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Abstract

Malaria remains a significant contributor to global human mortality, and roughly
half the world’s population is at risk for infection with Plasmodium spp.
parasites. Aggressive control measures have reduced the global prevalence of
malaria significantly over the past decade. However, resistance to available
antimalarials continues to spread, including resistance to the widely used
artemisinin-based combination therapies. Novel antimalarial compounds and
therapeutic targets are greatly needed. This review will briefly discuss several
promising current antimalarial development projects, including artefenomel,
ferroquine, cipargamin, SJ733, KAF156, MMV048, and tafenoquine. In
addition, we describe recent large-scale genetic and resistance screens that
have been instrumental in target discovery. Finally, we highlight new
antimalarial targets, which include essential transporters and proteases. These
emerging antimalarial compounds and therapeutic targets have the potential to
overcome multi-drug resistance in ongoing efforts toward malaria elimination.
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Introduction

Malaria has posed a risk to human life since the origin of our
species. Despite this long history, it was not until 1880 that
French army surgeon Charles Louis Alphonse Laveran discov-
ered intraerythrocytic parasites in the blood of a patient with
malaria’. Immediately following Laveran’s discovery, crucial
aspects of this infection, including species classification and the
details of the human—mosquito transmission cycle, were revealed”™.
These early studies shaped our understanding of the protozoan
parasites of genus Plasmodium that cause malaria. In the
complex life-cycle of Plasmodium spp., human infection begins
with the bloodmeal of a female Anopheles mosquito. Parasites
migrate to the liver, where they undergo a large, asymptomatic
expansion, emerging to invade red blood cells and initiate
asexual replication. A small fraction of these blood-stage para-
sites terminally differentiate into gametocytes that are taken
up by the mosquito to complete sexual replication and begin
the infection cycle anew. Five different species of Plasmodium
cause the majority of human malaria: P. falciparum, P. knowlesi,
P. malariae, P. ovale, and P. vivax. Malaria still accounts for an
estimated 445,000 deaths and 216 million cases annually, and
the majority of deaths result from infection with P. falciparum’.

Malaria deaths have declined in large part because of the
development of effective antimalarial medicines. Beginning
in the late 1940s, chloroquine was the standard treatment for
uncomplicated malaria®. However, by the late 1950s and early
1960s, chloroquine-resistant P.  falciparum was observed
throughout Southeast Asia, Oceania, and South America. Resist-
ance to chloroquine has since spread to nearly all areas of the
world’. Subsequent resistance has developed to antimalarials
such as sulfadoxine/pyrimethamine, mefloquine, halofantrine,
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and quinine'’. Most recently, resistance to artemisinin-based
combination therapies emerged in 2008 in parts of Southeast
Asia and continues to spread''~"’. Clinical artemisinin resistance
manifests as a delayed clearance phenotype; that is, infection
eventually resolves with treatment with artemisinin-based com-
bination therapy, but the time required for parasite clearance
substantially increases'“*’'. This delayed clearance could con-
tribute to the even more troubling rise in multi-drug resistance,
as parasites have gained both reduced artemisinin sensitivity*
and resistance against partner drugs, such as piperaquine'>"”. As
multi-drug resistance spreads, there is an urgent need for new
antimalarial agents to control malaria infections. Optimally,
new antimalarials will overcome multi-drug resistance, will be
highly safe for use in vulnerable populations (such as infants
and pregnant women), and will target more than one life-cycle
stage in order to break the cycle of transmission. In this brief
review, we highlight promising novel antimalarials currently in
development and introduce emerging drug targets that may be
key to ongoing efforts to eliminate malaria worldwide.

Promising new antimalarials in development

Global efforts to end malaria have led to the development
of promising compounds. At the forefront of antimalarial
development is the Medicines for Malaria Venture (MMV),
which was established in 1999 as a not-for-profit, public—private
partnership. The current MMV portfolio contains many promising
compounds at various stages of development (research, transla-
tional, product development, and access; https://www.mmv.org/
research-development/mmv-supported-projects). To  illustrate
the diversity of the current portfolio, a selection of the emerg-
ing antimalarials currently in development is discussed below
(Table 1)-%,

Table 1. Selected promising antimalarial compounds.

