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ARTICLE

Molecular principles underlying dual RNA
specificity in the Drosophila SNF protein
Gert Weber 1,2, Gregory T. DeKoster3, Nicole Holton1, Kathleen B. Hall3 & Markus C. Wahl 1,2

The first RNA recognition motif of the Drosophila SNF protein is an example of an RNA

binding protein with multi-specificity. It binds different RNA hairpin loops in spliceosomal U1

or U2 small nuclear RNAs, and only in the latter case requires the auxiliary U2A′ protein.
Here we investigate its functions by crystal structures of SNF alone and bound to U1 stem-

loop II, U2A′ or U2 stem-loop IV and U2A′, SNF dynamics from NMR spectroscopy, and

structure-guided mutagenesis in binding studies. We find that different loop-closing base

pairs and a nucleotide exchange at the tips of the loops contribute to differential SNF affinity

for the RNAs. U2A′ immobilizes SNF and RNA residues to restore U2 stem-loop IV binding

affinity, while U1 stem-loop II binding does not require such adjustments. Our findings show

how U2A′ can modulate RNA specificity of SNF without changing SNF conformation or

relying on direct RNA contacts.
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RNA-binding proteins (RBPs) often employ folded domains
to specifically recognize their target RNAs1, 2.
Transcriptome-wide RNA binding studies3–5 have revealed

hundreds of RBPs bound to diverse RNA molecules. Many RBPs
can bind to multiple RNA targets that lack obvious or strict
consensus sequences6, suggesting that their RNA affinities and
specificities can be modulated in the molecular context in which
the recognition events take place. However, only few such
examples have been analyzed in detail, leaving the molecular
mechanisms that regulate RNA affinities and specificities of such
RBPs in many cases unclear.

The U1A/U2B″/SNF family of RBPs is found in the U1 and/or
U2 small nuclear ribonucleoprotein (snRNP) components of the
spliceosome7–9. Jawed vertebrates use U1A to bind stem-loop II of
U1 snRNA (U1SLII) and U2B″ in conjunction with the leucine-rich
repeat (LRR) protein U2A′ to bind SLIV of U2 snRNA (U2SLIV)10.
Both U1A and U2B″ employ an N-terminal RNA recognition motif
(RRM) to specifically recognize their RNA targets. RRMs are the
most widespread type of RNA-binding domain in eukaryotes2.
While different RRMs can interact with target RNAs in diverse
ways11, crystal structures of human (h) U1A RRM1 (hU1ARRM1)
alone12 and in complex with human U1 snRNA stem-loop II
(hU1SLII)13 have revealed the canonical mode of how RRMs bind
single-stranded RNA sequences via the conserved RNP1 and 2
motifs on the exposed surface of a β-sheet. Moreover, structural
analysis of human U2B″ RRM1 (hU2B″RRM1) bound to human
U2 snRNA stem-loop IV (hU2SLIV) in context of the human U2A′
(hU2A′) protein14 have shown how the two proteins together
provide a binding surface for the stem of hU2SLIV, and how
exchange of key residues leads to altered RNA loop specificities in
hU1ARRM1 and hU2B″RRM1.

While segregation of the U1ARRM1 and U2B″RRM1 RNA-binding
specificities and selective binding of U2B″RRM1 to U2A′ can be
understood based on their divergent sequences in jawed verte-
brates15, other metazoan species use SNF to bind both U1SLII and
U2SLIV10, only in the latter case in conjunction with U2A′. For
example, Drosophila melanogaster (d) SNF RRM1 (dSNFRRM1)
binds Drosophila U1SLII (dU1SLII) with high affinity in vitro, but its
affinity for Drosophila U2SLIV (dU2SLIV) is up to 100-fold weaker16,
depending on the conditions. Analysis of binding thermodynamics
revealed that Drosophila U2A′ (dU2A′) cooperatively restores high-
affinity binding of dSNFRRM1 to dU2SLIV, under conditions where
it does not influence dSNFRRM1 binding to dU1SLII17, although it
can also associate with the latter complex16. Consistently, the
ternary complex is found only in the U2 snRNP in vivo18. Until
now the mechanistic principles that allow dSNFRRM1 to bind
dU1SLII directly, yet be modulated by dU2A′ to selectively enhance
its affinity for dU2SLIV, remain unclear.

Here, we report crystal structures of four states of dSNFRRM1 at
2 Å resolution or better: the free dSNFRRM1 (residues 1–96;
dSNF1–96), dSNF1–96–dU1SLII, dU2A′–dSNF1–96, and dU2A
′–dSNF1–96–dU2SLIV. Altogether with the characterization of
dSNFRRM1 dynamics alone and in complexes by NMR spectro-
scopy and targeted mutagenesis combined with binding studies,
we delineated how the intrinsic dSNFRRM1 RNA-binding capacity
and specificity are fine-tuned by networks of intra-molecular
interactions that modulate dSNFRRM1 dynamics, and how the
auxiliary dU2A′ protein can capitalize on intrinsic dSNFRRM1

flexibility to gear dSNFRRM1 binding specifically to dU2SLIV.

Results
dSNFRRM1 exhibits high intrinsic structural flexibility. The
sequence of dSNFRRM1 is 84% identical to hU1ARRM1 and hU2B″
RRM1 and includes the amino acid triad Tyr-Gln-Phe that defines
this family (Fig. 1a). We determined a crystal structure of

dSNFRRM1 based on a construct containing residues 1–96 of
dSNF (dSNF1–96) at 1.49 Å resolution (Supplementary Table 1),
showing that the protein adopts a classic RRM fold, with Tyr10-
Gln51-Phe53 displayed on the surface of its four-stranded anti-
parallel β-sheet (Fig. 1b), in agreement with the previous NMR
structure of dSNFRRM1 19. Comparison of the six crystal-
lographically independent dSNF1–96 molecules indicated intrinsic
conformational flexibility in the RNA-binding surface of
dSNF1–96, predominantly affecting loop L3 (residues 42–51; Cα
root-mean-square deviation (rmsd) 0.16–1.10 Å with a maximum
displacement of 1.47 Å) and to a lesser extent L1 (residues 13–19;
rmsd 0.10–0.14 Å with a maximum displacement of 0.21 Å), as
well as side chain conformations in the Tyr-Gln-Phe motif
(Fig. 1b, c). Furthermore, the conformations and positions of the
N-terminal extensions (residues 1–7), which in one case forms an
additional α-helix, and the C-terminal loops L6 (residues 84–87)
and α3 helices (residues 88–94) differ among the six dSNF1–96

copies, in agreement with solution NMR data showing that the
latter element undergoes extensive ps-ns motions20.

Crystal packing will limit the authentic conformational ensemble
that the protein exhibits in solution. We therefore carried out NMR
experiments to assess dSNFRRM1 backbone amide dynamics in
solution. For these experiments we used two dSNFRRM1 constructs,
dSNF1–96 and dSNF1-101. Both short and long versions of dSNFRRM1

showed intermediate dynamics in most elements of the free protein
(Fig. 2a, d). 15N/1H ΔR2 experiments (ΔR2—enhancement of the
intrinsic R2 due to conformational exchange; here we measure ΔR2,
eff=R2,app(νCPMG50 Hz)—R2,app(νCPMG1000 Hz)) at 23 °C revealed
motions on the µs-ms timescale affecting dSNFRRM1 residues along
its entire length. Helix α1 (residues 20–34) is particularly mobile,
indicated by large ΔR2,eff components (ΔR2,eff= 20 s−1 [50ms];
Fig. 2a). Some L5 residues (70–76) also exhibit dynamics >10 s−1

(100ms). Truncating α3 at residue 96 causes the C-terminal region
of the corresponding construct to become more flexible on the ns-ps
and ms timescales as the helical structure is disrupted (Fig. 2a and
see below), consistent with three copies of dSNF1–96 in the crystal
structure entirely lacking electron density for the α3 region. We did
not obtain ΔR2,eff values for several L3 residues because of line
broadening or absence of a resonance (orange labels in Fig. 2a–c),
indicating intermediate conformational exchange on this timescale
or exchange with solvent protons. Only α2 residues exhibited no
measurable exchange. Altogether these analyses document significant
conformational flexibility throughout virtually the entire dSNFRRM1,
peaking at the termini, α1, L3, and L5.

