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ABSTRACT: Drug toxicity is frequently caused by electrophilic reactive metabolites that covalently bind to proteins. Epoxides
comprise a large class of three-membered cyclic ethers. These molecules are electrophilic and typically highly reactive due to ring
tension and polarized carbon−oxygen bonds. Epoxides are metabolites often formed by cytochromes P450 acting on aromatic or
double bonds. The specific location on a molecule that undergoes epoxidation is its site of epoxidation (SOE). Identifying a
molecule’s SOE can aid in interpreting adverse events related to reactive metabolites and direct modification to prevent
epoxidation for safer drugs. This study utilized a database of 702 epoxidation reactions to build a model that accurately predicted
sites of epoxidation. The foundation for this model was an algorithm originally designed to model sites of cytochromes P450
metabolism (called XenoSite) that was recently applied to model the intrinsic reactivity of diverse molecules with glutathione.
This modeling algorithm systematically and quantitatively summarizes the knowledge from hundreds of epoxidation reactions
with a deep convolution network. This network makes predictions at both an atom and molecule level. The final epoxidation
model constructed with this approach identified SOEs with 94.9% area under the curve (AUC) performance and separated
epoxidized and non-epoxidized molecules with 79.3% AUC. Moreover, within epoxidized molecules, the model separated
aromatic or double bond SOEs from all other aromatic or double bonds with AUCs of 92.5% and 95.1%, respectively. Finally, the
model separated SOEs from sites of sp2 hydroxylation with 83.2% AUC. Our model is the first of its kind and may be useful for
the development of safer drugs. The epoxidation model is available at http://swami.wustl.edu/xenosite.

■ INTRODUCTION

Drug discovery and development involve significant efforts to
identify safe and efficacious drugs; nevertheless, unanticipated
toxicity and adverse drug reactions do occur and cause
approximately 40% of drug candidates to fail.1 Frequently,
these harmful outcomes are linked to the formation of
electrophilic metabolites that covalently bind to proteins or
DNA and, in some cases, elicit an immune response in
susceptible patients.2−6 One of the most common types of
reactive metabolites are epoxides, the subject of this study.
Epoxides are three membered cyclic ethers and are often

highly reactive due to ring tension and polarized carbon−oxygen
bonds.7−11 Epoxides are formed by cytochromes P450 acting on
aromatic or double bonds,12,13 and these epoxidation reactions

comprise around 10%14 to 15%15 of all bioactivation reactions.
Biological defense mechanisms to epoxides, including gluta-
thione conjugation and cleavage by epoxide hydrolase, offer only
partial protection.7,11,16,17 Glutathione can be depleted,18,19 and
certain products of glutathione conjugation17 and epoxide
hydrolase20,21 are themselves toxic.
Epoxide metabolites often drive toxicity for drugs, and

accurate strategies for anticipating the formation of epoxides
are critical in drug development. Knowledge of epoxide
formation aids assessment of drug candidates. Furthermore,
the identity of the specific bond in a molecule undergoing
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epoxidation, its site of epoxidation (SOE), could enable rational
modification of the molecule to reduce risk of reactive metabolite
formation. An example of how this knowledge can lead to drugs
with improved safety is illustrated by carbamazepine (Figure 1).
The metabolism of this anti-epileptic drug forms carbamazepine-
10,11-epoxide. Carbamazepine metabolism can also form an
iminoquinone,22 but the epoxide’s formation is the focus of this
study and more correlated with adverse reactions.23−25 The
molecular mechanism for this response involves reactions
between the epoxide and proteins to form adducts.26 However,
the epoxide formation can be blocked by modifying
carbamazepine’s SOE. For example, oxcarbazepine23 or
eslicarbazepine are analogues of carbamazepine that are no
longer epoxidized.25 While oxcarbazepine and eslicarbazepine
were not prospectively designed in order to reduce epoxide
formation, they demonstrate how small molecular changes can
significantly impact toxicity caused by epoxide metabolites.
These analogues retain the same mechanism of action as
carbamazepine, yet have a lower incidence of adverse effects
because they prevent the formation of epoxides.25,27

A number of studies, including those by our group, have
established that computational methods can predict the sites at
which molecules are metabolized.28−33 A shortcoming of those
approaches has been the lack of predictions for the actual
metabolites generated by those reactions. Cytochromes P450
catalyze many different types of oxidative reactions, including
commonly observed hydroxylations.12,30,34 While several
cytochromes P450 site of metabolism models are reported in

the literature, to the best of our knowledge, none of those models
specifically identify SOEs in molecules. Instead, all existing
methods only report which atoms undergo oxidation, without
distinguishing the specific type of reactionsuch as epoxidation
or hydroxylationor the resulting modification to the structure.
In this study, we construct an epoxidation modelbased on

the structural data of several hundred diverse moleculesthat is
successful at three key objectives. First, the model accurately
predicts SOE within epoxidized molecules; these SOE
predictions can be used to direct structural modifications to
drug candidates. Second, the model distinguishes SOE from sites
of sp2 hydroxylation (SOH), a key negative control. Both SOEs
and SOHs are oxidized by P450s, and we expect a useful model to
correctly identify which of these oxidations give rise to epoxides.
In contrast, commonly reported P450 site of metabolism models
will not distinguish these two cases and report both as sites of
metabolism. Third, the model identifies which molecules are
metabolized into epoxides, separating these molecules from
closely related molecules that are not epoxidized. This enables
rapid screening of drug candidates for molecules that are
potentially toxic due to epoxidation.

