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ARTICLE OPEN

Genomic and transcriptomic heterogeneity in metaplastic
carcinomas of the breast
Salvatore Piscuoglio 1,2, Charlotte K. Y. Ng 1,2,3, Felipe C. Geyer1,4, Kathleen A. Burke1, Catherine F. Cowell1, Luciano G. Martelotto1,
Rachael Natrajan5, Tatiana Popova6, Christopher A. Maher7,8,9,10, Raymond S. Lim1, Ino de Bruijn1, Odette Mariani6, Larry Norton11,
Anne Vincent-Salomon6,12, Britta Weigelt1 and Jorge S. Reis-Filho1,13

Metaplastic breast cancer (MBC) is a rare special histologic type of triple-negative breast cancer, characterized by the presence of
neoplastic cells showing differentiation towards squamous epithelium and/or mesenchymal elements. Here we sought to define
whether histologically distinct subgroups of MBCs would be underpinned by distinct genomic and/or transcriptomic alterations.
Microarray-based copy number profiling identified limited but significant differences between the distinct MBC subtypes studied
here, despite the limited sample size (n = 17). In particular, we found that, compared to MBCs with chondroid or squamous cell
metaplasia, MBCs with spindle cell differentiation less frequently harbored gain of 7q11.22-23 encompassing CLDN3 and CLDN4,
consistent with their lower expression of claudins and their association with the claudin-low molecular classification. Microarray-
based and RNA-sequencing-based gene expression profiling revealed that MBCs with spindle cell differentiation differ from MBCs
with chondroid or squamous cell metaplasia on the expression of epithelial-to-mesenchymal transition-related genes, including
down-regulation of CDH1 and EPCAM. In addition, RNA-sequencing revealed that the histologic patterns observed in MBCs are
unlikely to be underpinned by a highly recurrent expressed fusion gene or a pathognomonic expressed mutation in cancer genes.
Loss of PTEN expression or mutations affecting PIK3CA or TSC2 observed in 8/17 MBCs support the contention that PI3K pathway
activation plays a role in the development of MBCs. Our data demonstrate that despite harboring largely similar patterns of gene
copy number alterations, MBCs with spindle cell, chondroid and squamous differentiation are distinct at the transcriptomic level
but are unlikely to be defined by specific pathognomonic genetic alterations.

npj Breast Cancer  (2017) 3:48 ; doi:10.1038/s41523-017-0048-0

INTRODUCTION
Metaplastic breast carcinoma (MBC) is a rare special histologic
type of breast cancer, accounting for 0.2–5% of invasive breast
cancers.1,2 MBCs comprise a heterogeneous group of tumors
characterized by the presence of malignant epithelial cells
showing differentiation towards squamous epithelium and/or
mesenchymal elements, such as spindle, chondroid, osseous or
rhabdoid cells.1,2 Most MBCs display a triple-negative (TN)
phenotype (i.e., lack of expression of estrogen receptor (ER),
progesterone receptor (PR), and HER2), and are classified as basal-
like or claudin-low molecular subtypes.3–5 Akin to the basal-like
subtype, the claudin-low subtype is enriched for triple-negative
breast cancers (TNBCs), but is further characterized by a gene
expression profile associated with epithelial-to-mesenchymal
transition (EMT) and cancer stem cells. MBCs have an aggressive
clinical behavior, and unlike other forms of TNBCs, these tumors
seem not to respond to conventional chemotherapy regimens.6

Despite their distinctive histologic and clinical features,
relatively few molecular alterations that discriminate MBCs from

histologic grade- and ER-matched invasive ductal carcinomas of
no special type (IDC-NSTs) have been found. Overall, MBCs and
histologic grade-matched and ER-matched IDC-NSTs display
similar transcriptomic and copy number profiles.4,7 Akin to TN
IDC-NSTs, MBCs also frequently harbor TP53 somatic mutations,8,9

loss of CDKN2A, and EGFR overexpression and amplification.10

Compared to TN IDC-NSTs, MBCs frequently display an EMT-like
gene signature, display downregulation of DNA damage response
pathways,4 and harbor frequent genetic alterations affecting the
PI3K and Wnt pathways.3,9,11 Importantly, however, different
histologic subtypes of or components within MBCs are associated
with specific transcriptomic subtypes,5 and may be underpinned
by distinct copy number alterations (CNAs)8 and mutational
profiles.9 These data provided evidence to suggest that stratifica-
tion of MBCs according to their histologic subtypes may be
required to identify molecular alterations and targets specific for
this disease.
There is burgeoning evidence to suggest that some special

histologic subtypes of TNBC may be driven by recurrent fusion
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genes. For example, secretory carcinomas are characterized by the
ETV6-NTRK3 fusion gene,12 whereas adenoid cystic carcinomas are
underpinned the MYB-NFIB fusion gene13 or rearrangements of
the MYBL1 gene.14 Genomic analyses investigating the presence of
fusion genes in MBCs have yet to be described.
Given that MBCs of different histologic subtypes are likely to

have distinct molecular features, here we sought to define
whether histologically distinct subgroups of MBCs would be
underpinned by distinct copy number or gene expression profiles.
Furthermore, we sought to determine whether MBCs, akin to
other special histologic types of TNBC, would be underpinned by a
recurrent fusion gene. To this end, MBCs of distinct histologic
subtypes (spindle cell, squamous, and chondroid) were subjected
to array-based gene expression, gene copy number profiling, and
RNA-sequencing.

