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Associations of ambient coarse particulate matter, nitrogen 
dioxide, and carbon monoxide with the risk of kidney 
disease: a cohort study
Benjamin Bowe, Yan Xie, Tingting Li, Yan Yan, Hong Xian, Ziyad Al-Aly

Summary
Background Experimental evidence and preliminary clinical evidence suggest that environmental air pollution 
adversely effects kidney health. Previous work has examined the association between fine particulate matter and risk 
of kidney disease; however, the association between ambient coarse particulate matter (PM10; ≤10 µm in aerodynamic 
diameter), nitrogen dioxide (NO2), and carbon monoxide (CO) and risk of incident chronic kidney disease, chronic 
kidney disease progression, and end-stage renal disease is not clear.

Methods We merged multiple large databases, including those of the Environmental Protection Agency and the 
Department of Veterans Affairs, to build a cohort of US veterans, and used survival models to evaluate the association 
between PM10, NO2, and CO concentrations and risk of incident estimated glomerular filtration rate (eGFR) of less 
than 60 mL/min per 1·73 m², incident chronic kidney disease, eGFR decline of 30% or more, and end-stage renal 
disease. We treated exposure as time-varying when it was updated annually and as cohort participants moved.

Findings Between Oct 1, 2003, and Sept 30, 2012, 2 010 398 cohort participants were followed up over a median of 
8·52 years (IQR 8·05–8·80). An increased risk of eGFR of less than 60 mL/min per 1·73 m² was associated with an 
IQR increase in concentrations of PM10 (hazard ratio 1·07, 95% CI 1·06–1·08), NO2 (1·09, 1·08–1·10), and CO (1·09, 
1·08–1·10). An increased risk of incident chronic kidney disease was associated with an IQR increase in concentrations 
of PM10 (1·07, 1·05–1·08), NO2 (1·09, 1·08–1·11), and CO (1·10, 1·08–1·11). An increased risk of an eGFR decline 
of 30% or more was associated with an IQR increase in concentrations of PM10 (1·08, 1·07–1·09), NO2 (1·12, 
1·10–1·13), and CO (1·09, 1·08–1·10). An increased risk of end-stage renal disease was associated with an IQR 
increase in concentrations of PM10 (1·09, 1·06–1·12), NO2 (1·09, 1·06–1·12), and CO (1·05, 1·02–1·08). Spline 
analyses suggested a monotonic increasing association between PM10, NO2, and CO concentrations and risk of kidney 
outcomes.

Interpretation Environmental exposure to higher concentrations of PM10, NO2, and CO is associated with increased 
risk of incident chronic kidney disease, eGFR decline, and end-stage renal disease.

Funding US Department of Veterans Affairs.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Experimental evidence and observations from several 
small clinical research studies suggest that exposure to 
higher amounts of air pollution adversely affects kidney 
function. Higher kidney disease mortality in coal mining 
regions of the Appalachian Mountains (USA) has been 
ascribed to environmental exposure to air pollutants.1 
Residential proximity to major roads, which in large part 
is an indirect measure of exposure to air pollutants (and 
other possible factors, including noise pollution), is 
associated with a reduced estimated glomerular filtration 
rate (eGFR).2 In a large cohort of US veterans,3 higher 
amounts of fine particulate matter were associated with 
increased risk of incident chronic kidney disease, eGFR 
decline, and end-stage renal disease.

Major air pollutants include fine particulate matter of 
smaller than 2·5 µm in aerodynamic diameter (PM2·5), 
coarse particulate matter of smaller than 10 µm in 

aerodynamic diameter (PM10), nitrogen dioxide (NO2), 
carbon monoxide (CO), and others. Previous work has 
focused on the evaluation of the association between PM2·5 

and kidney disease outcomes.3 Much less is known about 
the association of other major pollutants and the risk of 
development of kidney disease and kidney function decline.

Identification of specific air pollutants as potential 
drivers of adverse kidney outcomes might inform targeted 
mitigation strategies and will possibly contribute to the 
national and global discussion on the importance of 
curbing air pollution on health and disease. We aimed to 
investigate whether exposure to higher amounts of air 
pollutants, including PM10, NO2, and CO, is associated with 
increased risk of development and progression of kidney 
disease. To address this question, we built a national cohort 
of US veterans and followed up these veterans to examine 
the association between PM10, NO2, and CO and risk of 
incident eGFR of less than 60 mL/min per 1·73 m², 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2542-5196(17)30117-1&domain=pdf
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For more on the Environmental 
Protection Agency’s annual air 

quality data see http://www.
epa.gov/ttn/airs/aqsdatamart 

incident chronic kidney disease, eGFR decline of 30% or 
more, and end-stage renal disease.

