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Neurosteroids are endogenous sterols that potentiate or in-
hibit pentameric ligand-gated ion channels (pLGICs) and can be
effective anesthetics, analgesics, or anti-epileptic drugs. The
complex effects of neurosteroids on pLGICs suggest the pres-
ence of multiple binding sites in these receptors. Here, using a
series of novel neurosteroid-photolabeling reagents combined
with top-down and middle-down mass spectrometry, we have
determined the stoichiometry, sites, and orientation of binding
for 3�,5�-pregnane neurosteroids in the Gloeobacter ligand-
gated ion channel (GLIC), a prototypic pLGIC. The neuro-
steroid-based reagents photolabeled two sites per GLIC subunit,
both within the transmembrane domain; one site was an intra-
subunit site, and the other was located in the interface between
subunits. By using reagents with photoreactive groups posi-
tioned throughout the neurosteroid backbone, we precisely map
the orientation of neurosteroid binding within each site. Amino
acid substitutions introduced at either site altered neurosteroid
modulation of GLIC channel activity, demonstrating the func-
tional role of both sites. These results provide a detailed molec-
ular model of multisite neurosteroid modulation of GLIC, which
may be applicable to other mammalian pLGICs.

Neurosteroids are endogenous brain sterols and allosteric
modulators of pentameric ligand-gated ion channels (pLGICs),2
including GABAA receptors (GABAAR) (1), nicotinic acetyl-
choline receptors (2, 3), and glycine receptors (4, 5). Modula-

tion of these channels is thought to underlie the effect of neu-
rosteroids on neuronal excitability (6, 7) and their pharmacologic
potential as anesthetics (8) and treatments for epilepsy (9) and
psychiatric disorders (10, 11). Neurosteroids have variable
effects on different pLGICs. 3�-Hydroxypregnane neuros-
teroids potentiate and directly activate the GABAAR (12),
whereas 3�-hydroxysteroids and 3-sulfated neurosteroids
inhibit the GABAAR (13, 14). Certain synthetic neurosteroid
analogues both potentiate and inhibit the GABAAR (15). In
addition, neurosteroids can modulate nicotinic acetylcholine
receptors (16) and glycine receptors, which may contribute to
their potential for the treatment of chronic pain (17). Under-
standing the structural basis of neurosteroid actions in pLGICs
is essential for exploiting their pharmacologic benefits.

Potentiation of the GABAAR by neurosteroids is thought to
occur by binding to the transmembrane domains (TMDs)
(18 –20). A photoaffinity labeling study identified F301 in the
TM3 membrane-spanning domain of the �3 homopentam-
eric GABAAR as a potential neurosteroid-binding site (21). Recently,
crystal structures of a GLIC-GABAAR�1 chimera and GABAA
R�3-�5 chimera identified an equivalent site between TM3 and
TM1 of adjacent subunits as a neurosteroid potentiating site
(22, 23). However, multiple lines of evidence suggest that
potentiation of the GABAAR by 3�-hydroxypregnane neuros-
teroids is mediated by more than one site. These include the
complex effects of neurosteroids on GABAAR gating (24),
mutations that alter neurosteroid action (25), and radioligand
binding (26). Notably, point mutations in the GABAAR that
reduce potentiation or direct activation by 3�-hydroxypreg-
nane neurosteroids localize to disparate regions that have been
modeled as two binding sites (25). However, a mutagenesis
strategy cannot differentiate between direct effects of muta-
tions on ligand binding and indirect effects on binding or trans-
duction of the ligand signal.

Photoaffinity labeling (PAL) is a more direct approach for
identifying ligand-binding sites, where ligands modified to be
photoreactive covalently label binding sites. Labeled sites are
then identified using mass spectrometry (MS). Although PAL
has been an effective approach to identify binding sites of vari-
ous ligands, including anesthetics (27, 28), identification of
neurosteroid-labeled sites has been impeded by the difficulty of
recovering and analyzing steroid-modified TMD peptides
by MS. These difficulties result from the hydrophobicity of
these photolabeled peptides and their tendency to undergo
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neutral loss by tandem MS (29, 30). To date, only one neuro-
steroid-photolabeled residue in a pLGIC has been reported
(21) despite the availability of multiple neurosteroid-photo-
labeling reagents (21, 31–33).

Here, we employ an innovative approach that combines a
series of 3�-hydroxypregnane neurosteroid-photolabeling re-
agents with top-down and middle-down MS to determine the
stoichiometry, sites, and orientation of neurosteroid binding in
a pLGIC. We previously demonstrated the utility of top-down
MS to determine the stoichiometry of steroid photolabeling in a
membrane protein (29, 30). We now introduce a sensitive and
effective middle-down MS strategy, which involves analysis of
large TMD peptides for the identification of neurosteroid-pho-
tolabeled sites.

In this study, we analyze neurosteroid photolabeling of the
bacterial Gloeobacter ligand-gated ion channel (GLIC). GLIC is
an important structural model of pLGICs (34, 35) and has pro-
vided valuable insights on the interaction of allosteric modula-
tors with pLGICs using X-ray crystallography (36 –38), molec-
ular modeling (39 –42), and PAL (43). GLIC was used in this
initial study of pLGICs because 1) it can be readily expressed
and purified in milligram quantities, and 2) the absence of gly-
cosylation modifications makes it readily applicable to top-
down MS. We demonstrate that GLIC is efficiently labeled by
neurosteroid-photolabeling reagents with a stoichiometry of
two per subunit and delineate distinct intersubunit and
intrasubunit binding pockets. By using complementary pho-
toreactive moieties positioned throughout the neurosteroid
backbone, we map the preferred orientation of neuros-
teroids within these sites. Mutational analysis demonstrates
that both photolabeled sites mediate neurosteroid inhibition
of GLIC channel activity. The findings of this study provide a
structural model for multisite neurosteroid modulation of
the prototypic pLGIC, GLIC, which may be applicable to
mammalian pLGICs.

Results

Neurosteroids photolabel the TMD of GLIC with a
stoichiometry of two

To determine the stoichiometry of neurosteroid binding in a
pLGIC, we photolabeled purified n-dodecyl-�-D-maltoside
(DDM)-solubilized GLIC with (3�,5�)-6-azi-pregnanolone
(5�-6-AziP) (Fig. 1A), a photoreactive analogue of the endoge-
nous neurosteroid allopregnanolone, and analyzed the labeled
protein using top-down MS. MS analysis of intact photolabeled
GLIC demonstrates efficient labeling by 5�-6-AziP at 100 �M

(Fig. 1C; Table S1) and at 100 �M labeled three times, with a
labeling stoichiometry of two (i.e. two neurosteroids per GLIC
subunit) (Fig. 1, B and D). Top-down fragmentation by high-
er-energy collisional dissociation (HCD) of the singly labeled
GLIC species yields a series of 5�-6-AziP-containing y-ions
that localize at least one of the labeled sites to the C-terminal
end of TM3 or TM4 (Fig. 1E). Although analysis of intact
GLIC clearly demonstrates the stoichiometry of labeling,
top-down fragmentation yields poor sequence coverage of
the GLIC protein and thus inadequate localization of the
labeled sites.

