide-
lines for the provision of oxygen give recommendations
for target oxygen saturations and for the weaning of oxy-
gen therapy [1]. Despite this, the titration of supplemen-
tal oxygen in mechanically ventilated patients is
infrequent with resultant hyperoxia being common in
the intensive care unit (ICU) [2].
While the deleterious effects of hypoxia are appreci-

ated and actively avoided, hyperoxia is regularly accepted
[2–4]. This pendulum swing toward hyperoxia may be
associated with harm, as increasing amounts of data
show worse clinical outcomes associated with elevated
levels of arterial oxygen [5, 6]. Patients suffering from an
acute ST-elevation myocardial infarction provided with
supplemental oxygen were found to have an increase in
recurrent myocardial infarction and arrhythmia and lar-
ger myocardial infarct size at 6 months [7]. In mechanic-
ally ventilated ICU patients, hyperoxia has been
associated with mortality and a decrease in ventilator-
free days [8, 9]. In patients resuscitated from cardiac ar-
rest and post-ischemic stroke, hyperoxia has also been
linked with worse outcome [10–13]. Finally, patients
with traumatic brain injury have increased mortality and
worse functional outcomes associated with hyperoxia
[14–16]. However, these previous data in the critically ill
have focused on outcomes associated with relatively pro-
longed hyperoxia, with the assessment of hyperoxia ex-
posure during the first 24–72 hours of ICU stay, and up
to the entire period of mechanical ventilation [5]. Ani-
mal data have shown that the negative consequences as-
sociated with hyperoxia can be both time-dependent and
dose-dependent, and hyperoxia of only a few hours dur-
ation can provoke deleterious changes in inflammation
and pulmonary mechanics; yet the effect of a relatively
brief exposure to hyperoxia in critically ill patients prior
to ICU admission is unknown [17–20].
The emergency department (ED) could be a loca-

tion that provides both impactful and scalable data to
study the effects of initial hyperoxia on outcome:
lengths of stay for mechanically ventilated ED patients
are long enough for hyperoxia to potentially initiate
harm, yet short enough to provide novel data on
comparatively brief exposures to hyperoxia. Also, ex-
cessive administration of oxygen in the ED is com-
mon [21–23]. The objectives of this study were to
assess the association between the initial exposure to
hyperoxia, immediately after endotracheal intubation
in the ED, and clinical outcomes among patients who
were subsequently normoxic while in the ICU. We
hypothesized that hyperoxia in the ED would be asso-
ciated with an increase in hospital mortality and in-
creased lengths of stay.

Methods
Study design and participants
This was a cohort study, using a database of patients that
had mechanical ventilation initiated in the ED at a tertiary
academic medical center (September 2009 to March
2016). The database was created as part of a clinical inves-
tigation that assessed outcomes associated with the imple-
mentation of ED lung-protective mechanical ventilation
[24, 25]. All mechanically ventilated ED patients were
screened for inclusion. The inclusion criteria were the fol-
lowing: (1) adult patients (age ≥18 years); (2) mechanical
ventilation via an endotracheal tube; and (3) normoxia
(partial pressure of arterial oxygen (PaO2) 60–120 mm
Hg) on day 1 of ICU admission. The analysis was re-
stricted to those patients with ICU normoxia, given the
fact that (1) longer periods of exposure to hyperoxia in the
ICU have been studied in the past; (2) this approach
allowed us to better isolate a relatively brief hyperoxia ex-
posure (i.e. in the ED) to test its association with outcome;
and (3) the association between ED hyperoxia and out-
come in mechanically ventilated patients had not been
studied previously. Exclusion criteria were as follows: (1)
death or discontinuation of mechanical ventilation within
24 hours of intubation; (2) chronic respiratory failure re-
quiring mechanical ventilation; (3) presence of a tracheos-
tomy; (4) transfer to another hospital; and (5) presence of
acute respiratory distress syndrome (ARDS) while in the
ED (defined by the Berlin criteria) [26]. This study was ap-
proved by the institutional review board under waiver of
informed consent.