RESULTS
Histopathologic and immunophenotypic characterization of MBCs
Of the 17 MBCs included in this study (Supplementary Fig. 1),
seven (41%), five (29.5%) and five (29.5%) cases were classified as
chondroid, squamous or spindle cell subtypes, respectively, and
the vast majority were of high histologic grade (15/17, 88% grade
3; 2/17, 12% grade 2). Immunophenotypic assessment revealed
that all MBCs, irrespective of histologic subtype, were of TN
phenotype and expressed at least one basal marker, either high
molecular weight cytokeratins (CKs), including CK14, CK17, CK5/6,
or EGFR10 (Supplementary Tables 1 and 2). Additionally, seven
(41%) MBCs showed strong overexpression of p53, a surrogate
marker for the presence of TP53 missense mutations,15 and four
cases lacked PTEN expression by immunohistochemistry (Fig. 1
and Supplementary Table 1).

Histologic subtypes of MBCs harbor similar patterns of gene copy
number alterations
Compared to a set of TN IDC-NSTs16 matched in a 2:1 ratio with
MBCs, both MBCs and TN IDC-NSTs exhibited similar patterns of
gene CNAs, with frequent gains of 1q and 8q, and losses of 5q and
12q (Supplementary Fig. 2 and Supplementary Table 3). In the
MBCs analyzed, homozygous deletions of PTEN (10q23) were
found in two cases (META32 and META41; Supplementary Table 4),
and were associated with loss of PTEN protein expression as
assessed by immunohistochemistry (Fig. 1). Additional two cases
harbored homozygous deletions of the CDKN2A/CDKN2B and
MTAP gene loci (9p21, META42, and META49; Supplementary
Table 4). Recurrent focal amplification of ZNF703/FGFR1/BRF2
(8p11.23-11.22) was found in two cases (META31 and META39).
Additional recurrent focal amplifications included those affecting
WNT9A/WNT3A (1q42.12-42.2, META41, and META52) and TNIK
(3q26.2-26.31, META39 and META42), a Wnt target gene
activator.17

Given that MBCs of distinct histologic subtypes have been
reported to display different gene expression profiles5 and
mutational repertoires9, we performed an exploratory analysis to
define whether the histologic diversity would be underpinned by
distinct patterns of gene CNAs. Hierarchical clustering of the
categorical CNA states revealed that the three MBC histologic
subtypes did not form distinct clusters (Fig. 2a). We observed,
however, two stable clusters, one composed predominantly of
MBCs with squamous differentiation (cluster 2, consisting of
META37, META40, META53, and META62), and the other com-
posed mainly of MBCs with mesenchymal differentiation (chon-
droid or spindle cell differentiation; cluster 1, consisting of all
other samples), with a significant enrichment of MBCs with
squamous differentiation in cluster 2 (p-value = 0.004, Fisher’s
exact test). The clusters differed predominantly by gains of 1p and
losses of chromosome 2 and 9q (Fig. 2b, Supplementary Table 5).

Indeed, direct comparisons between the distinct histologic MBC
subtypes revealed that MBCs with squamous differentiation had
higher fractions of the genome altered compared to non-
squamous MBCs (p-value = 0.02, Mann–Whitney U test, Supple-
mentary Fig. 3), but few CNAs were significantly different between
them. MBCs with chondroid differentiation were characterized by
21q11.2 gains and high level gain/ amplification of 8q21.11-24.3
compared to non-chondroid MBCs (both p-value < 0.05, Fisher’s
exact tests, Supplementary Fig. 3a, Supplementary Table 6). MBCs
with spindle cells harbored similar frequencies of gene CNAs as
MBCs with squamous or chondroid differentiation, apart from the
less frequently observed 7q11.22-23 gain encompassing CLDN3
and CLDN4 (p-value < 0.05, Fisher’s exact test, Supplementary Fig.
3b, Supplementary Table 7). Compared to MBCs with spindle cell
or chondroid differentiation, MBCs with squamous differentiation
infrequently harbored amplification/ high-level gain of 8q24, but
harbored more frequent losses on 7q and 12q and gains on 11p
and 12q (all p-value < 0.05, Fisher’s exact tests, Supplementary Fig.
3c–d, Supplementary Table 8). Furthermore, we noticed that two
cases harbored very few or no CNAs (META36 and META47). The
tumor cell content for META36, a chondroid MBC, was estimated
to be 87 and 80% by ABSOLUTE and pathology review,
respectively, whereas META47, a spindle cell MBC, did not harbor
any CNA and its tumor cell content was estimated to be 70% by
pathology review but could not be estimated by ABSOLUTE
(Supplementary Table 1). It should be noted, however, that
META47 was classified as claudin-low, as opposed to normal
breast-like, based on intrinsic subtyping.5 These analyses support
the contention that the lack of CNAs was not a result of
insufficient tumor cell content. In fact, gene copy number analysis
of the samples of the METABRIC study has revealed the existence
of a subset of TNBCs lacking CNAs despite the adequate tumor cell
content.18