To further localize 5�-6-AziP labeling, we applied a middle-
down MS strategy by digesting GLIC with specific endoprotei-
nases. Digestion of GLIC by AspN, an endoproteinase that
cleaves at the N-terminal end of aspartate residues (44), pre-
dominantly cleaves at an aspartate between the extracellular
domain (ECD) and TMD leaving each domain intact (Table S1).
MS analysis of the ECD and TMD of GLIC labeled with 5�-6-
AziP reveals no detectable labeling in the ECD and efficient
labeling of the TMD with a stoichiometry of two (Fig. 2, A and
B). HCD fragmentation of the singly labeled TMD species
yields extensive sequence coverage with 5�-6-AziP-containing
b- and y-ions that identify two photolabeled sites located in the
N-terminal end of TM1 and the C-terminal end of TM3,
respectively (Fig. 2C). Thus, systematic top-down and middle-
down MS analyses of GLIC reveal a labeling stoichiometry of
two within the TMD.

Identification of two neurosteroid-photolabeled sites in the
GLIC TMD

To identify the residues labeled by 5�-6-AziP in the GLIC
TMD, we applied a middle-down MS analysis using trypsin.
Trypsin digestion of DDM-solubilized GLIC yields three large
peptides composed of transmembrane helix 1 and 2 (TM1 � 2),
TM3, and TM4. We find that keeping these TMD peptides in
DDM for LC-MS analysis is an effective method for maintain-
ing the solubility and stability of neurosteroid-labeled peptides.
In addition, because of the large size of these peptides, neuros-
teroid-labeled peptides show minimal neutral loss by collision-
induced dissociation (CID) or HCD fragmentation, facilitating
localization of the labeled residues. Tryptic digests of GLIC
photolabeled with 100 �M 5�-6-AziP show labeling of all three
TMD peptides with efficiencies of 5% for TM1 � 2, 32% for
TM3, and 1.0% for TM4 (Fig. 3A). As expected, the more hydro-
phobic 5�-6-AziP-labeled peptides are shifted to higher reten-
tion times with reverse-phase LC-MS.

CID or HCD fragmentation spectra for these three 5�-6-
AziP-labeled TMD peptides show that 5�-6-AziP labels Glu-
272 in TM3 (Fig. 3B); labeling was localized to one of three
adjacent residues (Gln-193–Phe-195) in TM1 (Fig. 3C) and one
of three adjacent residues (Phe-315–Phe-317) at the C termi-
nus of TM4 (Fig. 3D). Examination of these labeled residues in
the GLIC crystal structure (45) reveals two distinct foci of label-
ing as follows: one formed by the C-terminal end of TM3 (Glu-
272) and another between the N-terminal end of TM1 (Tyr-
194) and the C-terminal end of TM4 (Phe-315; Gly-316 and
Phe-317 are not resolved in the GLIC crystal structure) (Fig.
3E). Glu-272 in TM3 is near an intersubunit neurosteroid-
binding site previously defined by photolabeling in the �3
homopentameric GABAAR (21) and GABAAR chimera crystal
structures with bound 3�,5�-tetrahydrodeoxycorticosterone
(THDOC) and pregnanolone neurosteroids (22, 23). Because
5�-6-AziP is an aliphatic diazirine that may preferentially label
nucleophilic side chains such as glutamate (28, 29), we tested
labeling of the E272A GLIC mutant. The DDM-solubilized
E272A mutant was purified as a pentamer and is also labeled by
5�-6-AziP with a stoichiometry of two (Fig. 4A; Table S1). As in
WT, E272A is labeled by 5�-6-AziP at the C-terminal end of
TM1 and TM4 (Fig. 4, C and D), but, in contrast to WT, E272A

Neurosteroid-binding sites in GLIC
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is labeled at Tyr-278 in TM3 (Fig. 4B), which supports neuros-
teroid binding to an intersubunit site between TM3 and TM1 of
adjacent subunits (Fig. 3E). Although the exact labeled residue
was not identified in TM1, we favor labeling of Tyr-194 because
the side chain points toward an intrasubunit site encompassed
by the C terminus of TM4, and Tyr-194 is the only nucleophile
in the Gln-193–Tyr-194 –Phe-195 segment where 5�-6-AziP
labels. Docking simulations were performed for allopregnano-
lone in the TMD region of a GLIC pentamer, revealing a dom-
inant cluster of poses located in an intersubunit site adjacent to
Glu-272 and Tyr-278 (Fig. 3E). To search for additional sites, a
second allopregnanolone molecule was docked to the GLIC
TMD with one allopregnanolone molecule placed within the
intersubunit site. This yielded additional binding clusters,
including one located in an intrasubunit site encompassed by
Tyr-194 and Phe-315 (Fig. 3E). Thus, our photolabeling results
reveal two putative neurosteroid-binding sites: an intersubunit

site between TM3 and TM1 of adjacent subunits and an intra-
subunit site between TM1 and TM4.

Mapping the orientation of neurosteroid binding within both
sites

The structure of neurosteroids, particularly at the 3- and
5-positions of the steroid backbone, are critical determinants of
modulation of pLGICs (4, 46, 47), suggesting that neurosteroids
bind to sites in these channels with a particular orientation. To
map the orientation of neurosteroid binding in GLIC, we syn-
thesized 5�-12-AziP and 5�-15-AziP where the photoreactive
diazirine is placed in the 12- and 15-positions of the steroid
backbone, respectively (Fig. 5A). Analysis of GLIC labeled with
100 �M 5�-6-AziP, 5�-12-AziP, or 5�-15-AziP shows signifi-
cantly higher photolabeling efficiency for 5�-6-AziP compared
with 5�-12-AziP or 5�-15-AziP for TM3 and TM1 � 2 (Fig.
5B). In contrast, non-specific labeling of the peptide YGGFLRF

Figure 1. Top-down analysis of GLIC photolabeled with 5�-6-AziP. A, structure of allopregnanolone and 5�-6-AziP. Asterisks denote the number of
5�-6-AziP labels. B, full spectrum of GLIC labeled with 100 �M 5�-6-AziP three times, acquired on an Elite LTQ. C, deconvoluted spectrum of GLIC photolabeled
with 100 �M 5�-6-AziP. Asterisks denote the number of 5�-6-AziP labels per GLIC subunit. D, deconvoluted spectrum of GLIC photolabeled with 100 �M

5�-6-AziP three times. E, fragment ions from top-down HCD of the 32� charge state of singly labeled GLIC from the spectrum in B. The gray b- and y-ions are
fragment ions that contain no 5�-6-AziP, and the black y-ions contain 5�-6-AziP. The TMDs are color-coded.

