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A B S T R A C T

The heterotrimeric G-protein binding site on G-protein coupled receptors remains relatively unexplored re-
garding its potential as a new target of therapeutic intervention or as a secondary site of action by the existing
drugs. Tauroursodeoxycholic acid bears structural resemblance to several compounds that were previously
identified to specifically bind to the light-activated form of the visual receptor rhodopsin and to inhibit its
activation of transducin. We show that TUDCA stabilizes the active form of rhodopsin, metarhodopsin II, and
does not display the detergent-like effects of common amphiphilic compounds that share the cholesterol scaffold
structure, such as deoxycholic acid. Computer docking of TUDCA to the model of light-activated rhodopsin
revealed that it interacts using similar mode of binding to the C-terminal domain of transducin alpha subunit.
The ring regions of TUDCA made hydrophobic contacts with loop 3 region of rhodopsin, while the tail of TUDCA
is exposed to solvent. The results show that TUDCA interacts specifically with rhodopsin, which may contribute
to its wide-ranging effects on retina physiology and as a potential therapeutic compound for retina degenerative
diseases.

1. Introduction

G-protein-coupled receptors (GPCRs) are versatile transmembrane
proteins that are responsible for the detection of extracellular stimuli,
such as hormones, neurotransmitters and light and for the transmission
of that information inside the cell via interaction with the membrane-
associated heterotrimeric G-proteins to regulate various intracellular
second messenger pathways (Palczewski and Orban, 2013; Manglik and
Kobilka, 2014). Consequently, GPCRs possess two distinct sites for the
binding of ligands and for the interactions with G-proteins on its ex-
tracellular and intracellular interfaces respectively. The ligand binding
sites of GPCRs have received the most attention due to their extreme
importance in receptor pharmacology resulting in estimates that
30–50% of drugs currently on the market target GPCRs (Howard et al.,
2001; Salon et al., 2011). The G-protein binding site is relatively less
explored, but is quickly catching up with regard to the number of recent
biochemical and structural studies (Kisselev et al., 2011; Preininger
et al., 2013). Most notably, the NMR and X-ray structures of the C-

terminal tail of the G-protein α-subunit, Gtα(340–350), one of the main
protein domains on G-proteins that binds GPCRs and stabilizes its active
conformation, provide solid structure-based framework for possible
pharmacological exploration of this site (Kisselev et al., 1998; Choe
et al., 2011).

We have used light receptor rhodopsin and its cognate G-protein
transducin to identify a number of small molecule compounds that bind
to and stabilize the active form of rhodopsin, metarhodopsin II (Meta II)
(Taylor et al., 2008, 2010). These molecules can be used to modulate
GPCR-G-protein interactions, which can potentially be helpful as ther-
apeutics for various retinal diseases caused by constitutively active
GPCRs, such as Leber Congenital Amaurosis (LCA), Congenital Sta-
tionary Night Blindness (CSNB) and some forms of Retinitis Pigmentosa
(RP) (Park, 2014; Rao and Oprian, 1996; Fain, 2006; Dizhoor et al.,
2008). One group of molecules that we identified via in-silico and
biochemical screens belongs to natural products, sapogenins, which
share triterpenoid scaffolds (Taylor et al., 2008). Sapogenins, such as
madecassic acid, also share structural resemblance with bile acids. One
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of the bile acids that has recently been gaining significant interest due
to broad medicinal properties is tauroursodeoxycholic acid (TUDCA),
which is a natural hydrophilic molecule containing taurine conjugated
with the ursodeoxycholic acid (UDCA). While a major constituent of
bear bile (Luo et al., 2010), TUDCA is produced in humans at relatively
low levels. Used as a therapeutic compound it has been shown to pre-
vent hepatic cytotoxicity and have neuroprotective properties (Keene
et al., 2002; Oveson et al., 2011; Romero-Ramirez et al., 2017). Inter-
estingly, TUDCA has been in use since ancient times as part of the
traditional Chinese medicine toolbox (Boatright et al., 2006). The me-
chanisms of TUDCA effects have been under active investigations. They
are currently believed to be mediated via effects on mitochondrial
toxicity and inhibition of apoptotic and anti-inflammatory pathways
(Romero-Ramirez et al., 2017).