Taken together, MBCs seem not to be underpinned by a
pathognomonic CNA. In fact, these tumors display CNAs similar to
those observed in conventional forms of high-grade TNBCs, and,
regardless of the histologic subtype, MBCs harbor similar CNA
profiles. Significant differences in the CNAs according to subtype
were identified, however these are unlikely to account for the
histologic diversity seen in these cancers. Further studies, with a
larger sample size, are however required to refine the boundaries
of the regions differentially gained or lost in the histologically
distinct subtypes of MBC.

MBCs with spindle cell differentiation show distinct transcriptomic
profiles
Consistent with our previous observations,5 using the PAM50 and
claudin-low intrinsic gene lists,19–22 here we observed that the five
MBCs with spindle cell morphology were classified as of claudin-
low intrinsic subtype, compared to only three of the 12 MBCs with
squamous or chondroid metaplasia (Fig. 3a and Supplementary
Tables 1 and 2). By contrast, MBCs with chondroid and squamous
differentiation were variably classified as of normal-like, basal-like
or claudin-low intrinsic subtypes. Given the heterogeneity
observed in the intrinsic subtypes between MBCs of different
morphologic subtypes,2 we further explored the overall gene
expression profiles of these tumors using unsupervised and
supervised methods.
Unsupervised hierarchical clustering of gene expression data

revealed that the five MBCs with spindle cells formed a stable
cluster distinct from the remaining MBCs (p < 0.05, Fisher’s exact
test, Fig. 3a and Supplementary Fig. 4). The second cluster
comprised two sub-clusters, with one encompassing most MBCs
with chondroid differentiation and the other comprising most
MBCs with squamous differentiation (Fig. 3a). These two sub-
clusters were, however, unstable, and the separation between the
two histologic subtypes was not statistically significant (p = 0.2424,
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Fisher’s exact test, Supplementary Fig. 4). Consistent with our
findings that spindle cell MBCs are more frequently of claudin-low
subtype5, these data provide evidence that MBCs with spindle cell
metaplasia harbor distinct transcriptomic profiles compared to
other forms of MBCs.
Significance analysis of microarrays (SAM) revealed that 190

transcripts were downregulated in spindle cell compared to
non-spindle cell MBCs (Supplementary Table 9). Functional
annotation and pathway analysis of these transcripts using the
Ingenuity Pathway Analysis (IPA) software revealed that MBCs
with spindle cells displayed lower expression of tight-junction-
related genes, including CLDN3, CLDN8, CGN, MYH11, and

MYH14 (p-value < 0.05, Supplementary Fig. 5) than other forms
of MBCs. Additionally, spindle cell MBCs differentially
expressed EMT-related genes compared to squamous and
chondroid MBCs, including reduced CDH1 and EPCAM expres-
sion (Supplementary Table 9). The down-regulation of EMT-
related genes in spindle cell MBCs, including claudins, is
consistent with their claudin-low intrinsic subtype. Consistent
with the enrichment of tight-junction and EMT-related genes
found by IPA, g:Profiler23 pathway analysis of the differentially
expressed genes revealed an enrichment for genes involved in
cell–cell junction, tight junction and cell junction organization
(p-value < 0.05) and genes enriched in extracellular matrix

Fig. 1 Immunohistochemical analysis of p53 and PTEN in MBCs. Representative micrographs of metaplastic breast carcinomas (MBCs), a with
spindle cell (META32) and b-d with squamous metaplasia (META41, META37, and META42, respectively). Immunohistochemical analysis
showed loss of PTEN expression in e META32 and f META41 and p53 overexpression in g META37 and h META42. In e and f, note the positive
internal control for PTEN in blood vessels. Scale bars, 100 µm
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organization and cell adhesion (p-value < 0.05, Supplementary
Table 10).
The comparison between MBCs with and without chondroid

differentiation identified 48 differentially expressed transcripts
(Supplementary Table 11). Interestingly, chondroid tumors
showed over-expression of EXTL1, a gene encoding exostosin-
like glycosyltransferase 1 and involved in chain elongation of
heparan sulfate,24 an integral proteoglycan of cartilage, and genes
involved in chondrocyte differentiation, including COL9A1,
COL11A2, and ACAN. Aggrecan (encoded by ACAN) is a proteogly-
can and major extracellular matrix component of cartilaginous
tissues.25 One could posit that overexpression of these genes may
contribute to their cartilaginous histologic appearance; however,
further studies are warranted to define the basis of their
overexpression in MBCs with chondroid differentiation.
Only 19 transcripts were found to be differentially expressed

between MBCs with and without squamous differentiation,
including the upregulation of MAPK13, a gene involved in cell
cycle, as well as two genes that regulate proliferation, EHF and
MMP7 (Supplementary Table 12).
To validate our gene expression results using an orthogonal

