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SUMMARY

Somatic mutations in DNMT3A are recurrent events
across a range of blood cancers. Dnmt3a loss of
function in hematopoietic stem cells (HSCs) skews
divisions toward self-renewal at the expense of dif-
ferentiation. Moreover, DNMT3A mutations can be
detected in the blood of aging individuals, indicating
that mutant cells outcompete normal HSCs over
time. It is important to understand how these muta-
tions provide a competitive advantage to HSCs.
Herewe show thatDnmt3a-null HSCs can regenerate
over at least 12 transplant generations in mice, far
exceeding the lifespan of normal HSCs. Molecular
characterization reveals that this in vivo immortaliza-
tion is associated with gradual and focal losses of
DNA methylation at key regulatory regions associ-
ated with self-renewal genes, producing a highly
stereotypical HSC phenotype in which epigenetic
features are further buttressed. These findings lend
insight into the preponderance of DNMT3A muta-
tions in clonal hematopoiesis and the persistence
of mutant clones after chemotherapy.

INTRODUCTION

Embryonic stem cells (ESCs) can be propagated indefinitely

in vitro while maintaining their defining stem cell properties of

self-renewal and differentiation. However, self-renewal of so-

matic stem cells such as hematopoietic stem cells (HSCs) ap-

pears to have a limit, as serial transplantation invariably results

in loss of repopulation ability (Micklem et al., 1987; Siminovitch

et al., 1964; Harrison and Astle, 1982). Understanding these

limitations is important for dissecting stem cell regulation and

developing strategies to expand HSCs ex vivo for cell and

gene therapy applications.

We previously showed that genetic inactivation of de novo

DNA methyltransferase 3a (Dnmt3a) enhances self-renewal of

murine HSCs (Challen et al., 2011, 2014). In humans, mutations

in DNMT3A have been associated with clonal hematopoiesis of

indeterminate potential (CHIP) in aging individuals (Genovese

et al., 2014; Jaiswal et al., 2014; Xie et al., 2014). DNMT3A

mutations in CHIP typically result in loss of activity through diver-

gent mechanisms (Kim et al., 2013; Russler-Germain et al., 2014;

Spencer et al., 2017), which probably confers enhanced self-

renewal and enables them to slowly outcompete their normal

counterparts over a long timescale.

Although loss of Dnmt3a promotes self-renewal, the degree

of enhancement is undefined. Given that DNMT3A mutations

are frequent in hematologic malignancies (Yang et al., 2015),

are associated with a pre-malignant state (Shlush et al., 2014;

Corces-Zimmerman et al., 2014), and can repopulate after

chemotherapy (Pløen et al., 2014), it is critical to understand

the mechanisms of resilience and longevity of DNMT3A mutant

HSCs. Here we rigorously examine the replicative limits of

HSCs lacking Dnmt3a.

RESULTS

Loss of Dnmt3a Provides HSCswith Indefinite Longevity
We previously showed that Dnmt3a-null (Mx1-Cre:Dnmt3afl/fl

HSCs treated with pIpC = Dnmt3aKO) HSCs could self-renew

for up to four rounds of serial transplantation (Challen et al.,

2011). We terminated these experiments after four transplants

because control HSCs failed to self-renew past this point.

However, as Dnmt3aKO HSCs continued to show robust HSC
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Figure 1. Loss of Dnmt3a Provides HSCs with Indefinite Longevity

(A) Schematic representation of serial HSC transplantation process. Tx, transplant stage; HSCs, hematopoietic stem cells; WBM, whole bone marrow.

(B and C) Representative flow cytometry plots showing donor-derived cell (CD45.2+) contribution to bone marrow HSC compartment (B) and peripheral blood (C)

at the end of indicated stage of transplantation. N.D., not determined.

(legend continued on next page)
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repopulation, we hypothesized that Dnmt3a loss of function

may remove inherent constraints on HSC self-renewal and

longevity. Here, we tested these limits. Phenotypic HSCs

(Lineage� c-Kit+ Sca-1+ CD48� CD150+ CD45.2+) were purified

from prior recipients (CD45.1+) using flow cytometry. Two

hundred HSCs were re-injected along with fresh whole bone

marrow (WBM) competitor cells (CD45.1+) into new recipients

(Figure 1A). Eighteen to 24 weeks later, recipients were sacri-

ficed for analysis and continued HSC transplantation. After

each transplant round, donor-derived (CD45.2+) HSCs were

quantified (Figure 1B). After the third transplant, Dnmt3aKO

HSCs failed to generate substantial peripheral blood progeny

(Figures 1C and 1D). Nevertheless, robust repopulation of

Dnmt3aKO HSCs was readily detectable in the bone marrow of

recipient mice over 12 rounds of transplantation (Figure 1D).

These HSCs displayed all the canonical markers of long-term

HSCs (Figure S1A), and the expanded population was highly

restricted to the HSC pool (Figure S1B). This degree of self-

renewal far exceeds the potential of normal HSCs.

When Dnmt3aKO HSCs are forced to differentiate in the

absence of WBM competitor cells, a variety of hematopoietic

pathologies arise (Celik et al., 2015; Mayle et al., 2015). To

determine whether the immortalized HSCs were transformed,

we transplanted 1 3 105 ninth-generation transplant (Tx-9)

Dnmt3aKO HSCs without competitor WBM. These animals suc-

cumbed to bone marrow failure (Figure 1E) with anemia and pe-

ripheral cytopenias (Figure 1F), likely resulting from the inability

of Dnmt3aKO HSCs to generate sufficient blood elements to sus-

tain the recipients in the absence of wild-type (WT) support cells.

Bone marrow histology (data not shown) showed no evidence

of leukemic transformation. Expanded Dnmt3aKO HSCs were

not mobilized in the blood (Figure S1C), and no extramedullary

hematopoiesis was observed in the spleen (Figure S1D). Mice

transplanted with control or Dnmt3aKO HSCs contained similar

numbers of stromal cells (Figure S1E) and appropriate bone

marrow localization (Figure S1F). Dnmt3aKO HSCs showed

similar proximity to endothelial cells as control HSCs (FigureS1G)

but were found to be closer to neighboring HSCs (Figure S1H),

as would be expected from their clonal expansion.

Dnmt3a Controls DNA Methylation at HSC Regulatory
Elements
We performed molecular comparisons of age-matched control

and early-stage transplant Dnmt3aKO HSCs with late-stage

transplant Dnmt3aKO HSCs. Global DNA methylation analysis

(Figure S2A; Table S1) showed that Tx-11 Dnmt3aKO HSCs

retained their overall methylation profile, with the majority of

CpGs still methylated throughout the genome, but displayed

DNA hypomethylation compared with control HSCs. This pattern

was similar to, but more exaggerated than, the depletion of DNA

methylation in early-stage transplant (Tx-3) Dnmt3aKO HSCs

(Figure 2A).

Differentially methylated regions (DMRs) were defined asmore

than three CpGs within 300 bp that show >20% methylation

change in the same direction. Of the genomic regions showing

differential methylation both in Tx-3 Dnmt3aKO (to age-matched

WT) and Tx-11 Dnmt3aKO (versus Tx-3) HSCs, 556 regions

hypermethylated in Tx-3 were equally as likely to gain (297)

or lose (259) DNA methylation in Tx-11 Dnmt3aKO HSCs (Fig-

ure 2B), suggesting that this hypermethylation was not stable.

Conversely, 4,313 of 4,986 regions (86.5%) of the genome that

lost DNA methylation in early-passage Dnmt3aKO HSCs (hypo-

DMRs) showed a trend toward continued loss of methylation in

later stage transplant Dnmt3aKO HSCs. There was significant

enrichment for these ‘‘hypo_hypo’’ DMRs in stem cell enhancer

elements (Figure 2C), but not CpG islands or gene promoters.

‘‘Hypo_hypo’’ DMRs were also enriched for transcription factor

binding sites (TFBSs; Figure S2B), including hematopoietic reg-

ulators such as Gata2 (Figure S2C). This enrichment was not

due to the difference in DMR numbers, as 100 random computa-

tional samplings of 600 ‘‘hypo_hypo’’ and ‘‘hypo_hyper’’ DMRs

showed the same trend (Figure S2D).

Because loss of DNAmethylation inDnmt3aKO HSCs is partic-

ularly concentrated in DNA methylation canyons (Jeong et al.,

2014), we examined canyons in late-passage HSCs. There are

1,093 canyons in WT HSCs (Jeong et al., 2014), which can be

subdivided on the basis of histone marks into 565 active

(H3K4me3+), 205 bivalent (H3K4me3+ H3K27me3+), and 323

inactive (H3K27me3+) canyons. Targeted loss of DNA methyl-

ation at active canyon walls was previously noted in early-pas-

sage Dnmt3aKO HSCs (Jeong et al., 2014). In Tx-11 Dnmt3aKO

HSCs, there was further erosion of these walls (Figure 2D), and

hypomethylation extended from the canyon edges (Figure S2E).

In contrast, bivalent and inactive canyons displayed increased

DNA methylation in Tx11 Dnmt3aKO HSCs (Figure 2E) and no

changes in the canyon border region (Figure S2E). Hypermethy-

lation of inactive canyons did not lead to altered gene expres-

sion, as these genes are typically expressed at negligible levels

(Figure 2F). However, genes in bivalent canyons, exemplified

by Cxcl12 (Figure 2E), showed repression following hyper-

methylation with extended passage. As many genes contained

in such canyons are important for HSC lineage commitment,

this hypermethylation may be amechanism that inhibits differen-

tiation of the mutant HSCs.

