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A B S T R A C T

For patients with hematologic malignancies, allogeneic hematopoietic cell transplantation (alloHCT) offers a
potential curative treatment option, primarily due to an allogeneic immune response against recipient tumor
cells (ie, graft-versus-leukemia [GVL] activity). However, many recipients of alloHCT develop graft-versus-
host disease (GVHD), in which allogeneic immune responses lead to the damage of healthy tissue. GVHD is a
leading cause of nonrelapse mortality and a key contributor to morbidity among patients undergoing alloHCT.
Therefore, improving alloHCT outcomes will require treatment strategies that prevent or mitigate GVHD without
disrupting GVL activity. Janus kinases (JAKs) are intracellular signaling molecules that are well positioned to
regulate GVHD. A variety of cytokines that signal through the JAK signaling pathways play a role in regulat-
ing the development, proliferation, and activation of several immune cell types important for GVHD pathogenesis,
including dendritic cells, macrophages, T cells, B cells, and neutrophils. Importantly, despite JAK regulation
of GVHD, preclinical evidence suggests that JAK inhibition preserves GVL activity. Here we provide an over-
view of potential roles for JAK signaling in the pathogenesis of acute and chronic GVHD as well as effects on
GVL activity. We also review preclinical and clinical results with JAK inhibitors in acute and chronic GVHD
settings, with added focus on those actively being evaluated in patients with acute and chronic GVHD.
© 2017 American Society for Blood and Marrow Transplantation. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

INTRODUCTION
Allogeneic hematopoietic cell transplantation (alloHCT) is

potentially curative for a variety of hematologic malignan-
cies [1]. An important component is the graft-versus-leukemia
(GVL) response [2], in which alloreactive (antirecipient) donor
T cells target recipient tumor cells, inhibiting relapse [3]. Graft-
versus-host disease (GVHD) is a potentially fatal complication
of alloHCT. Similar to GVL, alloreactive donor T cells are ac-
tivated during GVHD; however, rather than targeting tumor
cells, the immune response attacks healthy recipient tissue.
GVHD is a major cause of morbidity [4] and a leading cause
of nonrelapse mortality [1] after alloHCT. Developing treat-
ment options that curb GVHD without abrogating GVL is
important for improving alloHCT effectiveness.

The pathogeneses of acute GVHD (aGVHD) and chronic
GVHD (cGVHD) share similarities, with aGVHD a risk factor
for developing cGVHD [5]. Both are inflammatory disor-

ders, initiated by antigen-presenting cell (APC) activation of
alloreactive T cells [6]. After activation, T cells infiltrate target
tissues [7], and positive feedback loops drive proinflammatory
cytokine signaling [6], resulting in inflammation [8], tissue
damage, and organ failure [4]. After alloHCT, immune cells
and related signaling molecules drive aGVHD in 3 general
phases: (1) conditioning treatment, which results in tissue
inflammation; (2) the initial interaction between APCs and
allogeneic T cells resulting in T cell activation; and (3) immune
cell migration and tissue damage. Janus kinases (JAKs) are im-
portant effectors of all 3 phases, transducing inflammatory
signaling downstream of cytokines and regulating develop-
ment and function of immune cells including APCs and T cells
[9]. cGVHD may be exacerbated by diminished central and
peripheral tolerance, with B cells and macrophages playing
active roles [10-13]. A variety of tissues may be affected in
GVHD, including lung, liver, gastrointestinal tract, skin, and
secondary lymphoid organs [4].

The prevalence of GVHD is influenced by several factors,
including degree of HLA match between donor and recipi-
ent, donor cell source (ie, bone marrow, peripheral blood, or
umbilical cord), conditioning regimen, and post-transplant
prophylaxis [5]. Among HLA-matched donor-recipient pairs,
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grade II to IV aGVHD is estimated to occur in 25% to 55% of
patients within the first 100 days, and cGVHD may occur in
5% to 40% within the first 2 years.

To date, there are limited clinical means to predict with
accuracy the development of GVHD and treatment response.
Numerous studies have focused on prevention. GVHD pro-
phylaxis generally includes cyclosporine plus methotrexate
or mycophenolate mofetil, tacrolimus plus methotrexate, or
antithymocyte globulin [14], and no therapy added to this
backbone has proven to be of added benefit to prevent the
disease. In those that develop GVHD, corticosteroids are the
standard first-line systemic treatment option for patients with
aGVHD [15] and cGVHD [16], and this has not changed for
several decades. As reviewed by Coutinho and Chapman [17],
the anti-inflammatory and immunosuppressive effects of cor-
ticosteroids primarily signal through the glucocorticoid
receptor, repressing expression of cytokines and other in-
flammatory response genes. Response to corticosteroids may
be predicted at diagnosis based on International Bone Marrow
Transplant Registry clinical grade or the Ann Arbor score,
which is calculated based on plasma levels of TNFR1, ST2, and
REG3α [18], but has yet to be routinely used in clinical prac-
tice to direct therapy outside of clinical trials. The only drug
currently approved for treatment of GVHD is ibrutinib.
Ibrutinib, a Bruton tyrosine kinase (BTK) and IL-2 inducible
T cell kinase (ITK) inhibitor, was recently approved by the U.S.
Food and Drug Administration as second-line treatment for
adult patients with cGVHD [19]. Guidelines drafted before the
approval of ibrutinib for cGVHD recommended clinical trial
enrollment for alloHCT patients after first-line (steroid) failure
[15,16].