method, we performed hierarchical clustering and differential
gene expression analysis using the data generated from RNA-
sequencing. Transcriptomic profiling by RNA-sequencing

generally recapitulated the unsupervised clustering analysis made
using gene expression arrays with the MBCs with spindle cells
preferentially clustering together (Supplementary Fig. 6). Super-
vised analysis of gene expression based on the RNA-sequencing
data further confirmed the gene expression microarray analysis
findings in that CLDN3 and CDH1 were downregulated in MBCs
with spindle cells; MAPK13, EHF, and MMP7 were upregulated in
squamous MBCs; and ACAN, COL9A1, COL11A2, and EXTL1 were
upregulated in chondroid MBCs (Fig. 3b, Supplementary Fig. 7 and
Supplementary Tables 13–15). These findings confirm our
previous observations,5 and demonstrate that the gene expression
profiles of MBCs vary according to the type of metaplastic
elements present.

Genes amplified and overexpressed in MBCs
Integration of copy number and gene expression data for all 17
MBCs included in this study identified 3071 copy number
regulated probes, encoding 2605 genes (Supplementary Table 16).
To identify potential amplicon drivers, we interrogated for genes
significantly overexpressed when amplified. Pathway analysis of
the 153 genes overexpressed when amplified (Supplementary
Table 17) using IPA and g:Profiler demonstrated an enrichment of
genes involved in oxidative phosphorylation, cellular metabolic
pathways and cell cycle (Supplementary Fig. 8 and Supplementary

Fig. 2 Landscape of gene copy number alterations in MBCs. a Hierarchical cluster analysis performed with SNP 6.0 defined copy number
alterations (i.e., gains, losses, amplifications/high-level gains and deletions) using Euclidean distance metric and Ward’s algorithm. Histologic
subtypes of MBCs are color-coded according to the legend. b Frequency plot of (top) copy number gains and losses and (bottom)
amplifications/high-level gains and deletions in copy number cluster 1 and copy number cluster 2 identified by hierarchical clustering. The
proportion of tumors in which each probe is gained/ amplified (green bars) or lost/ deleted (red bars) is plotted (y-axis) for each probe
according to its genomic position (x-axis). Inverse Log10 values of Fisher’s exact p value are plotted according to genomic position (x-axis) at
the bottom of each graph
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Table 18). Interestingly, several of these genes were present on 8q,
a recurrently amplified region in MBCs and TNBCs, including
COX6C, YWHAZ, and ATP6V1C1 on 8q22 (Fig. 4a) and RAD21,
NDUFB9, and MYC on 8q24 (Fig. 4b). As an exploratory, hypothesis-
generating analysis, we sought to define whether the repertoire of
genes overexpressed when amplified would vary according to the
histologic subtype of MBCs. This analysis did not reveal genes
significantly overexpressed when amplified when the three
subtypes were analyzed separately; it should be noted, however,
that this negative finding may stem from the small sample size.

MBCs are not driven by a recurrent fusion gene or an expressed
pathognomonic mutation in cancer genes
To determine whether MBCs are driven by a highly recurrent
fusion gene, we subjected the 17 MBCs to paired-end RNA-
sequencing. Analysis using defuse26 and ChimeraScan27 identified
43 fusion transcripts (Supplementary Table 19). Akin to the gain-
of-function oncogenic fusion genes identified in other special
histologic types of breast cancer,12,13 we prioritized fusion
transcripts that comprised open reading frames with known
associated functions, and that harbored intact functional domains.
Using the above criteria, we identified and validated by RT-PCR
nine in-frame fusion transcripts in the index cases (Figs. 5a–i and
Supplementary Table 19), though none was recurrent in our series.
Importantly, however, we identified several interesting chimeric
transcripts including a promoter swap of TBL1XR1-PIK3CA that has

previously been described in breast and prostate cancers,28 and
additional fusions of WAPAL-CDHR1, MAP2K3-HMGCLL1, PARG-
BMS1, FN1-ICAM1, AAK1-ARNT2, TNKS1BP1-SPARC, MBTPS1-
TCEANC2, and PSMA6-SHMT1 (Figs. 5a–i and Supplementary Fig. 9).
To define the repertoire of expressed mutations in MBCs, we

performed a mutational analysis of the RNA-sequencing data.
Given the challenges for de novo identification of mutations
based on RNA-sequencing analysis, we rigorously curated the
putative mutations to exclude likely germline polymorphisms and
likely passenger mutations and focused on previously described
cancer genes included in Kandoth et al. (127 significantly mutated
genes),29 the Cancer Gene Census30 or Lawrence et al. (Can-
cer5000-S gene set).31 The mutational analysis revealed that TP53
(9/17, 53%), PIK3CA, DDX5, and TSC2 (each 2/17, 12%, Fig. 5j and
Supplementary Table 20) were recurrently mutated, including
TP53 hotspot mutations C176F, N239S, R249G, R273C, C275R,
P278L, and c.673-1G>T splice site, each found in one MBC. Both
PIK3CA mutations found were the hotspot H1047R mutation.
Mutations in other cancer genes including CBFB, IDH1, JAK1,
KMT2A, SMAD4, and SMARCA4 were found in one MBC each. As a
hypothesis-generating analysis, we compared the mutational
frequency of TP53 between MBC subtypes. All MBCs with
squamous metaplasia harbored TP53 mutation, compared to
33% of MBCs of other subtypes (p-value = 0.03, Fisher’s exact test,
Fig. 5j), similar to our recent report based on whole-exome
sequencing.9