Methods
Study design and participants
We selected users of the Veterans Affairs Health Care 
System from the US Department of Veterans Affairs’ 
datasets. Participants were required to have at least 
one outpatient eGFR measurement between Oct 1, 2003, 
and Sept 30, 2004, and no previous history of end-stage 
renal disease; the date of the last eGFR measurement in 
this time period was designated as time zero (T0; 
n=2 751 717). We further selected participants who had at 
least one outpatient eGFR measurement after T0 
(n=2 680 431), and followed up these participants until 
Sept 30, 2012, or death. We then limited participants to 
those individuals who at any timepoint during follow-up 
were within 48 km of an air monitoring station that 
measured at least one of the studied pollutants, yielding 
a final cohort of 2 010 398. The study was approved by the 
Institutional Review Board of the Veterans Affairs Saint 
Louis Health Care System, Saint Louis, MO, USA.

Data sources
We used the Department of Veterans Affairs’ datasets to 
procure participants’ demographics, inpatient and 
outpatient data, laboratory information, vital signs, and 
prescriptions. We obtained zip code and county of 
residence at time of receipt of care from inpatient and 
outpatient encounter data. Data from the US Renal 
Database System (USRDS) were used to augment end-
stage renal disease status information.4–10 Environmental 
Protection Agency’s (EPA) annual air quality data 
from 2003 to 2012, provided data on all pollutants and 

the latitude and longitude of the data’s corresponding 
monitoring station collection points. National US 
estimates of the incident rates of chronic kidney disease 
were obtained from the CDC CKD Surveillance Project 
and treated end-stage renal disease were obtained from 
the 2016 USRDS Annual Data Report.11 We obtained 
county-level data on metropolitan statistical areas 
(MSA), zip code centroid, population, population 
density, and poverty from the US Census Bureau. We 
used data from the 2014 County Health Rankings’ 
dataset to obtain information on county-level 
variables.12,13 A more detailed description of data sources 
is provided in the appendix.

Exposure assessment
The primary predictor variables for analyses were annual 
mean concentrations of 24-h local condition particulate 
matter of 10 μm or smaller in aerodynamic diameter 
(μg/m³), 1-h observed NO2 (parts per billion [ppb]), and 
8-h running average CO (parts per million [ppm]). 
Participants were assigned exposure, as time-varying, on 
the basis of the nearest air monitoring station, within 
48 km, to the centroid of the participant’s zip code of 
residence. Air monitoring station measures were selected 
for inclusion in these analyses when they met EPA quality 
control conditions of completeness and certification, as 
appropriate. We assessed distance from the air monitoring 
station to the participant’s residential zip code’s centroid 
with the haversine formula. We assigned cohort 
participants’ geographical location, which might have 
varied over time, on the basis that their zip code contained 
in outpatient or inpatient data closest, but before, a given 
timepoint. Pollutant exposure was updated as cohort 
participants moved, in which average annual exposure 

For more on the CDC CKD 
Surveillance Project see http://

www.cdc.gov/ckd

For more on the County Health 
Rankings’ dataset see http://

www.countyhealthrankings.org/
rankings/data

See Online for appendix

Research in context

Evidence before this study
Experimental and epidemiological evidence suggests that 
environmental exposure to fine particulate matter smaller than 
2·5 µm in aerodynamic diameter adversely effects kidney 
function. The associations between other major air pollutants, 
including ambient coarse particulate matter (PM10), nitrogen 
dioxide (NO2), and carbon monoxide (CO), and the risk of incident 
chronic kidney disease, chronic kidney disease progression, and 
end-stage renal disease have not been previously investigated.

Added value of this study
This Article provides evidence that higher concentrations of 
PM10, NO2, and CO are associated with increased risk of chronic 
kidney disease development, kidney function decline, and 
end-stage renal disease. The findings show a monotonic 
increasing association between exposure concentrations of 
PM10, NO2, and CO and risk of adverse kidney outcomes. The 
study also provides a quantitative assessment of the burden of 
incident kidney disease and incident end-stage renal disease 
attributable to PM10, NO2, and CO in the USA.

