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RESEARCH ARTICLE Open Access

Reference effect measures for quantifying,
comparing and visualizing variation from
random and fixed effects in non-normal
multilevel models, with applications to site
variation in medical procedure use and
outcomes
Thomas J. Glorioso1* , Gary K. Grunwald1,2,3, P. Michael Ho1,3,4 and Thomas M. Maddox5

Abstract

Background: Multilevel models for non-normal outcomes are widely used in medical and health sciences research.
While methods for interpreting fixed effects are well-developed, methods to quantify and interpret random cluster
variation and compare it with other sources of variation are less established. Random cluster variation, sometimes
referred to as general contextual effects (GCE), may be the main focus of a study; therefore, easily interpretable
methods are needed to quantify GCE. We propose a Reference Effect Measure (REM) approach to 1) quantify GCE
and compare it to individual subject and cluster covariate effects, and 2) quantify relative magnitudes of GCE and
variation from sets of measured factors.

Methods: To illustrate REM, we consider a two-level mixed logistic model with patients clustered within hospitals
and a random intercept for hospitals. We compare patients at hospitals at given percentiles of the estimated
random effect distribution to patients at a median or ‘reference’ hospital. These estimates are then compared
numerically and graphically to individual fixed effects to quantify GCE in the context of effects of other measured
variables (aim 1). We then extend this approach by comparing variation from the random effect distribution to
variation from sets of fixed effects to understand their magnitudes relative to overall outcome variation (aim 2).

Results: Using an example of initiation of rhythm control treatment in atrial fibrillation (AF) patients within the
Veterans Affairs (VA), we use REM to demonstrate that random variation across hospitals (GCE) in initiation of
treatment is substantially greater than that due to most individual patient factors, and explains at least as much
variation in treatment initiation as do all patient factors combined. These results are contrasted with a relatively
small GCE compared with patient factors in 1 year mortality following hospitalization for AF patients.

Conclusions: REM provides a means of quantifying random effect variation (GCE) with multilevel data and can be
used to explore drivers of outcome variation. This method is easily interpretable and can be presented visually. REM
offers a simple, interpretable approach for evaluating questions of growing importance in the study of health care
systems.

Keywords: Facility variation, Generalized linear mixed model, Hierarchical model, Hospital variation, Interval odds
ratio, Median odds ratio, Random effect
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Background
Multilevel or hierarchical designs and clustered data are
now commonplace in many fields including medical and
health sciences research. These designs involve units
within clusters, for example patients or subjects clus-
tered at sites or centers, or multiple measurements of an
outcome clustered on individual subjects. Models for
multilevel data may contain fixed effects describing
measured characteristics at any level of the design, as
well as random effects describing unexplained cluster
variation. Non-normal outcomes such as binary, skewed,
count, or time to event outcomes are also common and
present additional challenges due to non-linearity, differ-
ent scales (e.g. probability, rate, or hazard), and different
effect measures (e.g. risk ratio, odds ratio, rate ratio, and
hazard ratio).
One very common situation in health services research

involves patients clustered within sites. In these situa-
tions, fixed effects are constructed for measured patient
risks and site characteristics, and random effects are
used to model unexplained variation in outcomes or
procedure use across sites. This unexplained variation,
sometimes referred to as general contextual effects
(GCE) [1, 2], induces dependence among subjects within
a cluster and so inference for fixed effects requires ana-
lytic methods that can accommodate this dependence
such as generalized linear mixed models (GLMM),
multilevel regression models (MLRM), or generalized es-
timating equations (GEE) [3–7]. Methods for estimation
and inference for fixed effects in these models are well
established and described in many references e.g. [3–6].
These analyses and results are standard for clinical stud-
ies and answer one set of important questions, estima-
tion and inference for associations between individual
fixed effects and outcomes.
Several other objectives in the analysis of multilevel

designs are less often recognized, and methods to study
them are less well developed. First, GCE is often import-
ant in its own right and can be the main focus of a study
because it represents unexplained differences across
treatment sites in clinical outcomes, cost, use of proce-
dures or compliance with guidelines. Second, quantifying
variation due to sets of covariates, such as all patient
risks or all hospital characteristics, in comparison to
GCE is also important to understand the relative contri-
bution of each. Some work has been done in comparing
sets of risks or characteristics to GCE to help place both
in context, e.g. [1, 8], but more attention is needed for
this important problem. In this paper we propose
methods for studying these two objectives.
While most previous studies have considered GCE

when assessing clinical outcomes [9–13], the same ana-
lytic methods can be used to study GCE in processes of
care [14], as for example in [1] who have studied use of

medications and specialty physicians. In these studies,
GCE is particularly important for several reasons. First,
GCE in health care processes represents variation that is
not driven by patient characteristics or treatment guide-
lines, since results are virtually always adjusted for
patient risk. Second, variation of GCE in processes of
care is potentially modifiable through site-specific inter-
ventions, which can be tested using trial designs such as
cluster-randomized [15–18] or stepped-wedge [19]
designs. Finally, GCE, particularly in processes of care,
can be large, even dominating measured patient and
hospital effects, as we illustrate in our application below.
Several categories of methods have been used to study