Antimalarial Alternative Protein target/predicted

compound names target

Artefenomel 0Z439 Unknown

Cipargamin  KAE609, PfATP4, based on resistance

NITD609 screen mutations

DSM265 Not applicable Plasmodium DHODH*

Ferroquine  SSR97193 Unknown

KAF156 GNF156 PfCARL™, PfACT, and PfUGT?,
based on resistance screen
mutations

MMV048 MMV390048 Plasmodium P14K*

SJ733 (+)-SJ000557733 PfATP4, based on resistance

screen mutations®®*°

Tafenoquine WR 238605, Unknown

Etaquine

DHODH, dihydroorotate dehydrogenase
PI4K, phosphatidylinositol 4-kinase

Target candidate profiles”

Asexual parasite clearance;
transmission blocking

Asexual parasite clearance;
transmission blocking

Asexual parasite clearance;
targeting liver schizonts

Asexual parasite clearance;
transmission blocking

Asexual parasite clearance;
transmission blocking;
targeting liver schizonts

Asexual parasite clearance;
transmission blocking;
targeting liver schizonts

Asexual parasite clearance;
transmission blocking

Targeting Plasmodium
hypnozoites

“According to Medicines for Malaria Venture (MMV) Target Candidate Profile classification.

“Status as of 31 July 2018.

Current status in MMV pipeline®
Combined artefenomel-ferroquine is
in the patient-exploratory stage
Patient-exploratory stage
Patient-exploratory stage

Combined artefenomel-ferroquine is
in the patient-exploratory stage
Combined KAF156-lumefantrine is in

the patient-exploratory stage

Patient-exploratory stage

Human volunteer stage

Regulatory review stage
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Artefenomel and ferroquine

The current standard of care for malaria is combination
therapy based on artemisinin, which is highly valued as a potent,
rapidly active antiparasitic compound. Like artemisinin, synthetic
ozonides contain an endoperoxide bond. A first-generation 0zo-
nide, arterolane (OZ277), has already been licensed for clinical
use in India as a combination therapy with piperaquine. However,
concern has arisen that there may be a loss of potency against
kelch13 mutant parasites, which are artemisinin resistant.
Other synthetic ozonides, including artefenomel (0OZ439), have
been developed™. Artefenomel displays activity in transmission-
blocking assays in vitro®, and clinical studies support its use in
a single-exposure combination therapy®. Unlike artemisinin’s
peroxide bond, artefenomel’s peroxide bond is more stable and
has an improved half-life in plasma: 23 hours compared with
0.5 hours*. Promisingly, artemisinin-resistant mutants do not
appear to be cross-resistant to artefenomel’!, although some
mutations in kelchl3 may lead to partial cross-resistance’*.
Together, these properties support the continued efforts toward
development and licensure of artefenomel for clinical use.

Ferroquine is a third-generation 4-aminoquinoline and a deriva-
tive of the antimalarial chloroquine. Although chloroquine
resistance has spread to nearly all areas of the world, ferroquine
efficacy is not impeded by chloroquine resistance mechanisms
and resistance selection has not been observed in the laboratory”’.
Ferroquine also retains activity against parasites resist-
ant to chloroquine, mefloquine, quinine, and piperaquine’*-"*.
An initial clinical study with ferroquine in combination with
artesunate showed a high malaria cure rate, and treatment with
ferroquine also displayed post-treatment prophylaxis activity
for at least 2 months*. Recent phase 2 trials replaced artesunate
with the more effective artefenomel’*’, and a combination of
artefenomel and ferroquine therapy is in the patient-exploratory
stage of the MMV portfolio.