RNA sequencing (RNA-seq) was performed to determine the

impact of DNAmethylation changes on gene expression. In gen-

eral, genes that were differentially expressed between control

and Tx-3 Dnmt3aKO HSCs showed similar expression patterns

in Tx-9 Dnmt3aKO HSCs (Figure S2F). We noted previously that

early-passage Dnmt3aKO HSCs exhibited increased expression

of genes associated with HSC identity (Challen et al., 2011),

defined as ‘‘HSC fingerprint’’ genes (Chambers et al., 2007).

This trend continued in Tx-9 Dnmt3aKO HSCs. Although the ma-

jority of HSC fingerprint genes are upregulated in mutant HSCs,

(D) Quantification of donor HSC-derived peripheral blood chimerism (dashed gray line) compared with absolute number of donor-derived HSCs per mouse

generated from Dnmt3aKO HSCs at the end of each transplant (n = 5–29 recipients per transplant generation).

(E) Time to morbidity in mice transplanted with 1 3 105 Dnmt3aKO HSCs in the absence of WBM competitor cells.

(F) Blood counts from moribund mice showing leukopenia, anemia, and thrombocytopenia. Gray shaded areas indicate normal range for WT mice.

See also Figure S1.
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exceptions include several imprinted genes (Figure S2G) such

as Ndn, Gtl2, and Peg3 implicated in stem cell function (Kubota

et al., 2009; Qian et al., 2016; Berg et al., 2011). In summary, lack

of Dnmt3a over serial passage stabilizes the self-renewing

epigenome and leads to an inability to silence genes associated

with maintenance of HSC identity.

A B C

E

D

F

Figure 2. Dnmt3a Controls DNA Methylation at HSC Regulatory Elements

(A) Hierarchical clustering on the basis of CpG methylation ratio of control, Tx-3, and Tx-11 Dnmt3aKO HSCs.

(B) Fraction of hyper- or hypo-methylated DMRs in Tx-3 Dnmt3aKO HSCs (versus control HSCs) that became further hyper- or hypo-methylated in Tx-11

Dnmt3aKO HSCs (versus Tx-3 Dnmt3aKO HSCs).

(C) Enrichment analysis of 4,313 ‘‘hypo_hypo’’ regions compared with 673 control regions (‘‘hypo_hyper’’). Size of data points represents the overlap percentage

with the size of the corresponding regulatory regions in the denominator.

(D) DNAmethylation levels of active, bivalent, and inactive canyons in control (WT), Tx-3Dnmt3aKO, and Tx-11Dnmt3aKOHSCs. Flanking regions are extended by

the same length as the corresponding canyon (±13).

(E) DNA methylation profile of active, inactive, and bivalent canyon loci by WGBS. The height of each bar represents the DNA methylation level of an individual

CpG. Also shown for Cxcl12 are histone marks defining bivalent canyons and RNA-seq expression.

(F) Expression level changes of genes within active and bivalent canyon regions.

See also Figure S2.
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Figure 3. Differentiation Capacity Is Lost but Transformation Potential Is Retained in Immortalized Dnmt3aKO HSCs

(A) Representative flow cytometry plots showing bone marrow analysis of mice transplanted with Tx-11 Dnmt3aKO HSCs transduced with control (GFP) or

Dnmt3a-expressing (Dnmt3a) lentivirus 18 weeks post-transplant.

(B) Frequency of transduced Tx-11 Dnmt3aKO HSCs in bone marrow of recipient mice 18 weeks post-transplant.

(C) Cell cycle analysis of the indicated genotype/transplant stage showing proportion of quiescent (G0) HSCs.

(D) Quantification of apoptotic HSCs of the indicated genotype/transplant stage.

(E) Expression of pro-apoptotic genes in Tx-11 Dnmt3aKO HSCs transduced with control (GFP) or Dnmt3a-expressing (Dnmt3a) lentivirus.

(F) Clonogenic myeloid potential of HSCs from the indicated genotype/transplant stage.

(legend continued on next page)
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Differentiation Capacity Is Lost but Transformation
Potential Is Retained in Immortalized Dnmt3aKO HSCs
We rescued late-passage Dnmt3aKO HSCs with enforced

expression of Dnmt3a to determine if differentiation capacity

could be restored. Tx-11 Dnmt3aKO HSCs were transduced

with a lentivirus expressing full-length Dnmt3a (with bicistronic

GFP) and transplanted. Re-expression of Dnmt3a led to the

emergence of GFP+ cells in the peripheral blood at 4 weeks

post-transplant (Figures S3A and S3B), which was not observed

from transduction of the same HSCs with the control lentivirus.

But ultimately, this initial output was not sustained (Figure S3C).

However, ectopic expression of Dnmt3a did abrogate clonal

expansion of the mutant HSCs in the bone marrow (Figure 3A).

Although the total HSC frequency was identical in recipients of

Dnmt3aKO HSCs transduced with control or Dnmt3a-expressing

lentivirus, GFP+ HSCs were severely depleted when expression

of Dnmt3a was restored (Figure 3B). Re-expression of Dnmt3a

induced proliferation (Figures 3C and S3D) and increased

apoptosis (Figures 3D and S3E), which was associated with

upregulation of the pro-apoptotic genes Bbc3 (puma) and Bax

(Figure 3E).

To evaluate differentiation capacity without cellular competi-

tion, myeloid potential of GFP+ Dnmt3aKO HSCs was quantified

by colony-forming assay. Myeloid potential of Tx-12 Dnmt3aKO

HSCs was severely compromised, and their differentiation was

not rescued by complementation with Dnmt3a-expressing lenti-

virus (Figure 3F). Moreover, the colonies that were produced by

late-passage Dnmt3aKO HSCs were predominantly uni-lineage

(Figure 3F). Similarly, re-expression of Dnmt3a was not able to

restore T cell potential on OP9-DL1 co-culture (Schmitt and

Zúñiga-Pfl€ucker, 2002). Although Dnmt3a expression increased

CD4+ T cell production, this output was marginal compared with

control and early-passage Dnmt3aKO HSCs (Figure S3F). But

analysis of the double-negative (DN; CD4� CD8a�) population
did show development through the early stages of T cell matura-

tion. In fact, re-expression of Dnmt3a generated an abnormal

CD25bright DN2 cell population (Figure S3G), consistent with

our observation that Dnmt3a is necessary for developmental

progression of T cell progenitors (Kramer et al., 2017).

We then considered whether differentiation could bypass

Dnmt3a. Ebf1 is a master regulator of B cell potential (Lin and

Grosschedl, 1995) located in a canyon that becomes hyper-

methylated with extended passage of Dnmt3aKO HSCs. Tx-12

Dnmt3aKO HSCs were transduced with control, Dnmt3a-ex-

pressing, or Ebf1-expressing lentivirus and co-cultured on OP9

stromal cells for 14 days. The B cell (B220+ CD19+) differentiation

deficit in early-passage Dnmt3aKO HSCs was restored by

expression of Dnmt3a, and like control HSCs, B cell output of

early-passage Dnmt3aKO HSCs was enhanced by overexpres-

sion of Ebf1 (Figure 3G). In contrast, overexpression of neither

Dnmt3a nor Ebf1 was able to restore any B cell potential to

late-passage Dnmt3aKO HSCs (Figure 3G).

If differentiation potential was completely silenced, perhaps

immortalized Dnmt3aKO HSCs would be incapable of malignant

transformation, given that some differentiation is required for

generation of acute myeloid leukemia (AML) (Ye et al., 2015).

Tx-12 Dnmt3aKO HSCs were transduced with a lentivirus

expressing KrasG12D, a common mutation co-occurring with

DNMT3A mutations in AML (Ley et al., 2013), and transplanted.

Once GFP+ cells began emerging in the blood, mice rapidly suc-

cumbed (Figure 3H) to a fully penetrant AML with a c-Kit+

CD11b+ phenotype (Figure 3I). Thus, although differentiation

was irreversibly blocked in immortalized Dnmt3aKO HSCs,

they retained the potential for malignant transformation when

presented with an appropriate co-operating mutation.

Molecular Analysis of Dnmt3a Rescue, Dominant-
Negative Mutant, and Clonal Hematopoiesis
DNA methylation was compared between Tx-12 Dnmt3aKO

HSCs transduced with either control or Dnmt3a-expressing

lentivirus. Of 361 genomic regions hypomethylated in Tx-11

Dnmt3aKO HSCs versus Tx-3 Dnmt3aKO HSCs, 280 (77.6%)

became hypermethylated in Tx-12 Dnmt3aKO HSCs following

re-expression of Dnmt3a, indicating that DNA methylation was

re-established at the correct regions, including canyon bound-

aries (Figure 4A) and enhancers (Figure 4B). The re-establish-

ment of DNA methylation patterns did not necessarily correlate

with corresponding gene expression differences (Figure S4A),

but perhaps this would normalized with further re-expression

of Dnmt3a (Figure S4B).