JAKs are intracellular signaling components that func-
tion downstream of many cytokines [9]. Various JAK inhibitors
are approved or under investigation for treating various ma-
lignancies, autoimmune disorders, and inflammatory diseases
(Table 1) [20-22]. There are 4 members of the JAK family, of
which JAK1, JAK2, and JAK3 may be most relevant for GVHD
[7,23-27]. TYK2, the fourth member of the JAK family, al-
though less implicated in GVHD using in vitro or in vivo
preclinical models, mediates signaling through several in-
flammatory receptors including IL-6, IL-10, IL-12, IL-23, IL-
27, IL-31, type I interferon receptors, and oncostatin M [28].
JAKs regulate the activities of immune cells that underlie
GVHD, including APCs [29], T cells [30], and B cells [31,32].
Preclinical and clinical studies suggest that JAK inhibition may
disrupt GVHD [7,23-25] without negatively affecting GVL ac-
tivity [24,25]. This article reviews the pathogenesis of GVHD
with a focus on aspects that may be regulated by JAK sig-
naling and provides an overview of findings from preclinical
and clinical studies evaluating JAK inhibitors in GVHD set-
tings. For a broader review of GVHD pathogenesis and new
treatment strategies, please see recent articles by Betts et al.
[33], Cooke et al. [34], MacDonald et al. [35], Im et al. [36],
and Zeiser and Blazar [37].

ROLE OF JAKS IN AGVHD PATHOGENESIS AND GVL
ACTIVITY

JAKs are key regulators of immune cell development and
function [9] and therefore are well positioned to regulate
aspects of all 3 phases of aGVHD pathogenesis (Figure 1)
[6,7,9,11,23,25,26,29,32,38-49]. Intracellular signaling down-
stream of multiple cytokines is transduced by JAK family
members [9]. Additionally, JAKs function in several cell types
involved in GVHD, including dendritic cells (DCs), mac-

rophages, T cells, B cells, and neutrophils, making them ideal
targets for aGVHD treatments.

Phase 1: Conditioning Treatment
Conditioning regimens, which eliminate malignant or ab-

normal hematologic cells in the recipient, establish a receptive
environment for GVL and aGVHD. As recently reviewed by
Magenau et al. [6], the conditioning regimen may cause tissue
damage and increased cytokine expression (eg, TNFα and IL-
6), conferring immunologic changes that activate recipient
APCs (Figure 1A) [6,29,38,39].

Antigen-presenting cells
Activation of APCs during the development of GVHD is

regulated by JAK signaling. In human cell culture experi-
ments, macrophage activation with IFNα, IFNγ, and TNF was
diminished by the JAK1/JAK2 inhibitor ruxolitinib or the JAK1/
JAK3 inhibitor tofacitinib [38]. Similarly, in cell lines
established from patients with melanoma, IFNγ signaling
upregulated the expression of TAP1, MHC I, and PD-L1 in a
JAK2-dependent pathway [39]. JAK signaling is also re-
quired for activation and function of DCs. Addition of the JAK1/
JAK2 inhibitor ruxolitinib to murine and human monocyte
cell cultures prevented maturation to DCs [29]. Ruxolitinib-
treated cells lacked DC morphologic features; remained CD14+;
had low expression levels of DC markers, including CD1a,
CD80, CD86, MHC II, and IL-12; and were ineffective in pro-
moting proliferation and activation of CD4+ and CD8+ T cells.
The JAK1/JAK3 inhibitor tofacitinib similarly inhibited DC ac-
tivation [40]. Human monocyte–derived DCs cultured with
tofacitinib had reduced expression of IFNγ, TNFα, IL-1β, and
IL-6; increased expression of IDO1 and IDO2; and reduced
type I IFN-induced expression of CD80/CD86.

Phase 2: Allogeneic Donor T Cell Activation after HSCT
After alloHCT, aGVHD, and GVL activity are initiated by in-

teractions between APCs and allogeneic donor T cells
[2,3,50,51], which lead to T-cell activation in a JAK-dependent
process (Figure 1B) [9,23,40,41].

T cells
In a series of murine cell culture experiments, Spoerl et al.

[23] demonstrated that JAK1/JAK2 are required for T-cell ac-
tivation following interaction with APCs. Pretreatment of
mouse CD4+ or CD8+ T cells with ruxolitinib reduced prolif-
eration following exposure to activated APCs or CD3/CD28
beads. Ruxolitinib treatment of APC/T-cell cocultures was also
associated with reduced production of IFNγ, IL-17A, and IL-
2. In addition, lower concentrations of ruxolitinib were
associated with an increased proportion of regulatory T cells
(Tregs), compared with reduced levels of CD4+ cells. Simi-
larly, a separate study demonstrated that addition of the JAK2
inhibitor TG101348 to cocultures of DCs and T cells reduced
T-cell proliferation and increased the Treg:effector T cell (Teff)
ratio [52].