Structure of a dSNF1–96–dU1SLII complex. We used a 22-resi-
due, blunt-ended dU1SLII construct to determine the crystal struc-
ture of a dSNF1–96-dU1SLII complex at 2.0 Å resolution
(Supplementary Table 1). dU1SLII contains a 10-nucleotide (nt)
loop (A7-C16) closed by a C6:G17 Watson-Crick base pair (Fig. 3a;
to simplify comparisons between the various RNAs, we numbered
them identically according to the provided scheme). The center of
the loop arches across the dSNF1–96 β-sheet, L3 protrudes through
the RNA loop, while L1, L6, and α3 border the outside of the loop
(Fig. 3b). The overall structure closely resembles the previously
analyzed hU1ARRM1–hU1SLII complex13 (Fig. 3b).

The similar positioning of the U1SLII hairpins on dSNFRRM1/
hU1ARRM1 is reflected in similar protein contacts to the 5′
branches of the RNA stems (Fig. 3c). However, molecular
interactions in other parts of the complexes differ in detail. In the
human system, the side chains of Ser46 and Ser48 together with
backbone amides of Arg47 and Lys50 (L3) maintain an extensive,
water-mediated hydrogen bonding network with nucleotides
A12-G17 (Fig. 3d, bottom panel). In contrast in the Drosophila
complex, the corresponding dSNFRRM1 residues (Leu43, Thr45,
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Lys44, and Lys47, respectively) do not allow the formation of a
similarly extensive water network. While Thr45, Lys44, and Lys47
engage in water-mediated contacts to the phosphate oxygens of
C16 and G17, a more expanded network is prevented by Leu43,
which replaces Ser46 of hU1ARRM1 in dSNFRRM1 (Fig. 3d, top
and middle panels). As a consequence, C14 can adopt two
alternative conformations. In one conformation, it is bulged out
and does not contact dSNFRRM1 (two of the three crystal-
lographically independent complexes in the crystal; Fig. 3d, top
panel); in the other, its base is flipped towards dSNFRRM1

(Fig. 3d, middle panel), where it rests on a hydrophobic surface
formed by Val41 (β2) and Leu43 (L3) and where it engages in
hydrogen bonds to the side chain of Lys24 (α1) and the backbone
carbonyl group of Ile40 (β2; one of the crystallographically
independent complexes; Fig. 3e). The corresponding U14 in the
human system is disordered in two of the observed complexes
(PDB ID 1URN)13; in the third, it is stabilized above C15 by
water-mediated interactions to the phosphate of C13 and a direct
contact to the base of C16 (Fig. 3d, bottom panel). Lys47 (L3)
contacts the phosphate on the 5′ side of A12 in the Drosophila

complex (Fig. 3d, top and middle panels), while the equivalent
hU1ARRM1 Lys50 does not (Fig. 3d, bottom panel).

Several residues on the RRM β-strand surface and in the
C-terminal extension of the RRM are unique to dSNF and lead to
different contacts to the RNA loops in Drosophila and human
(Fig. 3d). While Asn12 (Asn15 in hU1ARRM1) hydrogen bonds to
N7 of G10 in both organisms, it is stabilized by Gln80 (Arg83 in
hU1ARRM1) only in Drosophila. Gln85 of hU1ARRM1 hydrogen
bonds to the C11 4-amino group, while the corresponding Ala82
in Drosophila does not allow for a similar interaction. Conversely,
Ser84 in dSNFRRM1 engages in a hydrogen bond to the 6-amino
group of A12, while the equivalent Ala88 of hU1ARRM1 cannot.
Instead, the 6-amino group of A12 and the 4-amino group of C13
are jointly bound by Thr89 in hU1ARRM1, while the equivalent
Ser86 does not engage in such interactions in Drosophila. Despite
these differences in detail, our structural data are consistent with
similar patterns of recognition by dSNFRRM1 and hU1ARRM1 for
their respective U1SLII21.
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Fig. 1 dSNF1-96 structure and conformational flexibility. a Sequence alignment of dSNFRRM1, hU1ARRM1 and hU2B″RRM1. Identical residues—red; conserved
residues —blue. The Tyr10-Gln51-Phe53 triad is highlighted in bold. Secondary structure elements as observed in a dSNF1–96 crystal structure are shown
above the alignment (a very short β-sheet within L5 has been omitted for clarity). b Overlay of the six dSNF1–96 molecules (A-F) in an asymmetric unit of a
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dU2SLIV binds in a similar fashion to dSNF1–101 as dU1SLII.
NMR chemical shift perturbations of dSNF1–101 backbone amides
upon dU1SLII binding22 agree well with the crystal structure
(Fig. 4a, d). L3 and the C-terminal region experience the largest
changes between free and dU1SLII-bound dSNF1–101, consistent
with L3 and L6 directly contacting the RNA loop. Additional
perturbations are seen in β1, L1 and β4, in agreement with direct
contacts of L1 to the RNA stem (Lys19-G2/C3; Figs. 3c) and β4
binding the RNA loop (Lys77-U9), as well as Gln80–Asn12
interactions that are stabilized when RNA is bound (Fig. 3d, top
and middle panels). Little chemical shift perturbation was
observed in α1, α2, and L5 that form the backside of dSNF1–101

and do not directly engage the RNA ligand.
dSNFRRM1 binds dU2SLIV with 10 to 100-fold weaker affinity

compared to dU1SLII, depending on the salt concentration, thus
hampering crystallization. However, super-stoichiometric
amounts of dU2SLIV ([dSNF1-101]:[dU2SLIV] 1:4) allowed analysis
of the dSNF1–101–dU2SLIV complex by solution NMR. The pattern

of chemical shift perturbations following dU2SLIV binding to
dSNF1-101 resembles that seen for dSNF1–101–dU1SLII (Fig. 4b–d),
indicating a similar overall binding mode, but exhibits notable
differences in detail. Chemical shift differences are most extensive
in the β2-L3-β3 and C-terminal regions (Fig. 4c, d). The most
prominent differences are seen for Leu46 (L3), whose backbone
amide hydrogen bonds to the phosphate of G17 and whose side
chain stacks on the G17 base of the loop-closing base pair in the
dSNF1–96–dU1SLII complex, and Asp89 (α3) that caps C13 in the
dSNF1–96–dU1SLII complex. Notably, in dU2SLIV a U6:G17
wobble pair replaces the Watson-Crick C6:G17 loop-closing base
pair of dU1SLII, and C13 in the loop of dU1SLII is replaced by G13
in dU2SLIV (Fig. 3a). While chemical shift differences in Asp89
may thus be explained by similar interactions with different types
of residues in dU1SLII and dU2SLIV, chemical shift differences in
Leu46 suggest that dSNFRRM1 differentially recognizes the
different configurations of the loop-closing base pairs in the two
RNAs.
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Fig. 2 dSNF1-101 15N/1H backbone dynamics change upon RNA binding. a–c Values of ΔR2,eff, calculated from end points of a CPMG experiment;
ΔR2,eff= R2,app(νCPMG50 Hz)–R2,app(νCPMG1000 Hz). Positions of secondary structure elements are shown on the top. a dSNF1-101, b dSNF1–101 bound to
dU1SLII, c dSNF1-101 bound to dU2SLIV. Errors were determined from the propagation of base plane rms noise. In a, b and c, amides from residues L27 and
I30 have no signal from exchange broadening, while in (a), amides from K44 and L46 are exchange-broadened and not quantifiable (orange labels).
Prolines (orange labels) do not yield a signal. 50 mM KCl, 20mM sodium cacodylate, pH 6.5, in 90% 1H2O, 10% 2H2O; 23 °C; 700MHz. d Orthogonal
views of ΔR2,eff values mapped onto the structure of dSNF1–96 in isolation (top), bound to dU1SLII (middle) and bound to dU2A′ and dU2SLIV (bottom). A
scale bar is shown on the top. The orientation of the left panels relative to Fig. 1b is shown at the bottom
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dSNF1–101 backbone dynamics upon binding dU1SLII or
dU2SLIV. Fast timescale (ps-ns) backbone dynamics of dSNF1-101

are quite similar in the absence or presence of RNA (dU1SLII or
dU2SLIV; Supplementary Fig. 1). C-terminal regions of the protein

are an exception; in the free protein, residues 89–101 (α3 and C-
terminus) are mostly disordered on this timescale, as shown by
hetNOE experiments. When the hairpins are bound, residues in α3
become less dynamic (Supplementary Fig. 1). Those residues do not
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loops and the loop-closing base pairs of U2SLIV compared to U1SLII in the Drosophila and human systems are underlined. b Top: hU1ARRM1–hU1SLII complex
(dark blue/light orange; PDB ID 1URN, chains B and Q13) superimposed on the crystal structure of a dSNF1–96–dU1SLII complex (gray/brown) according to
the hU1ARRM1/dSNF1–96 subunits. Orientation of dSNF1–96 as in Fig. 1b. Bottom: Scheme of selected protein-RNA interactions in the dSNF1–96-dU1SLII