and quantify GCE, each addressing different questions.
One set of methods, exemplified by intra-class correl-
ation (ICC) [20] and percent change in variance [1],
seeks to determine the percent of total variation in out-
comes due to cluster variation. These methods are useful
in answering questions about relative sources of vari-
ation, but are not directly comparable to effect measures
such as odds ratios. A second set of methods has the
goal of quantifying GCE in comparison to fixed effects.
One simple approach, which we call Individual Outcome
Measures (IOM), involves calculating intervals for the
mean outcome (e.g. probability) as the cluster random
effect ranges across its (usually normal) distribution e.g.
[3, 4]; however, interval widths differ for each covariate
pattern making comparisons difficult and impractical
with more than a few covariates. Additional approaches,
such as Median and Interval Odds Ratios (MOR, IOR)
[21–23] and more recently Median Hazard Ratios
(MHR) [2], are based on odds or hazard ratios compar-
ing subjects in two randomly selected clusters. A third
set of methods studies individual clusters by ranking
them or identifying outlying clusters, but is limited in
that differential cluster size may lead to small clusters
being more likely to have extreme averages. More so-
phisticated statistical methods, termed institutional pro-
filing, are based on GLMM or MLRM and are used
extensively in health services research [24]. These
methods only indirectly answer the question of cluster
variation since variability in cluster-specific estimates is
affected by sample size. A recent paper has reviewed and
combined some of these methods discussed above into a
stepwise procedure [1].
We focus on methods that quantify and compare fixed

and random effects on the effect (e.g. odds ratio) scale
and so address questions similar to those of MOR/MHR.
The methods we propose provide some advantages in
terms of interpretation and visualization, as we discuss
below. The approach we describe is based on comparing
subjects in clusters at specified percentiles of the ran-
dom effect distributions to subjects in a “reference”, e.g.
median, cluster. We refer to these methods as Reference
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Effect Measures (REM) [25]. Subjects are compared
based on the relevant effect measure, for example odds
ratios for logistic regression. By comparing two subjects
with identical covariate patterns the resulting odds ratio
between subjects in two clusters does not depend on the
particular covariate pattern. This approach is based on
percentiles and so generalizes easily to non-normal or
empirical distributions, and is amenable to graphical
presentation.
To illustrate these methods, we use data from the De-

partment of Veterans Affairs (VA) for a population of
patients with an index inpatient admission for atrial fib-
rillation (AF), the most common form of cardiac
arrhythmia, between 2001 and 2012 at one of the 124
VA hospitals that treat such patients. Typical studies
within this setting adjust for and/or assess associations
of 10–30 patient and hospital characteristics with binary,
continuous, or time to event patient outcomes. Variation
in these outcomes across hospitals is an inescapable fea-
ture of the data and is often of primary clinical or health
services research interest. The example described in de-
tail below involves mixed logistic regression models for
probability of mortality and of initiation of a cardiac
rhythm control strategy within 90 days after discharge
from the index admission for AF.
In this paper we consider two objectives in the analysis

of cluster variation for non-normal outcomes in multi-
level designs: 1) Quantify GCE and compare it to indi-
vidual subject and cluster covariate effects, and 2)
Quantify relative magnitudes of GCE and variation from
sets of measured factors. In the Methods section we first
summarize concepts and notation for multilevel logistic
models. We then describe REM methods in more detail
and discuss how these methods address our two objec-
tives. We also describe use of REM with other common
situations such as GLMM and Cox proportional hazards
models. In the Results section we apply these methods
to objectives 1 and 2 for hospital variation in selection
of treatments for atrial fibrillation patients at 124 VA
hospitals. We also illustrate and compare several alterna-
tive methods. In a second example we contrast these re-
sults with hospital variation in mortality, and illustrate
methods for visualizing and presenting results in easily
interpretable ways.

Methods
Notation and models
To simplify presentation and notation we consider
two-level designs with level 1 representing subjects and
level 2 representing clusters, and consider the common
case of mixed effects logistic regression for binary re-
sponses. For subject j, j = 1, …, ni in cluster i, i = 1, …,
N, Yij is a binary outcome taking value 1 with probability
pij and 0 otherwise. Let xij be a vector of covariates that

can be partitioned into a column of 1′s for the intercept,
subject level covariates xsij and cluster level covariates
xcij, with corresponding parameter vectors β, β0, βs,
and βc . We use xij for an observed value of the covari-
ate vector and x for a generic value. Unexplained cluster
variation (GCE) is usually described by independent
normal random effects ui∼ NðO; σ2uÞ, sometimes called
random intercepts, although other distributional as-
sumptions can be made. We let ϕ−1(a) denote the
100 × a percentile of the standard normal distribution.
The mixed effect logistic regression model is.