The JAKs primarily regulate T-cell activation, prolifera-
tion, and function via transduction of cytokine signaling [9].
Activation of the γ-chain cytokine receptor was required for
CD8+ T cell–mediated aGVHD and cGVHD in a murine model
[41]. Several cytokines that activate JAK1 and JAK3 signal
through γ-chain receptors—including IL-2, IL-4, IL-7, IL-9, IL-
15, and IL-21 [9]—and the γ-chain effects on GVHD require
JAK3 [41]. Antibody blockade of the γ-chain protein reduced
JAK3 phosphorylation, and alloHCT with donor T cells from
JAK3−/− mice was associated with less severe GVHD. In cell
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Table 1
JAK Inhibitors in Active Clinical Development or With Regulatory Approval in the United States

Name JAK Target Disease Setting Clinical Phase or Regulatory Approval (ClinicalTrials.gov Identifier)

Regulatory approval in humans
Ruxolitinib [20] JAK1/JAK2 Myelofibrosis, polycythemia vera FDA approval

GVHD Expanded access program (NCT03147742)
Phase 3 (NCT02913261, NCT03112603)
Phase 2 (NCT02953678, NCT02396628, NCT02997280, NCT02806375)

Other hematologic malignancies Phase 2 (NCT00726232, NCT01751425, NCT03041636, NCT02257138,
NCT00639002, NCT02723994, NCT01431209, NCT02164500)
Phase 1 (NCT01895842)

Alopecia areata Phase 2 (NCT02553330)
Atopic dermatitis Phase 2 (NCT03011892)
Plaque psoriasis Phase 2 (NCT00820950)
Rheumatoid arthritis Phase 2 (NCT00550043)
Vitiligo Phase 2 (NCT02809976)

Tofacitinib [21] JAK1/JAK3 Rheumatoid arthritis FDA approval
Juvenile idiopathic arthritis Phase 3 (NCT02592434)
Psoriatic arthritis Phase 3 (NCT01976364)
Ulcerative colitis Phase 3 (NCT01465763)
Alopecia areata Phase 2 (NCT02299297)
Ankylosing spondylitis Phase 2 (NCT01786668)
Atopic dermatitis Phase 2 (NCT02001181)
Crohn disease Phase 2 (NCT01393899)
Keratoconjunctivitis sicca Phase 2 (NCT01226680)
Kidney transplant Phase 2 (NCT00263328)
Plaque psoriasis Phase 2 (NCT01831466)
Dermatomyositis Phase 1 (NCT03002649)
Systemic lupus erythematosus Phase 1 (NCT02535689)

Regulatory approval in dogs
Oclacitinib [22] JAK1/JAK3 Allergic and atopic dermatitis (canine) FDA approval
Currently without regulatory approval
Baricitinib JAK1/JAK2 Rheumatoid arthritis Phase 3 (NCT02265705)

Atopic dermatitis Phase 2 (NCT02576938)
Diabetic kidney disease Phase 2 (NCT01683409)
Giant cell arteritis Phase 2 (NCT03026504)
Chronic GVHD Phase 2(NCT02759731)
Psoriasis Phase 2 (NCT01490632)
Systemic lupus erythematosus Phase 2 (NCT02708095)

BMS-911543 JAK2 Myelofibrosis Phase 1/2 (NCT01236352)
Filgotinib JAK1 Crohn disease Phase 3 (NCT02914600)

Rheumatoid arthritis Phase 3 (NCT03025308)
Ulcerative colitis Phase 3 (NCT02914535)

INCB52793 JAK1 Advanced malignancies Phase 1 (NCT02265510)
Itacitinib JAK1 Hematologic malignancies Phase 2 (NCT02456675, NCT02018861, NCT01633372)

Plaque psoriasis Phase 2 (NCT01634087)
Pruritus Phase 2 (NCT02909569)
Rheumatoid arthritis Phase 2 (NCT01626573)
Solid tumors Phase 2 (NCT02917993, NCT01858883)

Phase 1 (NCT02646748)
GVHD Phase 1 (NCT02614612)

Momelotinib JAK1/JAK2 Myelofibrosis Phase 3 (NCT01969838)
Pancreatic ductal adenocarcinoma Phase 3 (NCT02101021)
NSCLC Phase 1 (NCT02258607)

NS018 JAK2 Myelofibrosis Phase 2 (NCT01423851)
Peficitinib pan-JAK Rheumatoid arthritis Phase 3 (NCT01638013)

Psoriasis Phase 2 (NCT01096862)
Ulcerative colitis Phase 2 (NCT01959282)

PF-04965842 JAK1 Atopic dermatitis Phase 2 (NCT02780167)
PF-06651600 JAK3 Alopecia areata Phase 2 (NCT02974868)

Rheumatoid arthritis Phase 2 (NCT02969044)
Ulcerative colitis Phase 2(NCT02958865)

PF-06700841 JAK1/TYK2 Alopecia areata Phase 2 (NCT02974868)
Plaque psoriasis Phase 2 (NCT02969018)
Ulcerative colitis Phase 2 (NCT02958865)

SHR0302 JAK1 Rheumatoid arthritis Phase 1 (NCT02665910)
Upadacitinib JAK1 Rheumatoid arthritis Phase 3 (NCT02706847)

Ulcerative colitis Phase 3 (NCT03006068)
Atopic dermatitis Phase2 (NCT02925117)
Crohn’s disease Phase 2 (NCT02782663)

WP1066 JAK2 Glioma and brain metastases from melanoma Phase 1 (NCT01904123)