Neurosteroid-binding sites in GLIC
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by these reagents shows similar labeling efficiencies, indicating
that they are equally photoreactive (Fig. 5B). 5�-12-AziP and
5�-15-AziP both label TM3 at Glu-272 (Fig. 5, C and D), and no
detectable labeling of TM1 � 2 was observed for these reagents.
To explore potential binding poses, allopregnanolone was
docked to the intersubunit and intrasubunit sites, which
revealed poses where the neurosteroid has opposite orienta-
tions with respect to the 3- and 17-positions (Fig. 6). For the
intersubunit site, approximately equal numbers of poses were
obtained with allopregnanolone in either orientation (Fig. 6A),
whereas the intrasubunit site showed a predominant docking
orientation with the 3-hydroxy pointing extracellularly (Fig.
6B). The higher labeling efficiency for 5�-6-AziP compared
with 5�-12-AziP or 5�-15-AziP indicates that the 6-position of
the neurosteroid is most proximal to Glu-272 in TM3 and Tyr-
194 in TM1. Thus, the photolabeling data are consistent with a
neurosteroid binding orientation where the 3-hydroxy is point-
ing intracellularly for the intersubunit site and extracellularly
for the intrasubunit site (Fig. 7, A and B). Although the equal
number of allopregnanolone docking poses obtained for each
orientation at the intersubunit site does not suggest a preferred
orientation, we believe that photolabeling data provide better
discrimination of orientation than docking to a static crystal
structure. Careful inspection of allopregnanolone docking poses in
both sites shows the nature of the interactions for these pre-
ferred binding modes (Fig. 6). For the intersubunit site, allo-

pregnanolone forms closer van der Waals interactions with
Trp-317 when the 3-hydroxy points intracellularly; the 3-hy-
droxy may also form a hydrogen bond interaction with the Tyr-
278 aromatic ring. For the intrasubunit site, the preferred ori-
entation results in hydrogen bonds between the 3-hydroxy of
allopregnanolone and backbone carbonyl of Phe-121, and
between the 20-carbonyl of allopregnanolone and Tyr-254
hydroxyl. In contrast, one weak hydrogen bond is present
between the 20-carbonyl of allopregnanolone and Tyr-194
hydroxyl when allopregnanolone is in the opposite orientation.
5�-6-AziP, 5�-12-AziP, and 5�-15-AziP were also docked to
GLIC at both sites. In each case, among the most populated
binding clusters are poses with the 6-diazirine closest to Glu-
272 for the intersubunit site and Tyr-194 for the intrasubunit
site (Fig. 7).

Given the inherent preference of 5�-6-AziP, 5�-12-AziP,
and 5�-15-AziP for nucleophilic residues, we synthesized
two additional neurosteroid-photolabeling reagents, KK200
and CW12 (Fig. 8, A and B, supporting Material) (33), which
contain a trifluoromethylphenyl-diazirine (TPD) group in
the 17- and 11-positions, respectively, and are expected to
not show the same preference for nucleophiles as aliphatic
diazirines (28, 49). Similar to 5�-6-AziP, 100 �M KK200 effi-
ciently labels GLIC (22% efficiency) and shows a labeling
stoichiometry of two (Fig. 8A). In contrast, CW12 labels
GLIC with low efficiency (�1%) (Fig. 8B). Tryptic analysis of

Figure 2. AspN middle-down analysis of GLIC photolabeled with 5�-6-AziP. A, deconvoluted spectra of GLIC photolabeled with 300 �M 5�-6-AziP showing
intact GLIC and the ECD and TMD after AspN digestion. B, HCD fragment ion assignments of the unlabeled ECD peptide shown in A. The gray lines represent b-
and y-ions that do not contain 5�-6-AziP. C, HCD fragment ion assignments of the singly labeled TMD species in A. The red and black lines represent b-ions and
y-ions, respectively, that contain 5�-6-AziP.

Neurosteroid-binding sites in GLIC

3016 J. Biol. Chem. (2018) 293(8) 3013–3027

 at W
ashington U

niversity on M
arch 3, 2018

http://w
w

w
.jbc.org/

D
ow

nloaded from
 



GLIC labeled with KK200 shows labeling of TM3 and TM4
peptides (efficiencies of 7 and 29%, respectively), and frag-
mentation spectra localize KK200 labeling to Phe-267 in
TM3 (Fig. 8C) and Asn-307 in TM4 (Fig. 8D). Phe-267 is
located near the intersubunit-binding site, and labeling of
this residue by KK200 is consistent with the orientation pro-
posed above for allopregnanolone, where the neurosteroid
lies in the interface between TM3 of one subunit and TM1 of
the adjacent subunit with the 17-position pointing toward
the extracellular surface (Fig. 6A). Asn-307 is located near

the intrasubunit site, and labeling of this residue by KK200 is
consistent with an orientation where the 17-position points
toward the intracellular surface (Fig. 6B). No KK200 photola-
beling was identified in the ECD using a PEAKS search (97%
sequence coverage), confirming that the TPD group does not
point extracellularly and labels the ECD from within the intra-
subunit site. Docking of KK200 to both sites reveals binding
poses in agreement with these findings where the diazirine lies
adjacent to Phe-267 and Asn-307 (Fig. 7). Docking poses of
CW12 to both sites suggest that the 11-TPD group is likely

Figure 3. Trypsin middle-down analysis of GLIC photolabeled with 5�-6-AziP. A, extracted chromatograms of unlabeled and 5�-6-AziP-labeled (denoted
by arrows) TM1 � 2, TM3, and TM4 peptides, normalized to the intensity of each unlabeled peptide. Inset graph shows the labeling efficiency of each peptide.
B, HCD MS2 spectrum of TM3 labeled with 5�-6-AziP where (6-AziP) indicates labeling of the residue(s) to the left. Red and black fragment ions do and do not
contain 5�-6-AziP, respectively. The schematic shows in red the TMD being analyzed, and the asterisk denotes the approximate location of 5�-6-AziP. C, HCD
MS2 spectrum of TM1 � 2 labeled with 5�-6-AziP from GLIC. D, CID MS2 of TM4 labeled with 5�-6-AziP from GLIC. The b22

� and b23
� represent neutral loss of

adduct. E, GLIC structure (PDB 4HFI) highlighting the photolabeled residues in the intersubunit (purple spheres) and intrasubunit sites (green spheres) and
docking poses for allopregnanolone (purple sticks) at both sites.
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pointing away from GLIC toward the lipid bilayer, consistent
with the low labeling efficiency of CW12 in GLIC (Fig. 7).

Using a series of neurosteroid-photolabeling reagents, we
have precisely mapped two neurosteroid-photolabeled sites
in GLIC. To confirm that neurosteroids bind to these pho-
tolabeled sites, we tested the ability of neurosteroids to com-
petitively prevent labeling. We examined the labeling effi-
ciency of TM3 by 10 �M 5�-6-AziP (intersubunit site) and
TM4 by 10 �M KK200 (intrasubunit site) in the absence and
presence of 100 �M allopregnanolone and CW12. 5�-6-AziP
labeling of TM3 and KK200 labeling of TM4 were examined
because these gave the highest labeling efficiencies at 10 �M.
For 5�-6-AziP labeling of TM3, allopregnanolone and CW12
significantly reduce the labeling efficiency (Fig. 9A). KK200
labeling of TM4 is significantly reduced by CW12, whereas
allopregnanolone causes a reduction of labeling that is not
statistically significant (Fig. 9B). Thus, a neurosteroid ana-
logue, CW12, prevents labeling at both sites. Prevention of
KK200 labeling at the intrasubunit site by allopregnanolone
is not statistically significant possibly because it has a lower
affinity for this site compared with KK200. Indeed, we have
found that competition of photolabeling by neurosteroid-
based reagents is often difficult to demonstrate, and we sus-
pect that this is due to the fact that labeling is an irreversible
process and neurosteroids bind with relatively low affinity

(21, 27, 29). CW12 prevention of labeling at both sites sup-
ports the interpretation that the low labeling efficiency of
this reagent is due to the position of the TPD photolabeling
moiety in the steroid backbone and not an inability of this
reagent to bind to these sites.