Y ij pij ∼ Bin 1; pij
� �

with pij ¼ exp Lij
� �

= 1 þ exp Lij
� �� ����

ð1Þ
where Lij = x'ij β + ui is the linear predictor.
For logistic regression the natural description of covar-

iate effects is the odds ratio. The odds ratio (OR) for a
subject with probability p∗ and linear predictor L∗ com-
pared to a subject with probability p and linear predictor
L is

OR L�; Lð Þ ¼ p�= 1−p�ð Þ
p= 1−pð Þ

¼ exp L�ð Þ = 1þ exp L�ð Þð Þ½ �= 1= 1þ exp L�ð Þð Þ½ �
exp Lð Þ = 1þ exp Lð Þð Þ½ �= 1= 1þ exp Lð Þð Þ½ �

¼ exp L�ð Þ
exp Lð Þ ¼ exp L�−Lð Þ

ð2Þ
Measured subject and cluster covariates and unmeas-

ured cluster random effects that are equal for the two
subjects subtract out of this expression so the resulting
odds ratio does not depend on their specific values.
Thus, the odds ratio for a one unit difference in a single
covariate xk, comparing subjects with all other measured
subject and cluster covariates and unmeasured cluster
random effects equal, is as usual exp(βk).

Reference effect measures (REM)
Quantifying cluster variation (objective 1)
To describe GCE, REM uses measures based on com-
parison of patients at specified percentiles of the ran-
dom effect distribution. A subject in a 100 × α
percentile cluster compared to a subject in a median
(50th percentile) cluster, with all measured subject
and cluster covariates x equal, has L∗ = x'β
+ σuϕ

−1(a) and L = x'β + σuϕ
−1(0.5) = x'β, giving odds

ratio

REMu að Þ ¼ exp σuϕ−1 að Þ� � ð3Þ
A 95% range of such odds ratios is [exp(−1.96σu),

exp (1.96σu)]. This range is not a confidence interval, but
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rather describes unexplained cluster variation in terms
of odds ratios relative to a median cluster, as clusters
range across their distribution. The 95% REM range can
be thought of as analogous to the ‘95% rule’ for normal
distributions, enclosing the middle 95% of the distribu-
tion, but expressed on the effect rather than linear pre-
dictor scale. We use square brackets [⋅] to denote REM
ranges and round brackets (⋅) to denote confidence in-
tervals. In applications σu is replaced by its estimated
value σ̂u.
We can also use REM to compare the effect of a 1 unit

increase in a covariate xk to unmeasured cluster vari-

ation by calculating ϕðβkσuÞ, which provides the equivalent

percentile in the random effects distribution. Thus, the
effect of a 1 unit increase in xk is the same as comparing

a subject in a 100� ϕ ðβkσuÞ percentile cluster with the

same subject at a median risk cluster. Similar approaches
to REM have been used by several authors including
Spiegelhalter et al. [26] and Timbie et al. [27] to describe
prior distributions in Bayesian analyses, and by Lingsma
et al. [28] in studying heterogeneity of treatment effect
across clusters, but apparently have not been widely
used or developed.

Quantifying variation from sets of covariates (objective 2)
While we can quantify the relative size of GCE by com-
paring it to the effects of single covariates using REM as
above, treatment decisions and guidelines are often
driven by multiple factors; thus, comparisons to effects
of combinations of factors may be of interest. To deter-
mine the magnitude of associations of sets of measured
factors with outcomes, REM methods can also be ap-
plied to the empirical distribution of observed values
from a set of covariates. For simplicity we describe
methods for the empirical distribution of measured
subject factors {x'sijβs} although these methods can easily
be applied to the full set of covariates {x'ijβ}, measured
cluster factors {x'cijβc}, or other subsets of covariates. In
applications β's are replaced by their estimates.
Variation explained by a set of covariates xs can be

quantified by calculating the empirical distribution of
odds ratios for each subject compared with a subject of
median risk within the empirical distribution of {x'sijβs},
all in a cluster with the same unmeasured characteristics
u and holding constant all other measured characteris-
tics, designated by x−s. The expression compares odds

ratios for L� ¼ F−1
fx0 sijβsgðaÞ þ u and L ¼ F−1

fx0sijβsgð0:5Þ þ u

where F−1
fx0sijβsgðaÞ is the 100 × α percentile of the empir-

ical distribution of {x'sijβs}. By centering the empirical
distribution at its median (i.e. comparing with a median
risk subject), the resulting odds ratio is

REM x0 sijβsf g að Þ ¼ exp F−1
x0sijβsf g að Þ

� �
ð4Þ

and a 95% range enclosing the middle 95% of the
distribution of such odds ratios is ½ expðF−1

fx0sijβsgð0:025ÞÞ;
expðF−1

fx0sijβsgð0:975ÞÞ� . Wider ranges imply larger contri-

butions to overall variation in the outcome.
Benefits of the REM approach include expression on

the odds ratio scale, and accommodation of non-normal
random effect or empirical distributions through use of
percentiles, all of which facilitate numerical and graph-
ical comparisons between all sets of fixed and random
factors considered. These features are illustrated in the
examples below. Silber et al. [8] proposed a similar
approach based on empirical distributions like {x'sijβs}.
However, they presented their results as ratios of
variances of these distributions, analogous to ICC which
differs from our approach of summarizing the percen-
tiles of a distribution on the effect scale.