For drugs indexed in multiple clinical trials at ClinicalTrials.gov for the same indication, only 1 trial in the highest phase of development is listed, with the
exception of GVHD (all indexed trials are listed).
FDA indicates U.S. Food and Drug Administration; NSCLC, non-small-cell lung cancer; TYK, tyrosine kinase.
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Figure 1. JAK Activity in aGVHD. (A) The conditioning regimen may cause the release of inflammatory cytokines [6], which signal through JAKs to activate
APCs [29,38,39]; activated macrophages migrate toward CXCL9 secreted from lymph nodes in a JAK1/JAK2-dependent process [29]. (B) After HCT, JAKs reg-
ulate allogenic donor T-cell activation through secondary signals in APCs, such as CD80/86 [40], IDO, and IFN signaling [40], and in T cells downstream of the
γ-chain cytokine receptor [9,41]. JAK activity in CD4+ and CD8+ T cells also promotes proliferation, whereas JAK signaling inhibits proliferation of Tregs [23].
(C) After T-cell activation, migration out of the secondary lymphoid tissue is regulated by chemokine receptors, which are in turn regulated by JAK signaling
[7,26,42-47]. T-cell cytotoxic activity, including granzyme B (GB) production, is promoted by JAK activity [23,26]. Neutrophils, which may participate in GVHD
[48], use JAK signaling pathways to regulate their development and activity [49]. DAMP, damage-associated molecular pattern; IDO, indoleamine 2,3 dioxygenase;
PAMP, pathogen-associated molecular pattern; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1.
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culture experiments, the JAK2 inhibitor tyrphostin B42 blocked
IL-12–induced proliferation of murine T cells [30]. Addition
of tofacitinib to human CD8+ T-cell cultures reduced cell pro-
liferation induced by IL-2 and prevented upregulation of IFNγ
[26].

Phase 3: Immune Cell Migration and Tissue Damage
In the third phase of aGVHD, activated immune cells

migrate to target tissue, causing tissue damage. Evidence from
murine models suggests that chemokines act as tissue-
specific migration signals for T cells [7,42,45]. Once recruited
to the target tissue, cytotoxic CD8+ and CD4+ T cells provide
apoptotic signals leading to tissue damage in murine models
[53]. Apoptosis initiated by cytotoxic CD4+ T cells may be cell-
cell contact independent and mediated through cytotoxic
cytokines (eg, TNFα/TRAIL, IFNγ, IL-1) or cell-cell contact de-
pendent and mediated via the FAS/FAS-L pathway [54]
(Figure 1C) [7,11,23,25,26,32,38,42-49].

Chemokine signaling
Chemokine migration cues for immune cells, including

APCs and T cells, signal through JAK signaling. Several anal-
yses in murine models have demonstrated that JAK1/JAK2 are
required for normal migration of DCs, macrophages, and T
cells. The involvement of JAK signaling in chemokine-
mediated T cell trafficking to GVHD target organs was first
demonstrated in a preclinical mouse model of GVHD [7].
CXCR3 is a chemokine receptor, positively regulated by IFNγ
receptor-JAK1/JAK2 signaling [7]. Ruxolitinib and the JAK1/
JAK2 inhibitor momelotinib blocked upregulation of CXCR3
in wild-type T cells to a similar degree as deletion of IFNγ re-
ceptor [7]. Furthermore, ruxolitinib mitigated GVHD by
altering T-cell trafficking to GVHD organs in a major MHC-
mismatch mouse model of alloHCT as a result of CXCR3
downregulation [7]. In addition, ruxolitinib treatment in
murine models inhibited in vitro DC migration toward the
CXCR3 ligand CXCL9 and in vivo migration of DCs to drain-
ing lymph nodes [29]. In agreement with these original
findings, in a murine aGVHD model, ruxolitinib treatment was
associated with reduced expression of the chemokine re-
ceptor CXCR3 on splenic CD4+ and CD8+ T cells and reduced
T-cell and macrophage infiltration in the skin, small intes-
tines, and liver [25]. The extent to which JAK1, JAK2, or JAK3
are involved in this process of chemokine signaling and mi-
gration is still not clear given the inherent off target effect
potential of small-molecule inhibitors used in these studies.
Nonetheless, interrogation of specific JAKs has been re-
ported. In vitro blockade of JAK2 prevented CCR7
downregulation following activation of murine-naive T cells
[42], and JAK2 signaling may facilitate signaling down-
stream of other chemokine receptors involved in T-cell
migration, including CCR2 [46] and CCR5 [44]. In a murine
model of skin GVHD, topical ruxolitinib treatment reduced
CXCL9 expression and T-cell skin infiltration [55]. JAK3 may
also regulate chemokine-directed cell migration. Experi-
ments in a cell culture system of murine keratinocyte target
tissue demonstrated that IFNγ and Toll-like signaling induc-
tion of CXCL10 was inhibited by tofacitinib [26]. Finally, the
pan-JAK inhibitors PF956980 and PF1367550 inhibited IFNγ-
driven release of CXCL9, CXCL10, and CXCL11 from primary
human airway epithelial cells in vitro [47].

T cells
Preclinical analyses in murine and human model systems

have demonstrated that JAK signaling is required for T cell

cytotoxic activity in GVHD. In vitro analyses found that
ruxolitinib pretreatment of murine APC/T-cell cocultures was
associated with reduced granzyme B levels in CD8+ T cells [23]
and addition of tofacitinib to human CD8+ T-cell cultures pre-
vented upregulation of perforin and granzyme B [26]. In a cell
culture model of keratinocyte target tissue, tofacitinib in-
hibited IFNγ-induced cell death [26]. In a murine model,
activation of the γ-chain cytokine receptor was required for
production of granzyme B in CD8+ T cell–mediated GVHD [41].