Both neurosteroid-binding sites mediate modulation of GLIC
activity

We next examined the functional effect of allopregnano-
lone on GLIC channel activity using two-electrode voltage
clamp recordings of Xenopus oocytes. At pH50 for activation,
30 �M allopregnanolone as well as the photolabeling re-
agents 5�-6-AziP, 5�-12-AziP, 5�-15-AziP, KK200, and
CW12 significantly inhibit GLIC activity ranging from 8 to
86% inhibition (Fig. 10; Tables 1 and 2). To determine the
functional involvement of the intersubunit- and intrasu-
bunit-photolabeled sites in mediating the inhibitory effect of
neurosteroids, we mutated residues within both binding
pockets as predicted by the allopregnanolone-docking model
(Fig. 11A). In the intersubunit site, we generated I271W,
W213A, and W217A; however, only I271W produced func-
tional receptors. I271W is predicted to introduce significant
steric hindrance to the intersubunit site. In the intrasubunit
site, we generated F121A and Y254A. F121A is predicted to
remove key van der Waals interactions with the neurosteroid

Figure 4. MS analysis of E272A GLIC photolabeled with 5�-6-AziP. A, deconvoluted spectra of GLIC E272A labeled with 100 �M 5�-6-AziP (left) or 100 �M

three times (right). The asterisks denote GLIC E272A labeled with one or two 5�-6-AziP. B, CID MS2 spectrum of TM3 labeled with 5�-6-AziP from E272A GLIC.
Red and black b- and y- ions do and do not contain 5�-6-AziP, respectively. Schematic highlights in red the TMD being analyzed, and the asterisk denotes the
approximate location of 5�-6-AziP. C, HCD MS2 spectrum of TM1 � 2 peptide from GLIC E272A labeled with 5�-6-AziP. D, CID MS2 spectrum of TM4 peptide
labeled with 5�-6-AziP from GLIC E272A.
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ring structure, and Y254A is predicted to remove a hydrogen
bond interaction between Tyr-254 and the neurosteroid
20-carbonyl. Inhibition by 5�-6-AziP was abolished in F121A
(resulting in potentiation) and Y254A but not I271W (Fig. 11, B
and C; Table 2). In contrast, inhibition by KK200, which was the
strongest inhibitor of all neurosteroid analogues tested, was
abolished in F121A and significantly reduced in I271W and
Y254A (Fig. 11, B and C; Table 2). Inhibition by allopregnano-
lone was abolished in F121A and Y254A (resulting in potentia-
tion) but was unaffected by I271W (Fig. 11C; Table 2). Thus, the
results obtained with KK200 support the hypothesis that bind-
ing of certain neurosteroid analogues to either the intersubunit
or intrasubunit site results in allosteric inhibition of GLIC
activity. There is a loss of inhibition in F121A and Y254A but no

significant effect in I271W for 5�-6-AziP or allopregnanolone
suggesting that binding of these compounds to the intrasubunit
site predominantly mediates their inhibitory effect. To distin-
guish whether the increased inward current evoked by 5�-6-
AziP (and allopregnanolone) in F121A channels represents
potentiation of low pH activation or direct activation, we exam-
ined the effect of 30 �M 5�-6-AziP on the holding current at pH
7.6 (n � 5). The absence of any effect on the holding current
suggests that 5�-6-AziP potentiates the effect of low pH rather
than directly activating the channel. To test whether potentia-
tion of F121A by allopregnanolone and 5�-6-AziP is due to
unmasking of a potentiating intersubunit site, we generated the
F121A/I271W double mutant, but we found that this construct
does not express currents in oocytes.

Figure 5. MS analysis of GLIC photolabeled with 5�-12-AziP and 5�-15-AziP. A, structure of the photolabeling reagents 5�-12-AziP and 5�-15-AziP. B,
photolabeling efficiency of 5�-6-AziP, 5�-12-AziP, and 5�-15-AziP for TM3 and TM1 � 2 of WT GLIC, and the peptide YGGFLRF (n � 7 for 5�-6-AziP, n � 3 for
5�-12-AziP and 5�-15-AziP). �S.D., **, p � 0.01. C, HCD MS2 spectrum of TM3 peptide labeled with 5�-12-AziP from GLIC WT. Red and black fragment ions do
and do not contain 5�-12-AziP, respectively. D, same as C for 5�-15-AziP.
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Discussion

Neurosteroids are potent endogenous molecules that modu-
late the activity of neuronal pLGICs and are being developed as
anti-epileptics, anti-depressants, general anesthetics, anal-
gesics for chronic pain, and neuroprotective agents (7). This
study demonstrates precise mapping of two neurosteroid-bind-
ing sites in a prototypic pLGIC, GLIC, using a series of novel
neurosteroid-photolabeling reagents. Confident identification
of the stoichiometry and sites of labeling was enabled by anal-
ysis with top-down and middle-down MS approaches. Two
recent studies report crystal structures of a GLIC-GABAAR�1
chimera and GABAAR�3-�5 chimera withasingle-boundTHDOC
and pregnanolone, respectively, at the same intersubunit site
identified by our photolabeling reagents (22, 23). In contrast,
we report a second functionally relevant 3�-hydroxypregnane
neurosteroid-binding site in the pLGIC GLIC. We think that
this discrepancy is due the challenge of obtaining crystallized
structures of membrane proteins complexed with steroids, and
we anticipate that the photolabeling approach introduced in
this study will enable sensitive identification of neurosteroid-bind-
ing sites in other integral membrane proteins. Of note, the intra-
subunit site identified in this study for allopregnanolone is distinct
from an intrasubunit site identified for the inhibitory neurosteroid,
pregnenolone sulfate, in a GLIC-GABAAR�1 chimera crystal
structure between the intracellular end of TM3 and TM4 (22).

Identification of two neurosteroid-binding sites that modu-
late GLIC activity is consistent with the complex effects of neu-
rosteroids in the GABAAR and glycine receptor, which suggest

that multiple binding sites also exist in these receptors (4, 24,
50). The intersubunit and intrasubunit sites identified in this
study may be neurosteroid-binding pockets shared among
pLGICs and thus provide a structural framework for under-
standing neurosteroid interactions with pLGICs in general.
The presence of the intersubunit neurosteroid site in GLIC is
consistent with the finding that the Q241L mutation in the
GABAAR �1 subunit abolishes neurosteroid potentiation (25).
This site was previously identified by the neurosteroid-photo-
labeling reagent 5�-6-azi-pregnanolone in the �3 homopenta-
meric GABAAR (21) and recently by neurosteroid-bound
GABAAR chimera crystal structures (22, 23). In the GABAAR,
the neurosteroid 3-hydroxy forms a hydrogen bond with Gln-
241 in TM1, which is the opposite orientation than we deter-
mined for neurosteroid binding in this site in GLIC. We pro-
pose that the preferred orientation of neurosteroids within
these sites will vary for different pLGICs depending on the
exact molecular composition of the sites, and that key interac-
tions with the protein will determine transduction of neuros-
teroid binding to effect potentiation or inhibition. For example,
although allopregnanolone, 5�-6-AziP, and KK200 all bind to the
intersubunit site in GLIC, only KK200 inhibition is reduced by the
I271W mutation suggesting that interaction of the KK200 TPD
group within this site results in an inhibitory effect.