Confidence intervals
As with most statistical estimates, it is important to
show the degree of uncertainty in the estimate, for
example with confidence intervals (CI). Using most stat-
istical software, one can extract standard errors SEðσ̂2

uÞ
or SEðσ̂uÞ, usually calculated by the delta method, which
can then be used to calculate CIs for functions of σ2u or
σu. For example, a 95% CI for REMu(α)is

exp σ̂u−1:96SEð Þ σ̂uð Þð ÞΦ−1 αð Þ� �
; exp σ̂u þ 1:96SE σ̂uð Þð ÞΦ−1 αð Þ� �

:

It should be noted that distributions of variances are
often skewed and thus, closed form solutions and
Wald-type intervals may not be appropriate. Confidence
intervals can also be obtained by bootstrap, which also
provides confidence intervals for measures such as
REM{x'sijβs}(a) involving empirical distributions for
combined risks or for percentiles corresponding to a
specific REM. Due to the hierarchical nature of the ana-
lysis, bootstrapping methods that incorporate a
multi-level structure should be used [29]. Such intervals
are illustrated in the examples below. If models are esti-
mated by Bayesian Markov chain Monte Carlo (MCMC),
highest density credibility intervals (CrI) can be obtained
from the MCMC samples. These also incorporate uncer-
tainty in all estimated parameters.

Extensions to other models and non-normal random effects
The methods described above apply equally well to other
types of outcomes and models, for example generalized
linear mixed models for normal, Gamma or Poisson
outcomes e.g. [3, 4], or Cox proportional hazard frailty
models for time to event outcomes [30–32]. The
derivations and results above require the obvious
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modifications, and results are expressed on the corre-
sponding scale, e.g. mean differences for normal models,
rate ratios for Poisson models, or hazard ratios for Cox
models. Extensions can also be made to models with
more complex random effects, such as random slope or
random coefficient models e.g. [28, 33].
In some situations, the normal distribution for the

random effects ui is replaced with another form. For
example, log-Gamma random effects are often used in
models based on Poisson distributions, because the
resulting marginal distribution integrated over the ran-
dom effects f(y) = ∫ f(y|u)g(u)du can be calculated in
closed form to be negative binomial [34]. Using REM
methods with non-normal random effect distributions is
straightforward, replacing the term σuϕ

−1(a) in (3) with
percentiles from the specified random effect distribution.

Example 1: Dataset and statistical analysis
Atrial fibrillation (AF) is the most common form of car-
diac arrhythmia, affecting an estimated 2.2 million
Americans [35]. If left untreated AF can lead to stroke
and heart failure [36]. Management options include
anticoagulation to prevent blood clots leading to stroke,
rate control to reduce heart rate, and rhythm control to
return heart rhythm to normal using antiarrhythmic
medications or cardioversion using electricity or drugs.
We examined a population of 29,759 patients with an
index inpatient admission for AF at 124 hospitals within
the VA health system between October 2001 and Sep-
tember 2012 for initiation of rhythm control treatment
as identified by a prescription for an antiarrhythmic drug
(Procainamide, Quinidine, Disopyramide, Mexiletine,
Propafenone, Flecainide, Amiodarone, Sotatlol, Dofeti-
lide, or Dronedarone) or cardioversion on multiple days
following hospitalization. Of the 29,759 patients, 4335
(14.6%) were started on an antiarrhythmic medication
within 90 days after discharge from their index AF ad-
mission. Although treatment patterns for similar patients
should remain consistent across hospitals due to com-
mon guideline recommendations, we hypothesized that
rhythm control strategy may differ by site even after ac-
counting for measured patient and hospital characteris-
tics. Therefore, we would like to quantify the extent of
GCE, our objective 1. Furthermore, the decision for
rhythm control should ideally be directed by multiple
patient factors. Thus, it is of interest to investigate the
extent to which patient characteristics are a driving fac-
tor in the initiation of rhythm control treatment relative
to measured hospital characteristics and unmeasured
hospital variation, our objective 2.
To perform this analysis for Example 1, the outcome

variable was dichotomized as initiation of rhythm
control medications (y/n) within 90 days after hospital
discharge from the index AF admission, and all patients