■ METHODS

Epoxidation Training Data. We mined a large, chemically
diverse training data set from the Accelrys Metabolite Database
(AMD), which includes a collection of metabolic reactions
drawn from the literature. A total of 702 reactions were extracted,

Figure 1. Adverse drug reactions are often caused by reactive metabolites. For example, carbamazepine is metabolized by cytochromes P450 to
carbamazepine-10,11-epoxide. Carbamazepine metabolism can also form an iminoquinone,22 but the epoxide’s formation is the focus of this study and
more correlated with adverse reactions.23−25 The epoxide is electrophilically reactive and covalently binds to nucleophilic sites within proteins. The
resulting adduct serves as a hapten complex and elicits an immune response. This mechanism is thought to be responsible for many carbamazepine
adverse reactions.35,36 This site of epoxidation is circled on carbamazepine.
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each of which takes place in humans, human cells, or human
microsomes and is classified as epoxidation. Because of the short
half-life of many epoxides, however, some product molecules do
not explicitly contain an epoxide. Instead, an epoxidation product
may be a dihydrodiol or a DNA, glutathione, or protein conjugate
(Figure 2).37,38 An automated labeling algorithm used these
motifs to label SOEs on the starting molecule of each reaction.
In this study, we defined an SOE as the bond between the two

carbons to which an epoxide forms and identified these bonds in
depictions with circles. When bonds were topologically
equivalent to observed SOEs, as identified using the Pybel
python library, they were themselves labeled as SOE.39 Duplicate
starting molecules were identified by canonical SMILES and
merged into a single training example with all observed SOEs
labeled. The final data set included 389 epoxidized molecules,
each with its SOEs labeled. These epoxidized molecules included
411 aromatic bond SOEs and 168 double bond SOE.
Additionally, 20 single bond SOEs were included; the labeling
of single bonds as SOEs is likely due to rearrangements or
intermediatesabsent from the databaseallowing epoxidation
to occur at an aromatic or double bond.

We also identified structurally similar but non-epoxidized
molecules. These target compounds were mined from the
reaction network for each previously identified epoxidized
molecule. This strategy ensured the inclusion of the metabolic
parent and sibling molecules so that a robust distinction between
molecules undergoing epoxidation and those that are not became
possible. After excluding molecules already classified as
epoxidized, the remaining 135 molecules were marked non-
epoxidized. Each one was metabolically studied and chemically
similar to an epoxidized molecule in the data set.
Our license for the AMD data did not allow us to disclose the

structures of the full data set. However, all molecule registry
numbers are included in the Supporting Information, and this is
sufficient data to rebuild the database and reproduce our results.

Hydroxylation Negative Control Data. As discussed in
the Introduction, sp2 sites can be either epoxidized or
hydroxylated. An epoxidation model must be validated using
hydroxylation data as a negative control to distinguish the
epoxidation model from a general oxidation model. An
epoxidation model should rank SOEs above SOHs, whereas an
oxidation model would rank them approximately equally. For use
as negative controls, we also extracted SOHs from the AMD.

Figure 2. In the database, each epoxidation reaction acting on a site of epoxidation (abbreviated SOE and circled) forms an epoxide, dihydrodiol, or a
conjugate adjacent to a hydroxylation. For example, the epoxidation reaction of nevirapine forms an epoxide (top),40 of N-desmethyl triflubazam forms a
dihydrodiol (middle),41 and of benzo(a)pyrene forms a DNA conjugate adjacent to a hydroxylation (bottom).38 The first case explicitly records the
epoxide, while the other two record a tell-tale signature of a transient, reactive epoxide that is not directly observed.37,38 A total of 702 human epoxidation
reactions were identified in the Accelrys Metabolite Database. An automated labeling algorithm labeled SOEs on the starting molecule of each reaction
based on these motifs.
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Both SOHs and SOEs are acted on by cytochromes P450, but the
epoxides formed from SOEs are more likely to be toxic. To build
a hydroxylation test data set, 3000 human hydroxylation
reactions were randomly sampled from the AMD. We filtered
out sp3 hydroxylations and any SOHs that included non-carbon
atoms, both of which are easily distinguishable from
epoxidations. After these filtrations, 1105 hydroxylations
remained. Duplicate starting molecules were identified by
canonical SMILES and merged by labeling all known SOHs for
each molecule. This final data set included 811 molecules, each
with bonds adjacent to hydroxylations labeled as SOHs.
Descriptors. Our approach used information encoded in

descriptors for each bond to assess its susceptibility to
epoxidation. Each bond was associated with a total of 214
numerical descriptors, including atom-level, bond-level, and
molecule-level descriptors. Descriptors were calculated by in-
house software that took as input SDF files with explicit
hydrogens and 3D coordinates created by Open Babel.42 The
majority of our descriptors were atom-level descriptors
previously developed for the XenoSite metabolism model28