The presence of an intrasubunit neurosteroid site at the
extracellular end of TM1 and TM4 in GLIC is also consistent
with prior mutagenesis studies in other pLGICs. Mutations of
Asn-407 and Tyr-410 in TM4 of the GABAAR �1 subunit

Figure 6. 5�-6-AziP-photolabeled residues are consistent with docking poses within an intersubunit- and intrasubunit-binding site. A, clusters of
poses for allopregnanolone docked within the intersubunit site indicating the percent of total poses represented by each cluster. Cluster 1 is most consistent
with the preferred binding orientation from the photolabeling data. B, same as A for the intrasubunit site. Cluster 1 is most consistent with the preferred binding
orientation from the photolabeling data. Cluster 1 shows hydrogen bond interactions between the neurosteroid 3-hydroxy and backbone carbonyl of Phe-121
(distance of 2.3 Å), and the neurosteroid 20-carbonyl and Tyr-254 hydroxyl (distance of 2.0 Å). Cluster 2 shows a weak hydrogen bond between the neurosteroid
20-carbonyl and the Tyr-194 hydroxyl (distance of 4.0 Å). B, same as A for the intersubunit site.
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reduce neurosteroid potentiation (25), and mutation of the C
terminus of the GABAAR �2 subunit (24) or nicotinic acetyl-
choline receptor �4 subunit (51) reduce potentiation of these
pLGICs by neurosteroids or an estrogenic steroid, respectively.
The intrasubunit neurosteroid site is located at the extracellular
end of TM1 and TM4 and, in GLIC, is also composed of Phe-
121 from the �6-�7 loop in the ECD. The F121A mutant
reduces inhibition by all tested neurosteroid analogues, allo-
pregnanolone, 5�-6-AziP, and KK200, which is consistent with
our model that shows this residue forming close van der Waals
interactions with the neurosteroid ring structure. Contribution
of an ECD loop to a neurosteroid-binding site is novel to
our current understanding of neurosteroid interactions with
pLGICs, and it has implications for understanding neuros-
teroid modulation of prokaryotic ECD/eukaryotic TMD pLGIC

chimeras. For example, a recently characterized GLIC-GABA�1
chimera recapitulates neurosteroid stereoselectivity at the
5-position characteristic of �1 receptors. However, although �1
receptors are potentiated by 5�-THDOC, the chimera and
GLIC are both inhibited by 5�-THDOC (52). This was attrib-
uted to the impact of ECD–TMD coupling interactions that
affect gating, but it may also result from an ECD contribution to
a neurosteroid-binding site. Indeed, we find that the direction-
ality of the neurosteroid effect is determined, in part, by the
structure of the intrasubunit-binding site, because the F121A
mutant reverses the effect of 5�-6-AziP and allopregnanolone
from inhibition to potentiation. An alternative explanation to
this finding is that the F121A mutation unmasks the effect of a
neurosteroid potentiating site for 5�-6-AziP and allopregnano-
lone, which may be the intersubunit site. It is also intriguing

Figure 7. Docking poses of allopregnanolone and photolabeling reagents in the intersubunit and intrasubunit sites. A, binding poses selected from among
the three most populated clusters for allopregnanolone, 5�-6-AziP, 5�-12-AziP, 5�-15-AziP, KK200, and CW12 in the intersubunit site. The photolabeled residues,
Glu-272 (5�-6-AziP, 5�-12-AziP, 5�-15-AziP) and Phe-267 (KK200), are shown as purple spheres. The positions of the allopregnanolone steroid backbone or the photo-
labeling groups are labeled. B, same as A for the intrasubunit site where the photolabeled residue, Tyr-194 (5�-6-AziP) and Asn-307 (KK200), are shown as purple spheres.
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that mutations at either the intersubunit or intrasubunit site
nearly abolish KK200 inhibition of GLIC. This indicates that, in
the case of KK200, both sites are necessary for inhibition and
suggests that there is either a cooperative interaction between
these sites or that mutations at one site affect the other.

Two neurosteroid-binding sites in GLIC raise the question
as to whether these sites, particularly the intrasubunit site, medi-
ate potentiating or inhibitory effects in mammalian pLGICs.
Although the intersubunit site is an established potentiating site of
certain endogenous neurosteroids in the GABAAR, we hypothe-
size that both sites mediate either potentiation or inhibition for
different neurosteroids in pLGICs. Understanding the pharmacol-
ogy of each respective site will be important for structure-based
design of neurosteroid therapeutics. For example, certain neuros-
teroids may cause potentiation at one site and inhibition at the
other at varying concentrations, and such opposing effects may be
useful to widen the therapeutic window of novel neurosteroids.

It is interesting to speculate as to the functional significance of
these sterol-binding sites in GLIC because bacterial membranes
do not contain neurosteroids or other sterols. The equivalent of
eukaryotic sterols in bacteria are triterpenoid lipids known as
hopanoids, which may have a role in determining the function of
prokaryotic pLGICs such as GLIC (53). Furthermore, examination
of the GLIC crystal structure shows that both neurosteroid-bind-
ing sites identified in this study are occupied by phospholipid den-
sities (34). We hypothesize that these sites are conserved hydro-
phobic pockets that are occupied by hopanoids in bacterial
membranes. These pockets were then assumed by neurosteroids

and possibly other sterols in eukaryotic membranes to affect the
structural stability and function of mammalian pLGICs. Consist-
ent with this hypothesis, the intrasubunit site identified here was
previously noted to satisfy the criteria for a CARC or cholesterol
recognition motif, and molecular docking showed that both the
hopanoid, diploptene, and cholesterol bind favorably to this site
(53).

Experimental procedures

Synthesis of neurosteroid-photolabeling reagents

The syntheses 5�-6-AziP, 5�-12-AziP, 5�-15-AziP, and
KK200 are detailed in the supporting Material.

Expression and purification of GLIC

pET26-MBP-GLIC was a gift from Raimund Dutzler (Add-
gene plasmid catalogue no. 20887) and was used for WT GLIC

Figure 8. MS analysis of GLIC photolabeled with KK200 and CW12. A,
structures and deconvoluted spectra of intact GLIC photolabeled with 100 �M

KK200. Asterisk denotes number of photolabels. B, same as A for CW12. C, CID
MS2 spectrum of TM3 labeled with KK200 from GLIC. The unlabeled y21

�,
y22

�, and y23
� ions represent neutral loss of adduct. Red and black fragment

ions do and do not contain KK200, respectively. D, HCD MS2 spectrum of TM4
labeled with KK200 from GLIC.