We also compared the DNAmethylation changes inDnmt3aKO

HSCswith those in the context ofmutations in patients. Themost

prevalent DNMT3A mutation is a missense at amino acid 882

(Ley et al., 2010). This mutation creates a dominant-negative

protein with reduced DNA methyltransferase capacity (Russler-

Germain et al., 2014; Kim et al., 2013). Global DNA methylation

was performed on Tx-3 Dnmt3aR878H/+ HSCs (Dnmt3aR878;

mouse homolog of human DNMT3AR882H) (Guryanova

et al., 2016) and compared with Tx-3 Dnmt3aKO HSCs. Tx-3

Dnmt3aR878 HSCs displayed a self-renewal advantage over con-

trol HSCs, but not to the same degree as Dnmt3aKO HSCs (Fig-

ure S4C). On a global scale, Dnmt3aR878 showed hypomethyla-

tion throughout the genome, although not to the same degree

as Dnmt3aKO HSCs (Figure 4C). There was high correlation be-

tween the regions affected by changes in DNA methylation in

Dnmt3aR878 and Dnmt3aKO HSCs. Of the DMRs shared between

Dnmt3aR878 and Dnmt3aKO HSCs compared with WT, 95.0%

(1,653 of 1,730) showed hypermethylation in both mutant geno-

types, while 95.6% (6,742 of 7,032) underwent hypomethyla-

tion in both mutant HSC genotypes. Of the 12,644 hypo-DMRs

in Dnmt3aR878 HSCs compared with WT, 6,724 (53.2%) are

hypo-DMRs in Dnmt3aKO HSCs at the exact same genomic

co-ordinates, with this fraction increasing if the genome win-

dows are extended. Although overall methylation patterns were

(G) B cell potential of HSCs from the indicated genotype/transplant stage transduced with control (GFP), Dnmt3a-expressing, or Ebf1-expressing lentivirus.

(H) Time to morbidity in mice transplanted with Tx-12 Dnmt3aKO HSCs transduced with lentivirus expressing KrasG12D.

(I) Phenotype of KrasG12D-driven AML.

Mean ± SEM values are shown. *p < 0.05, **p < 0.01. See also Figure S3.
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Figure 4. Molecular Analysis of Dnmt3a Rescue, Dominant-Negative Mutant, and Clonal Hematopoiesis

(A and B) WGBS profiles showing increased DNA methylation (green boxes) in Gata2 canyon (A) and Gpr56 enhancer (B) in Tx-11 Dnmt3aKO HSCs transduced

with Dnmt3a-expressing lentivirus.

(C) DNA methylation ratio of CpGs throughout the genome in HSCs of the indicated genotypes.

(D) Methylation levels of CpGs within gene bodies, promoters, and enhancers.

(E) DNA methylation profiles of the HoxB locus. Green box shows hypomethylation in Dnmt3aKO, which is not observed in Dnmt3aR878 HSCs.

(F) Expression levels of HoxB genes in Tx-3 Dnmt3aKO and Tx-3 Dnmt3aR878 HSCs. Data are expressed as relative fold change to control comparators in each

sequencing experiment (n = 2–4 biological replicates per genotype).

(G and H) DNA methylation profile of Gata3 locus showing hypomethylation of Dnmt3aKO (3aKO) HSCs (green box) (G), corresponding with increased gene

expression (H), not conserved in Dnmt3aR878 (R878) HSCs. Expression data are expressed as relative fold change to control comparators in each sequencing

experiment (n = 2–4 biological replicates per genotype).

(I and J) Total number of somatic variants (I) and variant allele fraction (J) in HSCs from the indicated genotype/transplant stage.

See also Figure S4.
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highly overlapping between the Dnmt3a mutant HSCs, there

were distinct focal changes. For example, Dnmt3aR878 HSCs

did not exhibit the hypermethylation of enhancer elements of dif-

ferentiation factors such as Pax5 and Bcl11b (Figure S4D). Simi-

larly, the HoxB gene cluster, which becomes significantly hypo-

methylated in Dnmt3aKO HSCs, did not show the same loss of

DNA methylation in Dnmt3aR878 HSCs (Figure 4E) and corre-

sponding transcriptional upregulation (Figure 4F). A CpG island

in the Gata3 promoter is particularly sensitive to Dnmt3a loss

of function (Challen et al., 2011), but DNA methylation remained

intact for this region in Dnmt3aR878 HSCs (Figure 4G), and gene

expression was unchanged (Figure 4H). These findings suggest

that Dnmt3aKO and Dnmt3aR878H mutations in HSCs result in

similar overall DNA methylation changes, but methylation differ-

ences at specific stem cell enhancer elements may be important

for the differentiation defects in the loss-of-function model.

The expansion of Dnmt3aKO HSCs over extended passage

was reminiscent of human CHIP, which can persist in a benign

state for decades. To determine if this HSC expansion was

associated with acquisition of co-operating mutations, exome

sequencing was performed. The overall number of somatic var-

iants was reduced in Tx-12 Dnmt3aKO HSCs compared with

early-passage HSCs (Figure 4I), but the variant allele fraction

(VAF) of these variants was higher (Figure 4J), indicating the

transplanted HSC pool was becoming more homogeneous

over time. A reduced number of variants is consistent with

reduced clonal complexity, while an increase in the VAF of indi-

vidual variants (Tx-3Dnmt3aKO HSCs = 0.2400, Tx-12Dnmt3aKO

HSCs = 0.4381) is consistent with heterozygous polymorphisms

originating from dominant clones. However, analysis of the high-

confidence somatic variants did not identify any acquired muta-

tions which have been associated with human CHIP (Table S4).

As Dnmt3a has been suggested to regulate telomeres (Gon-

zalo et al., 2006) and telomere shortening limits HSC transplant-

ability (Allsopp et al., 2003), we computationally predicted telo-

mere length (Ding et al., 2014). Tx-12 Dnmt3aKO HSCs showed

no erosion of telomere length (Figure S4E; Table S4). Cumula-

tively, these data suggest Dnmt3a loss of function is sufficient

to bias HSC fate decisions and initiate the pre-malignant condi-

tionofCHIPbut is not sufficient todrivemalignant transformation.

DISCUSSION

Here we show that loss of Dnmt3a endows HSCs with immor-

tality in vivo. The self-renewal potential of Dnmt3aKO HSCs far

exceeds that of normal HSCs and the lifespan of the mice from

which they were derived. Our data establish that HSCs do not

have an inherently finite lifespan but that loss of Dnmt3a aug-

ments epigenetic features that enforce self-renewal and enable

HSCs to be propagated indefinitely. Further examination of

the mechanisms perpetuating immortality in Dnmt3aKO HSCs

may provide a window for artificially extending the lifespan of

HSCs, an important biomedical application in the context of

the aging human population.

The differentiation block of immortal Dnmt3aKO HSCs cannot

be rescued by re-expression of Dnmt3a or transcription factors

such as Ebf1. But re-expression of Dnmt3a abrogated the self-

renewal phenotype, suggesting the roles of Dnmt3a in self-

renewal and differentiation can be uncoupled. Our data also

demonstrate that malignant transformation is agnostic to DNA

methylation state: both early-passage (Mayle et al., 2015; Celik

et al., 2015) and late-passage (this study) Dnmt3aKO HSCs will

generate malignancies when an appropriate co-operating muta-

tion is acquired. How oncogenic signals can overcome the differ-

entiation block of Dnmt3aKO HSCs to generate disease warrants

further investigation.

Although we use an artificial system of serial transplantation,

we consider the extent to which these insights may be extrapo-

lated to humans. DNMT3Amutations are the most common mu-

tation in CHIP (Xie et al., 2014; Jaiswal et al., 2014; Genovese

et al., 2014), with increasing frequency with age (McKerrell

et al., 2015; Young et al., 2016). But as CHIP is identified by as-

saying peripheral blood, if DNMT3A mutant human HSCs also

show compromised differentiation, we predict the proportion

ofmutant HSCs in the bonemarrow is underestimated by current

studies. Our experiments are also distinct from the human sce-

nario in that each transplant of Dnmt3aKO HSCs contains fresh

WT bone marrow replete with normal HSCs. In the aging human,

WT HSCs diminish in function (Pang et al., 2011), offering less

competition to emerging DNMT3A mutant clones. Even partial

loss ofDNMT3A function through weak heterozygousmutations,

likely enables mutant HSCs to outcompeteWT counterparts. We

also show that a dominant-negative Dnmt3a mutation (R878)

equivalent to the frequent human R882 mutation results in very

similar DNA methylation changes to the null allele, suggesting

most DNMT3A mutations likely produce similar molecular and

cellular consequences at least at the level of clonal expansion.

The phenotype of Dnmt3aKO HSCs is unique. Mutation of

some other genes can enhance HSCs capacity (Rossi et al.,

2012), but none can remove the inherent limits on self-renewal

and replicative lifespan like Dnmt3a. Our data add to the

emerging view that HSCs are in constant competition with their

siblings. Perturbations that confer an advantage to one HSC

over another will be selected depending on the specific context.

With the enormous self-renewal capacity of Dnmt3a-null HSCs

demonstrated here, a single mutant HSC in human bone marrow

can outcompete WT counterparts over a period of many years,

even if initially vastly outnumbered.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures.

Mice and Transplantation

All animal procedures were approved by Institutional Animal Care and Use

Committees and performed in strict adherence toWashington University institu-

tional guidelines. All mice were C57BL/6 background. Recipient CD45.1 mice

(8–10 weeks of age; strain #002014; The Jackson Laboratory) were given a split

dose of 10.5 Gy irradiation. Mx1-Cre(+):Dnmt3afl/fl mice have been previously

described by our group (Challen et al., 2011). Control mice were Mx1-

Cre(+):Dnmt3a+/+ mice. Deletion of floxed alleles was induced by intraperitoneal

injectionof300mgpIpC (#p1530;Sigma-Aldrich)six timeseveryotherday inadult

mice (10–12 weeks old). Equal numbers of male and female mice were used.