Fig. 3 MBCs of spindle subtype have a unique transcriptomic profile amongst MBCs. a Unsupervised hierarchical clustering of MBCs based on
gene expression arrays using Pearson’s correlation and Ward’s algorithm. Histologic subtypes of MBCs are color-coded according to the
legend. Zoomed-in heatmap on the right shows genes differentially expressed between MBCs with spindle cells as compared to chondroid
and squamous MBCs, including tight-junction related genes, such as CLDN3, and MYH11, and EMT-related genes, such as CDH1 and EPCAM. b
Validation of significantly differentially expressed genes between spindle and non-spindle MBCs identified by microarray-based gene
expression analysis was performed using RNA-sequencing data. For each gene, normalized expression value is plotted for each MBC, grouped
by histologic subtype. p-values were calculated from the differential expression analysis using limma46 (see Methods)
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These data suggest that although MBCs are not driven by a
pathognomonic gene fusion or a pathognomonic expressed
mutation in previously described cancer genes29–31, some of
these genetic alterations may play a role in individual MBCs.

DISCUSSION
Here we have characterized the patterns of CNAs, gene
expression, expressed fusion genes and expressed mutations

affecting previously described cancer genes in 17 MBCs. Our
results demonstrate that MBCs are highly heterogeneous tumors
at the genomic and transcriptomic levels, and that they are
unlikely to be underpinned by a highly recurrent fusion gene or a
pathognomonic expressed mutation in previously described
cancer genes29–31 (Table 1).
We have previously demonstrated that based on PAM50/

claudin-low molecular subtyping, MBCs with spindle metaplasia
are preferentially classified as of claudin-low subtype, whereas

Fig. 4 Genes significantly overexpressed when amplified in MBCs. Composite heatmaps of copy number (left) and gene expression (middle)
of genes mapping to a the 8q22 amplicon and b the 8q24.12-24.2 amplicon. Microarray-based gene expression and SNP 6.0 copy number
values are depicted in two matching heatmaps, with SNP 6.0 states on the left and expression values on the right, in which the genes are
ordered according to their chromosomal positions. Bar plots on the right show the results of Mann–Whitney U tests for expression as a
continuous variable and gene amplification as the grouping variable. Bars in red show adjusted p-values< 0.05. SNP 6.0: copy number loss
(green), no copy number change (black), copy number gain (dark red), amplification (bright red). Gene expression: downregulation (green),
upregulation (red). AMP amplified, MWU Mann–Whitney U test, NA not amplified
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MBCs with squamous or chondroid metaplasia are more
frequently classified as of basal-like or even normal breast-like
subtypes than as of claudin-low subtype (Table 1).5 Here we
expand on our previous observations, and demonstrate that MBCs
with spindle cell metaplasia display transcriptomic features
characterized by an EMT-like gene expression profile, which is
not as conspicuous in MBCs with other forms of metaplasia. MBCs
with chondroid or squamous metaplasia, but not MBCs with
spindle metaplasia, were found to harbor recurrent copy number
gains of 7q11.22-23, a region that encompasses CLDN3 and
CLDN4. Given that the lack of 7q11.22-23 gain was the only CNA
feature found to distinguish MBCs with spindle cells and the
remaining MBCs, the vast majority of the differences in gene
expression between these subsets of MBCs are therefore unlikely
to be copy number-driven. Although MBCs with spindle cell
metaplasia more frequently displayed PIK3CA mutations than
MBCs with other types of metaplasia, PIK3CA mutations were also
found in MBCs with squamous differentiation.9 These results
suggest that the differences in gene expression between MBCs
with or without spindle cell metaplasia may stem from other types
of somatic genetic alterations or epigenetic modifications or
distinct cells of origin. Our findings also contextualize specific
aspects related to the molecular classification of MBCs; the
characteristic EMT-like transcriptomic profiles and high prevalence
of claudin-low subtype reported in studies on MBCs3,21,22 may
actually stem from the fact that those studies primarily focused on
MBCs that displayed a spindle cell/sarcomatoid histologic subtype.

