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Both the magnitude and duration of insulin signaling are
important in executing its cellular functions. Insulin-induced
degradation of insulin receptor substrate 1 (IRS1) represents a
key negative feedback loop that restricts insulin signaling.
Moreover, high concentrations of fatty acids (FAs) and glucose
involved in the etiology of obesity-associated insulin resistance
also contribute to the regulation of IRS1 degradation. The scav-
enger receptor CD36 binds many lipid ligands, and its contribu-
tion to insulin resistance has been extensively studied, but the
exact regulation of insulin sensitivity by CD36 is highly contro-
versial. Herein, we found that CD36 knockdown in C2C12 myo-
tubes accelerated insulin-stimulated Akt activation, but the
activated signaling was sustained for a much shorter period of
time as compared with WT cells, leading to exacerbated insulin-
induced insulin resistance. This was likely due to enhanced
insulin-induced IRS1 degradation after CD36 knockdown.
Overexpression of WT CD36, but not a ubiquitination-defective
CD36 mutant, delayed IRS1 degradation. We also found that
CD36 functioned through ubiquitination-dependent binding to
IRS1 and inhibiting its interaction with cullin 7, a key compo-
nent of the multisubunit cullin-RING E3 ubiquitin ligase com-
plex. Moreover, dissociation of the Src family kinase Fyn from
CD36 by free FAs or Fyn knockdown/inhibition accelerated
insulin-induced IRS1 degradation, likely due to disrupted IRS1
interaction with CD36 and thus enhanced binding to cullin 7. In
summary, we identified a CD36-dependent FA-sensing pathway
that plays an important role in negative feedback regulation of
insulin activation and may open up strategies for preventing or
managing type 2 diabetes mellitus.

Cell signaling is usually initiated by an activating ligand bind-
ing to a receptor on the plasma membrane that transmits the
signal inside the cell. Distinct cellular responses and outcomes

of a signaling pathway are achieved by precise regulation of its
duration, magnitude, and subcellular compartmentalization,
which is mediated by an integrated network with multiple pos-
itive and negative feedback and feedforward loops (1). Insulin
plays a critical role in metabolic regulation by promoting glu-
cose uptake and lipid synthesis while inhibiting gluconeogene-
sis and lipolysis (2). Both magnitude and duration of insulin
signaling are important in determining its metabolic functions.

Insulin signaling is initiated by insulin binding to and activa-
tion of the insulin receptor (IR)2 tyrosine kinase, which further
induces phosphorylation and recruitment of the insulin recep-
tor substrate (IRS) family of proteins (3). Among the substrates,
IRS1 is important in activation of the phosphatidylinositol 3-ki-
nase (PI3K)/Akt pathway (4), and its signaling functions are
mediated by phosphorylation and acetylation (5, 6). Ubiquiti-
nation of IRS1 following phosphorylation on Ser-307 leads to
its proteasome-dependent degradation, which, in conjunction
with lysosomal degradation of IR, results in a decrease of insulin
sensitivity after long-term stimulation by insulin (7). Insulin-
induced IRS1 degradation relies on a proteasome-dependent
pathway (8), whereas osmotic stress and oxidative stress
enhance IRS1 degradation in a proteasome-independent pro-
cess (9, 10). Cullin 7 (CUL7) is a key component of the multi-
subunit cullin-RING E3 ubiquitin ligase complex that targets
IRS1 for ubiquitin-dependent degradation, whereas ubiquitin-
specific protease 7 can deubiquitinate IRS1, preventing it from
proteasomal degradation (11). However, molecular mecha-
nisms regulating stability of IRS1 in response to cellular stress
are not well understood.

Cluster of differentiation 36 (CD36) has been shown in vitro
and in vivo to facilitate the transport of many lipid species
including FFAs in a variety of cells (12, 13). CD36 is highly
expressed in myocytes, adipocytes, and hepatocytes where
insulin signaling is a master metabolic regulator (14). Accord-
ingly, potential regulation of insulin signaling by CD36 has been
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cantly associated with insulin resistance and increased steatosis
in patients with non-alcoholic steatohepatitis (15). Unadjusted
CD36 mRNA and protein in peripheral blood mononuclear
cells were higher among subjects with type 2 diabetes mellitus
versus control subjects (16), indicating that CD36 could be a
negative mediator of insulin sensitivity. However, some other
studies suggested the opposite CD36 regulation of insulin sen-
sitivity. CD36 deficiency in spontaneously hypertensive rats
underlies insulin resistance and defective FA metabolism and
hypertriglyceridemia (17), which are ameliorated by transgenic
expression of CD36 (18). Similarly, muscle-specific overexpres-
sion of CD36 reverses insulin resistance in a mouse model
caused by overexpressing a dominant-negative form of IGF-1
receptor specifically in muscle (MKR mice) (19). Hepatic over-
expression of CD36 improved glycogen homeostasis and atten-
uated high-fat diet–induced hepatic steatosis and insulin
resistance (20). The hyperinsulinemic-euglycemic clamp study
showed insulin resistance in people with genetic CD36 deficiency,
which is common in Asian and African populations (21), but a later
study demonstrated that human CD36 deficiency is not necessar-
ily responsible for insulin resistance (22). Collectively, the exact
regulation of insulin sensitivity by CD36 is highly controversial,
and the underlying mechanisms are still unrevealed.