For competitive transplants, 200HSCs (Lineage� [Gr-1,Mac-1, B220, CD3e,

Ter119], c-Kit+, Sca-1+, CD48�, CD150+) were transplanted with 2.53 105 WT

CD45.1 competitor bonemarrow. For serial transplantation, 200donor-derived

HSCs were isolated from the previous recipients 18–24 weeks post-transplant
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and transplanted into new lethally irradiated recipients along with fresh WT

competitor bone marrow. Recipients were bled through the retro-orbital route

and analyzed for donor-derived lineage contribution by flow cytometry.

Quantification and Statistical Analysis

Statistical comparisons between groups were evaluated using Student’s t test

or ANOVA as appropriate using Prism 6 (GraphPad). All data are presented

as mean ± SE. Time to morbidity is presented in Kaplan-Meier survival

curves and analyzed using the log-rank test. Statistical significance is denoted

as *p < 0.05, **p < 0.01, and ***p < 0.001; n indicates the number of biological

replicates within each group.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw and processed whole-genome bisulfite

sequencing (WGBS), histonemodification, and RNA sequencing data reported

in this paper is GEO: GSE98191. UCSCGenome Browser tracks (mousemm9)

can be accessed from the hub http://lilab.research.bcm.edu/dldcc-web/lilab/

hjpark/multipleTransplants/hub.txt. The accession number for the exome

sequencing data reported in this paper is SRA: SRP133364.
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four figures, and four tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.03.025.

ACKNOWLEDGMENTS

We thank the Siteman Cancer Center (Washington University, Core Grant

CA91842) and the Dan L. Duncan Cancer Center (Baylor College of Medicine,

Core Grant CA125123). This work was supported by NIH grants DK102428 (to

G.A.C.), HG007538 and CA193466 (to W.L.), HL132074 (to L.D.), CA178191

(to O.A.G.), and DK092883, CA183252 and AG036695, and CPRIT RP140053

(to M.A.G.). M.J. was supported by grant 5T32DK60445. H.C. was supported

by an American Society of Hematology scholar award. E.L.O. was supported

by NIH grant 5T32CA113275. Y.L. is supported by a NYSTEM training grant.

J.M.R. was supported by grant GM056929.

AUTHOR CONTRIBUTIONS

Conceptualization, G.A.C.; Methodology, M.J., H.J.P., H.C., Y. Lee, W.L.,

M.A.G., and G.A.C.; Software, H.J.P., J.M.R., B.R., and W.L.; Validation,

M.J., H.J.P., M.A.G., and G.A.C.; Formal Analysis, M.J., H.J.P., J.M.R., B.R.,

M.A.G., and G.A.C.; Investigation, M.J., H.C., E.L.O., A.G., Y. Lei, and

G.A.C.; Resources, L.D., O.A.G., W.L., M.A.G., and G.A.C.; Data Curation,

H.J.P., W.L., M.A.G., and G.A.C.; Writing – Original Draft Preparation, M.J.,

H.J.P., H.C., and G.A.C.; Writing – Review & Editing, M.A.G. and G.A.C.; Visu-

alization, M.J., H.J.P., H.C., E.L.O., M.A.G., and G.A.C.; Supervision, M.A.G.

and G.A.C.; Project Administration, M.A.G. and G.A.C.; Funding Acquisition,

M.A.G. and G.A.C.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 11, 2017

Revised: January 19, 2018

Accepted: March 7, 2018

Published: April 3, 2018

REFERENCES

Allsopp, R.C., Morin, G.B., DePinho, R., Harley, C.B., and Weissman, I.L.

(2003). Telomerase is required to slow telomere shortening and extend replica-

tive lifespan of HSCs during serial transplantation. Blood 102, 517–520.

Berg, J.S., Lin, K.K., Sonnet, C., Boles, N.C., Weksberg, D.C., Nguyen, H.,

Holt, L.J., Rickwood, D., Daly, R.J., and Goodell, M.A. (2011). Imprinted genes

that regulate early mammalian growth are coexpressed in somatic stem cells.

PLoS ONE 6, e26410.

Celik, H., Mallaney, C., Kothari, A., Ostrander, E.L., Eultgen, E., Martens, A.,

Miller, C.A., Hundal, J., Klco, J.M., and Challen, G.A. (2015). Enforced differen-

tiation of Dnmt3a-null bonemarrow leads to failure with c-Kit mutations driving

leukemic transformation. Blood 125, 619–628.

Challen, G.A., Sun, D., Jeong, M., Luo, M., Jelinek, J., Berg, J.S., Bock, C., Va-

santhakumar, A., Gu, H., Xi, Y., et al. (2011). Dnmt3a is essential for hemato-

poietic stem cell differentiation. Nat. Genet. 44, 23–31.

Challen, G.A., Sun, D., Mayle, A., Jeong, M., Luo, M., Rodriguez, B., Mallaney,

C., Celik, H., Yang, L., Xia, Z., et al. (2014). Dnmt3a and Dnmt3b have overlap-

ping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15,

350–364.

Chambers, S.M., Boles, N.C., Lin, K.Y., Tierney, M.P., Bowman, T.V.,

Bradfute, S.B., Chen, A.J., Merchant, A.A., Sirin, O., Weksberg, D.C., et al.

(2007). Hematopoietic fingerprints: an expression database of stem cells

and their progeny. Cell Stem Cell 1, 578–591.

Corces-Zimmerman, M.R., Hong, W.J., Weissman, I.L., Medeiros, B.C., and

Majeti, R. (2014). Preleukemic mutations in human acute myeloid leukemia

affect epigenetic regulators and persist in remission. Proc. Natl. Acad. Sci.

U S A 111, 2548–2553.

Ding, Z., Mangino, M., Aviv, A., Spector, T., Durbin, R., and Consortium, U.K.;

UK10K Consortium (2014). Estimating telomere length from whole genome

sequence data. Nucleic Acids Res. 42, e75.

Genovese, G., Kähler, A.K., Handsaker, R.E., Lindberg, J., Rose, S.A.,

Bakhoum, S.F., Chambert, K., Mick, E., Neale, B.M., Fromer, M., et al.

(2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA

sequence. N. Engl. J. Med. 371, 2477–2487.

Gonzalo, S., Jaco, I., Fraga, M.F., Chen, T., Li, E., Esteller, M., and Blasco,

M.A. (2006). DNA methyltransferases control telomere length and telomere

recombination in mammalian cells. Nat. Cell Biol. 8, 416–424.

Guryanova, O.A., Shank, K., Spitzer, B., Luciani, L., Koche, R.P., Garrett-Ba-

kelman, F.E., Ganzel, C., Durham, B.H., Mohanty, A., Hoermann, G., et al.

(2016). DNMT3Amutations promote anthracycline resistance in acute myeloid

leukemia via impaired nucleosome remodeling. Nat. Med. 22, 1488–1495.

Harrison, D.E., and Astle, C.M. (1982). Loss of stem cell repopulating ability

upon transplantation. Effects of donor age, cell number, and transplantation

procedure. J. Exp. Med. 156, 1767–1779.

Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P.V., Mar,

B.G., Lindsley, R.C., Mermel, C.H., Burtt, N., Chavez, A., et al. (2014). Age-

related clonal hematopoiesis associated with adverse outcomes. N. Engl. J.

Med. 371, 2488–2498.

Jeong,M., Sun, D., Luo,M., Huang, Y., Challen, G.A., Rodriguez, B., Zhang, X.,

Chavez, L., Wang, H., Hannah, R., et al. (2014). Large conserved domains of

low DNA methylation maintained by Dnmt3a. Nat. Genet. 46, 17–23.

Kim, S.J., Zhao, H., Hardikar, S., Singh, A.K., Goodell, M.A., and Chen, T.

(2013). A DNMT3A mutation common in AML exhibits dominant-negative

effects in murine ES cells. Blood 122, 4086–4089.

Kramer, A.C., Kothari, A., Wilson, W.C., Celik, H., Nikitas, J., Mallaney, C.,

Ostrander, E.L., Eultgen, E., Martens, A., Valentine, M.C., et al. (2017). Dnmt3a

regulates T-cell development and suppresses T-ALL transformation. Leuke-

mia 31, 2479–2490.

Kubota, Y., Osawa, M., Jakt, L.M., Yoshikawa, K., and Nishikawa, S. (2009).

Necdin restricts proliferation of hematopoietic stem cells during hematopoietic

regeneration. Blood 114, 4383–4392.

Ley, T.J., Ding, L., Walter, M.J., McLellan, M.D., Lamprecht, T., Larson, D.E.,

Kandoth, C., Payton, J.E., Baty, J., Welch, J., et al. (2010). DNMT3Amutations

in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433.