and the XenoSite reactivity model.43 Each bond contained 89
descriptors from its “left” atom and its “right” atom. To prevent
representation bias due to atom ordering, left and right atom
assignment was randomized on a bond-by-bond basis. Twenty-
threemolecule-level descriptors, reported in our prior work, were
also computed and used by the network to make predictions.
We supplemented these atom and molecule descriptors with

bond descriptors developed specifically to capture the chemical
properties of bonds. These 13 new bond descriptors are
summarized in Table 1; a comprehensive table of the descriptors

used in this study is available in the Supporting Information.
There were two types of bond descriptors. First, topological
bond descriptors summarized information from the molecular
2D structure. Second, quantum chemical descriptors were
calculated from self-consistent field computations by MOPAC,

a semiempirical quantum chemistry modeler, utilizing an implicit
solvent model and the PM7 force field.44,45

In total, 214 numbers were used to describe each bond: 89
atom descriptors for the “left” atom, 89 for the “right” atom, 23
molecule descriptors, and 13 bond specific descriptors.

Combined Atom- and Molecule-Level Epoxidation
Model. We built a model for bond and molecule epoxidation
using a deep neural network with one input layer, two hidden
layers, and two output layers (Figure 3). The top-level output
layer computed molecule-level predictions called the molecule
epoxidation scores (MES); the next output layer computed
bond-level predictions called the bond epoxidation scores (BES).
Here, the term “deep network” does not mean a deep
autoencoder network as is being increasingly used.46 Instead,
we mean a deep convolution network, with many more layers
than a standard network and extensive weight sharing between
replicates of the BES network.47 This network was trained in two
stages.
First, we trained the bond-level network to compute accurate

BES values. In this training, each bond within a molecule was
considered a possible SOE. Each bond had a vector of numbers
(descriptors), with each entry of the vector describing a chemical
property of that bond. The data set was a matrix, structured as
one column per descriptor, and one row per bond. A final binary
target vector labeled experimentally observed SOEs with a 1. The
weights of the network were trained using gradient descent on
the cross-entropy error, so that SOEs scored higher BES than
other bonds. These BES ranged from zero to one, representing
the probability that a bond was an SOE.
Second, the molecule-level output layer was trained to

compute MES values. Several versions of this output layer
were considered, including another multilayer neural network, a
logistic regressor, and a max layer that computed the MES as the
maximum BES observed in the molecule. The logistic regressor
and neural network took as input the top five BES, as well as all
molecule-level descriptors. As we will see, both the neural
network and the logistic regressor offer better scaled predictions
with higher classification performances than the simpler max
layer.

■ RESULTS AND DISCUSSION
The following sections study the classification performance and
inner workings of the epoxidation model. First, we evaluated the
ability of BES to predict the SOE of epoxidized molecules.
Second, we considered the credibility of the model by analyzing
which descriptors are most important to the model’s perform-
ance. Third, we increased resolution on the quality of the model
predictions by calculating classification performance on aromatic
and double bonds individually. Fourth, we asked whether BES
distinguish SOEs from sites of sp2 hydroxylation, because both
epoxidation and sp2 hydroxylation are catalyzed by P450s but
have significantly different implications for toxicity. Fifth, we
tested how well MES separated epoxidized and non-epoxidized
molecules. Finally, we studied how the model could direct drug
modifications to reduce toxicity of known drugs.

Accuracy in Identifying Sites of Epoxidation. An
important goal for designing drugs less prone to metabolic
activation is to accurately identify the site (bond) within a
molecule that undergoes epoxidation. In our study, SOE
predictions gave a specific hypothesis about the mechanism of
a molecule’s toxicity. Furthermore, knowledge of the SOE lays a
strong foundation for guiding the modification of a molecule to
make it less susceptible to epoxidation and thus less likely to

Table 1. Condensed List of Bond Descriptors Developed for
This Studya

Topological Bond Descriptors

single bond binary value indicating whether bond is a single bond
aromatic bond binary value indicating whether bond is an aromatic

bond
double bond binary value indicating whether bond is a double bond
conjugated bond binary value indicating whether bond is conjugated
triple bond binary value indicating whether bond is a triple bond
topologically
equivalent

number of topologically equivalent bonds in the same
molecule

Quantum Chemical Bond Descriptors

bond length distance between the two atoms of a bond
σs occupancy interaction of s-orbital σ bond electrons
σp occupancy interaction of p-orbital σ bond electrons
πp occupancy interaction of p-orbital π bond electrons
σs−σp occupancy interaction of s-orbital σ bond and p-orbital σ bond

electrons
σs−πp occupancy interaction of s-orbital σ bond and p-orbital π bond

electrons
σp−πp occupancy interaction of p-orbital σ bond and p-orbital π bond

electrons
aDescriptors were generated using both topological and quantum
chemical information. A full list of descriptors used in this study is
available in the Supporting Information.
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cause protein and DNA adducts that lead to toxic effects. There
are currently no other published computational methods that
specifically predict SOEs among a diverse set of molecules.
The trainedmodel predicts SOEs by computing a BES for each