DSM265

Plasmodium spp. depend on de novo pyrimidine synthesis
because they lack pyrimidine salvage enzymes. An essential
enzyme in the pyrimidine biosynthesis pathway is dihydroorotate
dehydrogenase (DHODH). Large high-throughput screens were
conducted to identify P/DHODH inhibitors***". These screens
identified several classes of molecules that target DHODH,
such as triazolopyrimidines, phenylbenzamides, ureas, and
naphthamides*. One triazolopyrimidine that has potent activity
against asexual and liver-stage parasites is DSM265%. DSM265
selectively inhibits Plasmodium spp. DHODH enzymes over
human orthologues*. DSM265 is currently in the patient-
exploratory stage of the MMV pipeline and exhibits promising
single-dose efficacy. Interestingly, DSM265 is predicted to
remain at therapeutic concentrations in humans for more than
a week after a single dose because of its favorable pharmacoki-
netic properties”. DSM265 also has promising prophylactic
activity, providing some protection against infection with a single
dose up to 7 days before parasite challenge'®*’. The single-dose
efficacy of DSM265 makes it exceptionally promising for both
prophylaxis and treatment of disease. Furthermore, the potency of
DSM265 supports future development of compounds that target
Plasmodium DHODH.
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Cipargamin and SJ733

Cipargamin (KAE609), a spiroindolone, also has potent activity
against blood-stage malaria parasites”*. A recent phase 2 study
used once-daily dosing of cipargamin for 3 days on 21 adults
with either uncomplicated P. vivax or P. falciparum malaria®.
Parasite clearance rates in this clinical study and in vitro are
among the fastest of any antimalarial yet characterized™*.
Cipargamin likely targets the P-type Na* ATPase, PfATP4, because
resistance mutations have emerged”. PfATP4 appears to regulate
parasite ion homeostasis, which is essential for survival, through
active Na* export™. Inhibition of PfATP4, through cipargamin
treatment, perturbs ion homeostasis in the parasite and increases
host cell membrane rigidity, resulting in blocked blood-stage
development and transmission to mosquitoes™ "=, Cipar-
gamin is currently in the patient-exploratory stage of the
MMV portfolio; however, it is not the only PfATP4 inhibitor
currently in development. A diverse range of compounds, includ-
ing spiroindolones™~'**,  pyrazoleamides”, aminopyrazoles™,
dihydroisoquinolones®, and other compounds®, have been shown
to target PfATP4. A dihydroisoquinolone that likely targets
PfATP4, SJ733, is in the human volunteer stage of the MMV
portfolio. Resistance selection with SJ733, like cipargamin,
has generated point mutations, some unique to SJ733
and not induced by cipargamin, in the pfatp4 gene’”. The
antimalarial properties of PfATP4 inhibitors, such as cipar-
gamin and SJ733, are exceptionally promising and support
future development of compounds with this mechanism of
action.

KAF156

A novel class of antimalarials, imidazolopiperazines, has
recently emerged and been found to have potent asexual blood-
stage and liver-stage activity’>”°. One such imidazolopiperazine,
KAF156, is currently in the patient-exploratory stage of the
MMV portfolio in combination with lumefantrine. Lumefan-
trine is a clinically approved partner agent; however, it has been
modified to a new once-daily formulation for use with KAF156.
In addition to displaying asexual blood- and liver-stage
activity, KAF156 also inhibits the growth of sexual blood-
stage parasites, including mature gametocytes’’. Therefore,
KAF156 may be effective in preventing parasite transmission
from humans to mosquitoes. The antimalarial mechanism of
KAF156 is still unclear because resistance in vitro is thought to be
indirectly mediated through mutation of pfcarl, pfact, and
pfugt, which encode a conserved protein of unknown function,
an acetyl-CoA transporter, and a UDP-galactose transporter,
respectively”**. Future studies may illuminate the parasiticidal
mechanism of imidazolopiperazines, but this class of drugs has
great potential in the treatment of acute disease and reduction of
parasite transmission.