complex. c dSNF1–96 contacts to the stem of dU1SLII (top panel) and comparison to the human system (bottom panel). Lys20 Cδ, Cε and Nε coordinates are
not contained in the human structure. d dSNF1–96 contacts to the dU1SLII loop and comparison to the human system. e C14 of dU1SLII flipped towards
dSNF1–96 in one of the complexes in the crystal. In this and the following figures: Stick representations are colored by atom type; carbon—color of the
respective molecule; nitrogen—blue, oxygen—red, phosphorus—orange, sulfur—yellow; water oxygens are shown as green spheres; dashed lines represent
hydrogen bonds or salt bridges. Orientations relative to Fig. 1b are indicated by boxed rotation symbols
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make contact with the RNAs, but residues Tyr83-Ser84-Lys85-
Ser86-Asp87-Ser88-Asp89 are critical for interactions with nucleo-
tides at the top of the loop, using their backbone amides and car-
bonyl oxygens to engage in hydrogen bonds to nucleobases and
riboses, as also previously described in the hU1ARRM1–hU1SLII

crystal structure13. We suspect that these contacts restrict the
motions of α3, anchoring it to the body of the complex.

In contrast, the intermediate timescale (µs-ms) dynamics of
dSNF1–101 bound to dU1SLII or dU2SLIV are strikingly different
compared to isolated dSNF1-101 (Fig. 2a–d). In the complexes,
backbone amides on the RNA-binding surface of dSNF1–101 are
no longer dynamic on the µs-ms timescale, and only in α1 and L5
do they retain µs-ms motions (Fig. 2b–d). These findings suggest
that dSNF1–101 limits the entropic cost of complex formation by
retaining high-frequency molecular motions throughout and, in

addition, low-frequency motions in elements not directly
involved in RNA binding. Notably, α1 and L5 are the binding
sites for dU2A′, suggesting that they need to retain flexibility to
adapt to that binding surface (see below).

dU2Aʹ binds flexible elements in dSNFRRM1–RNA complexes.
We next determined a crystal structure of a dU2A′–dSNF1–96
complex at 1.42 Å resolution (Supplementary Table 1), which
resembles the arrangement of the two proteins in the hU2A
′–hU2B″RRM1–hU2SLIV complex14. In the dU2A′–dSNF1–96
complex, dSNF1–96 helix α1 rests on a shallow, concave surface
formed by the parallel β strands of the dU2A′ LRR motif and is
held laterally by protruding loops that act like pincers (Fig. 5a),
with electrostatic contacts in the periphery and hydrophobic
interactions in the center of the interface. L5 of dSNF1–96
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Fig. 4 dSNF1–101-RNA NMR chemical shift perturbations. a Backbone amide chemical shift differences between dSNF1–101 and dSNF1–101–dU1SLII complex.
Δδ= [(ΔδHN)2+ ((ΔδN)2*0.154)]1/2. dSNF1–101 at 300 µM, dU1SLII at 700 µM. b dSNF1–101 backbone amide chemical shift perturbations (Δδ) upon
dU2SLIV binding. dSNF1–101 at 300 µM, dU2SLIV at 1.1 mM. c Difference plot of chemical shift perturbations (Δ(Δδ)= [Δδ(dSNF1–101–dU2SLIV) – Δδ
(dSNF1–101–dU1SLII)]). Positions of secondary structure elements are shown on the top. 50mM KCl, 20mM sodium cacodylate, pH 6.5, in 90% 1H2O, 10%
2H2O; 23 °C; 700MHz. d Orthogonal views of Δδ (top and middle) or Δ(Δδ) values (bottom) mapped onto the structure of dSNF1–96. A scale bar is shown
on the top. The orientation of the left panels relative to Fig. 1b is shown at the bottom
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additionally comes to lie on the C-terminal pincer loop of dU2A′
(Fig. 5a). Thus, dU2A′ directly binds dSNF1–96 elements α1 and
L5, which remained flexible when dSNF1–101 alone binds dU1SLII

or dU2SLIV (see above). Superposition of all copies of isolated
dSNF1–96 on the two crystallographically independent and vir-
tually identical dU2A′–dSNF1–96 complexes revealed that, with
the exception of the α3 region, the overall conformation of

dSNF1–96 does not change upon dU2A′ binding (Fig. 5a). We
presently do not know if conformational changes in dU2A′ occur
upon complex formation.

We analyzed motions of dSNF1–96 alone and in complex with
dU2A′ by NMR. When dU2A′ is bound to dSNF1-96, the overall
pattern of ΔR2,eff terms throughout the body of dSNF1–96 is
substantially altered (Fig. 5b–d). Only α3 retains its ΔR2,eff
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contributions, indicating motions on the µs-ms timescale; many
backbone amide resonances within α1 and L5 (labeled orange in
Fig. 5c) are absent or too low in intensity to analyze, while amides
from L3 do not show evidence of dynamics on this timescale.
These samples were not deuterated, so exchange of dSNF1-96

amide protons with proximal protons from dU2A′ is likely to be
responsible for their disappearance in the ΔR2,eff experiments.
These data support the co-crystal structure, where dSNF1–96 α1 is
tightly packed against the surface of dU2A′, and dSNF1–96 L5 is
in contact with the LRR surface. In contrast, backbone amides
from L3 and its flanking β2 and β3 do not undergo exchange on
this timescale in the binary complex. Consistent with these
observations, isothermal titration calorimetry (ITC) experiments
measured dU2A′-dSNF1–101 binding thermodynamics ΔH=
−1008 kJ/mol, TΔS=−975 kJ/mol-K (ΔS=−3.3 kJ/mol-K),
Kd= 4.2 nM (22 °C; 100 mM arginine, 50 mM KCl, 10 mM
sodium cacodylate pH 7; Fig. 5e). The large favorable (negative)
enthalpy is offset by the large negative TΔS term, which could
reflect a loss of conformational flexibility in dSNFRRM1 and/or
dU2A′.

Structure of a dU2A′–dSNF1-96–dU2SLIV complex. As in the
dSNF1–96–dU1SLII complex, the overall structure of dSNF1–96 is not
significantly altered in a crystal structure we determined of a ternary
dU2A′–dSNF1–96–dU2SLIV RNP (Supplementary Table 1; Fig. 6a, b).
Significant differences in the shear of the loop-closing U6:G17 wobble
pair in U2SLIV compared to the C6:G17 Watson-Crick pair in
dU1SLII lead to a different orientation of the two stem regions on
dSNF1-96 (Fig. 6a). The different positioning of the RNA hairpins is
supported by their different interactions with Lys17 and Lys19 (L1;
Fig. 6c). Lys17 and Lys19 do not face the backbone of the 5′ branch
of dU2SLIV (Fig. 6c, top panel) as they do in complex with dU1SLII

(Fig. 6c, bottom panel). Instead, Lys17 engages in contacts to the
major groove side of U6:G17, as well as to G5 of the adjacent base
pair of dU2SLIV; note that an equivalent interaction of Lys17 to the
C6:G17 pair in dU1SLII is not equally possible. To enable the
Lys17–U6:G17 interaction, the dU2SLIV stem must be directed away
from Lys19, which lacks dU2SLIV contacts (Fig. 6c, top panel).
Concomitantly, Arg49 (L3) is displaced from its position next to A7
in dU1SLII and instead contacts the phosphate of G17 in dU2SLIV.
G17 is thereby pulled below the first loop nucleotide (A7; Fig. 6c, top
panel), preventing dSNF1–96 Leu46 from stacking on the loop-closing
base pair as in the dU1SLII complex (Fig. 6c, bottom panel). No other
dSNFRRM1 contacts to the stem of dU2SLIV are seen in the structure.

Notably, a U6C substitution introducing a C:G loop-closing
base pair in U2SLIV led to threefold tighter binding to dSNFRRM1

(Fig. 6b), indicating that the interaction network ensuing around
a stem oriented as in dU1SLII is more stable and thus providing
one reason why dU2SLIV binding additionally requires U2A′.
Furthermore, both types of Lys17-based interactions add similarly
to the stability of the respective RNP, as a dSNF1-101 Lys17Ala
variant exhibited a tenfold weaker affinity for both U1SLII and
U2SLIV (Fig. 6b). Thus, due to the different positioning of the

stem, dU2SLIV experiences essentially a net loss of the Lys19-
based backbone interactions compared to dU1SLII.