were followed for at least 90 days. We used mixed logis-
tic regression including multiple patient factors (age,
sex, race, rurality, prior rate control strategy based on a
previous prescription for a beta-blocker, calcium channel
blocker of Digoxin, prior anticoagulant (AC), prior anti-
platelet, CHA2DS2-VASc score, alcohol use, chronic
kidney disease (CKD), congestive heart failure (CHF),
depression, diabetes, drug abuse, liver disease, peripheral
artery disease (PAD), prior myocardial infarction (MI),
prior stroke, sleep apnea, time trend) and site factors
(region of U.S., electrophysiology (EP) care onsite, site
volume, academic affiliation, rural proportion). A site
random normal intercept was included to incorporate
unmeasured site variation. A non-linear relationship was
found to exist between calendar time and rhythm con-
trol use so calendar time was included as a cubic spline.
We provide results from this small set of covariates for
illustration of the methods discussed in this paper but
do not consider it a definitive clinical analysis, which re-
quires more covariates and will be published elsewhere.
All analyses were carried out using R software [37]. Pa-
rameters were estimated using maximum likelihood with
the ‘glmmML’ package in R version 3.2.5 [38], but REM
methods would apply equally well to parameters
estimated using MCMC, for example in the WinBUGS
software [39]. R code for the examples is available from
the authors upon request.

Example 2: Dataset and statistical analysis
Our second example illustrates tabular presentation of
REM and different methods for calculating CIs, as well
as a different pattern of variation. In the same cohort of
AF patients, we examined factors contributing to vari-
ation in 1-year all cause mortality, where 14.9% of pa-
tients died within 1 year following discharge from their
index AF admission. We again used logistic regression,
with a binary outcome for 1-year mortality and the same
patient and site characteristics as in Example 1.

Results
Example 1
Standard logistic regression results are given in
Table 1, and show that several patient risk factors are
strongly associated with use of rhythm control treat-
ment (p < 0.001), but no measured hospital factors
are significantly associated with rhythm control.
From the model results σ̂u ¼ 0:511 and a 95% REM

range for odds ratios comparing patients at 2.5 and 97.5
percentile hospitals with patients at a median hospital is,
from (3), [0.367, 2.772]. This wide range of odds ratios
indicates substantial variation in rhythm control use
across sites. For comparison, the odds of initiation of
rhythm control are 1.50 times higher for a congestive
heart failure (CHF) patient relative to the same patient
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without CHF, the largest individual patient risk effect.
This is equivalent to comparing a patient at a 79th
percentile risk hospital (95% CI: (74, 86)) to a similar
patient at a median risk hospital. Thus, the risk of being
at the 21% highest risk hospitals (95% CI: (14, 26%))
compared with a median risk hospital exceeds that of the
largest patient risk factor. These comparisons of GCE to
individual patient characteristics further exhibit the large
variation across hospitals in AF treatment decisions.
An advantage of the REM approach is the ability to

visualize the extent of GCE by plotting its distribution in
a forest plot as shown in Fig. 1. A forest plot with the ef-
fect estimates and 95% CIs for other individual patient
and site factors can be added to the plot. This allows
direct comparisons between GCE and individual factors
to quantify the extent of variation in the context of the
analysis results.
The decision to use rhythm control would in practice

be directed by multiple patient factors so we also used
REM methods to explore the effects of combinations of
factors. Using the previously described methods in (4),
95% REM ranges of odds ratios for all measured patient
factors, all measured site factors, and GCE are [0.45,
2.38], [0.79, 1.18], and [0.37, 2.72] respectively, and are
shown in Fig. 2. The wider ranges for combined patient
factors and random site variation indicate that they con-
tribute more to variation in the outcome and thus are
larger drivers of rhythm control initiation. Precision of
REM values can be given with 95% CIs. For example, we
could present REM values comparing a given percentile

risk, say 75th percentile, versus median risk. These
values with 95% bootstrap CIs are 1.32 (1.29, 1.37) for
measured patient factors, 1.08 (1.04, 1.22) for measured
hospital factors, and 1.41 (1.31, 1.47) for unexplained
site variation. The similar REM range widths and
REM(0.75) values for measured patient factors and un-
measured site variation are interesting in their own right.
Because we expect patient factors to largely drive treat-
ment decisions, the fact that as much or more variation
is driven by GCE highlights the need to further study
reasons for these unexplained site differences, and pos-
sibly to consider studies and interventions to standardize
treatment patterns across sites.
Once again, an advantage of the REM approach is the

ability to visualize sources of variation as illustrated in
Fig. 2. Investigators can visually compare the extent of
variation driven from the different sources based on the
widths of the REM distributions and ranges at the top of
Fig. 2, while also making comparisons to individual fac-
tors. Different REM values can also be plotted as points
with 95% CIs as shown. REM methods can also be used
to display the risk distribution for continuous variables,
e.g. age, rather than a point estimate and CI for a speci-
fied unit change in age (e.g. per year). Also, the risk
distribution for non-linear variables, such as the cubic
spline for calendar time, can be presented on the same
plot where typically presentation of non-linear model re-
sults is limited to a separate plot of the actual spline
function.