In terms of CNAs, MBCs as a group have been shown to be
remarkably similar to other TNBCs (Table 1).7 When we compared
the copy number profiles of the 17 MBCs in the current cohort to
those of 34 grade-matched TNBCs,16 the frequency of CNAs was
similar between MBCs and TNBCs. We did identify, however, some
regions that were altered significantly more frequently in MBCs,
including losses of 6q13-14.1, 6q21, 10p13-15.3, 10q11.21-21.1,
and 12p13.31 (Supplementary Fig. 2 and Supplementary Table 3).
Furthermore, integration of genomic and transcriptomic informa-
tion yielded the amplification of 8q as a CNA that significantly
affects gene expression in MBCs. Amplification of 8q, however, is a
relatively frequent finding in other forms of TNBCs.
At variance with other rare forms of TNBC,12–14,32 MBCs were

found not to harbor a highly recurrent expressed fusion gene or a
highly recurrent expressed mutation affecting previously
described cancer genes. In addition, the histologic differences
observed in distinct subtypes of MBCs appear not to be
underpinned by specific expressed fusion genes or expressed
mutations affecting previously described cancer genes. Potentially
pathogenic fusion genes private to individual tumors were,
however, identified, some of which comprised partner genes
involved in the PI3K pathway and/or DNA damage repair
mechanisms. Specifically, the TBL1XR1-PIK3CA fusion gene, which
was detected in two ER-negative invasive breast cancers from the
TCGA breast cancer study and may result in PIK3CA over-
expression,28 was detected in META52; however, in this case,
the PIK3CA expression levels were not significantly higher than in
other MBCs studied here (Supplementary Figs. 10a and 10b). The

Fig. 5 Schematic representation of nine validated expressed in-frame fusion transcripts and repertoire of expressed non-synonymous
mutations defined using RNA-sequencing in MBCs. Reverse transcription (RT)-PCR was used to validate in-frame fusion transcripts identified
by RNA-sequencing to comprise open reading frames with known associated functions and that harbored intact functional domains. a
TBL1XR1-PIK3CA, b FN1-ICAM1, c MAP2K3-HMGCLL1, d MBTPS1-TCEANC2, e PARG-BMS1, f PSMA6-SHMT1, g TNKS1BP1- SPARC, h AAK1-ARNT2, i
WAPAL-CDHR1. In each panel, chromosomes are indicated in alternating black and gray boxes, with the 5′ and the 3′ marked at the
corresponding end of each gene. Light blue boxes above the schematics of the wild-type genes and below the schematics of the fusion genes
indicate the protein domains present. Fusion junctions with respective exon numbers are shown. j Expressed non-synonymous mutations
identified in 17 MBCs subjected to RNA-sequencing. Mutations affecting genes included in the cancer gene lists29–31 are reported. The effects
of the mutations are color-coded according to the color key, with hotspot48 mutations colored in red. The presence of multiple non-
synonymous mutations in the same gene is represented by an asterisk. The metaplastic subtype of each MBC is indicated below the heatmap
according to the color key
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fusion genes PARG-BMS1 and WAPAL-CDHR1 contain partners
whose protein products are involved in genomic integrity;
disruption of these genes by a rearrangement could, theoretically,
contribute to the complex patterns of genomic rearrangements
observed in MBCs. The WAPAL-CDHR1 fusion transcript contains
the first 16 exons of the Wings apart-like protein homolog
(WAPAL) gene and the last seven exons of the Cadherin Related
Family Member 1 (CDHR1) gene. WAPAL encodes a cohesin
binding protein necessary for sister chromatid resolution which is
truncated at residue 1107 in the chimeric transcript. Double
mutations in WAPAL at M1116A/I1120A have been found to result
in a functionally defective protein that can still bind cohesin.33

These data suggest that this chimeric transcript may potentially
result in a defective form of the WAPAL gene product that may
affect chromatid cohesion and subsequently the rate of segrega-
tion errors and aneuploidy. Of the other fusion genes identified
and validated in our study, PARG-BMS1 and TNKS1BP1-SPARC may
also have an impact on genomic integrity, given that the Poly
(ADP-ribose) glycohydrolase (PARG) protein hydrolyzes PAR (poly
(ADP-ribose)) and plays an important role in DNA damage repair,34

whereas the Tankyrase 1 Binding Protein 1 (TNKS1BP1) protein is a
binding partner of TANK1,35 a member of the PARP superfamily
that regulates telomere length, DNA repair and WNT signaling.36

Here, we found that 53% of MBCs expressed TP53 mutations.
Apart from frequent TP53 mutations, we have recently demon-
strated by whole-exome sequencing analysis that PIK3CA, PIK3R1,
and PTEN are significantly mutated in MBCs and that up to 60% of
MBCs harbor somatic mutations in the PI3K/AKT/mTOR pathway
(Table 1).9 These observations are in agreement with a previous
study, in which sequencing analyses of known pathogenic PIK3CA
and PTEN mutations revealed their involvement in 53% of MBCs.3