There is accumulating evidence that TUDCA has wide-ranging ef-
fects on retina physiology. Positive effects on the retina morphology
and functions were noted for Diabetic Retinopathy (DR) (Gaspar et al.,
2013; Wang et al., 2016; Fernandez-Sanchez et al., 2015), RP (Phillips
et al., 2008; Drack et al., 2012; Fu and Zhang, 2014), and LCA (Fu and
Zhang, 2014). Considering structural similarity to the small molecule
compounds we identified in earlier studies, we investigated whether
TUDCA may potentially exert some of its effects on retinal photo-
receptors by binding to the transducin site on light-activated rhodopsin.
We used an assay that quantitatively measures stabilization of the ac-
tive form of rhodopsin, Meta II by UV–Visible spectroscopy. We also
used computer simulations to determine whether TUDCA would dock at
the transducin binding site on Meta II. Both methods strongly argue for
the specific binding of TUDCA to light activated rhodopsin.

2. Experimental procedures

2.1. Isolation of rhodopsin

Dark adapted frozen bovine retinas are obtained from W.L. Lawson,
Co. (NE). Rod outer segments (ROS) are prepared by the method of
Papermaster and Dreyer (1974). Urea-washed ROS membranes (UM)
are prepared using the procedure adapted from Yamazaki et al. (1982),
and Willardson et al. (1993), essentially as we described earlier
(Kisselev et al., 1999a, 2007). Rhodopsin concentration is measured as
ΔA498 before and after bleaching in the presence of 20mM hydro-
xylamine, based on the molar extinction coefficient at 498 nM of 42,700
M-1 cm-1 (Hong and Hubbell, 1972).

2.2. UV/Visible spectroscopy

The amount of extra Meta II was measured on a Cary-50 UV/Visible
spectrophotometer (Varian, CA), at 4 °C, cuvette path-length 10mm,
essentially as we described before (Kisselev et al., 1994, 1999b). Spe-
cific temperatures were maintained using Peltier-controlled cuvette
holder. The sample compartment was continuously infused with dry air.
Photoactivation of rhodopsin was achieved by illumination of samples
for 20 s with a 150-Watt fiber optic light source passed through a
490 ± 5 nm bandwidth interference filter. Samples contained 2.5 μM
of urea-washed ROS membranes in buffer Meta II (20mM Tris-HCL pH
8.0, 130mM NaCl, 1 mM MgCl2, 1 mM EDTA) and various amounts of
tauroursodeoxycholic acid or deoxycholic acid (Sigma, MO).
700 nm–250 nm spectra were recorded before and after activation of
the sample with a 490 ± 5 nm light. The amount of Meta II was cal-
culated as the absorbance difference A380-A417 before and after pho-
toactivation. The amount of Meta II calculated in reaction buffer was
taken as zero. Sample turbidity was measured as the absorbance dif-
ference A280-A700 after photoactivation. The data were processed off-
line using KaleidaGraph 3.6.2. Full spectra scans were normalized to
zero at 700 nm.

2.3. Acid trapping

Acid trapping was used to verify the Meta II state (Kisselev et al.,
1998; Kito et al., 1968) of R*. Essentially, the extra MII-stabilization
protocol was used with some minor modifications. The UV/Vis absor-
bance spectra of dark-adapted rhodopsin mixed with TUDCA was taken
in the dark and then after light activation. The final concentration of
TUDCA was 5 mM. Immediately following the light activation scan, 1%
HCl (v/v) was added and mixed. The sample was incubated in the
spectrophotometer at 4 °C for 5 min, then the absorbance spectra was
scanned an additional time.

2.4. Generating conformations of TUDCA

TUDCA was drawn and minimized (Tripos forcefield) in Sybyl 7.3.
Gasteiger-Huckel charges were added to TUDCA using Sybyl 7.3.
Because Gtα(340–350) is a peptide, the charges were calculated by
RosettaLigand, as RosettaLigand is optimized for calculating charges on
proteins (Davis and Baker, 2009). The Omega package from Open Eye
was used to generate a series of 200 low-energy conformations of
TUDCA (OpenEye Scientific Software, 2005). These conformations were
sampled by RosettaLigand to provide ligand flexibility during docking.