Five loop residues of dU2SLIV, U8-U9-G10-C11-A12, are
sequence-identical to dU1SLII and bind dSNF1–96 in almost the
same fashion in the two RNAs. The only difference is that
the 6-amino group of A12 is contacted by Ser84 in the
dSNF1–96–dU1SLII complex and by Ser86 in the dU2A′
-dSNF1–96–dU2SLIV complex. The importance of this region is
illustrated by a G10A mutation in dU2SLIV, which led to a 1000-
fold reduction in dSNF1–101 affinity (Fig. 6b).

G13 of dU2SLIV adopts a syn conformation to occupy an
equivalent position as C13 of dU1SLII, sandwiched by A12 and
Asp89 (α3) of dSNF1-96 and hydrogen bonding to the backbone
amide of Asp89 (Fig. 6d). Mutational analysis showed that C13 in
dU1SLII and G13 in dU2SLIV are critical determinants of RNA
affinity and specificity. A dU2SLIV variant bearing a G13A
replacement lacks the ability to support the syn conformation by
an interaction with its own phosphate and might additionally lose
a contact to the Asp89 backbone, resulting in 200-fold reduced
affinity to dSNF1–101 (Fig. 6b). Conversely, a dU1SLII-like G13C
substitution in dU2SLIV led to 16-fold higher affinity for dSNF1-
101 (Fig. 6b), presumably due to the ability of cytidine at this
position to additionally contact Asp87 (see above).

Significant differences compared to dU1SLII are again seen in
the following 3′ sequence of the dU2SLIV loop. U14 adopts the
same position in both copies of the ternary complex, resembling
the minor conformation of the equivalent C14 of the
dSNF1–96–dU1SLII complex, with the base occupying a binding
pocket on dSNF1–96 (Fig. 6d, top and bottom panels). U14 of
dU2SLIV can engage in more complementary interactions than a
cytidine at the equivalent position, with its Watson-Crick
hydrogen bonding potential fully saturated by contacts to
Lys20, Lys24 (α1) and the backbone carbonyl of Ala42 (L3;
Fig. 6d, top panel). Thus, there are more extensive contacts of
U14 in dU2SLIV to dSNF1–96 helix α1 compared to C14 in
dU1SLII. Consistently, a U14C substitution reduced dSNF1–101

affinity twofold (Fig. 6b). In addition, U14 is held in its position
on dSNF1–96 by Arg20 from the N-terminal pincer loop of dU2A
′, acting like a lid (Fig. 6d, top panel).

The additional loop nucleotide A14a in U2SLIV forms an
extended base stack with the following residues, C15 and C16
(Fig. 6d, top panel). Whereas the equivalent U15 and C16 of
dU1SLII do not contact dSNF1–96, the additional nucleotide in
dU2SLIV allows this RNA region to approach dSNF1–96 more
closely, so that Lys20 (α1) can directly contact the phosphates of
C15 and C16 (Fig. 6d, top panel). Stabilization of dSNF1–96 by
dU2A′ (see above) might reinforce these interactions.

Comparison to the hU2A′–hU2B″RRM1–hU2SLIV complex.
Globally, the hU2A′–hU2B″RRM1–hU2SLIV and the dU2A′
–dSNF1–96–dU2SLIV ternary complex structures14 closely resem-
ble each other. The protein moieties of the Drosophila and human
complexes superimpose well (rmsd of 0.74 Å for 252 common Cα
positions across both proteins; Fig. 7a). All loop nucleotides (A7-

Fig. 5 Structure and dynamics of the dU2A′–dSNF1–96 complex. a Crystal structure of the dU2A′–dSNF1–96 complex (dU2A′ - green; dSNF1-96 - steel blue)
in two orientations, superimposed on isolated dSNF1–96 (gray). The orientation of dSNF1–96 in the left panel is identical to the view in Fig. 1b, the orientation
of the right view is indicated by the boxed rotation symbols. b dSNF1-96 15N/1H backbone amide dynamics measured with ΔR2,eff NMR CPMG experiments.
dSNF1-96 is 300 µM in 50mM KCl, 20mM sodium cacodylate, pH 6.5, in 90% 1H2O, 10% 2H2O; 23 °C; 700MHz. c 15N-dSNF1−96+ dU2A′ (1:1) (220 µM/
220 µM) in 200mM KCl, 20mM sodium cacodylate pH 6.5; 23 °C; 700MHz. Amino acid residues indicated in orange have no detectable signal due to
conformational exchange or exchange with proximal protons, hatched bars are line-broadened and not quantifiable. Errors in (b) and (c) were determined
from the propagation of base plane rms noise. d Orthogonal views of ΔR2,eff values mapped onto the structure of dSNF1–96 in isolation (top) and bound to
dU2A′ (bottom). A scale bar is shown on the top. The orientation of the left panels relative to Fig. 1b is shown at the bottom. e Representative thermogram
and binding isotherm of an ITC experiment assessing binding thermodynamics of the dU2A′-dSNF1–101 interaction
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C16) of hU2SLIV are identical to dU2SLIV and the central and 3′
portions of the loops likewise superimpose well in the two
structures. Like dSNF1–96, hU2B″RRM1 L3 harbors Leu46 and
Thr48 (Leu43 and Thr45 in dSNF1–96, respectively), which do not
permit an extensive water-mediated hydrogen bonding network
between the RRM and the RNA, as fostered by the two equivalent

serines (Ser46, Ser48) in the hU2SLII–hU1ARRM1 structure13

(Fig. 7b). As a consequence, U14 of the respective U2SLIV is
accommodated by dSNF1–96 and hU2B″RRM1 in the same fashion
(Fig. 7b).

A more in-depth comparison revealed subtle differences in
U2SLIV binding to dSNF1–96 and hU2B″RRM1, which arise from
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an interplay of the different loop closing base pairs (U6:G17 in
dU2SLIV; U6:U17 in hU2SLIV) and key residue variations between
the proteins (Supplementary Fig. 2). On the major groove side,
the loop closing base pairs are recognized directly by Lys17/
Lys20 (L1) in an equivalent fashion (Fig. 7c). The side chain of
hU2B″RRM1 Met49 (L3) is longer than that of the equivalent
dSNF1–96 Leu46 and abuts the U17 ribose of the loop-closing base
pair (Fig. 7d). As a consequence, hU2B″RRM1 Met49 seems to
push U17 of hU1SLIV underneath A7. A7, in turn, is pulled
towards U17 by its N6 amino group hydrogen-bonding to Asp19
(L1) of dSNF1–96, and so A7 stacks efficiently on the center of the
U6:U17 loop-closing base pair (Fig. 7d, right panel). Moreover,
Asp19, Arg52 (L3), and G10 interact with the Watson–Crick face
of U8, which positions this nucleobase above A7, thereby
extending the base stack. In the Drosophila system, the ideal
stacking position for A7 on the larger U6:G17 loop-closing base
pair is farther remote from the dSNF1–96 surface (Fig. 7d, left
panel). As a consequence, A7 does not directly interact with
Glu16 (L1; the equivalent of Asp19 in hU2BRRM1). Instead, Glu16
is positioned between U8 and G10, allowing U8 to be positioned
more remote from the dSNF1–96 surface and in ideal stacking
position on A7. As a consequence, U8 loses its interaction with
Arg49 (L3; the equivalent of Arg52 in hU2B″RRM1).

Due to the slightly different geometry of the loop-closing base
pairs, the RNA stems approach the C-terminal end of U2A′
marginally differently. In the Drosophila system, both Gln152 and
Lys153 contact the RNA backbone between residues G2 and C4
(Fig. 7e, left panel), while in the human system, hU2A′ Lys149
contacts the U2 phosphate (Fig. 7e, right panel). The orientations
of the U2SLIV RNA stems also leads to a unique hydrogen bond
between hU2B″RRM1 Lys22 and C2, which is absent in the
equivalent dSNF1-96 Lys19. Notably, several of the interaction
networks revealed here that control specificity and affinity of
dSNFRRM1, were proposed by Price et al.14 based on analysis of
the hU2B″RRM1–hU2A′–hU2SLIV structure.