Natural killer cells
Natural killer (NK) cells are immediate effector cells of the

innate immune system that play a complex role in aGVHD
and GVL. As reviewed by Simonetta et al. [56], NK cells are
associated with aGVHD protective and promoting effects. Pa-
tients with elevated NK cell counts or alloreactivity had
reduced risk of aGVHD [56], elevated NK cell counts and NK
cell to myeloid-derived suppressor cell ratio were associ-
ated with increased response in patients with aGVHD treated
with the JAK1 inhibitor itacitinib (INCB039110) [57], and
adoptive transfer of NK cells in alloHCT patients has been as-
sociated with reduced aGVHD [56]. However, in some cases,
activated NK cells may promote aGVHD through the secre-
tion of inflammatory cytokines such as IFNγ and TNFα. The
specific effects of JAK inhibition on this cellular subset and
their role in GVHD and GVL is an area of ongoing investigation.

Neutrophils
Specifics surrounding the pathway by which neutro-

phils influence GVHD pathogenesis has not been fully
elucidated, but some evidence suggests there may be a JAK-
mediated role. Work in a murine model demonstrated that
neutrophils migrated to the ileum after alloHCT [48]. Mice
receiving alloHCT from donors lacking the ability to develop
neutrophils had prolonged survival and decreased GVHD se-
verity compared with wild-type donor tissue [48]. Finally, cell
culture experiments have shown that granulocyte macro-
phage colony-stimulating factor activation of neutrophils can
be disrupted by JAK2 inhibition with AG490 [49].

ROLE OF JAKS IN CGVHD PATHOGENESIS
Although cGVHD and aGVHD are recognized as distinct

complications of alloHCT [4], they are similar immunologic
disorders driven by APC interactions with alloreactive T cells
that illicit an immune response against recipient tissue [6].
Distinguishing aspects of cGVHD pathogenesis include in-
sufficient central tolerance resulting from thymic or peripheral
lymph node dysfunction, inadequate peripheral tolerance re-
sulting from Treg dysfunction or reduced numbers, reduced
ratios of Tregs to Teff cells, and tissue fibrosis.

Insufficient Central Tolerance
The thymus plays an important role in preventing auto-

immune activity through the removal of autoreactive T cells
[12], and aberrant function may promote cGVHD. Damage to
the thymus by alloreactive CD4+ and CD8+ T cells soon after
transplant may lead to de novo thymic generation of
alloreactive CD4+ T cells via defective clonal deletion or central
tolerance [58] and induction of cGVHD [59]. In this model,
aGVHD is mediated by the passive transfer of alloreactive
donor T cells present in the bone marrow or peripheral blood
stem cell allograft. In contrast, cGVHD is mediated by donor
T cells generated from donor stem cells that are inad-
equately clonally deleted by a thymus damaged via passively
transferred T cells that are also responsible for aGVHD. This
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results in the accumulation of alloreactive T cells that con-
tribute to the clinical syndrome of cGVHD. JAKs are well
positioned to modulate central tolerance during cGVHD patho-
genesis given their roles in T-cell proliferation, activation, and
function, as described in the previous aGVHD/GVL section.

Inadequate Peripheral Tolerance
In addition to the central tolerance role performed by the

thymus, Tregs perform similar roles inhibiting cGVHD in the
periphery. Treg IL-10 production was required for the cGVHD
inhibitory effect in a murine model [60] and patients with
cGVHD may have reduced Treg counts in relation to the total
peripheral blood lymphocyte pool [61]. In preliminary clin-
ical evaluations, Treg adoptive transfer during alloHCT is
associated with low cGVHD rates [62]. Similarly, low-dose IL-2
treatment for cGVHD was associated with Treg expansion, in-
creased Treg:Teff ratios, and amelioration of cGVHD signs and
symptoms in some patients [63]. As discussed in the previ-
ous aGVHD/GVL section, JAK1/JAK2 signaling regulates
development and proliferation of Tregs [23] and the Treg:Teff
ratio, with JAK2 inhibition promoting Treg proliferation [52].

Tissue Fibrosis
Tissue fibrosis is a common characteristic of cGVHD [4],

which may result from target tissue infiltration by mac-
rophages, TGFβ secretion, and B cell activity. In addition,
cytokine signaling is required for cGVHD fibrosis. Activa-
tion of the γ-chain cytokine receptor, which signals through
JAK1 and JAK3 [9,41], was required for development of fi-
brosis in the lung and liver in a murine model [41].

Macrophages
Tissue-infiltrating macrophages may promote fibrosis

through TGFβ secretion. In murine cGVHD models, mac-
rophages infiltrated target tissues, including lung and skin,
in a process promoted by IL-17 and colony-stimulating factor
1 signaling [13]. Inhibition of IL-17 or colony-stimulating factor
1 signaling was associated with reduced cGVHD symptoms
in the skin and lungs. Moreover, activated macrophages secrete
TGFβ, which is an important profibrotic signal [13]. As dis-
cussed in the previous aGVHD/GVL section, JAKs are key
regulators of macrophage activation [38].