2.5. Preparing the receptor

A model of R* and the X-ray crystal structure of opsin bound to
Gtα(340–350)K341L (3DQB) (Scheerer et al., 2008) were used for
docking studies. The 3D intracellular (IC) loop model of R* resulted
from a previous study (Taylor et al., 2007) in which experimental
TrNOE structures of Gtα(340–350) and its analogs (Kisselev et al., 1998;
Anderson et al., 2006a, 2006b) were docked onto the IC loops. These
docked structures revealed a common binding mode with similar re-
sidue-residue interactions that were potentially important for complex
formation between R* and Gtα(340–350). The other docking target
used was the structure of opsin bound to Gtα(340–350) (Scheerer et al.,
2008). The two different models were utilized for validation of
Gtα(340–350) docking to Meta II. Both structures were repacked using
ligand_rpkmin with default parameters in the RosettaLigand package.
RosettaLigand repacks the side chains in a stochastic manner to remove
any clashes that exist using RosettaLigand's energy function. A total of
10 structures were output, and the minimum energy repacked structure
was used for docking calculations. For the model of the R* loops,
capping on loop termini had to be removed to run RosettaLigand.

2.6. Docking

RosettaLigand was used for all docking calculations. The standard
flags were used for RosettaLigand as outlined in the Rosetta 3.0 soft-
ware (Davis and Baker, 2009). A random perturbation of up to 5 Å in
the X, Y, and Z dimensions from the center of mass was implemented.
However, points outside a 5 Å sphere were not considered, yielding
uniform sampling within the sphere. The starting position for the
docking calculation was the center of mass of the Gtα(340–350) from
either the X-ray crystal structure of opsin (for docking to opsin) or from
the model of R*. For each compound docked, a total of 10,000 poses
were generated.

As a proof-of-principle experiment, Gtα(340–350)K341L from the X-
ray crystal structure was re-docked onto the opsin crystal structure to
determine if the binding pose would recapitulate the crystal structure.
The Gtα(340–350) conformation that resulted from a previous study
(Taylor et al., 2007) on R* loops was re-docked onto the R* loops to
determine if its pose could be recapitulated. TUDCA was docked onto
the opsin crystal structure and onto the 3D IC loop model of rhodopsin
in a conformation bound to Gtα(340–350).

The scoring scheme of Davis et al. in RosettaLigand was used (Davis
and Baker, 2009). First, any pose where the ligand was not interacting
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with the receptor was discarded. The top 5% of poses ranked by total
energy were isolated and then ranked by their interaction energy. The
top 10 poses were further studied.

3. Results

3.1. TUDCA binding to R*

In order to test whether TUDCA specifically interacts with light
activated rhodopsin, R*, we used an established spectroscopic assay
that measures stabilization of the active R* intermediate, Meta II
(Kisselev et al., 1999b). When rhodopsin is photoactivated at 4 °C, and
pH 8.0, the dynamic equilibrium of two photointermediates, Meta I and
Meta II is formed (Meta I, λmax= 480 nm and Meta II, λmax= 380 nm).
Holo-transducin, Gt, and Gt-derived synthetic peptides form tight
complex with Meta II and shift the Meta I-Meta II equilibrium towards
Meta II. The extent of complex formation is reflected in the higher
amplitude of the Meta II signal, which can be measured by the absor-
bance difference A380-A417 before and after photoactivation using
UV/Visible spectroscopy. When TUDCA was added to the rhodopsin
samples, we observed a concentration-dependent increase in the
amount of Meta II, as seen as increase of absorbance at A380 nm,
Fig. 1A. The light (L) minus dark (D) difference spectra also show
parallel decrease of absorbance at A480, the spectral peak of the Meta I
intermediate, Fig. 1A. The transition between Meta I and Meta II occurs
via a well-defined isosbestic point at A417 nm. A380-A417 absorbance
difference, a measure of Meta II in the sample, is plotted against TUDCA
concentrations in Fig. 1B. The calculated EC50 of TUDCA in this assay is
450 μM.