Differential energetic contributions to dSNFRRM1-RNA bind-
ing. To compare the energetic driving forces for association of the
RNAs to the proteins, we used ITC to directly measure the enthalpy
and calculate the entropy and dissociation constants (Kd; Table 1;
Fig. 8a–d). To avoid partial dissociation of the dU2A′
–dSNF1–96 complex during the titrations, we conducted the
experiments at 10 °C. Under the chosen conditions (150mM KCl,
1mM MgCl2, 20mM HEPES-NaOH, pH 7.5, 5% (v/v) glycerol),
binding to both RNAs is enthalpically driven, although entropically
unfavorable for dU1SLII and entropically favored for dU2SLIV. The
affinity of dSNF1–96 to dU2SLIV increased about sevenfold in the
presence of dU2A′, while dU2A′ increased the affinity of dSNF1–96

to dU1SLII only twofold. Notably, in both cases increased binding in
the presence of dU2A′ was due to a more favorable (U2SLIV) or less
unfavorable (U1SLII) entropic contributions, while the enthalpic
terms were reduced. These observations are consistent with reduced
conformational flexibility of dSNF1–96 in complex with dU2A′
resulting in a reduced entropic cost of RNA binding. Due to

differential entropy–enthalpy compensation effects, the affinity for
U2SLIV is increased relative to U1SLII (sevenfold difference in affi-
nity), compared to the situation without dU2A′ (23-fold difference
in affinity; Table 1).

We also used ITC to test the contributions of dU2A’ Arg20
(which contacts U14 in the loop of dU2SLIV; Fig. 6d, top panel)
and of dU2A′ C-terminal residues Gln152 and Lys153 (which
contact the ribose backbone of the dU2SLIV stem; Fig. 7e, left
panel). We generated two variants of dU2A′, in which Arg20 was
replaced by an alanine (dU2A’Arg20Ala) or in which Gln152,
Lys153, as well as the preceding Arg143, Lys149, and Lys151 were
replaced by alanines (dU2A′mutC). Complexes of dU2A′Arg20Ala-
dSNF1-96 and dU2A′mutC-dSNF1-96 bound dU2SLIV with only
slightly reduced affinities compared to wild type dU2A′ (Table 1;
Fig. 8e, f). While the dU2A′ variants might exhibit larger effects
on RNA affinity at higher temperature, the results show that
under certain conditions dU2A′ can enhance dU2SLIV binding by
dSNF1–96 by modulation of dSNF1–96 alone and without fostering
additional RNA contacts.

Discussion
RBPs are often modular, with repeated structural motifs, such as
RRMs, that provide opportunities to tune RNA binding affinity
and specificity23. Alternatively, RNA affinities and specificities of
RBPs can be modulated by interacting proteins. For instance, an
RRM of the U2AF35 protein can shift the structural equilibrium of
the two RRMs of the U2AF65 protein towards a more open
conformation to facilitate recognition of weak polypyrimidine
tracts in human pre-mRNAs24. As another example, the cold
shock domain of Upstream-of-N-ras (Unr) and two RRMs of the
sex lethal (SXL) protein form an intimately intertwined complex,
in which the RNA affinities and specificities of the proteins are
mutually reprogrammed to specifically recognize an RNA element
in the 3′ untranslated region of msl2 mRNA during dosage
compensation in Drosophila25. Yet another case is afforded by the
spliceosomal Snu13 and Prp31 proteins that recognize 5′ stem-
loops in the major spliceosomal U4 and the minor spliceosomal
U4atac snRNAs26. Snu13 positions its αβα sandwich fold to bind
kink-turns in the RNAs using the edge of a helix and sheet to
contact residues that are identical in U4 and U4atac27, 28. In
contrast, Prp31 uses a NOP domain to interact with Snu13 and
with different residues in the two RNAs26, 29. Different local
structures in the capping pentaloops of the RNAs allow them to
adapt differently to Prp31, resulting in different complex stabi-
lities26. Moreover, Snu13 also binds kink-turns in box C/D
snoRNAs30. However, in the latter case it is aided by different
NOP domain proteins, NOP56/5829, 31. In all of the above cases,
the cooperating proteins modulate their respective conformations
and/or both proteins exhibit RNA contacts that are important for
the stability of RNPs. Among the hundreds of RBPs2, 4, 32, there
are certain to be many others whose specificities are modulated
through protein–protein interactions.

Here, we studied how the affinity of dSNFRRM1 for related
RNA hairpin loops is modulated by the LRR domain of the

Fig. 6 Structure comparison of ternary and binary complexes. a Ribbon diagram of the ternary dU2A′–dSNF1–96–dU2SLIV complex (green/steel blue/gold)
superimposed on the binary dSNF1–96–dU1SLII complex (gray/brown) according to the dSNF1–96 subunits. The orientation of dSNF1–96 is as in Fig. 1b.
b Scheme of selected protein-RNA interactions in the dU2A′–dSNF1–96–dU2SLIV complex. dSNF1–101 and dU2SLIV mutations and resulting relative binary
affinities (assessed in the absence of dU2A′) are indicated by arrows and labels. Because binding data had to be acquired at different salt concentrations to
measure affinities accurately, the ratios of the dissociation constants of wild type and mutant dSNF1–101 or dU2SLIV are used to report changes. nx=
Kd(wt)/Kd(mut). nx < 1 indicates wt affinity is higher; nx > 1 indicates mutant binds tighter. c Comparison of dSNF1–96 contacts to the stems and regions
around the loop-closing base pairs of dU2SLIV (top panel) and of dU1SLII (bottom panel). d Comparison of dSNF1–96 contacts to the loops of dU2SLIV (top
panel) and of dU1SLII (middle and bottom panel, representing two different complexes in the crystal structure with C14 contacting or turned away from
dSNF1–96, respectively). Orientations relative to Fig. 1b are indicated by boxed rotation symbols

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04561-6

10 NATURE COMMUNICATIONS |  (2018) 9:2220 | DOI: 10.1038/s41467-018-04561-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


3′

N

C

dU2A′-dSNF1–96-dU2SLIV

hU2A′-hU2B′′RRM1-hU2SLIV

C

5′

N

C

hU2BhU2B′′′′RRM1RRM1

hU2hU2SLIVSLIV

G10

Leu46Leu46

Lys47Lys47

Thr48Thr48

G13

U14 A14a

C15

U9

C16L3L3

A12

C11

Lys50Lys50

Lys80Lys80

Ala87Ala87

Thr89Thr89

Gln85Gln85

Arg83Arg83

Asn15Asn15

dSNFdSNF1–961–96

dU2dU2SLIVSLIV

G10

U9

C16

Thr45

Lys44

G13

U14

A14a

C15
L3

Lys47

Lys77

C11

A12

Asn12

Gln80

Ala82

Ser84

Ser86

Leu43

40°30° 5°

U6

U17

Lys20Lys20

G5

C18

A7

U8

LLys22Lys22

Arg52Arg52

Met49Met49
U9

C2

U6

Lys17

G5
C18

G17

A7

Lys19

Arg49

hU2B’’hU2B’’RRM1RRM1

hU2hU2SLIVSLIV

dSNFdSNF1–961–96

dU2dU2SLIVSLIV U8

Leu46

U9U9

75° 20°

dU2A′
dU2dU2SLIVSLIV

Gln152

Lys153

C3

C4

G2

hU2A′
hU2SLIV

Lys149

U3

G4

U2

Leu152

10°70° 10°

50°45° 50°

G17

Leu46

Glu16

Arg49

A7

U8

U9

U6

G10

L3

Met49

Asp19

Arg52

A7

U8

U9 G10

U6

U17

L3

dSNF1–96

dU2SLIV

hU2BhU2B′′′′RRM1RRM1

hU2SLIV

a c

d
b

e
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dU2A’ protein. We investigated structures and dynamics of
dSNFRRM1 alone and bound to all of its partners, providing a
comprehensive catalogue of its free and bound states. Our results
demonstrate that, except for its termini, dSNFRRM1 retains the
same overall conformation in isolation or when interacting with
dU1SLII, dU2A′ or both dU2A′ and dU2SLIV (Cα rmsd 0.39–0.58
Å for dSNF residues 4–83). Moreover, one side of dSNFRRM1

binds RNA, while the other side binds dU2A’; while dU2A′
fosters contacts to dU2SLIV in the dU2A′
–dSNF1–96–dU2SLIV complex, which are not possible with
dU1SLII, these interactions do not contribute to higher dU2SLIV

affinity under all conditions. Thus, in stark contrast to the cases
described above, dU2A′ can tune RNA affinity and specificity of
dSNFRRM1 (i) without inducing a conformational change in
dSNFRRM1 and (ii) without relying on additional, own RNA
interactions.