Procedures
Demographic data, comorbidities, laboratory values, vital
signs, illness severity, ED length of stay, and etiology of
respiratory failure were collected. Data on treatments
provided in the ED included the use of vasopressors and
antibiotics and amount of intravenous fluid.
Mechanical ventilator settings provided in the ED were

collected, along with gas exchange variables, plateau
pressure, static compliance of the respiratory system,
and driving pressure. Ventilator settings from the ICU
were collected twice daily, for up to 2 weeks.
The definitions of comorbid conditions are provided

in Additional file 1. Driving pressure (cm H2O) was cal-
culated as plateau pressure minus positive end-
expiratory pressure (PEEP). Static compliance (mL/cm
H2O) of the respiratory system (CRS) was calculated as:

CRS ¼ Tidal volume= Plateau pressure ‐ PEEPð Þ:

The primary outcome was in-hospital mortality. Sec-
ondary outcomes were ventilator-free, ICU-free, and
hospital-free days. Patients were followed until hospital
discharge or death.
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Statistical analysis
Patient characteristics were assessed with descriptive sta-
tistics, including mean (standard deviation (SD)), median
(interquartile range (IQR)), and frequency distributions.
Linear interpolation was used to deal with missing data
on lactate values (n = 157 patients). The cohort was a
priori categorized into three oxygen exposure groups
based on PaO2 values obtained after intubation (i.e. in
the ED, one arterial blood gas per patient). Hypoxia was
defined as PaO2 < 60 mm Hg, normoxia as PaO2 60–
120 mm Hg, and hyperoxia as PaO2 > 120 mm Hg. Rec-
ognizing that there is no formal definition of hyperoxia,
a PaO2 cutoff value of 120 mm Hg was used as it is con-
gruent with the cutoff value used in other cohort studies
that examined ICU hyperoxia exposure in a diverse co-
hort of mechanically ventilated patients (i.e. analysis not
isolated to patients post cardiac arrest or those with
stroke or traumatic brain injury) [8, 9, 27]. In a post hoc
analysis, the hyperoxia group was further categorized
into mild (PaO2 121–200 mm Hg), moderate (PaO2 201–
300 mm Hg), and severe (PaO2 > 300 mm Hg) hyperoxia
subgroups.
To assess predictors for the primary outcome of hos-

pital mortality, categorical characteristics were compared
using the chi-square test. Continuous characteristics
were compared using analysis of variance (ANOVA) or
the Kruskal-Wallis test depending on the distribution of
the data. The Bonferroni correction was used to correct
for multiple comparisons, and differences in PaO2 cat-
egories were considered statistically significant if P was
< 0.017. Time (in days) to the primary outcome was
assessed with the Kaplan-Meier survival estimate and
log-rank test, comparing the normoxic and hyperoxic
groups. A second Kaplan-Meier survival estimate was
also calculated, which included the hyperoxic subgroups.
To determine independent predictors of mortality, a

backward, stepwise, multivariable logistic regression
model was used to evaluate death as a function of oxy-
gen exposure group. Clinically relevant variables that
were statistically significant in univariate analysis at P <
0.05 were candidates for model inclusion. The primary
exposure of interest was ED PaO2. As fraction of in-
spired oxygen (FiO2) and PEEP are significantly linked to
the exposure and statistically collinear with it, they were
not entered into the multivariable model, neither was
PaO2:FiO2 (expected differences based on the primary
exposure group). Variables for inclusion or exclusion
from the model were selected in sequential fashion
based on the significance level of 0.10 for entry and 0.10
for removal. Normality, statistical interactions, and col-
linearity (i.e. variance inflation factor) were assessed, and
the model used variables that were statistically inde-
pendent. Model goodness of fit was assessed with the
Hosmer-Lemeshow test and by examining residuals.

Adjusted odds ratios (OR) and corresponding 95% confi-
dence intervals (CI) are reported for the multivariable
model, adjusted for all variables in the model. All tests
were two-tailed, and a P value <0.05 was considered sta-
tistically significant.