Ley, T.J., Miller, C., Ding, L., Raphael, B.J., Mungall, A.J., Robertson, A., Hoad-

ley, K., Triche, T.J., Jr., Laird, P.W., Baty, J.D., et al.; Cancer Genome Atlas

Cell Reports 23, 1–10, April 3, 2018 9

http://lilab.research.bcm.edu/dldcc-web/lilab/hjpark/multipleTransplants/hub.txt
http://lilab.research.bcm.edu/dldcc-web/lilab/hjpark/multipleTransplants/hub.txt
https://doi.org/10.1016/j.celrep.2018.03.025
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref1
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref1
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref1
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref2
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref2
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref2
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref2
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref3
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref3
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref3
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref3
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref4
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref4
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref4
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref5
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref5
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref5
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref5
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref6
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref6
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref6
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref6
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref7
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref7
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref7
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref7
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref8
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref8
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref8
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref9
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref9
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref9
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref9
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref10
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref10
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref10
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref11
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref11
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref11
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref11
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref12
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref12
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref12
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref13
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref13
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref13
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref13
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref14
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref14
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref14
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref15
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref15
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref15
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref16
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref16
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref16
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref16
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref17
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref17
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref17
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref18
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref18
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref18
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref19
http://refhub.elsevier.com/S2211-1247(18)30354-1/sref19


Research Network (2013). Genomic and epigenomic landscapes of adult

de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074.

Lin, H., and Grosschedl, R. (1995). Failure of B-cell differentiation in mice lack-

ing the transcription factor EBF. Nature 376, 263–267.

Mayle, A., Yang, L., Rodriguez, B., Zhou, T., Chang, E., Curry, C.V., Challen,

G.A., Li, W., Wheeler, D., Rebel, V.I., and Goodell, M.A. (2015). Dnmt3a loss

predisposes murine hematopoietic stem cells to malignant transformation.

Blood 125, 629–638.

McKerrell, T., Park, N., Moreno, T., Grove, C.S., Ponstingl, H., Stephens, J.,

Crawley, C., Craig, J., Scott, M.A., Hodkinson, C., et al.; Understanding

Society ScientificGroup (2015). Leukemia-associated somaticmutations drive

distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 1239–1245.

Micklem, H.S., Lennon, J.E., Ansell, J.D., and Gray, R.A. (1987). Numbers and

dispersion of repopulating hematopoietic cell clones in radiation chimeras as

functions of injected cell dose. Exp. Hematol. 15, 251–257.

Pang, W.W., Price, E.A., Sahoo, D., Beerman, I., Maloney, W.J., Rossi, D.J.,

Schrier, S.L., and Weissman, I.L. (2011). Human bone marrow hematopoietic

stem cells are increased in frequency andmyeloid-biased with age. Proc. Natl.

Acad. Sci. U S A 108, 20012–20017.

Pløen, G.G., Nederby, L., Guldberg, P., Hansen, M., Ebbesen, L.H., Jensen,

U.B., Hokland, P., and Aggerholm, A. (2014). Persistence of DNMT3A

mutations at long-term remission in adult patients with AML. Br. J. Haematol.

167, 478–486.

Qian, P., He, X.C., Paulson, A., Li, Z., Tao, F., Perry, J.M., Guo, F., Zhao, M.,

Zhi, L., Venkatraman, A., et al. (2016). The Dlk1-Gtl2 locus preserves LT-

HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial

metabolism. Cell Stem Cell 18, 214–228.

Rossi, L., Lin, K.K., Boles, N.C., Yang, L., King, K.Y., Jeong, M., Mayle, A., and

Goodell, M.A. (2012). Less is more: unveiling the functional core of hematopoi-

etic stem cells through knockout mice. Cell Stem Cell 11, 302–317.

Russler-Germain, D.A., Spencer, D.H., Young, M.A., Lamprecht, T.L., Miller,

C.A., Fulton, R., Meyer, M.R., Erdmann-Gilmore, P., Townsend, R.R., Wilson,

R.K., and Ley, T.J. (2014). The R882H DNMT3Amutation associated with AML

dominantly inhibits wild-type DNMT3A by blocking its ability to form active tet-

ramers. Cancer Cell 25, 442–454.
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the Lead Contact, Grant A. Challen (gchallen@dom.wustl.edu). 

 
Mice 

All mice used in this study were C57Bl/6 background.  Recipient mice for bone marrow 

transplants were originally purchased from The Jackson Laboratory (strain #002014) and 

maintained as a breeder colony under specific pathogen free (SPF) conditions. Recipient mice 

were typically 8-10 weeks of age at time of transplant. Mx1-Cre(+):Dnmt3afl/fl mice have been 

previously described by our group.  Control mice used in this study were Mx1-

Cre(+):Dnmt3a+/+ mice.  Deletion of floxed alleles was induced by intraperitoneal injection of 300 μg 

pIpC (Sigma #p1530) six times every other day in adult mice (10-12 weeks old).  Mice were 

allowed to recover for six weeks after the last injection, then confirmed for efficient floxed allele 

deletion by PCR genotyping pf peripheral blood neutrophils (Gr-1+ Mac-1+).  Equal numbers of 

male and female mice were used in all studies. 

Mice were monitored daily by laboratory staff and veterinary personnel for health and 

activity. Mice were given ad libitum access to water and standard mouse chow, with 12-hour 

light/dark cycles. Colonies were maintained in an SPF barrier facility, with quarterly testing of 

pathogens in sentinel animals housed in the same room. All laboratory staff wear personal 

protective clothing, and all manipulations were performed in biosafety cabinets in procedure rooms 

in the same animal suite. All animal procedures were approved by the Institutional Animal Care 

and Use Committee and performed in strict adherence to Washington University and Baylor 

College of Medicine institutional guidelines.  

 
Bone Marrow Transplantation 

For competitive transplants, 200 HSCs (Lineage- [Gr-1, Mac-1, B220, CD3e, Ter119], c-

Kit+, Sca-1+, CD48-, CD150+) were transplanted into lethally irradiated recipients (following a split 

dose of 10.5 Gy total whole body irradiation four hours apart; Cesium-137 irradiator) along with 

2.5x105 wild-type whole bone marrow (WBM) by retro-orbital injection.  In transplanted recipients, 

donor cells can be distinguished from wild-type competitor cells via CD45 allelic isoforms, where 

CD45.2 cells were donor- and CD45.1 were competitor-derived and matched to the recipient.  For 

serial HSC transplantation, 200 donor-derived HSCs were isolated from the previous recipients 18-

24 weeks post-transplant by FACS and transplanted into new lethally irradiated recipients along 

with fresh wild-type competitor WBM.  This process was repeated for 12 successive rounds.  

Transplant recipients were bled through the retro-orbital route and analyzed for donor- and 



competitor-derived lineage contribution in peripheral blood by flow cytometry.  Peripheral blood 

counts were performed with a Hemavet 950 (Drew Scientific Group).  Peripheral blood smears and 

bone marrow and spleen cytospins were stained with the Hema 3 stat pack (Fisher Scientific) and 

images were captured with a Nikon Microphot-SA microscope. 

 

Cell Purification and Flow Cytometry 
Peripheral blood was subject to red blood cell lysis and then stained using the following cell 

surface markers: Gr-1+ and Mac-1+ (Myeloid lineage), B220+ (B-cell lineage), CD3e+ (T-cell 

lineage) as well as CD45.2 and CD45.1 to discriminate donor versus competitor-derived peripheral 

blood contribution.  For donor-derived HSC enumeration at the end of each transplant stage, 

bones were collected from individual mice (2 femurs, 2 tibias, 2 ileac crests) and used for a total 

viable cell count from the bone marrow.  7x106 WBM cells per mouse were used for flow cytometric 

quantification of donor-derived HSC frequency.  Total donor-derived HSC number was 

extrapolated by multiplying HSC frequency by total viable WBM per mouse. The following gating 

strategies were used to analyze or sort BM HSCs isolated from transplant-receiving mice: CD45.1-, 

CD45.2+, Lineage− [Gr1, Mac1, B220, CD3, Ter119], c-Kit+, Sca-1+, CD48-, CD150+.  All 

antibody staining is performed in HBSS buffer (Corning #21021CV) containing Pen/Strep (100 

Units/mL; Fisher Scientific #MT30002CI), HEPES (10uM; Life Technologies # 15630080) and FBS 

(2%; Sigma #14009C).  Cells were suspended at a concentration of 1x108 cells/mL and incubated 

on ice for 20 minutes with the desired antibodies listed in Resource Table.  For competitive 

transplantations, magnetic enrichment was carried out using AutoMACS Pro Seperator (Miltenyi 

Biotec #130-092-545) with mouse anti-CD117 conjugated microbeads (Miltenyi Biotec #130-091-

224).  Post-enrichment, the positive cell fraction was stained with appropriate antibodies and 

sorted by FACS using antibodies described above from the enriched sample.  Cell sorting and 

analysis was performed at the Siteman Cancer Center flow cytometry core and the Department of 

Pathology and Immunology flow cytometry core at Washington University School of Medicine. 