Implications of all the available evidence
The findings suggest that elevated concentrations of ambient 
PM10, NO2, and CO are important, yet unrecognised, 
environmental risk factors for kidney disease and its 
progression. The results will also inform estimates of the 
global burden of kidney disease attributable to air pollution, 
and serve to inform policy makers and the public about the 
hazards of specific pollutants on the kidneys. The findings 
might explain some of the geographical variation in the 
burden of kidney disease in the USA and globally. Since the 
burden of kidney disease of unknown origin is increasing in 
multiple geographies worldwide, especially those countries 
with significant air pollution from agricultural sources, this 
report might serve as a blueprint to investigate the 
contribution of air pollution to this rising—so far elusive—
disease entity when identification of specific air pollutants as 
potential drivers of adverse kidney outcomes might inform 
targeted mitigation strategies.
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was matched to their updated geographical locations at 
any specific time. In all primary analyses, unless 
otherwise indicated, measures correspond to an IQR 
increase in the pollutant.

Ascertainment of outcomes
Outcomes were comprised of the risk of incident eGFR 
of less than 60 mL/min per 1·73 m²; the risk of incident 
chronic kidney disease, with chronic kidney disease 
defined as two eGFR measurements less than 60 mL/min 
per 1·73 m² at least 90 days apart and time of event was 
set at the second eGFR measurement;6 time until a 
decline of eGFR of 30% or more from eGFR at T0; and 
time until end-stage renal disease.14 Participants were 
censored following inception of end-stage renal disease, 
for all outcomes other than end-stage renal disease, and 
at time of death or end of study follow-up. We determined 
the date of first end-stage renal disease service (dialysis 
or kidney transplant) by linking the databases of the 
Department of Veterans Affairs and USRDS. Outpatient 
eGFR measurements were used in the evaluation of all 
outcomes except for end-stage renal disease, in which 
inpatient eGFR data were also used. We estimated eGFR 
using the four-variable abbreviated Chronic Kidney 
Disease Epidemiology Collaboration (CKD-EPI) equation 
on the basis of age, race, sex, and serum creatinine 
concentrations.15

Covariates
We based covariate selection on factors that could 
conceivably confound the association of air pollutants 
and kidney disease outcomes, and this assessment was 
informed by previous studies.4,12,16–19 Baseline covariates 
were ascertained from Oct 1, 1999, until cohort entry (T0). 
Covariates included age, race, sex, cancer, cardiovascular 
disease, chronic lung disease, diabetes mellitus, 
hyperlipidaemia, hypertension, T0 eGFR, body-mass 
index, smoking status, use of angiotensin-converting 
enzyme inhibitors or angiotensin receptor blockers, 
number of outpatient eGFR measurements, number of 
hospital admissions, county population density, and 
percentage of the county in poverty. Details of covariate 
definitions are presented in the appendix. We treated 
covariates as continuous variables when relevant, unless 
otherwise indicated.

Statistical analysis
Demographic and clinical characteristics of the overall 
cohort are presented as frequency (percentage) for 
categorical variables, and as mean (SD) or median (IQR) 
for continuous variables. We present the distribution of 
pollutants in the cohort in 2004, and the IQRs were used 
in subsequent analyses. Age, race, sex, and eGFR-
adjusted incidence of each adverse kidney outcome are 
presented by pollutant category, in which categories are 
defined as less than the 25th percentile for category 1, 
25–75th percentile for category 2, and more than the 

75th percentile for category 3. We used Cox proportional 
hazards survival models to assess the association 
between pollutants, as a time-varying exposure, and 
outcomes, and adjusted for covariates. We used a robust 
sandwich variance estimator to account for intra-county 
correlation. As the exposure definition was dependent 
on proximity to an air monitoring station, patients were 
not included in analyses at time t if, at time t, they were 
not within 48 km of an air monitoring station measuring 
the pollutant of interest; participants were included at all 
other times as appropriate. Additionally, we did analyses 
with exposure defined by pollutant category, as previously 
defined. Restricted cubic spline analyses were 
undertaken,20 and we included distribution histograms 
of the pollutants in the background of these graphs 
(appendix). We analysed exposure to assess within-city 
effects in those participants who lived within 8 km of an 
air monitoring station, in which city was defined by 
MSA, using a within-city model with a city-wide mean 
parameter (for between-city effects) and a difference 
from city mean parameter (for within-city effects; 
appendix).16 As a negative control,21,22 we examined the 
association of sodium concentration, in which exposure 
was assigned in the same method as that of the primary 
pollutants of interest, with kidney disease outcomes, and 
also with mortality.