Figure 9. Competitive prevention of neurosteroid labeling at both sites. A,
photolabeling efficiency of TM3 in WT GLIC by 10 �M 5�-6-AziP in the presence of
no competitor (Cntrl), 100 �M allopregnanolone (n � 7) or CW12 (n � 4). Efficien-
cies are normalized to that of control. �S.D., *, p � 0.05; **, p � 0.01. B, photola-
beling efficiency of TM4 in WT GLIC by 10 �M KK200 in the presence of no com-
petitor (Cntrl), 100 �M allopregnanolone (n � 4) or CW12 (n � 4).
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expression. Mutagenesis was performed by oligonucleotide-
directed mutagenesis using Phu polymerase (Thermo Fisher
Scientific) verified by sequencing. GLIC was expressed and
purified as described previously (54) in OverExpressTM

C43(D3) Escherichia coli (Lucigen), derived from BL21(DE3)
cells. Briefly, GLIC cultures were grown using Terrific Broth
(Sigma) and induced with 0.2 mM isopropyl 1-thio-�-D-galac-
topyranoside. Cell pellets were reconstituted in Buffer A (50
mM Tris, pH 8, 150 mM NaCl), cOmplete EDTA-free protease
inhibitor mixture (Roche Applied Science), and DNase, lysed,
and solubilized with 1% DDM. Solubilized protein was purified
using Ni-NTA and eluted using Buffer A, 500 mM imidazole,
and 0.02% DDM. His-MBP-GLIC was digested overnight with
HRV 3c protease (Invitrogen), cleaned up using a reverse Ni-
NTA purification, and injected onto a Sephadex 200 Increase

10/300 column, which yielded pentameric GLIC protein in
Buffer A � 0.02% DDM.

Photolabeling of GLIC and top-down MS analysis

Purified GLIC was photolabeled and analyzed by top-down
MS as described previously (29). For top-down MS analysis, 50
�g of GLIC was mixed with neurosteroid photolabeling reagent
at 100, 300, or 100 �M added three times with UV irradiation
after each addition. 100-�l samples were irradiated in a quartz
cuvette with �320 nm UV light, treated with 250 mM DTT, and
then precipitated with chloroform/methanol/water. The pre-
cipitated protein was washed three times with equal volumes of
water and methanol, centrifuged, and the protein pellet recon-
stituted in 3 �l of 90% formic acid followed by 50 –100 �l of
4:4:1 chloroform/methanol/water. AspN digests were per-
formed by digesting 50 �g of photolabeled GLIC with 2 �g of
AspN at room temperature for 15 or 30 h. These digests were
then precipitated and reconstituted as described above. Recon-
stituted samples were then analyzed in an Orbitrap Elite mass
spectrometer (Thermo Fisher Scientific) by direct injection at 3
�l/min using a Max Ion API source with a HESI-II probe. Full
spectra of photolabeled GLIC were acquired on the linear trap
quadrapole using spray voltage of 4 kV, capillary temperature of
320 °C, and in-source dissociation of 30 V. HCD fragmentation
spectra were acquired on the Orbitrap at 60,000 resolution, with
an AGC target of 5 � 105, normalized energy of 10, and 3 m/z
isolation window. Deconvolution of intact GLIC spectra was per-
formed using MagTran (55). Ion assignments of HCD fragmenta-
tion spectra were performed by MASH searching with a mass
accuracy of 1.1 Da to account for the “delta 1-Da” error (56); each
fragment ion was manually verified and accepted within 10 ppm.

Tryptic middle-down MS analysis

15 �g of photolabeled GLIC was reduced with 5 mM tris(2-
carboxyethyl)phosphine for 30 min, alkylated with 5 mM

iodoacetamide for 30 min, and quenched with 5 mM DTT. Sam-
ples were then digested with 2– 6 �g of trypsin for 7 days at 4 °C;
extended digestion at low temperature was necessary to obtain
maximal recovery of TMD peptides. Next, formic acid was
added to 1%, followed directly by LC-MS analysis on an

Figure 10. Neurosteroid inhibition of GLIC WT. A, sample current traces from GLIC WT activated by pH 5. 00 (pH50) showing the effects of 30 �M allopregnanolone
(AlloP), 5�-12-AziP (12AziP), 5�-15-AziP (15AziP), or CW12, and 50 �M picrotoxinin (PTX). Traces for 5�-6-AziP (6AziP), and KK200 in GLIC WT are shown in Fig. 11. B,
summary of the functional effects of different neurosteroid analogues on GLIC WT. The effects are shown as DMSO effects subtracted from the effects of steroids in the
presence of DMSO. *, p � 0.05, and **, p � 0.001, for the difference in effect between each neurosteroid analogue and DMSO (�S.D., n at least 5).

Table 1
pH dependence of GLIC WT and mutants

pH50 S.D. Hill coefficient S.D. n

WT 4.97 0.12 2.55 0.18 6
I271W 5.48 0.11 1.97 0.29 5
F121A 4.31 0.11 3.45 0.70 6
Y254A 4.19 0.32 1.80 0.63 5

Table 2
Inhibition of GLIC WT and mutants by neurosteroids

Average % effect S.E. n
Average DMSO-

corrected % effect S.E.

WT
Allopregnanolone �17 2 9 �10 2
5�-6-AziP �25 2 5 �18 2
5�-12-AziP �27 2 6 �20 2
5�-15-AziP �18 2 5 �11 2
KK200 �93 1 5 �86 2
CW12 �15 1 5 �8 1

I271W
Allopregnanolone �18 1 6 �8 1
5�-6-AziP �30 6 5 �20 6
KK200 �17 2 5 �7 2

F121A
Allopregnanolone �10 1 8 13 3
5�-6-AziP 14 4 6 37 5
KK200 �23 4 5 0 5

Y254A
Allopregnanolone �13 1 9 12 2
5�-6-AziP �27 2 5 �2 3
KK200 �34 2 4 �9 3
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Orbitrap Elite mass spectrometer. 10-�l samples were injected
into a home-packed PLRP-S (Agilent) column (10 cm � 75 �m,
300 Å), separated with an 85-min gradient from 10 to 95% ace-
tonitrile, and introduced to the mass spectrometer at 800
nl/min with a nanospray source. MS acquisition was set as an
MS1 Orbitrap scan (resolution of 60,000) followed by top 20
MS2 Orbitrap scans (resolution of 15,000) using data-depen-
dent acquisition, 15-s dynamic exclusion, and exclusion of 1�
and 2� precursors. Fragmentation was performed using CID
and HCD with normalized collision energies of 35 and 30,
respectively. Analysis of data sets was performed using Xcalibur
(Thermo Fisher Scientific) to manually search for TM1 � 2,
TM3, or TM4 tryptic peptides with or without neurosteroid
photolabel modifications. Photolabeling efficiency was estimated
by generating extracted chromatograms of unlabeled and labeled
peptides, determining the area under the curve, and calculating the
abundance of labeled peptide/(unlabeled � labeled peptide).
Competitive inhibition of labeling was performed by labeling
GLIC with 10 �M 5�-6-AziP or KK200 in the presence of 100 �M

allopregnanolone and CW12. Relative photolabeling efficiency in
the absence or presence of competitor was determined for TM3

for 5�-6-AziP and for TM4 for KK200. Analysis of statistical sig-
nificance comparing the photolabeling efficiency of 5�-6-AziP,
5�-12-AziP, and 5�-15-AziP for GLIC, TM3, and TM1 � 2 or for
the competitive inhibition assay was determined using a one-way
ANOVA with post hoc corrections using Dunnett’s test.

MS2 spectra of photolabeled TMD peptides were analyzed
by manual assignment of fragment ions with and without pho-
tolabel modification. Fragment ions were accepted based on the
presence of a monoisotopic mass within 10 ppm mass accuracy.
In addition to manual analysis, PEAKS database searches were
performed for data sets of GLIC photolabeled with 5�-6-AziP
and KK200 primarily to search for photolabeled ECD tryptic
peptides. Search parameters were set for a precursor mass accu-
racy of 10 ppm, fragment ion accuracy of 0.1 Da, up to three
missed cleavages on either end of the peptide, and variable
modifications of methionine oxidation, cysteine carbamido-
methylation, and 5�-6-AziP or KK200 on any amino acid.