 

Immunostaining of bone sections 

Freshly dissected femurs were fixed in 4% PFA-based fixative at 4℃ for 3h. The bones 

were embedded in 8% gelatin in PBS.  The tissues were snap frozen with liquid nitrogen and 

stored at -80℃ prior to sectioning.  Bone sections were cut at 7μm using a CryoJane system 

(Instrumedics) and air dried overnight at room temperature.  Sections were re-hydrated in PBS for 

5 min and blocked using 5% goat serum in PBS for 30 min.  Slides were incubated in rat-anti-



CD150 antibody (TC15-12F12.2; Biolegend) overnight at 4℃.  CD150 was visualized by incubation 

in anti-rat Alexa Fluor 555 antibody (Thermo Fisher Scientific) for 2hr at room temperature with 

three washes in between.  Rat IgG (Sigma Aldrich) was then applied to the slides for 10 min and 

washed with PBS. FITC-conjugated anti-B220, anti-Gr-1, anti-Mac1, anti-CD5, anti-CD8a, anti-

CD2, anti-CD3e, anti-CD41, anti-Ter119 and anti-CD48 antibodies (eBioscience) along with rabbit-

anti-laminin antibody (Sigma Aldrich) were used for subsequent primary staining at 4℃ overnight.  

Anti-FITC Alexa Fluor 488 (Jackson ImmunoResearch) and anti-rabbit Alexa Fluor 647 (Thermo 

Fisher Scientific) were used for secondary staining at room temperature for 2 hr.  Slides were 

mounted with Prolong gold antifade (Invitrogen) and images were acquired on Nikon Ti Eclipse 

confocal microscopes. 

 
Plasmids, Cloning and Viral Transduction 

Mouse Kras cDNA was obtained from Origene (NM_021284). The G12D mutation was 

created using site-directed mutagenesis kit according to manufacturer’s instructions (Agilent 

Technologies, #200522-5). Mouse Dnmt3a and Ebf1 cDNAs were obtained from Open Biosystems 

(#BC007466) and Addgene (#96965) respectively.  KrasG12D, Dnmt3a and Ebf1 cDNA were PCR 

amplified (see Resource Table for primer sequences) and cloned into the HIV-pMND-IRES-GFP 

lentiviral vector.  For lentiviral production, 293T cells were co-transfected with the packaging 

plasmids pMD.G, psPAX2 and either pMND-IRES-GFP, pMND-Dnmt3a-IRES-GFP, pMND-

KrasG12D-IRES-GFP, or pMND-Ebf1-IRES-GFP using PEI-based transfection protocol 

(Polysciences # 23966-1).  Transfections for lentivirus production were performed in 150 x 25 mm 

tissue culture dishes (Falcon # 353025) when 293T cells reached at least 80-90% of confluency. 

48-hours post-transfection, 293T cell supernatants were collected and concentrated by 

centrifugation at 76,000g for 1.5 hours at 4°C. 

For lentiviral transduction, target cells were adjusted to 2.5x105 cells/100uL in Stempro-34 

medium (Gibco #10639011) supplemented with Pen-Strep (100 Units/mL), L-glutamine (2 mM), 

murine stem cell factor (100 ng/mL), murine thrombopoietin (100 ng/mL), murine Flt3L (50 ng/mL), 

murine interleukin-3 (5 ng/mL), and polybrene (4 mg/mL; Sigma), and spin-infected with the 

respective high-titer lentivirus preparations at 250g for 2 hours in a 96-well plate.  24 hours post-

transduction, 1x105 transduced cells were transplanted into lethally irradiated mice by retro-orbital 

injection or used for in vitro assays.  

 

 

 



Clonogenic Methocult Assay 
Single HSCs (CD45.2+, Lineage−, c-Kit+, Sca-1+, CD48-, CD150+) were directly sorted 

into 96-well plates containing Methocult 3434 medium (Stem Cell Technologies #03434) and 

cultured in vitro at 37oC for 14-days.  

 
in vitro B-cell and T-cell differentiation assays 

For B-cell assay, 250 HSCs were sorted directly into wells of 24-well plates seeded with 

5x104 OP9 stromal cells.  Cells were cultured for 14-days in the presence of recombinant mouse 

Flt3L (2.5 ng/mL; Miltenyi Biotec) and IL-7 (2.5 ng/mL; Miltenyi Biotec) with half media changes 

every fourth day.  Following the culture period, cells were stained with B-cells markers (CD19, 

B220) and analyzed by flow cytometry.  

 For T-cell assay, 500 HSCs were sorted directly into wells of 24-well plates seeded with 

5x104 OP9-DL1 stromal cells (Schmitt and Zuniga-Pflucker, 2002).  Cells were cultured for 28-days 

in the presence of recombinant mouse Flt3L and IL-7 with half media changes every fourth day.  

For days 0 to 16, Flt3L and IL-7 concentrations in the culture was 5ng/mL.  For days 16 to 28, 

concentration of IL7 is reduced to 1 ng/mL to allow early T-cell progenitors (DN1 and DN2 stage 

cells) to progress through maturation.  Following the 28-day culture period, cells were stained with 

T-cells markers and analyzed by flow cytometry.  [DN1 (CD4-, CD8-, CD44+, CD25-), DN2 (CD4-, 

CD8-, CD44+, CD25+), DN3 (CD4-, CD8-, CD44-, CD25+), DN4 (CD4-, CD8-, CD44-, CD25-), 

CD4+ (CD4+, CD8-), CD8+ (CD4-, CD8+)].  
 
Ki67/DAPI and Cleaved Parp staining 

WBM from recipient mice was stained with HSC cell surface markers as described.  For 

intracellular Ki67/DAPI (cell-cycle) or Cleaved Parp (apoptosis) staining, WBM cells were fixed and 

permeabilized using BD Cytofix/Cytoperm kit according to manufacturer’s protocol (#554714) and 

stained with either an anti-Ki67-BV605 (BioLegend #652413) or anti-cleaved Parp-PE (BD 

Biosciences #552933) for 1h at room temperature.  DAPI (Invitrogen #D3571) was added to cell 

samples containing anti-Ki67-BV605 and allowed to incubate for 20 min at RT before analysis.  

  
Whole genome bisulfite sequencing 

Genomic DNA was extracted from sorted HSCs using the PureLink Genomic DNA mini kit 

(Invitrogen #K182001).  Bisultife conversion and purification was carried out using 100ng of 

genomic DNA and the EZ DNA Methylation Gold kit (Zymo Research #D5005).  This process 

deaminates unmethylated cytosine risidues to uracil leaving methylated cytosine residues 

unchangesd.  After bisulfite conversion, the Truseq DNA Methylation kit (Illumina, #EGMK81312) 



was used for WGBS library preparation.  Briefly, after bisulfite conversion, anneal the DNA 

synthesis primers to the converted and denatured ssDNA and synthesize DNA containing a 

specific sequence tag from the random hexamers and add terminal tagging oligo and synthesize 

complementary sequence.  After making di-tagged DNA with known sequence tags at the 3’ and 5’ 

ends, clean-up tagged DNA using Ampure XP beads (Beckman Coulter # 5067-5582).  Finally add 

Illumina single-index and amplify the library and using index primers and 10 cycles PCR program 

with 95°C for 30 seconds, 55°C for 30 seconds, 68°C for 3 minutes.  Clean-up the PCR amplified 

final library using 1X Ampure XP beads and quantify library using KAPA library quantification kit 

(Kapa Biosystem #KK4844) and run 1 ul of undiluted library on the tape station using D1000 

screen tape (Agilent #5056-5582).  Paired-end 85bp sequencing was performed using Nextseq 

500 mid output kit (FC-404-2001) with Illumina NextSeq platform. The data quality was checked 

with fastQC tool. 

 Paired-end sequencing reads from bisulfite-treated samples were aligned to the mm9 mouse 

genome.  Adaptors and low-quality reads were trimmed using BSMAP with default settings.  

MOABS further selected only properly paired and uniquely mapped pairs for further analyses.  

Sequencing depth for CpGs with at least five reads for each sample was extracted to calculate the 

methylation ratio calling [0, 1] by the software MOABS (Sun et al., 2014).  A two-state first-order 

hidden Markov model was used to detect hypomethylated regions and larger hypomethylated 

canyons (≥3.5 kb) as previously described (Jeong et al., 2013).  To identify differentially methylated 

regions (DMRs) in pairwise comparisons, we developed a custom pipeline that extends the 

identified DMCs.  DMCs were identified by pairwise comparison of WGBS profiles using the 

software MOABS with at least five differentially methylated CpG sites. We take sets of more than 

three DMCs in the same direction (hyper or hypo) within 300 bp as seed DMRs.  The seed DMRs 

were then extended to include neighboring DMRs of the same direction if they are (1) within 300 bp 

and (2) not interrupted by a DMR of the other direction. To detect hypomethylated regions and 

larger hypomethylated canyons (≥3.5 kb), a two-state first-order hidden Markov model was used as 

previously described (Jeong et al., 2013). Mouse annotation information for RefSeq genes and 

CpG islands was downloaded from the UCSC Genome Browser. CpG island shores were defined 

as regions 0-2 kb away from CpG islands. Promoter regions were defined as regions 0-5kb 

upstream of RefSeq gene. Enhancers for mouse hematopoietic stem cell and bone marrow cell are 

defined from mouse Encode (Hon et al., 2013). Super enhancers are calculated based on 

H3K27ac data for the corresponding cell lines (Shen et al., 2012) by ROSE software (Lovén et al., 

2013). Further, 300 sets of binding sites for 254 mouse transcription factors defined in 11 mouse 

cell types were downloaded from TFClass server (Wingender et al., 2013). Their enrichment to 

genomic regions of our interest (e.g. hypo_hypo) were computed using BEDtools (fisher 



command)(Quinlan, 2014). Hierarchical clustering was based on euclidean distance among 

conditions. Enrichment analysis between sets of genomic regions was conucted by bedtools fisher 

command. Visualizing signal density (e.g. methylation ratio across genomic regions) was made by 

deepTools. Other visualization was made from matplotlib packages.  