Population attributable fractions (PAFs) are presented 
as a measure of the proportion of the outcome in the 
population attributable to each air pollutant exposure 
above the theoretical minimum exposure risk level 
(TMREL), and a PAF was additionally calculated for the 
joint effect of the three pollutants to account for possible 
overlap in effect.23,24 For all pollutants, we used the 
fifth percentile of the distribution of all air monitoring 
stations nationally in 2004, intended to be representative 
of a realistically obtainable low pollutant amount, as the 
TMREL, and any exposure amount under the TMREL 
was considered not to contribute any risk. We calculated 
PAF with the exposure distribution at T0 (appendix). We 
calculated attributable burden of disease for incident 
eGFR of less than 60 mL/min per 1·73 m² and end-stage 
renal disease (appendix).11,25

We did not impute missing data. In analyses, a 95% CI 
of a hazard ratio (HR) that did not include unity was 
considered statistically significant. In all analyses, a 
p value of 0·05 or less was considered statistically 
significant. All statistical analyses were done using SAS 
Enterprise Guide version 7.1. To test the robustness of the 
study findings, we undertook a number of sensitivity 
analyses (appendix).

Role of the funding source
The funder of this study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.
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Results
Between Oct 1, 2003, and Sept 30, 2012, 2 010 398 cohort 
participants were followed up for a median of 8·52 years 
(IQR 8·05–8·80; figure 1). Overall, cohort participants 
were mostly white and male (table 1). In 2004, among 
those individuals in the cohort, the median concentration 
for PM10 was 20·45 μg/m³ (IQR 14·64–24·81), NO2 was 
14·54 ppb (9·69–17·91), and CO was 0·51 ppm 
(0·40–0·64). Adjusted incident rate of eGFR of 
60 mL/min per 1·73 m², chronic kidney disease, eGFR 
decline of 30% or more, and end-stage renal disease 
gradually increased across ordinal categories of 
increasing PM10, NO2, and CO concentrations (figure 2, 
appendix).

In a cohort of participants who had no history of eGFR 
of less than 60 mL/min per 1·73 m² before time of cohort 
entry, an IQR increase in concentrations of PM10 

(10·17 μg/m³), NO2 (8·22 ppb), and CO (0·24 ppm) was 
associated with an increased risk of eGFR of less than 
60 mL/min per 1·73 m² (table 2). Spline analyses 
suggested a monotonic increasing association between 
PM10, NO2, and CO concentrations and risk incident 
eGFR of less than 60 mL/min per 1·73 m² (figure 3). 
Because variation in regional characteristics might 
confound the association between environmental air 
pollutants and kidney disease, we developed analyses to 
estimate risk within a city (appendix). Results of the 
within-city models suggested that higher concentrations 
of PM10, NO2, and CO within the same MSA were 
associated with an increased risk of eGFR of less than 
60 mL/min per 1·73 m² (table 3).

We assessed the risk of incident chronic kidney disease 
in a subcohort of participants with no less than two eGFR 
measurements separated by at least 90 days during 
follow-up and no history of eGFR less than 60 mL/min 

per 1·73 m² before time of cohort entry. The results were 
consistent with the results showing an increased risk of 
eGFR less than 60 mL/min in that an IQR increase in 
concentrations of PM10, NO2, and CO was associated with 
an increased risk of incident chronic kidney disease 
(table 2). Spline analyses showed a monotonic increasing 
association between concentrations of PM10, NO2, and 
CO and risk of incident chronic kidney disease (figure 3). 
Results of the within-city models suggested that higher 
concentrations of PM10, NO2, and CO within the same 
MSA were associated with an increased risk of incident 
chronic kidney disease (table 3).

Figure 1: Study design
(A) Flow diagram of cohort participant inclusion. (B) Data assessment timeline. 
eGFR=estimated glomerular filtration rate. T0=time zero.

2 751 717 participants with at least one eGFR measurement between 
Oct 1, 2003, and Sept 30, 2004, and with no previous history of 
end-stage renal disease, dialysis, or kidney transplant

2 680 431 participants with at least one eGFR measurement subsequent to T0

2 010 398 participants within 48 km of an air monitoring station that 
measures a pollutant of interest at any time during follow-up

A

B
Assessment of
baseline covariates 
up to T0 

Annual average pollutant 
concentration varying by 
year after T0 

October,
1999

October,
2003

T0 September,
2004

September,
2012

Overall cohort 

Zip codes 22 098

Participants 2 010 398

Age (years) 62·15 (54·39–71·72)

Race

White 1 623 247 (80·74%)

Black 315 025 (15·67%)

Other 72 126 (3·59%)

Sex

Male 1 909 206 (94·97)

Female 101 192 (5·03%) 

Cancer 235 223 (11·70%)