MMV048

Another novel chemical class of antimalarials, 2-aminopyrid-
ines, was identified to have potent single-dose activity against
in vitro P. falciparum and in vivo P. berghei**. From this initial
screen of 2-aminopyridines, compound 15 (now known as
MMV048) was identified with robust antimalarial activity. A
follow-up study with MMVO048 replicated the potent in vitro
and in vivo activity of asexual blood-stage malaria parasites and
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also confirmed transmission-blocking and liver-stage activity”’.
Genomic and chemoproteomic approaches identified Plasmo-
dium phosphatidylinositol 4-kinase (PI4K) as the likely target
of MMV048”. PI4K functions in membrane trafficking and
membrane assembly during asexual blood-stages. PfPI4K
is likely essential during the asexual blood-stage because
attempts to insert an early stop codon were unsuccessful’’. The
multi-stage antimalarial activity, prolonged half-life, and single-
dose efficacy of MMV048 make it a promising new antimalarial
in the patient-exploratory stage of the MMV pipeline.

Tafenoquine

Although infection with P. falciparum represents the largest
burden of malaria deaths, there is also a need to develop medi-
cines that prevent the relapse of P. vivax and P. ovale. Unlike
P. falciparum, both P. vivax and P. ovale have a dormant liver-
stage form called a hypnozoite. Hypnozoites can reactivate with-
out warning, leading to the onset of malarial symptoms. This
dormant stage remains both a challenge to treat and a potent bar-
rier to malaria elimination. Tafenoquine, an 8-aminoquinoline, is
currently under development for the prevention of P. vivax
relapse. Tafenoquine has high activity as a single-dose treat-
ment and has promising anti-hypnozoite activity in humans®.
However, tafenoquine has therapeutic restrictions similar to those
of the current radical cure standard for P. vivax and P. ovale,
primaquine, which might limit its therapeutic impact. Both
primaquine and tafenoquine cause dose-dependent acute
hemolytic anemia in individuals with glucose-6-phosphate
dehydrogenase deficiency®*”. Because of its longer half-life,
tafenoquine requires a higher glucose-6-phosphate dehydro-
genase activity threshold than primaquine; thus, a greater
proportion of individuals will be ineligible for tafenoquine
treatment and primaquine will still be needed®. In July 2018,
the US Food and Drug Administration approved tafenoquine
under the trade name Krintafel. Tafenoquine is the first new
antimalarial in 60 years to prevent relapse of P. vivax. How-
ever, its limitations highlight the need for development of
additional compounds that target relapsing malaria.

Emerging new antimalarial targets

Continued efforts to dissect the basic biology of the complex
malarial organism have yielded new therapeutic targets for
the development of antimalarials. The Plasmodium Genetic
Modification Project (PlasmoGEM) (http://plasmogem.sanger.
ac.uk), a not-for-profit, open-access research resource, has
advanced our understanding of Plasmodium by providing vec-
tors for genome-wide manipulation. PlasmoGEM contains over
2,000 plasmids designed to tag or delete genes in P. berghei®.
Provided without cost, these tools have been used in a recent
large-scale knockout screen to identify essential genes. The
essentiality of over 50% of the genome was tested in an in vivo
mouse model of P. berghei infection®. Surprisingly, 44.9% of
genes were found to be essential and an additional 18% showed
reduced parasite blood-stage growth; therefore, 62.9% of genes
are required in P. berghei for normal asexual growth®. The high
percentage of essential genes and low functional redundancy
suggest that Plasmodium may have considerably more drug
targets than do bacteria, for example®. This genetic screen
resulted in the identification of essential cellular processes in the
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parasite. Specific examples of pathways enriched with essential
genes include glycosylphosphatidylinositol anchor biosynthesis,
the mitochondrial tricarboxylic acid cycle, ubiquinone biosyn-
thesis, and isoprenoid biosynthesis”. From this genetic screen,
a searchable phenotype database was built (http://plasmogem.
sanger.ac.uk/phenotypes).