bond in a test molecule. These scores ranged between zero and
one and reflected the probability that an epoxide will form on the
two atoms within the corresponding bond. If accurate, BES
should discriminate between SOEs and all other bonds within
epoxidized molecules.
We assessed the generalization performance of our model

using a cross-validation protocol. In this procedure, we separated
molecules into metabolically related groups that represented
metabolic networks in the database. Each group was comprised
of epoxidized molecules and all parent and sibling molecules of
those epoxidized molecules. One by one, each group of
molecules derived from these networks was withheld from the
training set. The rest of the molecules was used to train a model
and make predictions on all the molecules present in the group
left out of the training process. In each cross-validation fold, the
model predictions for test molecules then did not depend on
training data from identical or closely related molecules and thus
provided a rigorous evaluation of the model. In this way, BES
predictions were made on all molecules in the training data.
We used two metrics to quantitatively measure the

classification performance of the cross-validated BES. First, we
computed the “average site AUC” by calculating the area under
the ROC curve (AUC) for each molecule and quantified the

whole data set performance by averaging the AUCs for each
molecule in the data set. Second, we used the “top-two” metric,
which is often used in site of metabolism prediction.28,48,49 By
this metric, a molecule was considered correctly predicted if any
of its observed SOEs were predicted in the first- or second-rank
position by a given model. Both metrics measure the separation
of known SOEs from all other bonds within each molecule
known to undergo epoxidation.
The BES reported by the neural network model accurately

identified SOEs with an average site AUC performance of 94.9%
and a top-two performance of 83.0% (Figure 4). The neural
network outperformed a simpler logistic regressor model
(BES[LR] in the figure), which had an average site AUC
performance of 93.7% and a top-two performance of 80.5%. The
neural network was significantly more accurate than the logistic
regressor, reducing the error by 19.0% (average site AUC) and
12.8% (top-two). This improvement is significant according to a
paired t-test, with p-values of 0.000454 (average site AUC) and
0.0328 (top-two).50 This improvement indicated nonlinearity in
the epoxidation data that cannot be taken into account by a
logistic regressor. This finding justified the use of the more
complex neural network and was consistent with a previous study
on site of metabolism prediction,51 as well as our previous work
on sites of glutathione reactivity.43

This model for epoxidation is the first of its kind, and thus
there are no other published models to which performance can
be compared. Instead, we tested the performance of each raw

Figure 3. The structure of the epoxidation model. This diagram shows how information flowed through the model, which was composed of one input
layer, two hidden layers, and two output layers. This model computed a molecule-level prediction for each test molecule as well as predictions for each
bond within that test molecule. From the 3D structure of an input molecule, 23 molecule-level and 191 bond-associated descriptors were calculated.
These inputs nodes are inputted into the first hidden layer (with 10 nodes), which outputs a bond epoxidation score (BES) for each bond in the
molecule. The BES quantifies the probability that the bond is a site of epoxidation. The top five BES, and all molecule-level descriptors, flow into the
second hidden layer (with 10 nodes), which outputs a single molecule epoxidation score (MES) for the input molecule, reflecting the probability that the
molecule will be epoxidized. For conciseness, the diagram is abbreviated and only shows two nodes for each hidden layer, one molecule input node, two
atom input nodes (for each atom associated with the bond), and one bond input node. The actual model had several additional nodes in the input and
hidden layers.
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descriptor to provide a baseline for comparison. Each descriptor
was treated as a very simple model limited to a single chemical
attribute to predict SOE. The best performing descriptor was πp
occupancy; however, this descriptor significantly underper-
formed our model, with accuracies of 90.8% (average site

AUC) and 72.8% (top-two). Using machine learning to
collectively consider many chemical attributes classified SOEs
more accurately than any attribute considered in isolation.

Descriptors Driving Bond Epoxidation Score Perform-
ance.We identified which descriptors the model relied upon by

Figure 4. Bond epoxidation scores accurately (BES) identify sites of epoxidation (SOEs). Top left, for each prediction method, average site AUC was
computed for 389 molecules extracted from the Accelrys Metabolite Database with their SOEs labeled. This metric reflected how often SOEs were
ranked above other sites within these molecules. Bottom left, top-two classification performance was computed, by which a molecule was considered
correctly predicted if any of its observed SOEs were predicted in the first- or second-rank position. By both metrics, the cross-validated predictions
generated by a neural network (BES) outperformed the predictions of a logistic regressor (BES[LR]). The classification performance of BES also
exceeded that of all raw descriptors, the five best of which are included in each panel. Right, examples from the data set are visualized with their
predictions.52−54 In the bar graph axis, the two-center electron−nuclear attraction energy is abbreviated as electron−nuclear attraction. For each
molecule, the colored shading represents BES, which range from 0 to 0.73. Each experimentally observed SOE is circled.