Cardiovascular disease 589 321 (29·31%)

Chronic lung disease 381 764 (18·99%)

Diabetes mellitus 559 470 (27·83%)

Hyperlipidaemia 1 134 687 (56·44%)

Hypertension 1 342 771 (66·79%)

Peripheral artery disease 52 968 (2·63%)

Smoking status

Current 516 116 (25·67%)

Former 435 632 (21·67%)

Never 1 058 650 (52·66%)

Body-mass index

Underweight 20 990 (1·04%)

Normal weight 399 402 (19·87%)

Overweight 791 783 (39·38%)

Obese 798 223 (39·70%)

ACEI or ARB use 936 555 (46·59%)

Follow-up time (years) 8·52 (8·05–8·80)

eGFR at T0 (mL/min per 1·73 m²) 76·52 (20·06)

Number of outpatient eGFR measurements

Before T0 4 (2–7)

After T0 13 (8–20)

Participants with one or more hospital 
admissions

338 857 (16·86%)

Percentage of county in poverty 12·7 (10·1–15·3)

Population density (per km²) 138·4 (44·1–447·1)

Data are n, median (IQR), n (%), or mean (SD). Covariates were measured at T0, 
unless otherwise stated. ACEI=angiotensin-converting enzyme inhibitors. 
ARB=angiotensin receptor blockers. eGFR=estimated glomerular filtration rate. 
T0=time zero.

Table 1: Characteristics of overall study cohort
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An IQR increase in PM10, NO2, and CO concentrations 
was associated with increased risk of eGFR decline 
of 30% or more (table 2). Spline analyses suggested a 
monotonic increasing association between PM10, NO2, 
and CO concentrations and risk of eGFR decline of 30% 
or more (figure 3). Risk estimates from within-city 
analyses showed an association of PM10, NO2, and CO 
with eGFR decline of 30% or more (table 3). The results 
were consistent in analyses considering the outcome of 
end-stage renal disease in that an IQR increase in 
concentrations of PM10, NO2, and CO was associated with 
an increased risk of end-stage renal disease (table 2). 
Spline functions depicted a consistent monotonic 
increasing association (figure 3). Risk estimates from 
within-city analyses showed an association of PM10, NO2, 
and CO with end-stage renal disease (table 3).

We considered exposure to ambient air sodium 
concentration as a negative control. No biological or 
clinical evidence supports an association between 

Figure 2: Adjusted incident rates of kidney disease outcomes by pollutant category
Adjusted for age, race, sex, and T0 eGFR. Categories are defined by the cohort distribution in 2004: less than the 25th percentile is category 1, 25–75th percentile is 
category 2, and more than the 75th percentile is category 3. Error bars represent 95% CIs. T0=time zero. eGFR=estimated glomerular filtration rate. CO=carbon 
monoxide. NO2=nitrogen dioxide. PM10=ambient course particulate matter (≤10 μm). 
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Pollutant

Incident eGFR <60 mL/min per 1·73 m2 Incident chronic kidney disease

eGFR decline ≥30% End-stage renal disease

Category 1
Category 2
Category 3

Incident eGFR 
<60 mL/min 
per 1·73 m²*

Incident chronic 
kidney disease†

eGFR decline ≥30% End-stage 
renal disease

PM10 673 230; 1·07 
(1·06–1·08)

674 905; 1·07 
(1·05–1·08)

964 688; 1·08 
(1·07–1·09)

1 034 488; 1·09 
(1·06–1·12)

NO2 983 744; 1·09 
(1·08–1·10)

958 051; 1·09 
(1·08–1·11)

1 426 272; 1·12 
(1·10–1·13)

1 452 755; 1·09 
(1·06–1·12)

CO 1 029 175; 1·09 
(1·08–1·10)

997 700; 1·10 
(1·08–1·11)

1 490 023; 1·09 
(1·08–1·10)

1 510 545; 1·05 
(1·02–1·08)

Sodium 1 084 437; 0·99 
(0·99–0·99)

1 053 333; 0·99 
(0·98–0·99)

1 564 530; 0·99 
(0·99–0·99)

1 588 470; 1·01 
(1·00–1·01)

Data are n; hazard ratio (95% CI). Models are adjusted for baseline age, race, sex, T0 eGFR, hypertension, diabetes, 
cancer, cardiovascular disease, chronic lung disease, body-mass index, smoking, angiotensin-converting enzyme 
inhibitor and angiotensin receptor blocker use, number of hospital admissions, number of eGFR measurements, 
county population density, and percentage of county in poverty. eGFR=estimated glomerular filtration rate. 
PM10=ambient course particulate matter (≤10 μm). NO2=nitrogen dioxide. CO=carbon monoxide. T0=time zero. 
*Incident eGFR of less than 60 mL/min per 1·73 m² was evaluated in a subcohort of people with no previous history of 
eGFR less than 60 mL/min per 1·73 m² at the time of cohort entry. †Incident chronic kidney disease was evaluated in a 
subcohort of people with at least two eGFR measurements taken at least 90 days apart and who had no previous 
history of eGFR less than 60 mL/min per 1·73 m² at the time of cohort entry.