In order to confirm identity of the Meta II photoproduct in R*-
TUDCA complex we performed the acid-trapping test (Kisselev et al.,
1998; Kito et al., 1968). Meta II contains a deprotonated Schiff base
linkage between Lys296 and all-trans-retinal. In the strongly acidic
environment Schiff base becomes re-protonated, which leads to the
formation of the photoproduct at A440 nm. Contrary to the behavior of
Meta II, the product of its decay, opsin + all-trans-retinal, has the
covalent linkage between Lys296 and all-trans-retinal hydrolyzed. Thus,
in the acid trapping test opsin + all-trans-retinal does not produce the
A440 photoproduct. In the presence of 5 mM TUDCA light activated
spectrum consists of the major photoproduct at A380 and a minor band
at A480, which is likely Meta I due to incomplete Meta II stabilization
by TUDCA. When hydrochloric acid was added to the R*-TUDCA re-
action mixture, a distinct photoproduct absorbing at A450 was formed,
Fig. 1C. Slight bathochromic spectral shift of the acid-denatured pho-
toproduct (from A440 to A450) is because of the somewhat higher
baseline absorbance at 400–440 nm in the fully bleached spectrum of

rhodopsin in lipid membranes used to generate the difference spectrum
(data not shown).

Analysis of the full spectra of R*-TUDCA samples also revealed that
TUDCA appears to have little effect on the turbidity of the rhodopsin
samples, and thus behave similarly to Gt, and Gt-derived synthetic
peptides (Kisselev et al., 1998). The typical source of rhodopsin for the
above spectroscopic experiments are Urea-washed ROS Membranes
(UM), which contain highly enriched rhodopsin (99% purity) in its
native membrane environment. Samples containing UM scatter light,
which contribute to the steep slope of the full spectra, a phenomenon
typical for membrane suspensions (Castanho et al., 1997). Addition of
detergents, such as deoxycholate (DOC), reduce overall sample tur-
bidity at concentrations above CMC, leading to flattening of the spectra
(Goni and Alonso, 2000). Representative full UM spectra in the pre-
sence of 5mM TUDCA or 5mM DOC are shown in Fig. 2A. Despite
structural similarities to detergents of the cholate group, such as DOC,
Fig. 3, TUDCA had little effect on the turbidity of UM. The A280-A700
absorbance difference as measure of the overall slope of the full spectra
after photoactivation remain essentially unaffected up to TUDCA con-
centration of 5mM, and affected only slightly up to 50mM, Fig. 2B. In
strong contrast, DOC, a detergent often used to solubilize biological
membranes shows precipitous decrease of sample turbidity with onset
at 500 μM.

3.2. Docking to opsin

In order to test whether TUDCA binds to the known G-protein site
on R* we utilized two complimentary approaches: 1) Computer docking
to the X-ray crystal structure of opsin stabilized by the high-affinity
analogue of Gtα(340–350), Gtα(340–350)K341 (Scheerer et al., 2008),
which offers the highest resolution of the transducin binding site on R*,
but is inherently a static structure; and 2) docking to the molecular
model of the R* intracellular loops (Taylor et al., 2007), that affords a
more conformationally flexible interface which mimics dynamic R*-Gt
interactions.

Before computer docking of TUDCA to R* was attempted, as a proof-
of-principle for the utilized docking routine, Gtα(340–350)K341 was
docked onto the X-ray crystal structure of opsin shown as a blue ribbon
model. The top 10 poses of Gtα(340–350)K341 are conformationally
very close to the X-ray crystal structure, with RMSDs ranging from 0.41
to 0.61 Å, Fig. 4A. The energy funnel that resulted from this calculation
shows the minimum energy structures of the docked Gtα(340–350)
K341 with the lowest RMSD values have converged well to the X-ray
crystal structure of Gtα(340–350)K341, Fig. 4B.