One reason for the higher affinity of dSNFRRM1 for dU1SLII

compared to dU2SLIV is a more stable binding of the dU1SLII

stem and central loop region by dSNFRRM1. Our structures and
structure-guided mutational analyses indicate that the stem, the
loop-closing C6:G17 base pair and C13 in the loop of dU1SLII

interact more intimately with dSNFRRM1 than the corresponding
stem, U6:G17 wobble pair and loop G13 in U2SLIV. Conversely,
the 3′ portion of the dU2SLIV loop exhibits higher com-
plementarity to dSNFRRM1 than the corresponding region of
dU1SLII. In particular U14 in dU2SLIV engages in more intimate
contacts to dSNFRRM1 helix α1 residues (Lys20 and Lys24), as
opposed to the equivalent C14 in dU1SLII. Furthermore, due to
the additional loop nucleotide A14a in dU2SLIV, dSNFRRM1 α1
residue Lys20 can contact C15 and C16 phosphates in dU2SLIV

but not the equivalent U15 and C16 phosphates in dU1SLII.
While, therefore, the 3′ portion of the dU2SLIV loop can in
principle foster more stable interactions with dSNFRRM1 than the
corresponding region in U1SLII, these interactions apparently
require presence of dU2A’.

Several structural features of the dU2A′–dSNF1–96–dU2SLIV
complex are fully consistent with NMR chemical shift perturba-
tions seen in the binary dSNF1–101–dU2SLIV complex, such as
G13 of dU2SLIV contacting Asp89 of dSNF1–96, de-stacking of
dSNF1–96 Leu46 and disruption of the hydrogen bond of its
backbone amide to the RNA backbone, hydrogen bonding of
Gln51 to RNA and packing of Ala42 against RNA. Therefore,
dU2A′ apparently does not change the way dU2SLIV is positioned
on dSNF1–96. Consistent with this notion, under certain condi-
tions dU2A’ also enhances interaction of dSNF1–96 with dU1SLII,
albeit to a much smaller extent than the dSNF1–96–dU2SLIV

interaction.
Based on these observations, we suggest that the com-

plementarity of the 3′ part of the dU2SLIV loop to dSNFRRM1

cannot be fully accessed in the binary dSNFRRM1–dU2SLIV

interaction, most likely because interacting protein and RNA
elements remain flexible. As shown by our NMR analyses,
dSNFRRM1 loses backbone flexibility in complex with dU2A′. In
particular, dU2A′ rigidifies dSNFRRM1 helix α1 and our crystal
structure of the ternary complex shows that dU2A′ also stabilizes
dU2SLIV U14. Formation of a dU2A′–dSNFRRM1 complex is dri-
ven by a large negative enthalpy and opposed by a large negative
entropy, consistent with locking out conformational flexibility of
both dU2A′ and dSNFRRM1. Furthermore, subsequent RNA
binding is characterized by a less favorable enthalpic contribution
than in the binding of isolated dSNFRRM1 to RNA, but also by
more favorable/less unfavorable interaction entropy. Fully in line
with interactions of the 3′ portion of the dU2SLIV loop with
dSNFRRM1 depending on dU2A′-mediated stabilization, fluores-
cence measurements after replacement of A14a with 2-amino
purine (2AP) showed that addition of dSNFRRM1 leads to loss of
2AP stacking, which is recovered upon addition of dU2A′33. Our
thermodynamic analyses indicate that due to distinct
enthalpy–entropy compensation effects, presence of dU2A′
enhances the dSNFRRM1–dU2SLIV interaction more strongly than
the dSNFRRM1–dU1SLII interaction.

We presented a mechanism by which the RNA affinity and
specificity of an RBP can be modulated via a protein interaction
partner without the induction of significant conformational
changes and without the second protein engaging in essential
RNA contacts itself. In 2014, Gerstberger et al.2 identified 1542
RBPs, comprising 7.5% of all protein-coding genes in humans.
Many RBPs have multiple RNA targets in cells and the same RNA
can be bound by several RBPs. Moreover, RBPs typically interact
not only with RNAs but also with other proteins. We therefore
expect that the principles uncovered here will also play a role in
the assembly of many other RNPs. The present example of pro-
teins modulating their RNA affinities and specificities is certain to
be one of many in cells, with several other mechanisms already
known34. The challenge is to recognize when modulation of RBP
specificity and affinity occurs, and to understand how these
properties are tuned.

Methods
Preparation of complexes. For crystallographic investigations, DNA coding for
residues 1–96 of Drosophila melanogaster SNF was cloned into pETM-11 using
NcoI and XhoI restriction sites to yield a fusion protein with a tobacco etch virus
(TEV)-cleavable N-terminal hexa-histidine tag. Production of dmU2A′ was based
on a triple cysteine variant to prevent non-specific intermolecular disulfide for-
mation, as described before16. For co-expression of dSNF1–96 and dU2A′, a bi-
cistronic expression construct of dSNF1–96 and dU2A′ open reading frames was
assembled by PCR and cloned into pETM-11 using NcoI and XhoI restriction sites.
The expression construct comprised DNA coding for a hexa-histidine tagged,
TEV-cleavable dSNF1–96 followed by untagged dU2A′. Mutations encoding dU2A’

Table 1 Thermodynamics of RNA binding

ΔH [kJ/mol] -TΔS [kJ/mol] ΔG [kJ/mol] Kd [nM] na

dU1SLII

dSNF1–96 −80.4 39.9 −40.5 34.0 0.894
dU2A′-dSNF1–96 −55.7 13.5 −42.2 16.5 1.01

dU2SLIV

dSNF1–96 −30.1 −3.1 −33.2 782 0.781
dU2A′-dSNF1–96 −25.4 −12.2 −37.6 117 0.955
dU2A′Arg20Ala-dSNF1–96 −20.1 −16.4 −36.5 187 0.939
dU2A′mutC-dSNF1–96 −22.6 −13.7 −36.3 200 1.04

an stoichiometry, ITC data were evaluated with the PEAQ-ITC analysis software (Malvern Panalytical)
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variants Arg20Ala and Arg143Ala/Lys149Ala/Lys151Ala/Gln152Ala/Lys153Ala
(mutC) or SNF variants were introduced by QuikChange Mutagenesis (Agilent).
All DNA oligonucleotides used in this study are listed in Supplementary Table 2.

For protein production, Escherichia coli BL21 T7 Express cells (NEB) were
transformed with pETM-11:dSNF1–96 or pETM-11:dSNF1–96:dU2A′, grown in

Terrific Broth to an OD600 of 0.8 at 37 °C, cooled to 20 °C, induced with 0.5 mM
IPTG and incubated at 20 °C overnight. Cells were harvested by centrifugation,
resuspended in lysis buffer (400 mM NaCl, 1 mM DTT, 20 mM TRIS–HCl, pH 7.5)
and stored at −20 °C. Cells were lysed using a homogenizer and cell debris were
removed by centrifugation. All purification steps were carried out at 4 °C.

dSNF1–96 was purified by affinity capture on 5 ml Ni-NTA equilibrated in 400
mM NaCl, 8 mM imidazole, 0.5 mM DTT, 20 mM TRIS−HCl, pH 7.5 (buffer A)
and elution with a gradient (10 column volumes) to buffer A supplemented with
400 mM imidazole. Eluted fractions were incubated with His-tagged TEV protease
during overnight dialysis into buffer A, followed by a recycling step over 1 ml Ni-
NTA. The flow-through was diluted to a NaCl-concentration of 100 mM with 0.5
mM DTT, 20 mM TRIS–HCl, pH 7.5. Contaminating nucleic acids were removed
by binding the sample to a 20 ml Heparin Sepharose column (GE Healthcare)
equilibrated with 100 mM NaCl, 1 mM DTT, 20 mM Tris–HCl, pH 7.5, and eluting
the protein with a gradient (5 column volumes) to 1M NaCl, 1 mM DTT, 20 mM
TRIS-HCl, pH 7.5. dSNF1–96 was further purified by size exclusion
chromatography using a Superdex 75 10/300 gel filtration column (GE Healthcare)
in 200 mM NaCl, 1 mM DTT, 20 mM TRIS-HCl, pH 7.5 (gel filtration buffer) to
yield pure protein as judged by SDS–PAGE. dSNF1–96 was concentrated to 36 mg/
ml, flash frozen in liquid nitrogen and stored
at −80 °C.

In total 3.1 mg of a synthetic 22-mer dU1SLII RNA (5′-GGCCGC
[AUUGCACCUC]GCGGCC-3′; loop in brackets; Agilent Labs) were dissolved in
300 µl Milli-Q water, incubated at 65 °C for 5 min, cooled on ice and supplemented
with 150 µl gel filtration buffer. For complex assembly, dSNF1-96 was mixed with a
twofold molar excess of dU1SLII RNA and incubated for 30min on ice. The protein-
RNA complex was purified by size exclusion chromatography on a Superdex 75 10/
300 gel filtration column in gel filtration buffer. dSNF1-96–dU1SLII was concentrated
to 9mg/ml, flash frozen in liquid nitrogen and stored at −80 °C.