B cells
Alloreactive B cells are important to the pathogenesis of

cGVHD. In retrospective analyses of patients who under-
went alloHCT, elevated plasma levels of B-cell activating factor
and detection of antibodies against the H-Y antigen were pos-
itively correlated with cGVHD [10,11] and GVL activity [11].
B-cell depletion with rituximab prophylaxis following alloHCT
was associated with modestly reduced cGVHD risk com-
pared with a contemporaneous control group in a single-
arm phase 2 clinical trial [64]. The B- and T-cell signaling
factors ITK and BTK are both required for cGVHD develop-
ment, as indicated in murine models receiving ITK- or BTK-
deficient alloHCT [65]. Furthermore, treatment with ibrutinib
blocked germinal cell formation, Ig deposition, and devel-
opment of bronchiolar obliterans.

Preclinical evidence suggests that the development and
activation of B cells may be regulated by JAK signaling. IFNγ
signaling promoted expansion of CD38+ C27− germinal cell
B cells in a process that was completely blocked by ruxolitinib
and partially blocked by tofacitinib [31]. In addition, tofacitinib
treatment blocked B cell receptor– and sCD40L-induced ex-
pression of AICDA and XBP-1, and inhibited antibody

production induced by B-cell stimulation with BCR, sCD40L,
and IL-4 [32].

PRECLINICAL ACTIVITY OF JAK INHIBITORS
Preclinical evidence indicates that inhibition of JAK1, JAK2,

or JAK3 diminishes GVHD responses without abrogating GVL
activity in murine models.

JAK1/JAK2 Inhibition
Our group was the first to demonstrate that JAK1/JAK2 in-

hibition using ruxolitinib mitigates GVHD while preserving
GVL in murine models of major mismatch alloHCT [7,24].
Ruxolitinib treatment was associated with lower grade aGVHD
in the skin, liver, and intestines compared with placebo [7].
In addition, T-cell trafficking was altered with ruxolitinib, in
which T cells remained concentrated in the spleen rather than
migrating to gastrointestinal organs, the liver, and other parts
of the body. Other groups have recently reported that
ruxolitinib improved survival, lowered GVHD scores, in-
creased measures of intact intestines, and reduced TNFα and
IL-12 levels compared with placebo [23]. Overall, allogenic
T-cell and central memory T-cell levels were reduced with
ruxolitinib, whereas the frequency of Tregs was increased in
the spleen and gastrointestinal tract [23], although these
effects may be strain dependent [25]. In a murine model of
skin GVHD, topical ruxolitinib treatment was associated with
reduced T-cell infiltration of the skin, protection from GVHD-
associated reductions in LGR5+ hair follicle stem cells, and
improved pathologic skin GVHD scores [55]. In addition to
ruxolitinib, the JAK1/JAK2 inhibitor baricitinib was effective
in GVHD prophylaxis and treatment [66]. In a murine model,
prophylactic baricitinib treatment reduced GVHD, increased
Treg counts, and decreased markers for Th1 and Th2 cells.
Furthermore, baricitinib treatment was associated with a re-
duction in disease severity and a survival benefit in mice with
established GVHD.

In murine models of GVHD and leukemia or lymphoma
relapse, treatment with ruxolitinib improved survival and
reduced GVHD in the skin, liver, and gastrointestinal organs
while preserving GVL activity [24,25]. In contrast, among mice
receiving T-cell replete alloHCT with a leukemia cell line,
overall survival (OS) was similar between ruxolitinib and
placebo, and leukemia cell infiltration of the spleen and bone
was similarly inhibited in the presence or absence of
ruxolitinib [25]. Ruxolitinib was superior to the JAK2 inhibi-
tors TG101348 and AZD1480 for OS [24], suggesting that both
JAK1 and JAK2 are important in the pathogenesis of GVHD.

JAK1/JAK3 Inhibition
In a murine model of skin and mucosal GVHD, JAK1/

JAK3 inhibition was associated with reduced measures of
aGVHD and improved survival [26]. Mice receiving prophy-
laxis with tofacitinib experienced less weight loss and
prevention of skin and mucosal lesions compared with
placebo. In addition, serum levels of IFNγ and TNFα were lower
in tofacitinib-treated mice. In mice with established aGVHD,
treatment with tofacitinib was associated with prevention of
further weight loss and skin or mucosal lesions and a trend
toward prolonged survival.

JAK3 Inhibition
In a murine model for multiorgan aGVHD, prophylactic

JAK3 inhibition with WHI-P131 reduced aGVHD severity and
prolonged survival compared with control mice [27]. WGI-
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P131 treatment was also associated with a survival advantage
in mice that received treatment after aGVHD was established.

CLINICAL EVIDENCE WITH JAK1/JAK2 INHIBITORS
Clinical evaluation of JAK inhibitors in GVHD has been

limited to the JAK1/JAK2 inhibitor ruxolitinib and the JAK1
inhibitor itacitinib. Results to date suggest promising find-
ings that warrant further evaluation, including activity against
aGVHD and cGVHD.