Table 2: Risk of kidney disease outcomes for every IQR increase in air pollutant and sodium concentration
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Figure 3: Spline analyses of 
risk of kidney outcomes by 
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different sodium concentrations in the air and risk of 
adverse kidney outcomes; thus, ambient air sodium is a 
suitable negative control.22 We therefore tested the 
association between ambient air sodium concentrations 
and the risk of kidney outcomes, and the results indicated 
no significant association (table 2). Air sodium 
concentrations were not associated with the risk of death 
(HR 1·00, 95% CI 1·00–1·01).

PAF represents the proportional reduction in population 
disease that would occur if exposure to pollutants was 
reduced to the TMREL. The PAFs of PM10, NO2, and CO 
considered separately for each kidney disease outcome 
are provided in table 4. In analyses in which the pollutants 
were considered jointly, the PAF for each kidney disease 
outcome exceeded that of any one pollutant alone (table 4). 

The national burden of kidney disease attributable to 
concentrations of PM10 exceeding the TMREL in the 
contiguous USA was 340 757·4 incident cases (95% CI 
283 964·5–397 550·2) of eGFR less than 60 mL/min 
per 1·73 m² per year and 15 223·7 incident cases 
(9674·8–20 772·7) of end-stage renal disease per year. The 
national burden of kidney disease attributable to excess 
NO2 was 366 297·3 incident cases (321 266·3–414 688·9) 
of eGFR less than 60 mL/min per 1·73 m² per year and 
12 796·1 incident cases (8490·9–17 101·3) of end-stage 
renal disease per year. Our estimate of the national 
burden of kidney disease attributable to excess CO was 
349 494·7 incident cases (308 160·2–390 829·2) of eGFR 
less than 60 mL/min per 1·73 m² per year and 7091·7 
incident cases (6613·3–7330·8) of end-stage renal disease 
per year. When considered jointly, the national burden of 
kidney disease attributable to PM10, NO2, and CO was 
765 863·9 incident cases (656 982·9–875 081·0) of eGFR 
less than 60 mL/min per 1·73 m² per year and 29 227·7 
incident cases (19 899·7–38 855·7) of end-stage renal 
disease per year.

To test the sensitivity of our results, we did the following 
sensitivity analyses. We considered exposure in ordinal 
categories. We observed a graded association in that the 
risk was increased with increasing ordinal category; 
compared with the lowest category, the highest category 
of PM10, NO2, and CO was associated with increased risk 
of kidney outcomes (appendix). To test different spatial 
resolutions for exposure definition, exposure levels were 
assigned by nearest air monitoring station within 8 km 
and 16 km (appendix); the results were consistent in that 
an IQR increase in exposure to pollutants (PM10, NO2, and 
CO) was associated with significant increased risk of 
kidney outcomes. To account for local conditions that 
might confound the association of PM10, NO2, and CO and 
risk of kidney outcomes,12 we also did analyses in which 
we controlled for several US county-level characteristics 
(in several domains capturing health outcomes, health 
behaviours, clinical care, social and economic factors, 
physical environment, and demographics) obtained from 
the County Health Ranking’s dataset (appendix),13 and 
results were consistent in that an IQR increase in 

exposure to pollutants was associated with an increased 
risk of kidney outcomes. We then considered additional 
kidney outcomes of doubling of serum creatinine 
concentrations and the composite outcome of end-stage 
renal disease or eGFR decline of 50% or more, and the 
results were consistent (appendix).

We examined the association of PM10, NO2, and CO and 
risk of death. This analysis served as a positive control in 
which a-priori observations suggested that an association 
is expected.25,26 Our results showed a significant association 
between PM10, NO2, and CO concentrations and risk of 
death (appendix). Results of sensitivity analyses for the 
competing risk of death were consistent with those shown 
in primary analyses27 (appendix).