Figure 5. The importance of specific descriptors to the bond epoxidation model. A permutation sensitivity analysis quantified the importance of
descriptors for the final trained site of epoxidation model. Left, the 10 most important individual descriptors in decreasing order of importance from top
to bottom. Right, the importance of four broad descriptor categories. The graph shows the model performance drop associated after permuting the
associated descriptor values, averaging over 10 iterations.
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using sensitivity analysis by using sensitivity analysis to further
assess the sensibleness of the model. The contribution of
individual descriptors for identifying SOEs wasmeasurable with a
permutation sensitivity analysis.43,55 First, a baseline model was
built using the entire training data set, and its performance was
calculated on this training data. The average site AUC
performance was used for the sensitivity analysis, because it
most closely measures performance in the intended use case. It
quantifies how accurately the model identifies the correct SOEs
within epoxidized test molecules, relative to all other potential
sites, on a molecule-by-molecule basis. Reassuringly, very similar
results from the sensitivity analysis are obtained using other
metrics (data not shown). Next, the influence of individual
descriptors, as well as groups of descriptors, was measured by
recording the drop in the model’s performance on the training
data when the descriptor values were shuffled randomly. For each
descriptor set, the shuffling procedure was performed 10 times,
and the mean performance drop reported. Descriptors more
heavily relied upon by the model were associated with higher
performance drops.
As seen in Figure 5, the model primarily relied on quantum

chemical bond descriptors. Shuffling all quantum chemical bond
descriptors (listed in Table 1) as a group resulted in a
performance drop of 10.3%. The most important individual
descriptor was πp occupancy; shuffling of this descriptor was
associated with a performance drop of 4.8%. This observation
was consistent with πp occupancy predicting SOEs reasonably
well by itself, with the best performance among all lone
descriptors (Figure 4). The model's heavy reliance on πp
occupancy is logical given its role in epoxidation. In fact, a π-
complex is the initial intermediate formed during epoxidation by
cytochromes P450.37,56,57 While reasonable, πp occupancy has
never been proposed as a way to identify SOE.
The second most important descriptor was SMARTCyp

reactivity, with a performance drop of 2.5%. The relevance of
SMARTCyp reactivity is readily understandable, because it
predicts the sites of cytochromes P450 metabolism of drug-like
molecules.30 The remaining most important individual descrip-
tors were topological. Previous studies by our group found
topological descriptors to be important for many different types
of chemical modeling.43 Topology encompasses fundamental
information, such as atom element identity or bond type, which

has been useful for finding many different types of patterns.
Overall, the results of sensitivity analysis indicated that the model
logically relied upon descriptors relevant to epoxidation.

Accuracy in Identifying Aromatic and Double Bond
Sites of Epoxidation. Ideally, the model should be able to
distinguish SOEs from all other bonds across the entire data set.
This is not assessed by the average site AUC and top-two metrics
used in prior sections, which only compare BES predictions on a
molecule-by-molecule basis. In contrast, global AUC, computed
across all atoms in the data set does measure this behavior. The
model’s BES is very accurate across the whole data set, with a
global AUC of 95.6%. The logistic regressor is slightly less
accurate with a global AUC of 94.5%, but this performance drop
is significant with a p-value of 10−8 computed with a paired t-
test.50 Similarly, the best performing descriptor is the πp
occupancy with a global AUC of 88.4%, which is also a
significant performance drop from the BES with a p-value
approaching zero.
We further assessed the model’s performance by ensuring it

was able to distinguish SOEs from either aromatic and double
bonds (Figure 6). These tests excluded (for example) single
bonds, which are very rarely epoxidized and might artificially
inflate performance if included in performance calculations. An
aromatic bond AUC was computed by first extracting all
aromatic bonds within epoxidizedmolecules and then calculating
AUC. A double bond AUC was calculated similarly. Encourag-
ingly, BES were very accurate in identifying both epoxidized
aromatic bonds (92.5%) and epoxidized double bonds (95.1%)
and also substantially outperformed all individual descriptors.

Distinguishing Epoxidation from Hydroxylation. An-
other key task was to accurately distinguish SOEs from SOHs,
because epoxidation and hydroxylation may have significantly
different implications for toxicity and downstream metabolism.
Generally, SOEs are not obviously distinguishable from sites of
sp2 hydroxylation, because either epoxidation or hydroxylation
may occur at sp2 atoms. While several studies have already
demonstrated that computational models can predict the sites
where molecules are oxidized,28−33 they do not predict if the
oxidation is an epoxidation or a hydroxylation.
For our study, we tested whether BES distinguished SOEs

from SOHs. We initially built a hydroxylation data set of 3000
hydroxylation reactions that were randomly sampled from the

Figure 6. Bond epoxidation scores (BES) accurately identified both aromatic and double bond sites of epoxidation. Across the 389 molecules that
underwent epoxidation, the model accurately separated epoxidized and non-epoxidized aromatic bonds (left) and double bonds (right). Using cross-
validated scores, classification performance was quantified by computing the AUC of the model on either the aromatic or the double bonds in the full
data set. The AUC of the model was compared with similarly computed AUCs for individual descriptors. In both cases, the model BES outperformed all
individual descriptors.
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AMD resource, as described in the Methods. This final data set
included 811 molecules, in which atoms were marked if they are
sites of sp2 hydroxylation.
In this study, an SOE was defined as a bond between the two

carbons of the final epoxide, whereas an SOH is usually defined as

the single atom targeted for hydroxylation. However, our model
only makes predictions on bonds. So, for validation purposes, we
labeled the bonds connecting to hydroxylated atoms as SOHs and
asked whether these sites receive lower scores than SOEs. Only
bonds between two sp2 carbon atoms were included. Each of the