Acute GVHD
Preliminary studies support the efficacy of JAK1/JAK2 in-

hibitors for the treatment of patients with aGVHD (Table 2)
[23,67-72]. In a retrospective analysis that included pa-
tients with grade 3/4 corticosteroid refractory–aGVHD (n = 54),
ruxolitinib treatment was associated with improvements in
aGVHD severity in the intestines, liver, and skin, as well as
prolonged survival [67]. At a median follow-up duration of
26.5 weeks, the overall response rate (ORR) was 82%, with a
median time to response of 1.5 weeks. Importantly, malig-
nancy relapse was only observed in 9% of patients. Adverse
events were primarily cytomegalovirus (CMV) reactivation
(33%), grade 3/4 cytopenia (33%), and grade 1/2 cytopenia
(22%). In a long-term follow-up analysis (median follow-up
duration, 19 months; median ruxolitinib treatment dura-
tion, 5 months), median OS was 18 months [68]. Response
was ongoing at data cutoff in 41% (22 of 54) of patients, and
response to retreatment with ruxolitinib or immunosup-
pressive therapy after GVHD relapse or progression after
achieving partial response/complete response was ob-
served in 78% (11 of 14) of patients.

Several smaller studies have also reported promising
results with ruxolitinib. A retrospective analysis of pediat-
ric patients with corticosteroid refractory–aGVHD in the eyes,
gastrointestinal tract, liver, and skin (N = 13; efficacy evaluable,
n = 11) reported an ORR of 45% (5 of 11) [69]. The most
common adverse events were elevated alanine aminotrans-
ferase (n = 7), bacterial infections (n = 6), neutropenia (n = 3),
and thrombocytopenia (n = 3). In a small pilot study that in-
cluded 4 patients with grade 3 or 4 corticosteroid refractory–
aGVHD in the intestines, liver, or skin, all patients had partial
response or better after ruxolitinib treatment, with time to
response ranging from 1 to 1.5 weeks [23]. In addition,
ruxolitinib treatment was associated with reductions in serum
IL-6 and sIL-2R levels. No ruxolitinib-related adverse events
were reported. In another small retrospective analysis, a
patient treated with ruxolitinib for grade 3 aGVHD in the skin
and gastrointestinal tract following HCT for myelofibrosis
achieved complete response [70]. The patient ultimately de-
veloped cGVHD 2 months after tapering and discontinuing
ruxolitinib. Finally, in a case study, ruxolitinib was associ-
ated with complete resolution of grade 2 aGVHD in the
gastrointestinal tract and skin after 21 days of treatment, as
confirmed by histology [71].

Prophylactic treatment with ruxolitinib plus cyclosporine
A and antilymphocyte globulin was evaluated in a retrospec-
tive study of patients with myelofibrosis undergoing alloHCT
(n = 12 of 171 treated with ruxolitinib) [74]. One of 12 (8%)
patients developed grade III aGVHD, and all patients were alive
after a median follow-up of 112 days. There were no major
adverse events during conditioning therapy. Among CMV-
positive patients, CMV reactivation was observed in 4 (67%)
patients. Ruxolitinib was discontinued in 2 patients because
of cytopenias. It should be noted that no other studies have
evaluated JAK inhibitors as prophylaxis for GVHD. Even in this

very small study, the low rates of aGVHD (1 of 8 patients)
cannot be specifically attributed to prophylactic ruxolitinib
treatment, because patients also received antilymphocyte
globulin as GVHD prophylaxis.

To date, there has only been 1 prospective clinical trial
testing the effects of a JAK inhibitor on patients with steroid
refractory aGVHD [72]. This trial tested the effect of 2 dif-
ferent doses (200 mg and 300 mg PO daily) of a JAK1-selective
inhibitor, itacitinib (INCB039110) on responses in patients
with steroid refractory aGVHD. Phase 1 clinical results with
itacitinib suggest an acceptable safety profile in patients with
aGVHD. In a preliminary safety analysis that included 30
evaluable patients, 1 dose-limiting toxicity was observed
(grade 3 thrombocytopenia). The most common adverse
events were thrombocytopenia or platelet count decrease
(27%), diarrhea (23%), peripheral edema (20%), fatigue (17%),
and hyperglycemia (17%). Grade 3 or 4 adverse events oc-
curred in 77% of patients. Of note, the preliminary ORRs were
83% for first-line therapy patients and 64% for steroid refrac-
tory patients.

Chronic GVHD
Ruxolitinib treatment has also demonstrated clinical

benefit in patients with cGVHD (Table 2). In a retrospective
analysis that included patients with grade 3 or 4 corticoste-
roid refractory–cGVHD in the intestines, liver, lungs,
musculoskeletal tissue, and skin (n = 41), ruxolitinib treat-
ment was associated with improvements in cGVHD and
prolonged survival [67]. ORR was achieved by 85% of pa-
tients at a median follow-up of 22.4 weeks. Median time to
response was 3 weeks; malignancy relapse occurred in 2%
of patients. Adverse events were primarily CMV reactiva-
tion (15%), grade 3 or 4 cytopenia (7%), and grade 1 or 2
cytopenia (10%). Following long-term treatment (median
follow-up, 24 months; median ruxolitinib treatment dura-
tion, 10 months), response was ongoing in 24% (10 or 41) of
patients, and response to retreatment with ruxolitinib or im-
munosuppressive therapy occurred in 85% (11 of 13) of
patients [68]. Median OS had not been reached in the long-
term analysis. Similar results were reported in a small
retrospective study (n = 19) by Khoury et al. [73].

In a prospective analysis of 2 patients with skin cGVHD
treated with ruxolitinib, both patients had a response within
1 week of treatment [23]. Serum levels of IL-6 and sIL-2R de-
creased after treatment with ruxolitinib. No ruxolitinib-
related adverse events were reported.