Electrophysiology experiments

The cDNAs for oocyte expression were subcloned into the
pcDNA3 vector with the modification that the maltose-binding

Figure 11. Both neurosteroid-binding sites mediate modulation of GLIC channel activity. A, structure of intersubunit and intrasubunit sites highlighting
residues that contribute to the allopregnanolone-binding pocket. The preferred allopregnanolone docking pose is shown as purple sticks. Residues that were
mutated are shown as yellow sticks. B, sample currents from GLIC WT, I271W, and F121A in the absence and presence of 5�-6-AziP, KK200, and picrotoxinin
(PTX). C, summary of the functional effects of 5�-6-AziP, KK200, and allopregnanolone in WT, I271W, F121A, and Y254A. The effects are shown as DMSO effects
subtracted from the effects of steroids in the presence of DMSO (�S.D., n at least 5). *, p � 0.05; **, p � 0.001.
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protein was replaced with the signal peptide of the human �3
GABA-A subunit. The T7 promoter was used for RNA synthe-
sis and linearized by XbaI (New England Biolabs). The cRNAs
were produced using mMessage mMachine (Ambion). Oocytes
were injected with 5 ng of cRNA and incubated for 1–3 days
prior to recording. The electrophysiological experiments were
conducted using a standard two-electrode voltage clamp. Volt-
age and current electrodes were borosilicate patch-clamp elec-
trodes (G120F-4, outer diameter � 1.20 mm, inner diameter �
0.69 mm, Warner Instruments, Hamden, CT) that were filled
with 3 M KCl and had resistance of less than 1 megohm. The
oocytes were clamped at �60 mV. Solutions were gravity-ap-
plied from 30-ml glass syringes via Teflon tubing to reduce
adsorption. Oocytes were perfused continuously with ND96
(96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM

HEPES) solution at pH 7.6 at 	5 ml/min. Proton-elicited cur-
rents were measured by exposing the cells to ND96 buffered at
pH 7.0 to 3.5. At lower pH values, HEPES was replaced with 5
mM MES (pH 6 –5.45) or 5 mM sodium citrate (pH 5.0 –3.5).
Solutions were switched manually.

The pH-response relationships were determined by exposing
an oocyte to 4 –7 different pH solutions. The concentration-
response data were fit to Equation 1,

I �
Imax

1 � 10
pH 	 pH50� 
 nH
(Eq. 1)

where I is the peak response to a given pH; Imax is the maximal
fitted amplitude; pH50 is the pH eliciting half-maximal re-
sponse; and nH is the Hill coefficient.

The effects of steroid on the function of GLIC were studied at
pH50. Each oocyte was additionally exposed to picrotoxinin (in
pH50), a known blocker of GLIC (57), to exclude any drastic
effects of mutations on receptor function that may have masked
the effects on modulation by steroids. Exposure to 50 �M picro-
toxinin reduced the pH50 current levels to 19 � 1% of control in
WT and 30 � 3% (p � 0.05 versus wildtype; ANOVA with
Dunnett’s post hoc correction), 13 � 1% (p � 0.55), or 26 � 5%
(p � 0.23) of control in I271W, F121A, and Y254A, respectively.

A typical experiment (Fig. 4B) consisted of recording of a
10 –20-s baseline at pH 7.6, followed by exposure to pH50 until
a steady response was obtained. The receptor was then exposed
to 30 �M steroid in pH50 (maximal application duration 65 s),
followed by recovery in the pH50 solution and an application of
50 �M picrotoxinin. WT GLIC exposed to KK200 exhibited
strong block and slow washout; accordingly, the effect of picro-
toxinin was tested before steroid application (Fig. 4B). The
F121A mutant exhibited unstable transient responses upon
switch from pH50 to pH50 � 5�-6-AziP. For this combination,
the effect of steroid was determined by comparing peak
responses to applications of pH50 or pH50 � 5�-6-AziP, sepa-
rated by a brief wash in pH 7.6 solution (Fig. 4B).

The concentration of DMSO in final steroid solutions was
0.3% (v/v). In control experiments we tested the effect of 0.3%
DMSO on GLIC function. Oocytes expressing wildtype or
mutant receptors activated by pH50 showed inhibition in the
presence of DMSO. The average inhibitory effect was 7 � 1, 10 �
1, 23 � 3, or 25 � 2% (n � 5 cells for each) for wildtype, I271W,

F121A, and Y254A, respectively. The data for steroid effects are
reported after subtraction of the DMSO-only effect.

Current responses were amplified with an OC-725C amplifier
(Warner Instruments), filtered at 40 Hz, digitized with a Digidata
1200 series digitizer (Molecular Devices) at a 100 Hz sampling rate,
and stored using pClamp (Molecular Devices). The traces were
subsequently analyzed with Clampfit (Molecular Devices) to
determine the maximal amplitude of current response.

GLIC was expressed in oocytes from the African clawed frog
(Xenopus laevis). Frogs were purchased from Xenopus 1 (Dex-
ter, MI) and housed and cared for in a Washington University
Animal Care Facility under the supervision of the Washington
University Division of Comparative Medicine. Harvesting of
oocytes was conducted in accordance with the Guide for the
Care and Use of Laboratory Animals as adopted and promul-
gated by the National Institutes of Health. The protocol is
approved by the Animal Studies Committee of Washington
University in St. Louis (Approval No. 20170071).

Docking simulations

Docking was performed using AutoDock 4.2 (58). The GLIC
template was prepared using PDB 4FHI in AutoDock Tools
by deleting waters, adding hydrogens, computing Gasteiger
charges, and merging non-polar hydrogens. Allopregnanolone
was prepared by converting the sdf file from PubChem into a
PDB file using Open Babel (48), and Gasteiger charges and free
torsion angles were determined by AutoDock Tools. Structures
for 5�-12-AziP, 5�-15-AziP, CW12, and KK200 were obtained
by modifying the allopregnanolone in Maestro (Academic ver-
sion, Schrodinger) using the 2D draw and 3D conversion func-
tion, after which Gasteiger charges and free torsion angles were
determined by AutoDock Tools. Four docking simulations
were performed for allopregnanolone using templates of 1) the
entire TMD of two adjacent GLIC subunits (50 � 42 � 50 Å); 2)
the entire TMD of two adjacent GLIC subunits (50 � 42 � 50
Å) with one allopregnanolone molecule within the intersubunit
site (Note: this was necessary to adequately sample binding
modes outside of the intersubunit site.); 3) the intersubunit site
(36 � 32 � 34 Å); and 4) the intrasubunit site (32 � 30 � 32 Å).
The photolabeling reagents were docked to grid boxes encom-
passing only the intersubunit and intrasubunit sites. All simu-
lations were performed with 1-Å grid spacing, using a genetic
algorithm with 250 runs, and otherwise default parameters.
Results were clustered using a 2-Å root mean square deviation. For
each neurosteroid photolabeling ligand, the three most populated
clusters were examined, and shown are poses where the photola-
beling moiety is in closest proximity to the labeled residue.
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D. F. C., G. A., and A. S. E. writing-review and editing; A. S. E.
resources; C. W., X. J., D. F. C., and K. K. synthesis of neurosteroid-
photolabeling reagents.
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D., Koehl, P., Smart, T., and Delarue, M. (2017) Barbiturates bind in the
GLIC ion channel pore and cause inhibition by stabilizing a closed state.
J. Biol. Chem. 292, 1550 –1558 CrossRef Medline