Next, TUDCA was docked onto the X-ray structure of opsin in a
separate experiment. The top three TUDCA structures, corresponding to

Fig. 1. Interaction of TUDCA with Meta II. A. UV/Visible difference spectra (L–D) of rhodopsin membranes in the presence of increasing concentrations of TUDCA (0–5mM). B. Dose-
dependent stabilization of Meta II by the indicated concentrations of TUDCA, n=4. C. Smoothed UV/Visible difference spectra (L-bleached) of rhodopsin in the presence of 5mM
TUDCA: Dark, light activated, and acid-trapped spectra are shown.
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the three distinct energy minima, are shown docked to the X-ray crystal
structure of opsin, Fig. 4C. The top ten TUDCA poses dock around the
interface between Gtα(340–350)K341 and loop 3. The top two poses
stretch along the reverse-turn region of Gtα(340–350)K341, and the
third top pose docks along the hydrophobic helical region of
Gtα(340–350)K341. The plot of TUDCA interaction energy versus
RMSD from starting structure has three main minimal-energy regions,
Fig. 4D. No other low energy docking sites of TUDCA on the X-ray
structure of opsin were identified.

3.3. Docking to R* model

In order to explore R*-Gt interactions under conditions that closely
resemble physiological, a dynamic model of R* intracellular loops was
developed based on both experimental transferred nuclear Overhauser
effect data from R* in complex with the native peptide Gtα(340–350)
(Kisselev et al., 1998) and computational data (Taylor et al., 2007). The
lowest energy pose of Gtα(340–350) from Taylor et al. (2007) was
docked onto the loop model of R*. The top ten docked poses with lowest
energy and RMSD values ranging from 0.48 to 1.01 Å, are shown in
Fig. 5A. The energy funnel of Gtα(340–350) docked to R* loops, Fig. 5B,
bares close resemblance to the energy funnel of Gtα(340–350)K341
docked to opsin, Fig. 4B.

Finally, TUDCA was docked onto the R* loop model. The hydro-
phobic ring region of TUDCA docks similarly to Gtα(340–350), along
the helical axis in this model. Out of the top ten best scoring poses, five
poses stretched along the helical axis of Gtα(340–350). The top three
poses that stretch along the helical axis are shown in Fig. 5C. Two of
these poses are nearly identical and the third pose presents itself along
slightly different regions of the helix location. Corresponding energy
funnel is presented in Fig. 5D.

4. Discussion

Structural similarity of TUDCA's triterpenoid scaffold to madecassic
acid and some other small molecule compounds we identified in pre-
vious studies (Taylor et al., 2008) has prompted us to investigate
whether reported positive effects of TUDCA on retinal pathophysiology
may be related to its ability to bind to and stabilize the active inter-
mediate of rhodopsin, Meta II. In the spectroscopic assays TUDCA de-
monstrates dose-dependent stabilization of Meta II, Fig. 1. Similar to
the effect of Gt and Gt-derived synthetic peptides, TUDCA strongly
shifts the Meta I – Meta II equilibrium towards Meta II with the spec-
troscopic transition proceeding via a single isosbestic point at A417 nm.
Notably, increase of Meta II occurs at the expense of the Meta I inter-
mediate. These results strongly argue for direct interactions and specific
formation of the Meta II-TUDCA complex. Meta II identity in this
complex was confirmed by the conversion of the Meta II photoproduct
at A380 to the acid-trapped photoproduct absorbing at A450 under
strongly acidic conditions, Fig. 1C. Calculated EC50 concentration of
TUDCA in the Meta II stabilization assay is 450 μM, which is close to the
EC50 for the native peptide Gtα(340–350) at 300 μM (Kisselev et al.,
1998), (Downs et al., 2006). Thus, it appears that TUDCA binds to Meta
II with approximately the same affinity as the native Gtα(340–350).

Additional support for the specificity of interactions comes from the
analysis of TUDCA on the overall turbidity of the rhodopsin mem-
branes, a sensitive test of membrane perturbation. Even at concentra-
tions as high as 50mM, which is ten-fold higher than its apparent EC50

in the Meta II assay, TUDCA has only slight effect on membrane tur-
bidity, Fig. 2. In contrast, effect of the ionic detergent deoxycholate
(DOC) that features similar structural scaffold to TUDCA on membrane
turbidity is clearly observed by 1mM. These results lead to the con-
clusion that TUDCA's ability to bind to Meta II is specific, rather than
related to its potential ability to solubilize lipid membranes and inter-
fere in lipid-protein interactions.