Results
Study population
The flow diagram of inclusions, exclusions, and the final
study population are presented in Fig. 1. A total of 688
patients that were normoxic in the ICU were included in
the final analysis.
Table 1 presents baseline characteristics of the study

population related to the ED oxygenation group. The
median (IQR) ED length of stay (hours) was 5.4 (3.5–
7.9), with no difference in ED length of stay between the
groups. There were no significant differences between
the groups in comorbid conditions or indications for
mechanical ventilation. Illness severity, as measured by
Acute Physiology and Chronic Health Evaluation II
(APACHE II) score, was higher in the ED hypoxia group.
The most common reason for initiation of mechanical
ventilation was sepsis.

Oxygenation and mechanical ventilation characteristics
Table 2 shows the ventilator variables in the ED and
ICU. There were 300 patients (43.6%) who had exposure
to ED hyperoxia, 350 (50.9%) who had exposure to ED
normoxia, and 38 (5.5%) who had exposure to ED
hypoxia.
Median (IQR) FiO2 was 80% (50–100) in patients in

the ED hyperoxia group, which was significantly higher
than the FiO2 in patients in the ED normoxia (68% (40–
100)) and hypoxia (60% (40–80)) groups, P = 0.004. In
the ED hyperoxia group, there was also a significantly
higher median PaO2 (189 mm Hg (146–249)), and PaO2:-
FiO2 (270 (198–360)), P < 0.001.
There were no significant clinical differences between

the groups with respect to day 1 ICU oxygenation and
mechanical ventilation variables, though some statistical
differences existed. Oxygenation and mechanical ventila-
tion variables remained fairly static over the ICU stay,
with little difference between day 1 variables and those
calculated over the entire duration of mechanical venti-
lation (Additional file 2: Table S1).

Clinical outcomes
In the entire cohort, hospital mortality occurred in 162
(23.5%) patients. Patients with ED hyperoxia had greater
hospital mortality (29.7%), when compared to those with
normoxia (19.4%) and hypoxia (13.2%). On Kaplan-Meier
analysis, survival diverged significantly between the hyper-
oxia and normoxia groups (log-rank P = 0.021, Fig. 2).
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The primary outcome analysis is shown in Table 3.
The multivariable model was adjusted for age, gender,
APACHE II, lactate, ED tidal volume, ED plateau pres-
sure, ICU PaO2, and oxygen exposure group. After mul-
tivariable logistic regression analysis, ED hyperoxia was
an independent predictor of hospital mortality (aOR
1.95 (1.34–2.85)). The complete multivariable model re-
sults are shown in Additional file 3: Table S2.
Secondary outcomes are also presented in Table 3.

Compared to the normoxia group, there was a decrease in
ventilator-free days (mean difference 3.7; 95% CI 2.0 to
5.4), ICU-free days (mean difference 3.5; 95% CI 1.9 to
5.1), and hospital-free days (mean difference 2.9; 95% CI
1.5 to 4.3) associated with ED hyperoxia, P < 0.001 for all.
The post hoc analysis examined mortality across

hyperoxia subgroups. As the level of hyperoxia in-
creased, hospital mortality was greater, (mild hyperoxia
28.0%, moderate hyperoxia 30.2%, severe hyperoxia
34.8%), though this was not statistically significantly dif-
ferent between the hyperoxia subgroups (Fig. 3). On
Kaplan-Meier analysis, survival diverged significantly be-
tween the normoxia group and the hyperoxia subgroups
(log-rank P < 0.001, Additional file 4: Figure S1).

Discussion
Key findings
This observational cohort study was conducted to exam-
ine the association between early hyperoxia exposure
and clinical outcomes in mechanically ventilated patients
with normoxia during their ICU stay. We found that the
liberal use of oxygen in the ED was common, with a me-
dian (IQR) FiO2 of 70% (47–100), and a commensurate
pre-ICU hyperoxia rate of 43.6%.

Pre-ICU exposure to hyperoxia in the ED was associ-
ated with a mortality rate of 29.7%, higher than in pa-
tients in both the hypoxia (13.2%) and normoxia (19.4%)
groups. After controlling for confounders, including
components of lung-protective ventilation (i.e. tidal vol-
ume, plateau pressure) and for baseline imbalances,
hyperoxia remained an independent predictor of hospital
mortality in multivariable analysis. Additionally, hospital
mortality worsened across the hyperoxia subgroups.
These data are congruent with prior studies of more
prolonged exposure to hyperoxia in the ICU, yet to our
knowledge this is the first study demonstrating an asso-
ciation between a comparatively brief early exposure to
hyperoxia prior to ICU arrival, and worse clinical out-
comes among mechanically ventilated patients [28].