The dU2A′–dSNF1–96 complex (with dU2A′ wild type, dU2A′Arg20Ala or
dU2A′mutC) was purified, as described for dSNF1–96 alone, but all buffers were
supplemented with 5% (v/v) glycerol and the minimal salt concentration during all
steps of purification was 200 mM NaCl. Purification over heparin yielded two
peaks, dU2A′-dSNF1–96 and free dSNF1–96. dU2A′-dSNF1–96 fractions were pooled
and further purified by size exclusion chromatography using a Superdex 75 10/300
gel filtration column. Purified dU2A′-dSNF1–96 was concentrated to 10 mg/ml,
flash frozen in liquid nitrogen and stored at −80 °C.

In total 7.8 mg of chemically synthetized 25-mer dU2SLIV RNA (5′-
GCGGCCGU[AUUGCAGUACC]GCGGCC-3′; loop in brackets;) were dissolved
in gel filtration buffer to yield a concentration of 0.7 mg/ml, incubated at 95 °C for
5 min and cooled on ice. For complex assembly, dU2A′–dSNF1–96 was mixed with
a twofold molar excess of dU2SLIV RNA, incubated at 25 °C for 10 min and cooled
on ice. The protein–RNA complex was purified by size exclusion chromatography
on a Superdex 75 10/300 gel filtration column.
dU2A′–dSNF1–96–dU2SLIV was concentrated to 13 mg/ml, flash frozen in liquid
nitrogen and stored at −80 °C.

For NMR and ITC experiments, dSNF1–101 was produced and purified, as
described previously21. The Lys17Ala exchange was introduced via QuikChange
Mutagenesis (Supplementary Table 2). Briefly, protein constructs were isolated
from E. coli BL21(DE3) cells (Invitrogen) that had been transformed with a
plasmid carrying the protein of interest under control of the TAC promoter and
ampicillin resistance. Cells were grown in LB medium at 37 °C and induced at
OD600= 0.6–0.8 with 1 mM IPTG, then grown for an additional 4 h at 30 °C.
Proteins for NMR experiments were grown in minimal media supplemented with
either 15NH4Cl and/or 13C-glucose. Cells were pelleted and stored at −70 °C until
lysis in 100 mM NaCl, 2 mM EDTA, 8.5% (w/v) sucrose, 50 mM sodium acetate,
pH 5.3, supplemented with Protease Inhibitor Cocktail (Sigma), PMSF and DNase
II. The cell suspension was sonicated then centrifuged. Lysate was passed over an
SP-XL Sepharose FPLC column (GE Healthcare), pre-equilibrated in 20 mM
sodium cacodylate, pH 7.0, washed with 0 and 100 mM NaCl and eluted over a
100–400 mM NaCl gradient. Fractions containing protein were collected,
concentrated and run over a Superdex 75 10/300 gel filtration column in 50 mM
KCl, 1 mM EDTA, 20 mM sodium cacodylate, pH 6.5. Desired fractions were
concentrated with 10 kDa MWCO Vivaspin concentrators (GE Healthcare). For
dSNF1–101–RNA complexes, dSNF1–101 protein solution was added slowly to
purified lyophilized folded RNA to create RNA-bound complexes with either
dU1SLII or dU2SLIV.

To purify dU2A′-dSNF1–96 complex for NMR analyses, dSNF1–96 with a hexa-
histidine tag at the N-terminal end and dU2A′ were isolated from Escherichia coli
BL21(DE3) cells that had been transformed with a plasmid carrying the protein of
interest under control of the pET promoter and kanamycin resistance. Cells were
grown in LB medium (dU2A′) or minimal media supplemented with either
15NH4Cl and/or 13C-glucose (dSNF1–96) at 37 °C and induced at OD600= 0.8 with
0.5 mM IPTG, then grown an additional 16 h at 25 °C. Cells were pelleted and
stored at −70 °C until lysis. Pellets from 15N or 15N/13C-labeled dSNF1–96 and
unlabeled dU2A′ were combined in 400 mM NaCl, 5% (v/v) glycerol, 20 mM
HEPES-NaOH, pH 7.5 and supplemented with Protease Inhibitor Cocktail
(Sigma), PMSF and DNase II. Cell suspension was sonicated then ultra-centrifuged.
Lysate was filtered and bound to Ni-NTA beads, washed and eluted with 400 mM
imidazole in lysis buffer. The hexa-histidine tag was cleaved with His-TEV protease
overnight and removed with His-TEV after running over Ni-NTA beads a second
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Fig. 8 ITC analysis of RNA binding by dSNF1–96 or dU2A′–dSNF1–96.
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time. Flow-through containing the unlabeled dU2A′-15N or 15N/13C dSNF1–96

complex was run over a Superdex 75 10/300 gel filtration column in 200 mM KCl,
20 mM sodium cacodylate, pH 6.5. Fractions containing the complex were
concentrated with 10 kDa MWCO Vivaspin concentrators.

RNA preparation. RNAs for NMR experiments were prepared by in vitro tran-
scription with T7 RNA polymerase (300 U) from double-stranded oligonucleotides
(Supplementary Table 2)35. Reactions contained 4 mM of each rNTP and 1 mM
rGMP (from stock solutions adjusted to pH 7.0), 26 mM MgCl2, 1 mM spermidine,
0.1% (v/v) Triton-X100, 10 mM DTT, 40 mM Tris–HCl, pH 8.4 in 5 ml at 37 °C for
4 h. When solutions became cloudy, 2 µl inorganic pyrophosphatase (Sigma) were
added. After addition of EDTA to a final concentration of 30 mM, reactions were
vigorously mixed with an equal volume of equilibrated phenol, centrifuged at low
speed for 10 min, and the reaction volume was transferred to acid-washed Corex
tubes. Sodium acetate was added to 0.3 M final concentration before mixing with
3 × volumes of 100% ethanol. Tubes were stored at −20 °C overnight. Following
centrifugation at 12,000 × g and 4 °C for 30 min, the solution was decanted, and
pellets were dried and resuspended in 100 µl MilliQ water. After addition of 100 µl
formamide, samples were heated to 95 °C for 3 min, quenched on ice and loaded
onto 8M urea/20% polyacrylamide gels in TRIS-Borate-EDTA. Bands were
visualized by UV shadowing, cut out and chopped into small chunks, which were
immersed in 0.3 M sodium acetate solution. RNA was extracted by soaking over-
night at 37 °C with gentle shaking. Solution was removed, transferred to Corex
tubes and centrifuged to clear any acrylamide contaminants, then lyophilized.
Product was recovered in a minimal volume of MilliQ water, quantified by UV
absorbance and frozen at −20 °C. RNA was dialyzed against buffer before use.

For nitrocellulose filter binding experiments, RNAs were synthesized using T7
RNA polymerase from 200 nM DNA oligonucleotides in 25 µL reactions. RNAs
were internally labeled with α-32P-UTP and α-32P-CTP. Transcription products
were purified on denaturing polyacrylamide gels, and bands were cut out and
soaked overnight in 0.3 M sodium acetate. Solutions were centrifuged to remove
residual gel residue, then 10 µg glycogen (Roche) was added and RNA was
precipitated by addition of 3 × volumes of 100% ethanol overnight at −20 °C.
Recovered RNA was washed with cold 70% ethanol, dried, resuspended in MilliQ
water and stored at −20 °C until needed.

Nitrocellulose filter binding experiments. Nitrocellulose filter binding experi-
ments were used to determine the affinity of dSNF1–101 for wild type and mutant
dU2SLIV RNAs36. Nitrocellulose filters (BA-45; Whatman) were prepared by
soaking in KCl solutions at concentrations used in binding experiments. Samples
for binding experiments contained pM concentrations of RNA, titrated with
increasing concentrations of dSNF1–101. Binding affinity was calculated using
Kaleidagraph to give dissociation constants (Kd) and Gibbs’ free energies36.

Isothermal titration calorimetry. ITC experiments measuring binding thermo-
dynamics of the dU2A′–dSNF1–101 interaction were conducted on a Nano ITC LV
(TA Instruments) at 22 °C in 50 mM KCl, 100 mM arginine, 10 mM sodium
cacodylate, pH 6.5, using dU2A’ as the sample (2.5 µM) and dSNF1-101 as titrant
(25 µM). Proteins were dialyzed into ITC buffer. Data were analyzed using Origin
software.