To further substantiate TUDCA's binding to Meta II, we examined
whether TUDCA would dock to the known intracellular binding site for
the Gtα subunit on Meta II. Using two independent docking models, one
based on the static X-ray crystal structure of opsin stabilized by the
high-affinity analogue of Gtα(340–350), Gtα(340–350)K341 (Scheerer

Fig. 2. Differential effect of TUDCA and DOC on UM sample turbidity. A. Representative full Dark and Light-activated spectra of rhodopsin membranes in the presence of 5 mM TUDCA or
5mM DOC. B. Dose-dependent effect on UM sample turbidity in the presence of increasing concentrations of TUDCA or DOC, n=4.

Fig. 3. Chemical structures of TUDCA and DOC.
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et al., 2008), and the other based on the dynamic model of the R* in-
tracellular loops (Taylor et al., 2007), we show that TUDCA successfully
binds at the same site as Gtα(340–350) using similar mode of binding.

To verify the docking strategy, we tested our ability to recapitulate
the docking model of native peptide Gtα(340–350) and its high-affinity
analogue Gtα(340–350)K341 to the model of R* loops and opsin, re-
spectively. Both peptides docked extremely well to their respective
models with very small RMSDs when compared to the X-ray crystal
structure of opsin and the R* model generated previously. The energy
funnels for both compounds show the minimal energy poses also being
the minimal RMSD from the native structure.

In both models, TUDCA docks along the crucial L344/L349/F350
hydrophobic patch of the Gtα(340–350) alpha helix (Kisselev et al.,
1998) that makes contacts with loop 3 of rhodopsin (Scheerer et al.,
2008) a GPCR site known for it's importance in G-protein activation.
The ring regions of TUDCA interact where the hydrophobic region of
Gtα(340–350) is bound along the hydrophobic inner side of the cyto-
plasmic portion of TM5 and TM6 pair (Scheerer et al., 2008), and the
hydrophilic tail of TUDCA wraps around so that it is more solvent ex-
posed. TUDCA docks in much the same way other compounds found via
a virtual screening approach, despite a different docking program being
used (Taylor et al., 2008). These structurally similar compounds iden-
tified earlier, such as madecassic acid, successfully stabilized the Meta
II state and also inhibited transducin activation. The ring structures on
these compounds also bound along the hydrophobic portion of
Gtα(340–350), parallel to the helical axis, which implies a common
mode of recognition and binding. Future biochemical and in-vivo stu-
dies will determine whether TUDCA's ability to allosterically regulate
rhodopsin can be utilized to modulate signaling properties of retinal
photoreceptors. It is of particular interest in this context that a small
molecule quercetin was demonstrated to act as an allosteric modulator
of mutated forms of rhodopsin, such as RP-associated G90V, validating

the concept of this new methodology (Herrera-Hernández et al., 2017).
Strong evidence exists in published literature that such distinct

retinal degenerations as RP and LCA may be related to the detrimental
effects of constitutively active rhodopsin mutants or opsin, and that
inhibiting this activity may be a valid therapeutic approach (Park,
2014; Rao and Oprian, 1996; Fain, 2006; Dizhoor et al., 2008). Meta II
binding and stabilization data, as well as computer docking results
presented here identify TUDCA as a compound that may exert at least
some of its known anti-RD properties and effects on retinal photo-
receptors by binding to the transducin site on light activated rhodopsin.
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Fig. 4. Computer docking of Gtα(340–350)K341L and TUDCA to R*,
X-ray crystal structure of opsin. A. Gtα(340–350)K341L re-docked
onto the X-ray crystal structure of opsin (blue ribbon). The docked
poses are shown in green, and the X-ray crystal structure is shown in
red as stick models. B. Plot of the energy funnel that resulted from
the Gtα(340–350)K341L docking calculations. The blue dots re-
present all the docked poses, and the red squares are poses that
scored in the top 5% of poses based on total energy. C. TUDCA
docked onto the X-ray crystal structure of opsin (blue ribbon). The
best scoring TUDCA pose is shown in red, followed by the second
best in orange, and third best in yellow as stick models. The X-ray
crystal structure of Gtα(340–350)K341L is shown in green as a
ribbon. D. The plot of TUDCA interaction energy vs RMSD from the
starting structure. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this
article.)
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