Discussion
In this study, we aimed to characterise the association 
between ambient concentrations of PM10, NO2, and CO 
and risk of incident chronic kidney disease, eGFR decline 
of 30% or more, and end-stage renal disease. The results 
suggest a consistent graded and monotonically increasing 
association in which exposure to higher concentrations 
of these pollutants is associated with increased risk of 
development of kidney disease and progression to end-
stage renal disease. The results were consistent across a 
range of kidney outcomes, and were robust to challenges 

Incident eGFR 
<60 mL/min 
per 1·73 m²*

Incident chronic 
kidney disease†

eGFR decline 
≥30%

End-stage renal 
disease

PM10

Sample size 589 691 593 101 844 356 912 032

Between-city difference 1·44 
(1·34–1·54)

1·32 
(1·21–1·44)

1·40 
(1·30–1·50)

1·62 
(1·36–1·94)

Within-city difference 1·06 
(1·05–1·08)

1·06 
(1·05–1·08)

1·07 
(1·06–1·08)

1·09 
(1·05–1·12)

NO2

Sample size 932 504 907 188 1 351 258 1 375 128

Between-city difference 1·29 
(1·24–1·34)

1·32 
(1·26–1·39)

1·31 
(1·25–1·36)

1·28 
(1·16–1·42)

Within-city difference 1·07 
(1·06–1·08)

1·07 
(1·05–1·09)

1·10 
(1·08–1·11)

1·06 
(1·03–1·10)

CO

Sample size 985 200 954 656 1 426 391 1 445 056

Between-city difference 1·10 
(1·09–1·11)

1·11 
(1·09–1·12)

1·10 
(1·09–1·11)

1·05 
(1·02–1·08)

Within-city difference 1·09 
(1·08–1·10)

1·10 
(1·08–1·11)

1·09 
(1·08–1·10)

1·04 
(1·02–1·07)

Data are n or hazard ratio (95% CI). Models are adjusted for baseline age, race, sex, T0 eGFR, hypertension, diabetes, 
cancer, cardiovascular disease, chronic lung disease, body-mass index, smoking, angiotensin-converting enzyme 
inhibitor and angiotensin receptor blocker use, number of hospital admissions, number of eGFR measurements, county 
population density, and percentage of county in poverty. eGFR=estimated glomerular filtration rate. PM10=ambient 
course particulate matter (≤10 μm). NO2=nitrogen dioxide. CO=carbon monoxide. T0=time zero. *Incident eGFR of less 
than 60 mL/min per 1·73 m² was evaluated in a subcohort of people with no previous history of eGFR less than 
60 mL/min per 1·73 m² at the time of cohort entry. †Incident chronic kidney disease was evaluated in a subcohort of 
people with at least two eGFR measurements taken at least 90 days apart and who had no previous history of eGFR less 
than 60 mL/min per 1·73 m² at the time of cohort entry.

Table 3: Risk of kidney outcomes for every IQR increase in pollutant concentration for between-city 
and within-city analyses
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in sensitivity analyses, including analyses which 
considered exposure in ordinal categories, varying spatial 
resolution for exposure definition, and—to account for 
potential regional variation—within-city estimates. Our 
analytic strategies also included testing a negative 
control, which showed that ambient air sodium 
concentrations (routinely collected by air monitoring 
stations) were not associated with higher risk of adverse 
kidney outcomes. Taken together, the findings suggest 
that environmental exposure to elevated concentrations 
of PM10, NO2, and CO is a novel risk factor for the 
development and progression of kidney disease.

Few experimental and clinical studies1,2,12,28–36 have 
examined the effect of environmental air pollution on the 
kidney. Air pollution has been cited as a potential 
explanation of the geographical variation in burden of 
kidney disease in the USA, Europe, and globally.12,34–36 We 
previously observed clusters of geographical areas in 
the USA with high prevalence for increased odds of rapid 
eGFR decline that were not explained by traditional 
drivers, including diabetes mellitus and hypertension. 
Our report on the association between specific air 
pollutants (PM10, NO2, and CO) and risk of kidney 
outcomes might explain some of these geographical 
disparities in the USA, can inform targeted mitigation 
strategies, and, most importantly, contributes to the 
broader national and global discussion on the hazardous 
effect of air pollution on kidney health.

We used the Global Burden of Disease methodologies 
and developed analyses to estimate the national burden of 
disease attributable to excess concentrations of 
environmental air pollutants including PM10, NO2, and 
CO.23,25,37,38 The findings provide a quantitative assessment—
to inform the public and policy makers—of the potential 
reduction in the burden of kidney disease that is likely to 
be achievable with targeted reduction of specific 
environmental pollutants. These estimates might also 
inform global estimates of the burden of kidney disease 
attributable to excess concentrations of PM10, NO2, and CO.