Relationship to prior work
Clinical guidelines recommend targeting oxygen satura-
tions at 94–98% for most acutely ill patients, and recom-
mend reducing oxygen therapy in patients with
satisfactory oxygen saturation [1]. In an observational
study of 101 mechanically ventilated patients in the ICU,
patients spent > 70% of their total mechanical ventilation
time with peripheral arterial oxygen saturation (SpO2)
values of 96–100%, with mean PaO2 values of 144 mm Hg
[29]. In 51 patients mechanically ventilated for > 48 hours,
the majority of time was spent with SpO2 > 98% and 50%
of all observations revealed hyperoxia [4]. A Dutch study
of 126,778 arterial blood gas measurements from over
5000 mechanically ventilated ICU patients revealed a
PaO2 > 120 mm Hg in 25% of the measurements, yet only
25% of the time was FiO2 decreased [2]. Finally, data from
a single-center and multi-center study has shown that

688 Normoxic ICU patients included in the final analysis

2837 excluded from analysis
1007 ICU hyperoxia
782 Extubated < 24 hours
444 Death in the ED
255 Death within 24 hours 
166 Tracheostomy/chronic ventilation
108 Transfer to another hospital
65 ARDS criteria in the ED
10 ICU hypoxia

3525 Mechanically ventilated patients assessed for eligibility

Hypoxia
n= 38

Normoxia
n= 350

Hyperoxia
n= 300

Fig. 1 Study flow diagram
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delivery of FiO2 > 90% is common and little titration of
oxygen therapy occurs while patients are mechanically
ventilated in the ED [21, 22]. Our current results, along
with prior work in this area, further demonstrate that the
liberal administration of oxygen is commonplace and
hyperoxia is frequently tolerated, and extends these find-
ings into the immediate post-intubation period in the ED.
With respect to clinical outcomes, there has been an

increasing amount of data published in this domain over

the last decade [6]. These data consist primarily of ob-
servational cohort studies with high heterogeneity
among them in regards to methods, definition of hyper-
oxia, and the timing of the assessment of hyperoxia ex-
posure [5, 6]. However, general themes show an
association between hyperoxia and harm in the majority
of studies. Hyperoxia seems to have a time-dependent
and dose-dependent association with outcome, whereby
early and severe hyperoxia in the ICU are particularly

Table 1 Baseline characteristics at the time of intubation

All subjects
n = 688

ED hypoxiaa

n = 38
ED normoxiab

n = 350
ED hyperoxiac

n = 300
P value

Age (years) 59.1 (16.0) 55.0 (16.7) 60.1 (14.7) 58.7 (17.1) 0.024

Female gender, n (%) 290 (42.2) 15 (39.5) 166 (47.4) 106 (35.3) 0.015

Race, n (%)

Black 369 (53.6) 23 (60.5) 183 (52.3) 162 (54.0) 0.661

White 317 (46.1) 15 (39.5) 164 (46.9) 134 (44.7)

Other 7 (1.0) 0 (0) 3 (0.9) 4 (1.3)

Comorbidities, n (%)

Chronic obstructive pulmonary disease 234 (34.0) 14 (36.8) 122 (34.9) 98 (32.7) 0.383

Malignancy 117 (17.0) 8 (21.1) 57 (16.3) 52 (17.3) 0.655

Congestive heart failure 189 (27.5) 10 (26.3) 92 (26.3) 86 (28.7) 0.893

Diabetes mellitus 252 (36.6) 19 (50.0) 125 (35.7) 107 (35.7) 0.289

End-stage renal disease 52 (7.6) 5 (13.2) 24 (6.9) 23 (7.7) 0.498

Immunosuppression 61 (8.9) 6 (15.8) 33 (9.4) 22 (7.3) 0.287

Cirrhosis 48 (7.0) 1 (2.6) 26 (7.4) 21 (7.0) 0.660

Indication for mechanical ventilation, n (%)