Comparison to other methods
Several other approaches are available to quantify unex-
plained site variation. Individual outcome measures
(IOM) calculate the probability of the outcome for a
specific covariate pattern and assess how this probability
varies as the random cluster effect varies across its dis-
tribution e.g. [3, 4]. Thus, a 95% IOM interval calculates

IOMu x; að Þ ¼ exp x
0
βþ σuϕ−1 að Þ

� �
= 1þ exp x

0
βþ σuϕ−1 að Þ

� �� �

ð5Þ

for α = 0.025 and α = 0.975 for a specified subject and
cluster covariate pattern x. For rhythm control treat-
ment, using a simple example of a median age patient
with CHF and 0 for all other covariates, the probability
of initiation of rhythm control is 13.3% with a 95% range
of [5.3, 29.5%] across sites. While this 95% range pro-
vides a way of quantifying variation across sites on the
probability scale, the width of the range is dependent on
the patient covariate pattern, and with numerous covari-
ates in the model such an approach is impractical. Also,
it does not describe site variation on the same odds ratio
scale as for fixed effects, making comparisons difficult.

Table 1 Example 1 Model Results

Estimate SE P-value OR 95% CI for OR

(Intercept) −2.292 0.321 < 0.001 0.101 (0.054, 0.190)

Patient Risk

Alcohol Use −0.358 0.061 < 0.001 0.699 (0.620, 0.788)

Liver Disease −0.309 0.100 0.002 0.734 (0.604, 0.892)

Age (10 Years) −0.267 0.017 < 0.001 0.766 (0.741, 0.791)

Drug Abuse −0.202 0.098 0.039 0.817 (0.675, 0.990)

…

White 0.342 0.055 < 0.001 1.407 (1.263, 1.568)

Prior AC 0.368 0.070 < 0.001 1.445 (1.261, 1.656)

CHF 0.409 0.039 < 0.001 1.505 (1.395, 1.623)

Hospital Risk

Rural Prop. −0.014 0.024 0.569 0.986 (0.941, 1.034)

…

EP Onsite 0.084 0.127 0.509 1.088 (0.848, 1.395)

Hospital SD 0.511 0.040

Standard logistic regression output for initiation of rhythm control treatment
(y/n) for 29,759 AF patients at 124 VA hospitals during the period October 1,
2001 to September 30, 2012. Some covariates included in the model have
been omitted from the table and figures to simplify presentation
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The MOR approach is similar to REM in concept
while differing in its interpretation. The basis for MOR
is that the median of the distribution of odds ratios com-
paring two randomly selected subjects with the same co-
variate patterns, but in different clusters, comparing the
higher risk subject to the lower risk subject, is equal to
exp½ ffiffiffi

2
p

σuϕ−1ð0:75Þ�. In the rhythm control example, the
MOR is 1.63, which implies extensive site variation since
this odds ratio exceeds the odds ratio of the largest
patient risk factor, CHF. Like REM, MOR compares
patients with the same covariate patterns but does not
depend on the specific covariate pattern, and the result
is on the same odds ratio scale as are fixed effects. How-
ever, the description of a distribution using comparisons
between randomly selected subjects is not commonplace
and may be hard to relate to the normal distribution spe-
cified in the model. Furthermore, MOR is based on the
distribution of differences, making visualization on figures
like those above less interpretable. We should note that

MOR can be expressed as REMuðϕð
ffiffiffi
2

p
ϕ−1ð0:75ÞÞÞ

¼ REMuð0:83Þ , which may aid in its interpretability. The
concept behind MOR could also be extended to assessing
groups of measured factors by estimating the median of

the empirical distribution of differences comparing the
higher risk to lower patient patients in the same cluster
using resampling; however, these results will still be sub-
ject to the same interpretability issues.
Another approach notes that the odds ratio comparing

two subjects in clusters that differ by one SD of the ran-
dom effect distribution, assuming equal subject and
cluster covariates x, can be found from (2) with L∗ = x'β
+ (u + σu) and L = x'β + u, giving PerSDu = exp (σu).
This can also be expressed as REMu(ϕ(1)) = REMu(0.84).
This compares subjects in different clusters but with
identical fixed effects, and is directly comparable to odds
ratios for fixed effects, so can be included in tables and
figures as such. For rhythm control, PerSDu = 1.67,
compared with the odds ratio for one SD younger age,
PerSDage = 1.36. This approach could also be extended to
sets of covariates, using the SD of the empirical distribu-
tion. The most direct comparison for continuous covari-
ates is with a per-SD change in the covariate, though for
covariates or sets of covariates with non-normal distri-
butions such comparisons could be misleading.
Finally, we note the relation between REM and

ICC, since the latter is often used to describe cluster
variation, particularly in sample size estimation. For