39. Murail, S., Howard, R. J., Broemstrup, T., Bertaccini, E. J., Harris, R. A.,
Trudell, J. R., and Lindahl, E. (2012) Molecular mechanism for the dual
alcohol modulation of Cys-loop receptors. PLoS Comput. Biol. 8,
e1002710 CrossRef Medline

40. Howard, R. J., Murail, S., Ondricek, K. E., Corringer, P. J., Lindahl, E.,
Trudell, J. R., and Harris, R. A. (2011) Structural basis for alcohol modu-
lation of a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci.
U.S.A. 108, 12149 –12154 CrossRef Medline

41. Chen, Q., Cheng, M. H., Xu, Y., and Tang, P. (2010) Anesthetic binding in
a pentameric ligand-gated ion channel: GLIC. Biophys J 99, 1801–1809
CrossRef Medline

42. Laurent, B., Murail, S., Shahsavar, A., Sauguet, L., Delarue, M., and
Baaden, M. (2016) Sites of anesthetic inhibitory action on a cationic li-
gand-gated ion channel. Structure 24, 595– 605 CrossRef Medline

43. Chiara, D. C., Gill, J. F., Chen, Q., Tillman, T., Dailey, W. P., Eckenhoff,
R. G., Xu, Y., Tang, P., and Cohen, J. B. (2014) Photoaffinity labeling the
propofol binding site in GLIC. Biochemistry 53, 135–142 CrossRef
Medline

44. Giansanti, P., Tsiatsiani, L., Low, T. Y., and Heck, A. J. (2016) Six alterna-
tive proteases for mass spectrometry-based proteomics beyond trypsin.
Nat. Protoc. 11, 993–1006 CrossRef Medline

45. Sauguet, L., Poitevin, F., Murail, S., Van Renterghem, C., Moraga-Cid, G.,
Malherbe, L., Thompson, A. W., Koehl, P., Corringer, P. J., Baaden, M.,
and Delarue, M. (2013) Structural basis for ion permeation mechanism in
pentameric ligand-gated ion channels. EMBO J. 32, 728 –741 CrossRef
Medline

46. Harrison, N. L., Majewska, M. D., Harrington, J. W., and Barker, J. L.
(1987) Structure-activity relationships for steroid interaction with the
�-aminobutyric acid A receptor complex. J. Pharmacol. Exp. Ther. 241,
346 –353 Medline

47. Li, W., Jin, X., Covey, D. F., and Steinbach, J. H. (2007) Neuroactive ste-
roids and human recombinant �1 GABAC receptors. J. Pharmacol. Exp.
Ther. 323, 236 –247 CrossRef Medline

48. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T.,
and Hutchison, G. R. (2011) Open babel: an open chemical toolbox.
J. Cheminform. 3, 33 CrossRef Medline

49. Brunner, J. (1993) New photolabeling and crosslinking methods. Annu.
Rev. Biochem. 62, 483–514 CrossRef Medline

50. Akk, G., Covey, D. F., Evers, A. S., Mennerick, S., Zorumski, C. F., and
Steinbach, J. H. (2010) Kinetic and structural determinants for GABA-A
receptor potentiation by neuroactive steroids. Curr. Neuropharmacol. 8,
18 –25 CrossRef Medline

51. Paradiso, K., Zhang, J., and Steinbach, J. H. (2001) The C terminus of the
human nicotinic �4�2 receptor forms a binding site required for potenti-
ation by an estrogenic steroid. J. Neurosci. 21, 6561– 6568 Medline

52. Ghosh, B., Tsao, T. W., and Czajkowski, C. (2017) A chimeric prokaryotic-
eukaryotic pentameric ligand-gated ion channel reveals interactions be-
tween the extracellular and transmembrane domains shape neurosteroid
modulation. Neuropharmacology 125, 343–352 CrossRef Medline

53. Barrantes, F. J., and Fantini, J. (2016) From hopanoids to cholesterol: Mo-
lecular clocks of pentameric ligand-gated ion channels. Prog. Lipid Res. 63,
1–13 CrossRef Medline

54. Hilf, R. J., and Dutzler, R. (2009) Structure of a potentially open state of a
proton-activated pentameric ligand-gated ion channel. Nature 457,
115–118 CrossRef Medline

55. Zhang, Z., and Marshall, A. G. (1998) A universal algorithm for fast and
automated charge state deconvolution of electrospray mass-to-charge ra-
tio spectra. J. Am. Soc. Mass Spectrom. 9, 225–233 CrossRef Medline

56. Guner, H., Close, P. L., Cai, W., Zhang, H., Peng, Y., Gregorich, Z. R., and
Ge, Y. (2014) MASH Suite: a user-friendly and versatile software interface
for high-resolution mass spectrometry data interpretation and visualiza-
tion. J. Am. Soc. Mass Spectrom. 25, 464 – 470 CrossRef Medline

57. Alqazzaz, M., Thompson, A. J., Price, K. L., Breitinger, H. G., and Lummis,
S. C. (2011) Cys-loop receptor channel blockers also block GLIC. Biophys.
J. 101, 2912–2918 CrossRef Medline

58. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Good-
sell, D. S., and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: Au-
tomated docking with selective receptor flexibility. J. Comput. Chem. 30,
2785–2791 CrossRef Medline

Neurosteroid-binding sites in GLIC

J. Biol. Chem. (2018) 293(8) 3013–3027 3027

 at W
ashington U

niversity on M
arch 3, 2018

http://w
w

w
.jbc.org/

D
ow

nloaded from
 



Gustav Akk and Alex S. Evers
Kathiresan Krishnan, Daniel J. Shin, Cunde Wang, Xin Jiang, Douglas F. Covey, 
Wayland W. L. Cheng, Zi-Wei Chen, John R. Bracamontes, Melissa M. Budelier,

ligand-gated ion channel GLIC
Mapping two neurosteroid-modulatory sites in the prototypic pentameric

doi: 10.1074/jbc.RA117.000359 originally published online January 4, 2018
2018, 293:3013-3027.J. Biol. Chem. 

  
 10.1074/jbc.RA117.000359Access the most updated version of this article at doi: 

 Alerts: 

  
 When a correction for this article is posted•  

 When this article is cited•  

 to choose from all of JBC's e-mail alertsClick here

  
 http://www.jbc.org/content/293/8/3013.full.html#ref-list-1

This article cites 57 references, 15 of which can be accessed free at

 at W
ashington U

niversity on M
arch 3, 2018

http://w
w

w
.jbc.org/

D
ow

nloaded from
 


	Washington University School of Medicine
	Digital Commons@Becker
	2018

	Mapping two neurosteroid-modulatory sites in the prototypic pentameric ligand-gated ion channel GLIC
	Wayland W. L. Cheng
	Zi-Wei Chen
	John R. Bracamontes
	Melissa M. Budelier
	Kathiresan Krishnan
	See next page for additional authors
	Recommended Citation
	Authors


	tmp.1520106519.pdf.MHsHN