A large forward genetic screen in P. falciparum parasites
recently identified more than 2,680 genes that are likely essen-
tial for asexual blood-stage growth®. When high-throughput
piggyBac transposon insertional mutagenesis was used in com-
bination with quantitative insertion site sequencing®®, the
mutability and fitness cost of 5,399 genes were evaluated®. The
AT-richness of the P. falciparum genome (>81%) is well suited
for piggyBac transposon-based mutagenesis because of the high
density of the tetranucleotide insertion target sequence TTAA®.
To quantify gene essentiality, a mutagenesis index score and
mutagenesis fitness score were calculated for each locus.
Together, these two independent measures were used to classify
a gene as likely essential or dispensable, and this methodology
may be expanded to identify essential genes for other life-cycle
stages®. The essential genes and pathways discovered in both
the PlasmoGEM P. berghei screen® and piggyBac transposon
P. falciparum screen® will supplement ongoing studies and
likely initiate investigation into novel putative antimalarial
targets.

A final strategy to identify possible new antimalarial targets is
the resistance screen. Resistance screens challenge the malaria
parasite with low levels of an antimalarial compound to hinder
development. This can lead to in vitro evolution and selection
for resistance mutations that relieve growth suppression. There-
fore, resistance screens can be used to discover both media-
tors of drug resistance and novel antimalarial drug targets’.
Winzeler and colleagues recently performed a large resistance
screen with 37 distinct compounds’. Whole genome sequenc-
ing of 262 compound-resistant parasite lines identified several
candidate resistance mutations. Although the screen confirmed
previously identified multi-drug resistance mechanisms and
illuminated new drug target-inhibitor pairs, only two novel
drug-resistance genes—pfabcl3 and pfaat]’’—were identified.
Below, we highlight a few emerging antimalarial targets of
particular promise (Figure 1).

PMIX and PMX

Two recent studies highlighted the importance of plasmep-
sins IX (PMIX) and X (PMX) for parasite development’"’>.
Plasmepsins comprise a family of 10 aspartic proteases in the
P. falciparum genome. A number of studies have focused on
the digestive vacuole plasmepsins I to IV (PMI to PMIV),
including development of chemical inhibitors”*~"°. Subsequent
functional genetic studies of PMI-PMIV revealed that they are
not essential for parasite survival”’. PMIX and PMX are expressed
in asexual blood-stage parasites’®. Conditional knockdown
of PMIX in P. falciparum revealed that it is essential for red
blood cell invasion’'”. PMX knockdown similarly interrupted
red blood cell invasion but also revealed an additional require-
ment of PMX in red blood cell egress’”. A recent study employed a
combination of in vitro and in vivo rodent experiments to find that
hydroxyl-ethyl-amine-based scaffold compound 49c (referred
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to as 49c) inhibits both PMIX and PMX’'. 49c is an effective
inhibitor against P. falciparum in vitro and the rodent parasite
Plasmodium berghei in vivo™™. Treatment with 49c inhibits
asexual, sexual, and liver-stage development, indicating that 49¢
or other PMIX or PMX inhibitors may have value to both treat
symptomatic malaria and block transmission’'. Together, these
observations provide compelling evidence that PMIX and PMX
are promising targets for antimalarial development.

Rab11a

In the recent P. berghei functional genetic screen, one of the
cellular pathways most enriched with essential genes is that of
isoprenoid biosynthesis”. A number of studies have previ-
ously highlighted the requirement of isoprenoid biosynthesis for
P. falciparum asexual replication®'=. Tsoprenoids are necessary
for protein prenylation, the post-translational lipid modification
of proteins. Because chemical inhibition of protein prenylation
in the malaria parasite disrupts asexual parasite growth*,
prenylated malarial proteins are potential antimalarial targets.

Invading
parasite

@,

vesiclés -
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Recent chemical labeling approaches have revealed that only
15 to 19 proteins are prenylated in blood-stage malaria and a
majority of these proteins are Rab GTPases’””. Rab GTPases
function in docking vesicles to membranes and their prenyla-
tion aids in association with target membranes”. Rablla, a
Rab GTPase, is expressed and prenylated in asexual blood-
stage malaria parasites’*>** and is essential for asexual parasite
replication”. In the parasite, Rablla functions as a mediator of
PI4K signaling and is a binding partner of PI4K, the target of
imidazopyrazines and MMV0487°°?°. Mutation of Rablla
confers resistance to the imidazopyrazine, KAI715". Interest-
ingly, Rablla has very low genetic diversity when sequenced
in 2,000 Plasmodium clinical isolates, and only one non-
synonymous mutation has been identified”’. These features
suggest that Rablla may represent a promising target because
of both its prenylation and interactions with essential signaling
pathways within the parasite. Additional studies are needed to
evaluate the biological roles of the remaining prenylated proteins
in blood-stage malaria.