Figure 7. Bond epoxidation scores (BES) distinguish sites of epoxidation (SOEs) from sites of hydroxylation (SOHs). Top, each predictionmethod was
assessed by its ability to separate SOEs from SOHs. The cross-validated scores on the SOEs of 389 epoxidized training molecules were compared with
the SOH scores on 811 test molecules with their sites of sp2 hydroxylation labeled. The scores for each SOE and SOH were extracted and performance
was quantified by computing the AUC. The classification performance of the model was then compared with similarly computed AUCs for individual
descriptors. The model’s BES outperformed all individual descriptors. Right, from top to bottom are 1-nitropyrene58 and ketoconazole,59 example
molecules subject to both epoxidation and hydroxylation. Each SOE is indicated by solid circles, and SOHs are indicated by dashed circles. The colored
shading indicates BES (which range from 0 to 0.45).

Figure 8. Bond epoxidation scores (BES) represent a well-scaled probability that a site will be epoxidized. Across the 389 molecules that underwent
epoxidation, the normalized distribution of BES (bottom) and πp occupancy (top) across both aromatic bonds (left) and double bonds (right) are
displayed for all epoxidized and non-epoxidized sites, indicated by the shaded bars. The solid lines represent the percentage of bonds that are epoxidized
(using non-normalized frequencies). The diagonal dashed lines on the bottom plots indicate a hypothetical perfectly scaled prediction. This
demonstrates that BES is much better scaled than πp occupancy.
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811 molecules in the hydroxylation data set was tested by our
model, and the predictions for each bond of hydroxylation were
extracted. As previously explained, the hydroxylation reactions
were sampled randomly from our database. Therefore, molecules
subject to both hydroxylation and epoxidation data sets were
included. Cross-validated predictions were used for molecules
that were also part of the training set. Within these molecules, it
was possible for the same site to be subject to both epoxidation
and hydroxylation. These sites were labeled as SOEs.
We investigated whether these SOEs were distinguishable

from SOHs. Encouragingly, BES separated SOEs from SOHs
with an AUC of 83.3% (Figure 7). In contrast, the best
performing raw descriptor among all tested was πp occupancy,
with an AUC of only 77.0%. This is a critical result because it
demonstrates that the model can distinguish SOEs from sites that
are also acted on by P450s, but not epoxidized.
πp Occupancy and Epoxidation. One striking result from

these experiments is the consistently high importance of πp
occupancy in identifying SOEs. Although it has been known for a
long time that a π-complex is the initial intermediate formed
during epoxidation by cytochromes P450,37,56,57 no published

literature has suggested πp occupancy is a marker for SOEs or
quantitatively assessed its ability to identify SOEs.
To further investigate this observation, which may provide

mechanistic clues, we studied the distribution of πp occupancy
and BES as a function of epoxidation and bond type (Figure 8).
From these distributions, it seems immediately clear that SOEs
have higher πp occupancy than non-epoxidized sites. However, πp
occupancy is also strongly correlated with the type of bond, and
the optimal cutoff between SOEs and non-epoxidized sites is
different for double and aromatic bonds. This result suggests that
πp occupancy may not be the direct driver of the π-intermediate’s
formation. Instead, πp occupancy may be a proxy for another
factor that we do not directly capture in other descriptors. One
possible factormay be the ability of neighboring groups to donate
πp electrons, but directly testing this hypothesis is beyond the
immediate scope of this study and will be left for future work.
These distributions also highlight another key feature of our

approach; the model’s output is well-scaled and can be
interpreted as a probability. In other words, bonds with a BES
score of 0.8 have approximately a 80% chance of being

Figure 9. Molecule epoxidation scores accurately identify molecules subject to epoxidation. Left, several prediction methods were compared by their
ability to identify molecules that underwent epoxidation. The data set included 524molecules, 389 of which were epoxidized and 135 structurally similar
but not epoxidized molecules. Model performance was measured by computing the AUC across epoxidized and non-epoxidized molecules (Molecule
AUC), using cross-validated scores. By this metric, the best approach inputted the top five bond epoxidation scores (BES) and all molecule-level
descriptors into a neural network (MES[NN]). This slightly outperformed the simpler methods of using a logistic regressor (MES[LR]) or merely
taking the maximum bond epoxidation score (max[BES]). While this improvement is not statistically significant, on the basis of the reliability plots in
Figure 10, the neural network (MES[NN]) was chosen to calculate molecule epoxidation scores (MES) for this study. Right, example pairs of epoxidized
and closely related non-epoxidized molecules are visualized. From left to right, top to bottom: resveratrol (MES: 0.79),60 quinalbarbitone (MES:
0.88),61 glucuronidated resveratrol (MES: 0.37),62 and thiopental (MES: 0.60).63 Each experimentally observed site of epoxidation is circled. For each
molecule, the colored shading represents BES, which range from 0 to 0.76.