Fig. 1 Example 1 Forest Plot. Forest plot showing odds ratios and 95% CIs for individual patient and site fixed effects, and REM ranges for
unexplained hospital variation in use of rhythm control treatment for AF patients. Levels of shading represent 97.5, 90, 80, 70, 60, 50 percentiles
(and corresponding lower percentiles)
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logistic regression one standard definition of ICC is

ICC ¼ σ2u
σ2uþπ2=3, where theπ2

.
3
term is derived assuming

a logistic GLMM as in (1) with latent subject level errors
eij following a logistic distribution e.g. [6, 40]. For Example
1, ICC = 0.074, which would appear to indicate a small
amount of the total variation in use of rhythm control
treatment is due to GCE. In contrast, use of REM to
quantify GCE shows cluster variation in treatment use to
be significant and clinically large, illustrating the value of
using REM to quantify GCE on the odds ratio scale. We
also note that this definition of ICC is based on a particu-
lar assumed error structure, and that a number of other
definitions of ICC have been proposed for binary out-
comes [20, 40], including definitions on the probability ra-
ther than logistic scale, which can give very different
values of ICC ([40], Table 1]).

Example 2
To assess the extent of GCE in 1 year mortality for AF
patients, REMu(0.975) is 1.29 (95% CI: (1.11, 1.35)). The
effects of several individual patient factors, such as CKD
(OR: 1.69, 95% CI: (1.55, 1.84)), Age (OR per decade:
1.72, 95% CI: (1.66, 1.78)), and Liver Disease (OR: 1.80,

95% CI: (1.53, 2.13)) exceed even the extremes of the
distribution of unmeasured site variation. Table 2 gives
an example of tabular presentation of REM results for
measured patient factors, measured site factors and
GCE. We describe and illustrate several ways of present-
ing REM results including REM(0.75) for moderate com-
parisons, REM(0.975) for extreme comparisons, and 95%
ranges that enclose 95% of the distribution of odds ratios
compared with the median to describe the variation in
risk of mortality patients may face based on opposite ex-
tremes in the distribution of GCE or a set of factors.
Wider ranges illustrate greater variation in mortality
driven by GCE or the set of factors and thus, larger in-
fluence on the outcome. As before, REM values and
confidence intervals can also be given to correspond to
the effect of a particular explanatory variable. In contrast
to variation in procedure use in Example 1, the much
wider REM range for patient factors indicates that these
are the largest drivers of mortality in this cohort. CIs for
two values of REM based on theoretical standard errors
from the delta method and from bootstrap distributions
for σu indicate close agreement in this example. For
comparison,MOR = 1.13 and ICC = 0.005, both also in-
dicating little unexplained cluster variation.

Fig. 2 Example 1 REM Plot. 95% REM ranges and REM(0.75) for all patient risks, site characteristics and unmeasured site variation. Also indicated
are individual risk effects and 95% REM ranges for age and time trend. Levels of shading represent 97.5, 90, 80, 70, 60, 50 percentiles (and
corresponding lower percentiles)
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Discussion
In this paper we have proposed methods for quantifying
and displaying variation in outcomes and treatments due
to unexplained cluster sources as well as to sets of mea-
sured patient and hospital variables. These methods
allow sources of variation to be studied on the same
scale as effects of individual variables and, unlike other
methods, can be easily incorporated into standard visual
displays such as forest plots. Additionally, REM offers
the flexibility of having standard values to report, such
as REM (0.75) for moderate comparisons or REM
(0.975) for extreme comparisons, while also allowing
calculation of all other percentiles and a complete de-
scription of the distributions of interest. This is useful
for directly relating the impact of a fixed effect to the
exact percentile in the risk distribution of unmeasured
site variation. Finally, the methods are widely applicable
to multiple random effects or random slopes, empirical
distributions, and random effects with non-normal
distributions in multilevel studies. We used these
methods to show that treatment for a common and
serious cardiac condition (AF) is highly variable across
VA hospitals, and this GCE is at least as great a source
of variation in treatment use as all patient factors com-
bined. These results suggest opportunities for study and
improvement of patient care for AF patients, and illus-
trate the usefulness of the proposed methods.
As methods to model hierarchical data become more

commonplace, it also becomes essential to develop
meaningful and interpretable ways of presenting results.
This is particularly true with random cluster variation
(GCE), which has received much less attention than
individual fixed effects, especially in the context of
non-normal outcomes. With growing interest in study-
ing processes of care and health care system-level ques-
tions, further fueled by growth of electronic health
records (EHR), cluster variation will often be a factor of
primary interest particularly for processes of care since
these processes are often driven by unmeasured provider
characteristics (e.g. preferences, training) or local culture
that are difficult to capture in a model. Thus, under-
standing and explaining GCE in the context of other
sources of variation will continue to become an area of
focus moving forward.