PV
——_ SERAG
Parasite . suUB1

Rab11a

| intraerythrocytic parasite

Figure 1. Localization of antimalarial targets in the asexual parasite. Shown are parasite organelles, including the nucleus, apicoplast
(AP), endoplasmic reticulum (ER), food vacuole (FV), rhoptries (RH), exonemes, and vesicles. The intraerythrocytic parasite is located within
the parasitophorous vacuole (PV), which is delineated by the PV membrane (PVM), where both SUB1 and SERAG are found during egress®.
Rab11a likely localizes to vesicles, which it guides to target membranes. In the invading parasite, plasmepsin IX (PMIX) is found in the bulbs

of RH and plasmepsin X (PMX) localizes to exonemes’.
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SUB1 and SERA6

During asexual replication, the malaria parasite must exit the
red blood cell before invading a new cell. This process, called
egress, requires the rupture of both the parasitophorous vacuole
membrane (PVM), which surrounds the parasite, and the red
blood cell membrane (RBCM). Egress is protease dependent”,
and recently two proteases—SUB1 and SERA6—were identified
as mediators of PVM and RBCM rupture™. SUBI, a serine
protease, moves to the parasitophorous vacuole before
egress'"~'% and cleaves multiple substrates'*'%%-19  One sub-
strate cleaved by SUBI is SERA6'%''9) a putative cysteine
protease, which requires proteolytic processing by SUBI to
function”. P. falciparum parasites that lack SUBI fail to rup-
ture the PVM, thus stalling parasite development™. Interestingly,
parasites that lack SERA6 can rupture the PVM, but RBCM
rupture does not occur’”. Therefore, SUBI and SERAG6 have
distinct roles in parasite egress. Because SUB1 and SERA6 are
essential for asexual blood-stage growth and orthologues are
found in other Plasmodium species”™, compounds that inhibit
these proteins may be useful in treating multiple types of malarial
disease.

Discussion

Malaria continues to be a major global health concern.
Plasmodium elimination will not be possible without substan-
tial ongoing efforts, including diagnostic testing and treatment of
confirmed and asymptomatic infections, mosquito vector con-
trol, preventative therapies, and surveillance systems. Although
all of these areas of malaria control are crucial, antimalarial drug
discovery is among the most pressing because of the continued
spread of antimalarial resistance. The MMV has focused its
efforts on developing drugs that treat disease, prevent transmis-
sion, and provide chemoprotection. This multifaceted approach
to the antimalarial development pipeline provides assurance that
new antimalarials will contribute to broad approaches of malaria
control.

Studies in basic parasite biology remain extremely impor-
tant to elimination efforts. Although the current antimalarial
compounds under development have great potential, malaria
control efforts will benefit from continued dissection of parasite
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biology. Ideally, new compounds will target proteins and
pathways that are essential for parasite growth and transmis-
sion with diverse mechanisms of action. New antimalarials
will almost certainly be employed in combination therapeutics,
combining molecules of different chemical classes and with
diverse mechanisms of action to slow the development of multi-
drug resistance. Novel drug targets will be uncovered through
multiple approaches, such as large-scale genetic and resistance
screens. A deeper understanding of essential parasite biology
will also aid in other aspects of malaria control, including
mosquito vector control, advancement of diagnostic tests, and
development of preventative therapies. To date, Plasmodium
has successfully adapted to sequential drug selective pressure in
the field. However, the remarkable successes of recent efforts to
develop new antimalarials and identify drug targets suggest an
optimistic future in treatment of disease, prevention of transmis-
sion, and protection against infection.
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