 

RNA-seq 
RNA-seq was performed using the illumine Truseq Stranded mRNA library kit (Illumina 

#RS-122-2101). Total RNA was isolated from sorted HSCs using RNeasy micro kit (Qiagen 

#28006) together with RNase-free DNase treatment on the column (Qiagen #79254). RNA 

samples were poly-A selected and fragmented. First-strand and second-strand cDNA synthesized 

and followed by A-tailing and adaptor ligation.  Ligated double strand libraries are purified and 

amplified 8-9 cycles. Multiplexed libraries were pooled and paired-end 100bp sequencing was 

performed on one flow-cell of an Illumina HiSeq 2500.  Reads were mapped in TopHat 2.0.10. 

Differentially expressed genes were identified using Cufflinks 2.1.1 with relative fold-changes >2 in 

either direction.  
 
ChIP-seq 

Chromatin Immunoprecipitation (ChIP) was performed as described previously (Luo et al 

2015). Briefly, Sorted HSCs were crossedlinked with 1% formaldehyde at room temperature for 10 

min, and the reaction was stopped by 0.125M glycine at RT 5 min. Cross linked cells were washed 

once with ice cold PBS containing protease inhibitor cocktail (GenDepot #P3100-001) and the cell 

pellet was stored at -80°C. Cells were thawed on ice and lysed in 50μl lysis buffer (10 mM Tris pH 

7.5, 1mM EDTA, 1% SDS), then diluted with 150 μl of PBS/PIC, and sonicated using Bioruptor 

(Diagenode) 30sec on 30 sec off 7 cycles to 200-500 bp fragments. The sonicated chromatin was 

centrifuged at 4°C for 5 min at 13,000rpm to remove precipitated SDS. 180 µl was then transferred 

to a new 0.5 ml collection tube, and 180 μl of 2X RIPA buffer (20 mM Tris pH 7.5, 2 mM EDTA, 

2%Triton X-100, 0.2% SDS, 0.2% sodium deoxycholate, 200 mM NaCl/PIC) was added to 

recovered supernatants. A 1 /10 volume (36 µl) was removed for input control. ChIP-qualified 

H3K4me3 (Millipore #07-473) and H3K27me3 (Millipore #07-449) antibodies were added to the 

sonicated chromatin and incubated at 4°C overnight. Previously washed 10 μl of protein A 

magnetic beads (Invitrogen #88846) were added and incubated for additional 2 hours at 4°C. 

Immunoprecipitated complexes were washed three times with RIPA buffer and twice with TE (10 

mM Tris pH 8.0/1 mM EDTA) buffer. Following transfer into new 1.5 ml collection tube, genomic 

DNA was eluted for 2 hours at 68 °C in 100 µl Complete Elution Buffer (20 mM Tris pH 7.5, 5 mM 

EDTA, 50 mM NaCl, 1% SDS, 50 µg/ml proteinase K), and combined with a second elution of 100 



µl Elution Buffer (20 mM Tris pH 7.5, 5 mM EDTA, 50 mM NaCl) for 10 min at 68 °C. ChIPed DNA 

was purified by MinElute Purification Kit (Qiagen #28006) and eluted in 12 µl elution buffer. ChIP-

seq libraries were prepared using ThruPLEX-DNA library preparation kit without extra amplification 

(Rubicon #R400406). Paired-end 100bp sequencing was performed on Illumina HiSeq 2500 

platform.  Sequenced reads were mapped to the mm9 mouse genome, and the distribution of 

chromatin features were analyzed by profile command of DANPOS. 

 

Exome sequencing 
Pooled genomic DNA isolated from control (n = 1), Tx-3 Dnmt3aKO (n = 5) and Tx-12 

Dnmt3aKO (n = 2) HSCs were submitted to Otogenetics Corporation (Atlanta, GA, USA) for mouse 

exome capture and sequencing. Briefly, gDNA was subjected to agarose gel and OD ratio tests via 

Nanodrop to confirm the purity and concentration prior to Bioruptor (Diagenode Inc.) fragmentation. 

Fragmented gDNAs were tested for size distribution and concentration using an Agilent 

Tapestation 2200. Illumina libraries were made from qualified fragmented gDNA using SPRIworks 

HT Reagent Kit (Beckman Coulter, Inc. Indianapolis, IN USA, catalog# B06938) and the resulting 

libraries were subjected to exome enrichment using SureSelectXT Mouse All Exon (Agilent 

Technologies, Wilmington, DE USA, catalog# 5190-4641) following manufacturer’s instructions. 

Enriched libraries were tested for enrichment by qPCR and for size distribution and concentration 

by an Agilent Bioanalyzer 2100. The samples were then sequenced on an Illumina HiSeq2500 

which generated paired-end reads of 126 nucleotides (nt).  Data was analyzed for data quality 

using FASTQC (Babraham Institute, Cambridge, UK). The raw fastq files were mapped against the 

mouse reference (GRCm38/mm10) using BWA-MEM (http://github.com/ih3/bwa). Subsequently, 

GATK SNP/indel Realigner were used to improve the final alignment and high-quality variants were 

filtered (GQ>20, minimum variant read count 10) and functionally annotated using snpEff. 

 
TEL-seq 

TEL-seq was used to estimate telomere lengths (Ding et al., 2014). TelSeq estimates 

telomere length by normalizing the number of telomeric motif reads by several factors such as 

library size. Since the estimations hinge on those factors, the authors of TelSeq recommended 

comparing estimated telomere lengths only within a single experiment. With this advice, we used 

the three exome sequence data sets (pooled genomic DNA isolated from control (n = 1), Tx-3 

Dnmt3aKO (n = 5) and Tx-12 Dnmt3aKO (n = 2) HSCs) to perform TEL-seq analysis.  Sequencing 

reads were aligned using bowtie2 version 2.2.7 with default parameters.  Since their coverages are 

similar (Fig. S4E), TelSeq estimated telomere lengths (kB) from the exome sequencing data with 

default parameters. 

http://github.com/ih3/bwa)


 
Quantification and Statistical Analysis 
 Statistical analyses were performed to detect differences between the means of the 

conditions being compared.  Statistical comparisons between groups were evaluated with 

Student’s t-test or ANOVA as appropriate.  All data are presented as mean ± standard error. Time 

to morbidity is presented in Kaplan-Meier survival curves and analyzed by Logrank test. Statistical 

analysis was performed using Prism 6 (Graphpad). Statistical significance is denoted as *p<0.05, 

**p<0.01, ***p<0.001, n indicates the number of biological replicates within each group. 

 

Data and Software Availability 
Raw and processed WGBS, histone modification and RNA-sequencing data have been 

deposited to GEO under accession number GSE98191. UCSC Genome Browser tracks (mouse 

mm9) can be accessed from the hub http://lilab.research.bcm.edu/dldcc-

web/lilab/hjpark/multipleTransplants/hub.txt. Exome sequencing data has been deposited to the 

NCBI sequence read archive (SRA) under accession number SRP133364. 
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Figure S1:  Loss of Dnmt3a provides HSCs with indefinite longevity. Related to Figure 1. 

(A) Representative flow cytometry plots showing different schemes for prospective identification of 
Tx-11 Dnmt3aKO HSCs. (B) Flow cytometry plot showing contribution of Dnmt3aKO donor-derived 
cells to primitive progenitor cell fractions in a Tx-10 recipient mouse. HSC = hematopoietic stem 
cell, MPP = multipotent progenitor cell, RP = restricted progenitor. (C) Frequency of donor-derived 
hematopoietic progenitor cells (Lineage- Sca-1+ c-Kit+) in the peripheral blood of Tx-2 mice 
transplanted with control or Dnmt3aKO HSCs. (D) Frequency of donor-derived hematopoietic 
progenitor cells (Lineage- Sca-1+ c-Kit+) in the spleen of Tx-2 mice transplanted with control or 
Dnmt3aKO HSCs. (E) Frequency of bone marrow stromal cells in the bone marrow of mice 
transplanted with control or Dnmt3aKO HSCs. (F) Immunohistochemical staining showing bone 
marrow localization of transplanted control and Dnmt3aKO HSCs in Tx-3 mice. (G) Distribution of 
transplanted Tx-3 control and Dnmt3aKO HSCs in the bone marrow in relation to endothelial cells. 
Data are from pooled analysis of slide sections representing three individual mice. (H) Spatial 
relationship of transplanted Tx-3 control and Dnmt3aKO HSCs in relation to neighboring HSCs in 
the bone marrow. Data are from pooled analysis of slide sections representing three individual 
mice. Mean ± S.E.M. values are shown.   
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Figure S2:  Dnmt3a controls DNA methylation at HSC regulatory elements. Related to Figure 2. 
(A) Coverage of the whole genome bisulfite sequencing data.  (B) Enrichment of "hypo_hypo" 
(red) and "hypo_hyper" (blue) DMRs for 300 sets of binding sites for 254 transcription factors 
found in 11 mouse cell types.  (C) Average DNA methylation level of Gata2 binding sites 
throughout the genome of HSCs of the indicated genotype/transplant-stage.  (D) Enrichment of 
"hypo_hypo" and "hypo_hyper" DMRs for TFBS from 100 random computational samplings of 600 
DMRs within each category.  (E) DNA methylation levels of active, bivalent, and inactive canyons 
in control (WT), Tx-3 Dnmt3aKO (Tx-3), and Tx-11 Dnmt3aKO (Tx-11) HSCs. Flanking regions are 
extended by three-fold length as the corresponding canyon regions (±3X).  (F) Heatmap showing 
expression fold change of genes from control HSCs to Tx-3 Dnmt3aKO and Tx-9 Dnmt3aKO HSCs 
that are up-regulated (up), down-regulated (dn) or not differentially expressed (_) within each 
comparison.  (G) Distribution of expression fold change of HSC fingerprint genes in Tx-3 and Tx-9 
Dnmt3aKO HSCs relative to control HSCs ranked by fold change in Tx-3 Dnmt3aKO HSCs. 
Imprinted genes are highlighted.  
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Figure S3:  Differentiation capacity is lost but transformation potential retained in immortalized 
Dnmt3aKO HSCs. Related to Figure 3. 