Here we have also detected homozygous deletions of PTEN in two
MBCs (META32 and META41) and loss of expression by
immunohistochemistry in additional two cases (META49 and
META62), suggesting that 24% of MBCs likely displayed PTEN loss-
of-function. In an additional four cases (META31, META47,
META59, and META64), we identified either bona fide activating
PIK3CA mutation or TSC2 missense mutations predicted to be
likely pathogenic by mutation function predictors.37 These
findings are consistent with the notion that dysregulation of the
PI3K/AKT pathway is likely to play a pivotal role in MBCs. Of note,
however, PIK3CA and PTEN mutations in TNBCs are not restricted
to MBCs. In fact, of the TNBCs from The Cancer Genome Atlas
breast cancer study, approximately 10% of cases harbor amplifica-
tion or somatic mutations in PIK3CA and 8% harbor homozygous
deletions or somatic mutations in PTEN.38 Therefore, these
recurrent alterations affecting PI3K pathway-related genes are
unlikely to explain the unique histologic features of MBCs. We also
reported that MBCs frequently harbored mutations in the Wnt
pathway.9 Consistent with our observations from whole-exome
sequencing analysis of MBCs,9 we did not identify expressed
mutations affecting CTNNB1. We did, however, detect an
expressed frameshift SMAD4 mutation and an expressed missense
TCF7L2 mutation. Of note, most of the Wnt pathway-related genes
previously found to be mutated in MBCs are not in the cancer
gene lists employed for the RNA-sequencing-based mutation
analysis29–31 and were not within the scope of the mutational
analysis performed in this study, given the challenges in
identifying somatic mutations using RNA-sequencing alone.
This study has several limitations. Owing to the rarity of MBCs

and the challenges in having frozen blocks representative of the
metaplastic elements of MBC, our sample size was small. It should
be noted, however, that despite the small sample size, we could
detect transcriptomic features and CNAs that varied between the
subtypes of MBC. Importantly, our study was sufficiently powered
to have detected a pathognomonic fusion gene, a pathognomonic
expressed mutation affecting a previously reported cancer gene, or
a pathognomonic CNA in at least two cases. This suggests that,

unlike other rare forms of TNBC,12–14,32 this rare and aggressive
histologic special type of TNBCs is unlikely to be driven by a highly
recurrent fusion gene, expressed mutation in a known cancer gene
or CNA. Second, we have focused on the repertoire of CNAs,
transcriptomic changes, fusion genes and expressed mutations in
MBCs, and were unable to identify pathognomonic genetic
alterations that define each histologic subtype of MBCs. Although
mutations were identified using RNA-sequencing, defining the
repertoire of somatic mutations using RNA-sequencing data has
proven to be fraught with difficulties, with high rates of false-
negative and false-positive results. Through a series of rigorous
filters, we were able to identify recurrently expressed mutations in
MBCs, which were consistent with the observations we have made
by whole-exome sequencing of 35 MBCs.9 Further studies are
warranted to define whether the distinctive features of MBCs and
of each subtype of the disease would be driven by somatic genetic
alterations affecting non-coding regions of the genome or by
specific repertoires of epigenetic alterations.
Despite these limitations, our study demonstrates that MBCs

resemble other high-grade TN IDC-NSTs at the genomic level. We
have provided direct evidence that MBCs are unlikely to be driven
by a highly-recurrent/ pathognomonic expressed fusion gene or
expressed mutation affecting known cancer genes, and that
transcriptomic profiles and, to a lesser extent, gene CNAs varied
between the metaplastic elements present in MBCs, corroborating
the notion that MBCs comprise a heterogeneous group of breast
cancers whose common denominator is the presence of
metaplastic elements. Further studies are warranted to define
whether the histologic diversity of MBCs stems from distinct non-
coding somatic genetic alterations and/or epigenetic events,
distinct cells of origin, or the interactions between specific
genetic/ epigenetic alterations and cell of origin.

METHODS
Case selection and nucleic acids extraction
Cases diagnosed as MBCs were selected from a previously described
cohort.5 In this study we included cases for which both gene expression
microarray profiling and SNP 6.0 copy number profiling were available
from our previous study,5 and for which sufficient RNA was available for
RNA-sequencing (see below, Supplementary Fig. 1 and Supplementary
Table 1). All cases were independently reviewed by three pathologists with
an interest and expertize in breast cancer (FCG, AV-S and JSR-F), who
classified the tumors into three groups: MBCs with spindle cell metaplasia
(n = 5), squamous metaplasia (n = 5) or chondroid metaplasia (n = 7)
according to the most prevalent component in the sample subjected to
molecular analyses (Supplementary Table 1), given that the most abundant
metaplastic component has been shown to have a substantial impact on
the transcriptomic profiles of each tumor.5 Tumors were graded according
to the Nottingham grading system39 and tumor cell content for each lesion
was defined semi-quantitatively (AV-S and JSR-F). Samples were anon-
ymized prior to analysis. This study was approved by the local research
ethics committees of the authors’ institutions. Written consent was
obtained from patients alive and contactable prior to the start of the
study. Methods were performed in accordance with relevant regulations
and guidelines. Nucleic acid extraction and quality control were performed
as previously described.5

Immunohistochemistry
Immunohistochemical analysis was performed for ER, PR, and HER2, CK5/6,
CK14, CK17, PTEN, p53, p63, c-KIT, and EGFR on representative sections
from formalin-fixed paraffin-embedded (FFPE) tissue blocks (Supplemen-
tary Table 21 and Supplementary Methods).