Asthma 18 (2.6) 0 8 (2.3) 10 (3.3) 0.492

Chronic obstructive pulmonary disease 77 (11.2) 4 (10.5) 39 (11.1) 34 (11.3)

CHF/pulmonary edema 42 (6.1) 5 (13.2) 24 (6.9) 13 (4.3)

Sepsis 237 (34.4) 17 (44.7) 117 (33.4) 102 (34.0)

Trauma 119 (17.3) 6 (15.8) 58 (16.6) 53 (17.7)

Cardiac arrest 42 (6.1) 1 (2.6) 17 (4.9) 24 (8.0)

Drug overdose 29 (4.2) 1 (2.6) 13 (3.7) 15 (5.0)

Other 129 (18.9) 4 (10.5) 74 (21.1) 49 (16.3)

APACHE II scored 16 (12–20) 19 (14–25) 16 (12–20) 15 (11–20) 0.011

Systolic blood pressure (mm Hg) 117 (94–145) 105 (75–148) 117 (97–145) 118 (95–144) 0.708

Vasopressor infusion, n (%) 178 (25.9) 15 (39.5) 85 (24.3) 77 (25.7) 0.238

Antibiotic administration, n (%) 332 (48.3) 23 (60.5) 177 (50.6) 131 (43.7) 0.068

Lactate (mmol/L) 2.3 (1.5–4.2) 3.0 (2.0–5.9) 2.2 (1.4–3.9) 2.3 (1.5–4.2) 0.047

Hemoglobin (g/dL) 12.1 (2.6) 12.1 (2.5) 12.1 (2.6) 12.0 (2.7) 0.335

Intravenous fluids in ED (L) 1.8 (1.8) 1.7 (1.5) 1.7 (1.8) 1.8 (1.8) 0.969

ED LOS (hours) 5.4 (3.5–7.9) 5.9 (3.8–8.4) 5.6 (3.7–8.1) 5.3 (3.5–7.5) 0.985

Continuous variables are reported as mean (standard deviation) and median (interquartile range). P values are from the chi-square test for categorical variables,
one-way analysis of variance for continuous variables, and the Kruskal-Wallis test (lactate, Acute Physiology and Chronic Health Evaluation (APACHE)). Bonferroni
correction: α/n of comparisons = 0.05/3 = 0.017. CHF congestive heart failure, LOS length of stay, ED emergency department
aPartial pressure of arterial oxygen (PaO2) <60 mmHg
bPaO2 60–120 mmHg
cPaO2 > 120 mmHg
dModified score, which excludes the Glasgow Coma Scale
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Table 2 Ventilator variables in the emergency department and day 1 in the intensive care unit

All subjects
n = 688

ED hypoxiaa

n = 38
ED normoxiab

n = 350
ED hyperoxiac

n = 300
P value

Emergency department

Tidal volume (mL/kg PBW) 7.5 (6.4–8.6) 6.6 (6.1–7.7) 7.5 (6.4–8.6) 7.6 (6.7–8.7) 0.001

Respiratory rate 16 (14–20) 20 (16–25) 16 (14–20) 16 (14–20) <0.001

FiO2 70 (47–100) 60 (40–80) 68 (40–100) 80 (50–100) 0.004

PEEP 5 (5–7) 8 (5–10) 5 (5–7) 5 (5–5) <0.001

pH 7.29 (7.21–7.38) 7.26 (7.16–7.33) 7.29 (7.21–7.38) 7.29 (7.21–7.39) 0.354

PaO2 (mm Hg) 110 (82–179) 54 (51–55) 88 (76–101) 189 (146–249) <0.001

PaO2/FiO2 192 (115–278) 106 (83–141) 129 (92–207) 270 (198–360) <0.001

Plateau pressure (mmHg) 20 (17–25) 24 (20–28) 20 (17–25) 20 (17–25) 0.006

Static compliance (mL/cm H20) 33 (26–45) 31 (24–36) 33 (25–45) 35 (26–46) 0.071

Driving pressure (cm H2O) 14 (11–19) 15 (12–18) 14 (11–19) 14 (11–19) 0.117

Intensive care unit, day 1

Tidal volume (mL/kg PBW) 8.0 (7.0–8.8) 7.5 (6.5–8.3) 8.0 (7.0–9.0) 7.7 (7.0–8.8) 0.220