Figure 10. MES[NN] offers a well-scaled probabilistic prediction of molecule epoxidation. The bar graphs plot the normalized distributions of
max[BES], MES[LR], and MES[NN] across 525 epoxidized and non-epoxidized molecules. The solid lines plot the percentage of molecules that are
epoxidized (using non-normalized frequencies) in each bin. The diagonal dashed lines indicate a hypothetical perfectly scaled prediction. MES[NN]
offers the best scaled prediction of the three methods, with a strong correlation to a perfectly scaled prediction. This means that the MES[NN] is
interpretable as the probability that a molecule is epoxidized.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.5b00131
ACS Cent. Sci. 2015, 1, 168−180

176



epoxidized. In contrast, πp occupancy, though predictive, is not
scaled to be an SOE probability.
Accuracy at Identifying Molecules that Undergo

Epoxidation. We also assessed the ability of our model to
separate epoxidized from non-expoxidized molecules. With high
enough classification performance, our model might be a useful
tool to rapidly screen drug candidates for potentially problematic
molecules.7−11

In this assessment, we trained the model for epoxidation to
distinguish between those molecules that underwent epoxidation
and those that did not. We included in our training data set
molecules that are structurally closely related to epoxidized
molecules, but are not themselves epoxidized in our database.
After training the model on the SOE level, we tested several
methods of separating epoxidized and non-epoxidized molecules
(Figure 9). In this case, classification performance was quantified
by measuring the AUC across the entire data set.
The simplest method for predicting molecule epoxidation was

to take the cross-validated maximum BES score within each
molecule. Across the entire data set, this approach yielded MES
that separate epoxidized and non-epoxidized molecules with an
AUC of 78.6%. The addition of a training step to input the top
five BES and molecule-level descriptors into a logistic regressor
or neural network slightly improved classification performance.
The cross-validated scores outputted by a logistic regressor
(MES[LR]in the figure) had a higher AUC of 78.9%, and those
of the neural network (MES[NN]) had an AUC of 79.3%. A false
positive rate paired t-test50 indicated that MES[NN] was not
significantly better than max[BES] (p-value 0.14) or MES[LR]
(p-value 0.19).
However, MES[NN] provided a better scaled prediction than

either max[BES] or MES[LR], as demonstrated by the reliability
plots in Figure 10. The neural network closely approximated a
perfectly well-scaled prediction, with an R2 value of 0.971,
compared to 0.956 for the logistic regressor or 0.889 for
max[BES]. The neural network’s reliability plot is superior to
that of the logistic regressor, not only due to the higher R2 value,
but also because it assigns significantly more non-epoxidized
molecules low scores, and epoxidized molecules high scores,
evidenced by the relative densities in Figure 10.
Nevertheless, choosing between the logistic regressor and

neural network is debatable. The logistic regressor offers a
simpler model structure, whereas the neural network provides a
slightly higher classification performance and better scaled
prediction. Going forward, we decided to use the neural network,
but we believe that the logistic regressor could also be used with
similar results. For the rest of the study, we define MES to mean
MES[NN].
The significantly lower AUC of the molecule-level MES

compared to the site-level BES was a consequence of the lower
quality of the molecule-level data, which included “non-
epoxidized” molecules. This was based on our assumption that
molecules were non-epoxidized if they were not subject to any
epoxidation reaction in our literature-derived database. While
necessary, this assumption was not strong evidence that
molecules were not subject to epoxidation, because not all
studies look for epoxidation products. As a consequence, some
epoxidizable molecules were incorrectly labeled as non-
epoxidized in our data. In contrast, our site-level epoxidation
data is much less noisy, because it is drawn from experiments
detecting epoxidation, and this is reflected in the higher site-level
performance.

Nevertheless, MES separated epoxidized and non-epoxidized
molecules with 79.3% AUC. This result is consistent with our
presumption that most of the molecules labeled as non-
epoxidized, are truly not epoxidized. If epoxidized and non-
epoxidized molecules were drawn from the same chemical
distribution, it would not be possible to separate them with any
accuracy. Furthermore, MES outperformed all molecule-level
descriptors in terms of classification performance. This result
demonstrated that our model offers an informative prediction on
the molecule level. The best performing descriptor was the
negative of the total number of single bonds in a molecule, yet its
AUC was only 72.3%, considerably worse than MES. In contrast
to site-level epoxidation, for which πp occupancy was quite
predictive (Figure 4), maximum πp occupancy predicts molecule
epoxidation with only 57.7% AUC. The model MES much more
accurately predicted which molecules will be epoxidized than any
single chemical descriptor.