In a retrospective analysis of 3 patients treated with
ruxolitinib for severe cGVHD of the liver, lung, mouth, serosa,
or skin after HCT for myelofibrosis, all patients achieved partial
response or better, with a time to response ranging from 1
to 28 weeks [70]. Two patients remained on ruxolitinib and
free of cGVHD after 340 days and 14 months of treatment,
respectively. The final patient died from cGVHD 21 days after
discontinuing ruxolitinib because of gastrointestinal bleeding.

CONCLUSIONS
Available evidence suggests that JAK inhibition may be

useful for treating patients with aGVHD or cGVHD; however,
further data from prospective trials will be important to
confirm effectiveness. JAKs are important for the intracellu-
lar transduction of many cytokines [9] that regulate the
development and function of immune cells involved in GVHD,
including DCs [29], macrophages [25,38], T cells [30], B cells
[32], and neutrophils [49]. Preclinical and clinical studies have
demonstrated that JAK inhibition is associated with
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Table 2
Clinical Reports of JAK Inhibitor Treatment for GVHD

Reference JAK Inhibitor Study Type GVHD Severity Patients Prior Treatments,
Median (Range)

Follow-Up Duration,
Median (Range)

Response* OS (95% CI)

aGVHD
Zeiser etal. [67]; Zeiser

et al. [68]
Ruxolitinib Retrospective Grade 3/4 54 3 (1-7) 26.5 (3-106) wk ORR, 82% (CR, 46%) 6 mo, 79% (67%-91%)

19 (NA) mo Ongoing, 41% 12 mo, 62% (49%-75%)
Khandelwal et al. [69] Ruxolitinib Retrospective (pediatric) Grades 2-4 13 (11 efficacy evaluable) 4 (1-6) 2-306 d† ORR, 45% (CR, 9%) 13 mo,‡ 54%
Spoerl et al. [23] Ruxolitinib Pilot Grade 3/4 4 4.5 (4-7) 18.5 (15-21) wk ORR, 100% (CR, 25%) NA
Mori et al. [70] Ruxolitinib Retrospective Grade 3/4 1 2 NA ORR, 100% (CR, 100%) NA
Maffini et al. [71] Ruxolitinib Case report Grade 2 1 3 22.3 wk ORR, 100% (CR, 100%) NA
Schroeder et al. [72] Itacitinib Phase 1 prospective Grades IIB–IVD 30 NA 56.5-60.8 d§ NA NA
cGVHD
Khoury et al. [73] Ruxolitinib Retrospective Severe¶ 19 NA 18 (6-27) mo† ORR, 89% NA
Zeiser etal. [67]; Zeiser

et al. [68]
Ruxolitinib Retrospective Moderate or severe 41 3 (1-10) 22.4 (3-135) wk ORR, 85% (CR, 7%) 6 mo, 97% (92%-100%)

24 (NA) mo Ongoing, 24% 12 mo, 93% (85%-100%)
Spoerl et al. [23] Ruxolitinib Pilot Grade 3 2 4 (3-5) 23.5 (10-37) wk Response, 100% NA
Mori et al. [70] Ruxolitinib Retrospective Severe 3 2 (1-2) NA ORR, 100% (CR, 57%)# NA

CR indicates complete response; NA, not available; PR, partial response.
* Zeiser et al. [67]: aGVHD: CR, absence of any symptoms related to aGVHD; PR, improvement of ≥1 stage in severity of aGVHD in 1 organ without deterioration in another organ; cGVHD: CR, absence of any cGVHD symp-

toms; PR, discontinuation of or ≥4-week reduction of all systemic immunosuppressive therapy by ≥50%. Khandelwal et al. [69]: aGVHD: CR, resolution of aGVHD symptoms at 4 weeks of ruxolitinib treatment; PR, improvement
by ≥1 stage in severity of aGVHD in 1 organ without deterioration in another organ until 4 weeks of ruxolitinib treatment. Spoerl et al. [23]: aGVHD: same as Zeiser et al. [67]; cGVHD: response, discontinuation or ≥4-week
reduction of all systemic immunosuppressive therapy by ≥50%. Mori et al. [70], Maffini et al. [71], Khoury et al. [73]: response criteria were not defined.

† Ruxolitinib treatment duration.
‡ Median follow-up, 401 days.
§ Median treatment duration of 200- or 300-mg daily itacitinib.
¶ Fifteen of 19 patients were reported as severe per National Institutes of Health scoring; severity of the remaining 4 patients was not reported.
# Responses in individual tissues were reported separately; in 7 different tissues across all 3 patients with cGVHD, PR = 3 and CR = 4.
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reductions in the severity of aGVHD and cGVHD and pro-
longed survival [7,23-25], without interfering with beneficial
GVL activity [24,25]. Based on the mechanism of action of JAK
inhibitors, prophylactic use will need to be explored to op-
timally impact both acute and chronic GVHD after alloHCT.
Given that aGVHD is a risk factor for cGVHD [5], prophylax-
is against aGVHD, including protection against subclinical
immune organ damage, may greatly reduce the incidence or
severity of cGVHD. As clinical exploration of JAK inhibitors
in the GVHD setting continues, it will be important to eval-
uate outcomes in different patient subgroups stratified by
treatment history and affected tissues in an effort to identi-
fy patients who are most likely to benefit from JAK-targeted
therapy.
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