FiO2 46 (40–60) 46 (40–57) 46 (40–60) 46 (40–60) 0.616

PEEP 5 (5–6) 6 (5–8) 5 (5–6) 5 (5–6) 0.002

pH 7.35 (7.29–7.40) 7.38 (7.30–7.41) 7.35 (7.29–7.39) 7.35 (7.29–7.40) 0.377

PaO2 (mm Hg) 97 (82–113) 96 (83–113) 94 (79–109) 100 (84–117) 0.002

PaO2/FiO2 207 (163–258) 206 (169–244) 200 (156–257) 210 (170–260) 0.053

Plateau pressure (mmHg) 21 (18–25) 22 (20–25) 21 (18–25) 21 (18–25) 0.266

Static compliance (mL/cm H20) 35 (27–43) 33 (27–37) 34 (27–43) 35 (28–43) 0.181

Driving pressure (cm H2O) 16 (13–19) 15 (13–18) 16 (13–19) 16 (13–19) 0.342

Continuous variables are reported as median (interquartile range). P values are from one-way analysis of variance. Bonferroni correction: α/n of comparisons =
0.05/3 = 0.017. PBW predicted body weight, FiO2 fraction of inspired oxygen, PEEP positive end-expiratory pressure, PaO2 partial pressure of arterial oxygen
aPartial pressure of arterial oxygen (PaO2) <60 mm Hg
bPaO2 60–120 mm Hg
cPaO2 > 120 mm Hg

Fig. 2 Kaplan-Meier survival curve between the hyperoxia and normoxia groups
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injurious, and with prolonged exposure [6, 9]. In
addition to the production of free radicals, hyperoxia
can cause vasoconstriction and a paradoxical decrease in
oxygen delivery (within minutes) to prone regional areas
(i.e. heart, brain, kidney) [30, 31]. These facts may help
explain the findings in the current study, as the hyper-
oxia observed in the current investigation was in the
most immediate post-intubation period, and much more
pronounced (PaO2 189 mm Hg (146–249) when com-
pared to normoxic patients (PaO2 88 mm Hg (76–101)).
Additionally, the data suggest that our findings represent
an effect of ED hyperoxia (and not carry-over into the
ICU), as these patients were normoxic after ICU admis-
sion (Table 2), and throughout their ICU stay (Add-
itional file 2: Table S1). This suggests that targeting
normoxia from the initiation of mechanical ventilation
may improve outcome, and makes complete physiologic
sense.

Significance of study findings
A single-center randomized controlled trial (RCT) re-
cently showed an absolute risk reduction in hospital
mortality of 8.2% when normoxia was targeted in ICU
patients; this is similar to the 8.3% difference in mortal-
ity between the normoxia and hyperoxia groups ob-
served in this study, with survival curves of similar
appearance [32]. However, another recent RCT failed to
demonstrate any survival signal with a conservative oxy-
gen target in mechanically ventilated patients, though
this was a pilot feasibility study not powered for mortal-
ity [33]. Our study supports the notion that clinicians
liberally administer oxygen in the immediate period of
mechanical ventilation and routinely accept (and perhaps
even target) hyperoxia. It also supports that this practice
may be harmful. While no concrete recommendations
can be given on the optimal PaO2 in mechanically ven-
tilated ED patients, our data suggest little downside in

Table 3 Primary and secondary outcomes according to initial oxygenation group

Outcome All subjects
n = 688

ED hypoxiaa

n = 38
ED normoxiab

n = 350
ED hyperoxiac

n = 300
Adjusted odds ratio or between-group difference (95% CI) P value

Primary outcome, n (%)

Mortality 162 (23.5) 5 (13.2) 68 (19.4) 89 (29.7) 1.95 (1.34–2.85) <0.001

Secondary outcomes (days)

Ventilator-free 16.5 (10.9) 20.3 (9.7) 17.9 (10.3) 14.2 (11.3) 3.7 (2.0–5.4) <0.001