The biological mechanism or mechanisms 
underpinning the reported associations is not entirely 
clear. Several hypotheses have been proposed to 
explain the extrapulmonary effects of air pollution. 
One hypothesis suggests that inhaled pollutants might 
lead to pulmonary inflammation, which could then 
trigger systemic inflammation. The second hypothesis 
posits that pollutants might provoke the lung 
autonomic nervous system. The third (and most 
widely accepted) hypothesis postulates that air 
pollutants might traverse the alveolar space and enter 
the bloodstream where they can produce an untoward 
effect on remote organs.31,39–51

Our study has a number of limitations. Our cohort 
included US veterans who were mostly older, white men; 
therefore, the findings might not be generalisable to 
other populations. We accounted for known confounders, 
but cannot exclude the possibility of residual confounding 
(either unmeasured or unknown). Our datasets did not 
contain information on time spent in traffic or outdoors, 
which can result in misclassification of exposure. 

The study has a number of strengths. We built a large 
national cohort of US veterans (17 128 591 person-years) 
who are recipients of care in a single integrated network 
of health-care systems. Our analytic strategies included 
the use of time-varying exposure (to reflect changes in 
concentrations of exposure with time and as participants 
moved from one area to another). We evaluated a range 
of well defined chronic kidney outcomes across the 
continuum of the chronic kidney disease evolution 
spectrum, including the development of chronic kidney 
disease (incident eGFR <60 mL/min per 1·73 m² and 
incident chronic kidney disease), chronic kidney disease 
progression (eGFR decline >30%), and the terminal 
outcome of end-stage renal disease. We tested the 
robustness of the results in multiple sensitivity analyses 
including within-city analyses, which reduces concern 
about confounding due to variation in regional 
characteristics. Finally, we applied both a positive control 

Theoretical minimum 
risk exposure 
concentration

Incident eGFR <60 mL/min 
per 1·73 m² (%)*

Incident chronic kidney 
disease (%)†

eGFR decline ≥30% (%) End-stage renal disease (%)

PM10 4·56 μg/m³ 10·14 (8·45–11·83) 9·97 (7·96–11·98) 11·62 (9·88–13·36) 12·73 (8·09–17·37)

NO2 3·09 ppb 10·90 (9·56–12·34) 10·99 (9·25–12·73) 13·70 (12·22–15·19) 10·70 (7·10–14·30)

CO 0·18 ppm 10·40 (9·17–11·63) 11·37 (9·83–12·91) 10·68 (9·43–11·93) 5·93 (5·53–6·13)

Joint effect‡ PM10 4·56 μg/m³, 
NO2 3·09 ppb, 
and CO 0·18 ppm

265 206; 22·79 
(19·55–26·04)

253 095; 23·91 
(20·10–27·71)

381 379; 23·94 
(20·62–27·26)

381 379; 24·44 
(16·64–32·24)

Data are HR (95% CI) or n; HR (95% CI). Models are adjusted for baseline age, race, sex, T0 eGFR, hypertension, diabetes, cancer, cardiovascular disease, chronic lung disease, 
body-mass index, smoking, angiotensin-converting enzyme inhibitor and angiotensin receptor blocker use, number of hospital admissions, number of eGFR measurements, 
county population density, and percentage of county in poverty. eGFR=estimated glomerular filtration rate. PM10=ambient course particulate matter (≤10 μm). NO2=nitrogen 
dioxide. ppb=parts per billion. CO=carbon monoxide. ppm=parts per million. HR=hazard ratio. T0=time zero. *Incident eGFR of less than 60 mL/min per 1·73 m² was evaluated 
in a subcohort of people with no previous history of eGFR less than 60 mL/min per 1·73 m² at the time of cohort entry. †Incident chronic kidney disease was evaluated in a 
subcohort of people with at least two eGFR measurements taken at least 90 days apart and who had no previous history of eGFR less than 60 mL/min per 1·73 m² at the time 
of cohort entry. ‡Done in participants who were within 48 km of stations measuring the three pollutants.

Table 4: Population attributable fraction for kidney outcomes by air pollutant
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and a negative control. In summary, our results show a 
significant association between concentrations of PM10, 
NO2, and CO and risk of development of kidney disease, 
and its progression to end-stage renal disease. The 
national burden of kidney disease attributable to these 
pollutants is not trivial and an effort to improve air 
quality might alleviate the burden of kidney disease in 
the USA and globally.
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