(A) Flow cytometry plot showing GFP+ cells in blood of mice transplanted with Tx-11 Dnmt3aKO 
HSCs transduced with control (GFP) or Dnmt3a-expressing (Dnmt3a) lentivirus four-weeks post-
transplant. (B) Frequency of GFP+ cells in peripheral blood of mice transplanted with Tx-11 
Dnmt3aKO HSCs transduced with control (GFP) or Dnmt3a-expressing (Dnmt3a) lentivirus four-
weeks post-transplant. (C) Contribution of transduced Tx-11 Dnmt3aKO HSCs to peripheral blood 
chimerism over time. (D) Flow cytometry plots showing HSC cell cycle analysis. (E) Flow cytometry 
plots showing HSC apoptosis analysis. (F) Flow cytometry analysis of B-cell differentiation after 14-
days in vitro. (G) Expression level of Ebf1 in HSCs following lentiviral (+Ebf1) transduction. (H) 
Quantification of T-cells after 28-day culture on OP9-DL1 stromal cells. (I) Flow cytometry plots of 
T-cell analysis after 28-days. Circle denotes an anomalous CD4-CD8a-CD44+CD25bright population 
following over-expression of Dnmt3a.  *p<0.05, ***p<0.001.  Mean ± S.E.M. values are shown.   
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Figure S4:  Molecular Analysis of Dnmt3a Rescue, Dominant-Negative Mutant, and Clonal 
Hematopoiesis. Related to Figure 4. 

(A) Expression level of Gata2 in Tx-12 Dnmt3aKO HSCs transduced with control (GFP) or Dnmt3a-
expressing (Dnmt3a) lentivirus compared to other HSC genotypes/transplant-stages. (B) Dnmt3a 
expression level in Tx-12 Dnmt3aKO (3aKO) HSCs rescued with Dnmt3a-expressing lentivirus 
compared to control (Ctl) HSCs. (C) Number of donor-derived HSCs in the bone marrow of Tx-3 
mice transplanted with control, Dnmt3aR878 and Dnmt3aKO HSCs. (D) WGBS profiles showing 
hypermethylation of enhancer regions of lineage-specific differentiation genes Bcl11b and Pax5 in 
Dnmt3aKO HSCs (green boxes) is not observed in Dnmt3aR878 HSCs. (E) Statistics from Tel-seq 
analysis of telomere length (kB) in indicated HSC genotypes.  ***p<0.001, ****p<0.0001.  Mean ± 
S.E.M. values are shown.   
  



RESOURCE TABLE 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
BV605 anti-mouse CD45.2 Biolegend 109841 
FITC anti-mouse CD45.1 Biolegend 110706 
APCy7 anti-mouse Gr-1 Biolegend 108424 
APCy7 anti-mouse Mac-1 Biolegend 101226 
APCy7 anti-mouse B220 Biolegend 103224 
APCy7 anti-mouse CD3e Biolegend 100330 
APCy7 anti-mouse Ter119 Biolegend 116223 
BV421 anti-mouse c-Kit Biolegend 84158 
APC anti-mouse Sca-1 Biolegend 122512 
PECy7 anti-mouse CD48 Biolegend 103424 
PE anti-mouse CD150 Biolegend 115904 
BV421 anti-mouse CD45.2 Biolegend 84208 
APC anti-mouse CD3e Biolegend 100312 
APC anti-mouse B220 Biolegend 103212 
PECy7 anti-mouse Gr-1 Biolegend 108416 
PECy7 anti-mouse Mac-1 Biolegend 101216 
PECy7 anti-mouse B220 Biolegend 103222 
FITC anti-mouse CD45.1 Biolegend 110706 
PE anti-mouse CD25 eBioscience 12-0251-83 
PECy7 anti-mouse CD8 BD Biosciences 552877 
APC anti-mouse CD4 eBioscience 17-0041-81 
PECy7 anti-mouse CD19 BD Biosciences 552854 
BV605 anti-mouse Ki67 BioLegend 652413 
PE anti-cleaved Parp BD Biosciences 552933 
FITC anti-mouse CD11b eBioscience 11-0112-82 
PE anti-mouse CD11a Biolegend 101107 
PE anti-mouse Flk2 BD Biosciences 553842 
APC anti-mouse CD34 Biolegend 119310 
APC anti-mouse EPCR Biolegend 14156 
BV605 anti-mouse CD45.1 Biolegend 110738 
APCy7 anti-mouse CD44 Biolegend 103028 
PE anti-mouse CD25 eBioscience 12-0251-83 
PECy7 anti-mouse CD8a BD Biosciences 552877 
APC anti-mouse CD4 eBioscience 17-0041-81 
   
Chemicals, Peptides, and Recombinant Proteins 
Polyinosinic-polycytidylic ribonucleic acid 
(pIpC) 

Sigma  p1530 

Pen/Strep Fisher Scientific  MT30002CI 
HEPES Life Technologies 15630080 
Fetal Bovine Serum (FBS) Sigma  14009C 
Polyethylenimine (PEI) Polysciences  23966-1 
L-glutamine Corning 25-005-CI 
Polybrene Sigma TR-1003-G 



Recombinant murine stem cell factor (SCF) Thermo Fisher Scientific PMC2111 
Recombinant murine thrombopoietin (TPO) Thermo Fisher Scientific PMC1141 
Recombinant murine Flt3L Miltenyl Biotec 130-097-372 
Recombinant murine interleukin-3 (IL-3) Miltenyl Biotec 130-099-508 
Recombinant murine interleukin-7 (IL-7) Miltenyl Biotec 130-094-066 
   
Critical Commercial Assays 
Methocult 3434 medium Stem Cell Technologies 03434 
BD Cytofix/Cytoperm  BD Biosciences 554714 
   
Deposited Data  
RNAseq This study GEO: GSE98191 
ChIPseq This study GEO: GSE98191 
   
Experimental Models: Cell Lines 
OP9 cells ATCC CRL-2749 
OP9-DL1 cells Schmitt et al., 2002 N/A 
   
Experimental Models: Organisms/Strains 
Mx1-Cre Kuhn et al., 1995 N/A 
Dnmt3a fl/fl Kaneda et al., 2004 N/A 
C57Bl/6 CD45.1 The Jackson Laboratory 002014 
   
Oligonucleotides 
Primer Name Sequence (5’->3’)  
Kras_Forw atatatggcgcgccatgactgagtataagcttgtggt IDT 
Kras_Rev atatatctcgagttacataactgtacaccttgtccttg IDT 
Dnmt3a_Forw atacatggcgcgccatgccctccagcggccccgg IDT 
Dnmt3a_Rev atgtatctcgagttacacacaagcaaaatattccttcag IDT 
Ebf1_Forw atatataggcgcgccatgtttgggatccaggaaagcat IDT 
Ebf1_Rev atatatatgcatgctcacatgggagggacaatca IDT 
   
Recombinant DNA 
Dnmt3a cDNA Open Biosystems BC007466 
Ebf1 cDNA Addgene 96965 
Kras cDNA Origene NM_021284 
   
Software and Algorithms 
PRISM (version 6) GraphPad Software N/A 
FlowJo (version 10) https://www.flowjo.com N/A 
IGV https://www.broadinstitute.org N/A 
Partek Genomics Suite 6.6 http://www.partek.com/pgs N/A 
SeqBuilder14 https://www.dnastar.com/ N/A 
Python (version 2.7)  https://www.python.org N/A 
Numpy (version 1.9.2) http://www.numpy.org/ N/A 
R (version 3.4.2) https://www.r-project.org/ N/A 
deepTools (version 2.4.2) http://deeptools.readthedocs.io/en/latest/ N/A 
   



Taqman expression assays for RT-qPCR 
Bax Mm00432051_m1 4331182 
Bbc3 Mm00519268_m1 4331182 
Gata2  Mm00492301_m1 4331182 
   

 

Sequencing Reagents 
TruSeq Stranded Total RNA Library Kit Illumina RS-122-2101 
Truseq DNA methylation Kit Illumina EGMK81312 
ThruPlex DNA library preparation Kit Rubicon R400406 
NextSeq 500 mid output kit Illumina FC-404-2001 
PureLink Genomic DNA mini kit Invitrogen K182001 
KAPA library quantification kit Kapa Biosystem KK4844 
   
ChIP qualified Antibodies and reagents 
H3K4me3 Millipore 07-473 
H3K27me3 Millipore 07-449 
H3K4me1 Abcam Ab8895 
Protein A magnetic beads Invitrogen 88846 
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