Gene copy number analysis
Copy number profiling data using the human SNP Array 6.0 (Affymetrix)5

were re-analyzed (Supplementary Methods). Focal amplifications were
defined as amplifications/high-level gains that were smaller than 25% of
the respective chromosome arm and visually inspected using genome
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plots. Homozygous deletions were further defined using ASCAT40 and
ABSOLUTE41 (Supplementary Methods). Tumor cell content was estimated
using ABSOLUTE.41 Statistically significant differences between CNAs of
different morphologic subtypes of MBCs were defined using multi-Fisher’s
exact tests and unsupervised hierarchical cluster analysis was performed as
previously described (Supplementary Methods).7 For the comparison of
gene copy number profiles of MBCs with those of common-type TNBCs,
SNP 6.0 array data were obtained from triple-negative IDC-NSTs16 and
matched in a 2:1 ratio with MBCs and processed using the aroma.
affymetrix and DNAcopy packages as described above.

Gene expression profiling
Gene expression profiling data using the HumanHT-12 v4 Expression
BeadChip Kit (Illumina)5 were re-normalized and annotated (Supplemen-
tary Methods). Unsupervised hierarchical clustering analysis was per-
formed as previously described42 (Supplementary Methods). Differentially
expressed genes were determined by significance analysis of microarrays
(SAM),43 adopting a false discovery rate of 1% after 100 permutations.

Integration of copy number and expression data
To identify genes whose expression levels correlate with CNAs and genes
that were up-regulated when gained, down-regulated when lost or over-
expressed when amplified, Pearson’s correlations and Mann–Whitney U
tests were used as previously described7 (Supplementary Methods).

Pathway analysis
Significantly regulated pathways and networks in the gene expression data
were determined using Ingenuity Pathway Analysis (IPA, http://www.
ingenuity.com,) and g:Profiler23 (Supplementary Methods).

RNA-sequencing and fusion transcript identification
RNA-sequencing (2 × 54 bp) was performed for all 17 MBCs included in this
study using the standard Illumina mRNA library protocol on a Genome
Analyzer II (Illumina) as previously described.42 deFuse26 and Chimer-
aScan27 were used to identify mate-pairs supporting novel chimeric
transcripts as previously described42 (Supplementary Methods). Candidates
that resulted in open reading frames were annotated using OncoFuse.44

Nominated in-frame fusion gene candidates, candidates identified by both
deFuse and ChimeraScan, as well as those with known associated
functions, and those that harbored intact functional domains were
prioritized for validation in the index cases by reverse transcription (RT)-
PCR (Supplementary Table 22 and Supplementary Methods). Fusion genes
validated in the index cases were further screened in all cases in the cohort
for which RNA samples were available.

RNA-sequencing gene expression and mutation analysis
For gene expression analysis, RNA-sequencing data were aligned to the
transcriptome (GRCh37) using STAR45 and differential expression analyses
were performed using limma (Supplementary Methods).46 Mutation
analysis was performed according to the Genome Analysis Toolkit47 Best
Practices workflow for single nucleotide variant (SNVs) and small insertion
and deletion (indel) calling on RNA-seq data (http://gatkforums.
broadinstitute.org/gatk/discussion/3891/calling-variants-in-rnaseq). Var-
iants affecting hotspots48 were white-listed, and additional mutations
were defined using GATK HaplotypeCaller, removing likely polymorphisms
and likely passenger variants (Supplementary Methods). Only variants
covered by at least five reads, with at least two reads supporting the
variant and at least two reads supporting the reference allele were
included, as those devoid of a reference allele were highly enriched for
germline variations.42 Mutations affecting cancer genes included in the
lists described by Kandoth et al., (127 significantly mutated genes),29 the
Cancer Gene Census30 and/or Lawrence et al., (Cancer5000-S gene set)31

and their functional effects (Supplementary Methods) were reported.

Power calculations
The binomial probability was used to estimate the statistical power of
identifying a pathognomonic alteration, focusing on those that would be
detected in at least two cases (i.e., recurrent). To calculate the statistical
power, we made the assumption that a pathognomonic alteration in MBC
would be present in ≥70% of cases, which is a conservative estimate and

one that is substantially lower than the observed >95% frequency of ETV6-
NTRK3 fusion in breast secretory carcinomas (originally identified in a
cohort of six)12 and >90% frequency of MYB-NFIB fusion in adenoid cystic
carcinoma (originally identified in a cohort of ten, of which only four were
breast adenoid cystic carcinomas).13 Thus by sequencing five samples (the
smallest number of cases for any MBC histologic subtype), we would have
97% statistical power to detect a pathognomonic alteration in at least two
cases. Even if we lower the assumed frequency of a pathognomonic driver
alteration to be present in 50% of the cases, we would still have 80%
statistical power to detect the pathognomonic alteration in at least two
cases.

Code availability
The R script of all microarray-based gene expression profiling and gene
copy number analyses performed is available at GitHub (https://github.
com/charlottekyng/piscuoglio-et-al-metaplastic-breast-carcinoma).

Data availability
The raw and processed gene expression and SNP 6.0 data are available on
Gene Expression Omnibus (GSE57549). RNA-sequencing data have been
deposited to the Sequence Read Archive (SRP070780).
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