ITC experiments measuring thermodynamics of dSNF1–96 or dU2A′–dSNF1–96
binding to RNA were conducted on a iTC200 (Malvern Panalytical) at 10 °C in 150
mM KCl, 1 mM MgCl2, 20 mM HEPES-NaOH, pH 7.5, 5% (v/v) glycerol, using the
RNAs as samples (8.3–25 µM) and the proteins as titrants (50–150 µM). 100 µM
solutions of synthetic RNAs (IBA GmbH; U1SLII: 5′-CCAGGACGC
[AUUGCACCUC]GCGUCCUGG-3′; U2SLIV: 5′-CCAGGACGU
[AUUGCAGUACC]GCGUCCUGG-3′; loops in brackets) were incubated at 80 °C
for 3 min, snap-cooled on ice and adjusted to ITC buffer. dSNF1–96 alone or in
complex with dU2A′ (wild type, dU2A′Arg20Ala or dU2A′mutC) was dialyzed into
ITC buffer. Data were analyzed using the Microcal PEAQ software.

Crystallographic analyses. Proteins and complexes were crystallized by sitting
drop vapor diffusion (1 µl protein plus 1 µl reservoir for dSNF1-96 and dU2A
′-dSNF1–96–dU2SLIV or 100 nl protein plus 100 nl reservoir for dSNF1–96–dU1SLII

and dU2A′–dSNF1–96) at 4 °C (dSNF1–96–dU1SLII, dU2A′–dSNF1–96, dU2A
′–dSNF1–96–dU2SLIV) or 20 °C (dSNF1–96). dSNF1–96 crystallized with a reservoir
containing 200 mM sodium chloride, 1 M sodium citrate, 100 mM TRIS–HCl, pH
7.5. Crystals were cryo-protected by transfer into reservoir solution supplemented
with 20% (v/v) glycerol. The dSNF1–96–dU1SLII complex crystallized with a
reservoir containing 200 mM Li3citrate, 20% (w/v) PEG 3350 and 15 mM NiCl2 as
an additive. Crystals were cryo-protected by transfer into reservoir solution sup-
plemented with 10% (v/v) PEG 400. dU2A′–dSNF1–96 crystallized with a reservoir
containing 200 mM Li2SO4, 30% (w/v) PEG 400, 100 mM sodium cacodylate, pH
6.5. The dU2A′–dSNF1–96–dU2SLIV complex crystallized with a reservoir con-
taining 200 mM Li2SO4, 20% (w/v) PEG 3350 and 15 mM sarcosine as an additive.
Crystals were cryo-protected by transfer into reservoir solution supplemented with
10% (w/v) PEG 400. All crystals were incubated in the respective cryo-protecting

solution for 10–30 s and then flash-cooled in liquid nitrogen. Diffraction data were
collected at 100 K on beamline 14.2 of the BESSY II storage ring (Berlin, Germany).
All diffraction data were processed with XDS37.

The structure of dSNF1–96 was solved by molecular replacement using the
program PHASER38 and a homology model generated by HHpred39 based on the
structure of hU1ARRM1 (PDB ID 1URN13). The structure of dSNF1–96–dU1SLII was
solved by molecular replacement with PHASER employing the structure
coordinates of hU1ARRM1 in complex with hU1SLII (PDB ID 1URN13), in which
the hU1ARRM1 coordinates had been replaced by the dSNF1–96 structure and the
residues of hU1SLII had been exchanged for those of dU1SLII. The structure of
dU2A′-dSNF1–96 was solved by molecular replacement with PHASER employing
the structure coordinates of the hU2A′–hU2B″RRM1–hU2SLIV complex (PDB ID
1A9N14), in which the coordinates of hU2B″RRM1 had been replaced by the
dSNF1–96 structure, hU2A′ had been replaced by a homology model of dU2A′ and
the RNA had been omitted. The structure of the dU2A′–dSNF1–96–dU2SLIV
complex was solved by molecular replacement with PHASER using the structure
coordinates of dU2A′–SNF1–96, to which an RNA model had been appended based
on the structure coordinates of the hU2A′-hU2B″RRM1–hU2SLIV complex (PDB ID
1A9N14). Structural models were completed through alternating rounds of
automated refinement using PHENIX.REFINE40 and manual model building using
COOT41.

NMR spectroscopy. NMR data were acquired either on a 700MHz (1H) Varian
Inova spectrometer with z-axis pulsed field gradient triple resonance Varian probe,
or a 600MHz (1H) Bruker Avance III spectrometer with QCI cryoprobe.
dSNF1–101 and dSNF1–101-RNA samples included 50 mM KCl, 2 mM EDTA, 20
mM sodium cacodylate, pH 6.5, 10% (v/v) 2H2O at 23 °C. dSNF1–96 and dU2A′
–dSNF1–96 samples included 200 mM KCl, 1 mM EDTA, 20 mM sodium caco-
dylate, pH 6.5, 10% (v/v) 2H2O at 23 °C. Temperature was calibrated against a
standard methanol NMR sample at 700MHz, and NMR Thermometer methanol-
d4 (Bruker) for 600MHz cryoprobes. 2,2-dimethyl-2-silapentane-5-sulfonate was
used for chemical shift reference. Unbound dSNF1–96 and dSNF1–101 were assigned
using established 3D triple-resonance backbone NMR experiments (HNCACB and
CBCA(CO)NH)42. dSNF1–101 complexed with unlabeled RNA (dU1SLII or
dU2SLIV) or unlabeled dU2A′ protein was assigned at 600MHz using BEST
TROSY 3D pulse sequences22. In order to collect data in a usable timeframe, 3D
experiments were collected with non-uniform sampling techniques and data (FID)
reconstructed with Wagner Lab hmsIST additions43 to NMRPipe. Non-uniform
sample schedules were 20–30%. NMR spectra were processed in NMRPipe44 and
all data were analyzed in NMRViewJ.

The weighted change in backbone amide chemical shifts between free
dSNF1–101 and RNA-bound dSNF1–101 was calculated as:

Δδ ¼ ΔδHN
� �2þ ΔδNð Þ2�n� �h i1=2 ð1Þ

in which ΔδHN and ΔδN are calculated as ΔδHN= (δHN(wt)−δHN(mutant)) and
similarly Δδ15N= (δ15N(wt)−δ15N(mutant)) in parts per million (ppm) of the
magnetic field. n= 0.154 is a standard normalization factor that allows the
combination of the 1H and 15N chemical shift ranges.

Heteronuclear TROSY 15N-{1H} NOE data were acquired in pairs of spectra,
one with and one without saturation of the proton resonances. Experiments with
proton saturation used a 3 s relaxation delay with 3 s of saturation, while spectra
with no saturation used 6 second relaxation delays between scans. Spectra were
collected in duplicate, and for each pair, peak intensity ratios (I/I0) were used to
calculate the steady-state NOE. Propagation of the base plane noise was used to
give the error in the data.

Relaxation dispersion experiments (ΔR2,eff) were acquired at 700 1H MHz and
23 °C using a relaxation-compensated Carr–Purcell–Meiboom–Gill TROSY pulse
sequence. Data were collected at two endpoints: at CPMG νCPMG= 50 Hz and
νCPMG= 1000 Hz. In addition, two experiments were acquired: at Trelax= 40 ms,
and a reference with νCPMG= 0 Hz (i.e., no CPMG interval). For all experiments,
the relaxation delay was 2.5 seconds. R2,app values were determined as45:

R2;app νCPMGð Þ ¼ �1=Trelax � ln I νCPMGð Þ=I0½ � ð2Þ

where Trelax= 40 ms is the total time for the CPMG refocusing period, I(νCPMG) is
the peak intensity with CPMG refocusing, and I0 is the peak intensity with no
refocusing. To measure the contribution to intrinsic R2 from conformational
exchange,

ΔR2;eff ¼ R2;app νCPMG at 50Hzð Þ � R2;app νCPMG at 1000Hzð Þ ð3Þ

or, for simplification:

ΔR2;eff ¼ �1=Trelax � ln I νCPMG at 1000Hzð Þ=I νCPMG at 50Hzð Þ½ �: ð4Þ
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Data availability. The coordinates and structure factor data have been deposited in
the Protein Data Bank (www.pdb.org) with the accession codes 6F4I (dSNF1–96),
6F4J (dU2A′-dSNF1–96), 6F4H (dSNF1–96–dU1SLII) and 6F4G (dU2A′
–dSNF1–96–dU2SLIV). Other data are available from the corresponding authors
upon reasonable request.
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