ICU-free 15.2 (10.3) 17.9 (9.1) 16.7 (9.8) 13.2 (10.7) 3.5 (1.9–5.1) <0.001

Hospital-free 10.7 (9.2) 12.8 (9.3) 11.9 (9.0) 8.9 (9.1) 2.9 (1.5–4.3) <0.001

The P value for the primary outcome measure was from the Wald test estimated using a logistic regression model accounting for age, gender, Acute Physiology
and Chronic Health Evaluation II score, lactate, emergency department tidal volume, emergency department (ED) plateau pressure, intensive care unit partial
pressure of arterial oxygen (PaO2), and oxygen exposure group. The P values for the secondary outcomes are from the independent sample t test, comparing the
normoxic and hyperoxic groups
aPaO2 < 60 mm Hg
bPaO2 60–120 mm Hg
cPaO2 > 120 mm Hg

Fig. 3 Mortality across oxygenation groups, including hyperoxia subgroups. Hypoxia, partial pressure of arterial oxygen (PaO2) <60 mm Hg;
normoxia, PaO2 60–120 mm Hg; mild hyperoxia, PaO2 121–200 mm Hg; moderate hyperoxia, PaO2 201–300 mm Hg; severe hyperoxia,
PaO2 > 300 mm Hg

Page et al. Critical Care  (2018) 22:9 Page 7 of 10



immediately targeting normoxia, and provide data to
suggest an opportunity to study this further in the ED.
This investigation has several limitations. It was a

single-center study, and the oxygen administration prac-
tices and incidence of ED hyperoxia may not be exter-
nally valid or apply to other centers. Excess FiO2

administration in mechanically ventilated patients has
been well-documented in the literature, suggesting these
data are generalizable outside of our hospital [2, 29].
Given the study design, unmeasured confounders linked
to hyperoxia could have accounted for the excess mor-
tality in the hyperoxia group. For example, clinicians
may err on the side of hyperoxia intentionally in condi-
tions associated with lower oxygen delivery (i.e. anemia,
low cardiac output), greater hypoperfusion, or higher ill-
ness severity. However, compared to the normoxia
group, hyperoxic patients had similar hemoglobin levels,
blood pressure, vasopressor use, lactate, illness severity,
and fluid administration. Imbalances in baseline charac-
teristics may have also influenced results, though these
were adjusted for in our multivariable analysis. Never-
theless, the current results provide more evidence for
the avoidance of excess oxygen, which is not providing
any additional therapeutic benefit. While causation can-
not be established with the design, the results are con-
sistent with the majority of data on this topic.
Furthermore, dose-response suggests causality, and
greater mortality was observed across subgroups of in-
creasing ED hyperoxia. The study also reflects real world
practice in oxygen management, as it was conducted
outside the auspice of a rigidly controlled randomized
trial. There is potential for selection bias given the num-
ber of excluded patients in the study. The majority of ex-
clusions were due to very early deaths or extubation
within 24 hours; it is unlikely that acute hyperoxia would
influence outcome in the acutely terminal patient or
those stable enough to be extubated within 24 hours.
Also, to better isolate an association between ED oxygen
exposure and outcome, the analysis was restricted to
those patients who were normoxic while in the ICU. Fi-
nally, the timing of arterial blood gas analyses was not
obtained as part of a formal protocol therefore the exact
duration of hyperoxia exposure is unknown. However,
we observed marked differences between ED and day 1
ICU oxygenation data, suggesting that the primary ex-
posure was driven by the ED. Furthermore, there were
little differences between ICU day 1 data and data calcu-
lated over the entire time of mechanical ventilation, sug-
gesting stability in oxygenation data over time (i.e.
transient exposures in the ICU were less likely). How-
ever, without prospectively following all oxygenation and
mechanical ventilation parameters closely in the ICU
over time, there still exists the possibility that hyperoxia
in the ICU affected some of our results, though our

suspicion of this is low. In the future, the exact timing of
all mechanical ventilator changes, oxygenation data, and
arterial blood gas sampling should be documented to en-
sure that the exposure (and duration) has been reliably
determined.

Conclusions
ED exposure to hyperoxia is common and associated
with increased mortality in mechanically ventilated pa-
tients achieving normoxia after admission. This suggests
that hyperoxia in the immediate post-intubation period
could be particularly injurious, and targeting normoxia
at the initiation of mechanical ventilation may improve
outcome.
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