Case Studies. Knowledge of the SOE of a drug or drug
candidate can direct rational drug design to avoid the formation
of reactive metabolites and reduce the risk of adverse drug
reactions. Case studies provide excellent examples of how our
model could enable the development of safer drugs (Figure 11).
Carbamazepine is an effective drug to treat epilepsy; however,

it can cause severe adverse reactions mediated by reactive
metabolites. Carbamazepine metabolism can form several

Figure 11. The epoxidation model recognizes sites of epoxidation
within drugs that can be modified to reduce toxicity. The figure includes
three groups of closely related drugs shaded by their BES scores; the top
three are prone to hypersensitivity reactions while their analogues are
not. The top three molecules and meloxicam are epoxidized and their
sites of epoxidation are circled.21,23−25,66,67 The model’s BES correctly
identifies the SOEs in these molecules. The model’s MES correctly
identifies these molecules as epoxidized, with higher scores than the
non-epoxidized molecules. For the top three molecules, epoxidation is
the primary mechanism of their hypersensitivty.65 Encouragingly, the
two analogues of carbamazepine are correctly identified as non-
epoxidized and therefore non-hepatotoxic. This demonstrates how the
model could be used to identify less toxic analogues. Furosemide does
not have a close analogue on the market, but the model correctly
identifies the furan ring as problematic. The other diuretics with the
same active scaffold, but without this furan, are less toxic.65 Identifying
meloxicam as less toxic is a more difficult task and would require more
comprehensive metabolism modeling. Meloxicam is a safer analogue of
sudoxicam because an alternate hydroxylation pathway is introduced by
the modification that outcompetes the epoxidation pathway.21
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reactive metabolites, including an iminoquinone,22 but the
epoxide’s formation is the focus of this study andmore correlated
with adverse reactions.23−25 Analogues of carbamazepine that
block the epoxidation have a lower incidence of adverse effects.
Replacement of the problematic double bond with a ketone
yielded oxcarbazepine, which lacks the metabolic activation to an
epoxide and adverse events, yet retains similar efficacy.27

Similarly, eslicarbazepine does not contain the problematic
double bond, is no longer epoxidized at this position, and also has
a lower incidence of adverse reactions.25,64 The model correctly
identifies carbamazepine’s SOE. Furthermore, the model
correctly identified two carbamazepine analogous as less likely
to be epoxidized: oxcarbazepine (MES: 0.38) and eslicarbaze-
pine (MES: 0.20) compared with carbamazepine (MES: 0.88).
Furosemide is a commonly prescribed diuretic but is prone to

hypersensitivity reactions and hepatotoxicity due to the
epoxidation of its furan ring.65 The model correctly identifies
this as an SOE. There are no close analogues of furosemide on
the market. However, there are three other drugs in the same
class that contain the same sulfamyl-based active scaffold:
piretanide, bumetanide, and torasemide. None of these drugs
contain the problematic furan, are all predicted not to form
epoxides (MES: 0.21, 0.19, and 0.21, respectively, compared with
0.94 for furosemide), and all are less prone to hypersensitivity
driven reactions than furosemide.65

The case of hepatotoxic sudoxicam and its non-hepatotoxic
analogue, meloxicam, is more complicated.65 Sudoxicam is a
NSAID that was withdrawn from testing due to hepatotoxicity
caused by epoxidation of its thiazole ring; the unstable epoxide
causes ring scission and formation of a reactive acylthiourea
metabolite.21,65 This reaction pathway is suppressed by the
addition of a single methyl group to sudoxicam’s SOE. The
resulting drug meloxicam is less prone to epoxidation, although
the epoxide still forms.21 Instead, meloxicam is primarily
hydroxylated at the added carbon.21 As a result, the reactive
acylthiourea urea metabolite forms less often, and consequently
meloxicam is not hepatotoxic, despite being prescribed at a
similar dose to the hepatotoxic sudoxicam.21,65

The model correctly predicts the SOEs of both sudoxicam and
meloxicam, and assigns them high MES of 0.95 and 0.96,
respectively. However, the model does not identify meloxicam as
the less toxic molecule. This is exactly what we should expect,
because both molecules are epoxidized by P450s.21 Meloxicam’s
modification introduces an alternative hydroxylation pathway
that reduces the amount of epoxide formed, and this change is
responsible for its reduced toxicity. This highlights the
limitations of considering the epoxidation pathway in isolation.
A better risk assessment might combine epoxidation predictions
with more comprehensive models of metabolism to predict if
epoxides are a major metabolite. Building this system is exactly
our long-range goal, but beyond the scope of the current study.
Nevertheless, our findings provide a critical step in the right

direction: the first reported model that predicts the formation of
reactive epoxides from drug candidates and the accurate
identification of the specific epoxidized bonds. As is clear in all
three of these cases, the model can be used to identify SOEs that
can then be modified to make drugs safer.

■ CONCLUSION
This study establishes a new system to predict the formation of
reactive epoxide metabolites. The epoxidation modeltrained
on SOE dataidentifies with 94.9% AUC performance the
SOEs within epoxidized molecules. The model also classifies

epoxidized and non-epoxidized molecules with 79.3% AUC. This
method needs to be combined with additional tools to be useful
for predicting the toxicity of drugs. For example, while this model
predicts the formation of epoxides, it does not score the reactivity
of these epoxides. Epoxide reactivity can vary widely, with half-
lives ranging from one second to several hours,37 and this
variation may have significant implications for toxicity. To
address this, we plan to combine this epoxidation model with a
model of reactivity already developed.43 Furthermore, we will
expand to model quinone formation, another motif of potentially
high reactivity that frequently causes adverse drug reac-
tions.15,68,69 Ultimately, we envision a powerful model for
predicting adverse drug reactions that integrates metabolism
models, reactivity models, and dosage information. By accurately
modeling epoxidation, this study provides a key piece of this
ultimate goal.
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