Previously proposed methods for studying GCE are
summarized in the Introduction and at the end of
Example 1. Lack of a single summary measure for GCE
is related to the fact that several questions can be asked
about GCE. If the goal is to understand what proportion
of total variation is attributed to cluster variation, ICC
and related methods are available [1, 20]. If the goal is to
rank or identify outlying sites, profiling methods can be
used [24]. For quantifying GCE on the same scale as
fixed effects, MOR methods have been used [21–23].
The recently proposed stepwise approach to analysis of
variability for multilevel data considers several of these
in their step 2 [1]. REM methods focus on quantifying
GCE in the context of standard analyses through direct
comparisons to individual fixed effects and sets of fixed
effects on the same scale, similar to the questions ad-
dressed using MOR.
Interpretation of cluster level fixed effects has gener-

ated some controversy in the literature. Many authors
interpret cluster level covariate effects in a similar way
as patient level covariate effects, comparing patients with
the same measured characteristics at hospitals with the
same random and fixed effect values but differing by one
unit in the cluster level covariate being considered.
Others have argued that this interpretation is invalid
since the design does not allow the same subjects to be
observed at clusters with different cluster level covariate
values. The latter interpretation motivated the develop-
ment of the Interval Odds Ratio [21, 22]. We acknow-
ledge the merit of the latter argument, but consider the
former conditional interpretation valid in the context of
the models used and the assumptions made. REM for
cluster level covariates is consistent with the former inter-
pretation, and with describing model (1) through compo-
nents of the linear predictor L = β0 + x'sβs + x'cβc + u. We
also note that this issue involves cluster level fixed effects
but does not involve interpretation of subject level covari-
ate effects or random cluster effects.
REM methods provide several advantages. The methods

are general and apply to most types of outcomes and
models commonly encountered in health research includ-
ing binary, continuous, count, and time to event. The
methods are based on percentiles, which allow more
complete description of non-normal distributions that

Table 2 Example 2 REM Results

95% Range REM (0.75) and 95% CI REM (0.975) and 95% CI

All patient risk factors [0.23, 4.38] 1.69 (1.65, 1.74) 4.38 (4.12, 4.77)

All site characteristics [0.81, 1.16] 1.06 (1.03, 1.11) 1.16 (1.09, 1.28)

Unmeasured site variation (theoretical) [0.78, 1.29] 1.09 (1.06, 1.13) 1.29 (1.17, 1.41)

Unmeasured site variation (bootstrap) [0.78, 1.29] 1.09, (1.04, 1.11) 1.29 (1.11, 1.35)

REM 95% ranges (in square brackets), and REM(0.75) and REM(0.975) with confidence intervals (in round brackets) for Example 2. Results are presented for all
patient risk factors, all site characteristics and unmeasured site variation
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may arise from empirical distributions of sets of variables
as in Eq. (4), or from use of non-normal random effects
[34]. Percentiles also provide easy interpretations in terms
of comparison with individual fixed effects and ranges or
the ‘95% rule’ for normal distributions. These interpreta-
tions are more familiar than the interpretation of MOR,
which summarizes a distribution of two patients at ran-
domly selected clusters comparing the higher risk patient
to the lower risk patient. A further advantage of REM is
easy visualization, for example in forest plots like Fig. 1.
When assessing factors driving variation in treatment use
or mortality we presented ranges with shading showing
several percentiles for different groupings of fixed effects
and GCE. Widths of these ranges show visually which sets
of measured factors and GCE are the largest drivers of
variation in initiation of treatment. The distribution of
differences between patients used to construct MOR is
less interpretable graphically.
We have further explored the extent to which GCE

drives variation in processes and outcomes through
comparison of GCE to sets of fixed patient and hospital
effects. Quantifying discriminatory ability of sets of fixed
effects is also considered by [1] in their step 1, using area
under the receiver operator curve (AUC). Our proposed
REM approach for sets of fixed effects is complementary
to AUC, and will be useful when direct comparisons
with individual fixed effects or with GCE on the same
scales are of most interest.
One issue we have not included in our analyses but

that could be easily handled with REM involves imbal-
ance of subject factors across clusters. This can occur
when different hospitals tend to treat different types of
patients. Methods are available for partitioning patient
factors into between-cluster components (e.g. hospital
averages) and within-cluster components (subject values
or deviations of subject values from hospital averages)
[41, 42]. Both between-cluster and within-cluster com-
ponents can be included as covariates as usual, and
REM methods would allow this component of variation
to be quantified separately from patient factors and hos-
pital system factors.

Conclusions
REM provides a means of quantifying random effect
variation (GCE) with multilevel data. The method is
easily interpretable and can be presented visually, further
assisting the reader in understanding results. This
method also allows exploration of drivers of outcome
variation including sets of fixed factors. Overall, while
limited tools are available to quantify and compare these
sources of variation, REM offers a simple, interpretable
approach for evaluating questions of growing import-
ance in clinical medicine and health services research.
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