CD36-null mice clear glucose faster than WT under chow
diet. However, after switching to a diet high in fructose, CD36-
null mice, but not WT mice, develop hyperinsulinemia, marked
glucose intolerance, and decreased muscle glucose uptake (23).
Thus, it is likely that insulin signaling is dynamically regulated
by CD36, and this regulation may be highly dependent on dif-
ferent nutrient stress and hormone stimulation. Herein, we
studied the magnitude and duration of insulin signaling as reg-
ulated by CD36 in C2C12 myotubes. Because IRS1 plays a crit-
ical role in the insulin signaling pathway and insulin-induced
IRS1 degradation is a key negative feedback mechanism to
maintain appropriate signal strength and duration, we further
examined whether CD36 mediates dynamics of insulin signal-
ing activation by regulating IRS1 stability. We demonstrated
that CD36 interacts with IRS1 and reduces its interaction with
CUL7, which prevents proteasomal degradation of IRS1 and
leads to distinct regulation of insulin signaling before and after
chronic insulin treatment.

Results

CD36 sustains insulin signaling and alleviates insulin-induced
insulin resistance in C2C12 myotubes

Previous studies suggested that CD36 regulation of insulin
signaling may be highly dependent on nutrient and signaling
states of the cells. We first investigated the role of CD36 in
regulating the dynamic response of Akt activation to insulin
stimulation. CD36 was efficiently knocked down in myotubes
using an siRNA as we verified previously (24) (Fig. 1A). Control
or CD36 knockdown (KD) myotubes were treated with 10 nM

insulin, and Akt phosphorylation was monitored for up to 240
min. Phosphorylation of Akt at Thr-308 and at Ser-473 were
initially increased but then started to decline, partially due to
negative feedback regulation to terminate signaling (Fig. 1, A, B,
and C). As compared with control myotubes, insulin-stimu-

lated p-Akt (Thr-308) and GSK3 phosphorylation were
increased faster in CD36 KD myotubes but were maintained for
a shorter period of time prior to deactivation (Fig. 1, A, B, and
D). In contrast, activation and duration of Akt phosphorylation
at Ser-473 were similarly regulated by insulin in control and
CD36 KD myotubes (Fig. 1, A and C), indicating specific accel-
erating activation of the p-Akt (Thr-308)/p-GSK3 pathway in
response to loss of CD36 in myotubes. Insulin stimulated gly-
cogen storage in both WT and CD36 KD myotubes. Similar to
regulation of p-GSK3 by CD36, the increase of glycogen storage
immediately after insulin stimulation was faster in CD36 KD
myotubes, but this increase was sustained for a shorter period
of time, and the glycogen accumulation reached a plateau after
4 h. In contrast, glycogen storage in WT myotubes kept increas-
ing for a longer period of time (Fig. 1E).

We then set out to compare differential regulation of insulin-
induced Akt activation before and after insulin-induced insulin
resistance. We examined acute Akt activation induced by insu-
lin in control and CD36 KD myotubes following starvation.
Insulin-stimulated phosphorylation of GSK3 and Akt at Thr-
308 was significantly higher in CD36 KD myotubes (Fig. 2A, B,
and D). In contrast, phosphorylation of Akt at Ser-473 was not
affected by CD36 knockdown (Fig. 2, A and C). We next exam-
ined whether CD36 is able to protect myotubes from insulin-
induced insulin resistance. Myotubes were pretreated with 50
nM insulin for 4 h, washed, and then restimulated with different
concentrations of insulin for 5 min (Fig. 2E). Phosphorylations
of Akt at Ser-473 and Thr-308 and GSK3 were lower in CD36
KD myotubes than in control myotubes (Fig. 2, F–I), suggesting
that CD36 protects myotubes from insulin-stimulated insulin
resistance and that its regulation of insulin signaling is depen-
dent on growth conditions.

CD36 protects IRS1 from insulin-induced proteasomal
degradation

IRS1 not only plays an important role in relaying insulin
stimulation to the activation of the PI3K/Akt pathway but also
provides a site of negative feedback regulation to terminate sig-
naling by undergoing insulin-stimulated ubiquitination and
proteasomal degradation. We examined whether IRS1 plays a
role in the observed protective effect of CD36 on insulin-in-
duced insulin resistance and found that the IRS1 level is higher
in the presence of CD36 in myotubes following insulin treat-
ment (Fig. 2, J and K), contributing to higher insulin sensitivity
(Fig. 2F). Insulin-induced changes of IRS1 and IRS2 levels in
control and CD36 KD myotubes were then followed. The level
of IRS1 was gradually reduced after prolonged insulin incuba-
tion in control myotubes (Fig. 3A), and the rate of this degrada-
tion significantly accelerated after CD36 KD (Fig. 3A). In con-
trast, the IRS2 level was not decreased. We next examined rates
of insulin-stimulated degradation of IRS1 and IRS2 in CHO
cells overexpressing human insulin receptor (CHO/hIR) and
stably expressing wildtype (CD36 WT) or the ubiquitination-
deficient CD36 mutant where C-terminal lysines (Lys-469 and
Lys-472) were substituted by alanine (CD36 K/A) as we estab-
lished previously (25). We observed rapid degradation of IRS1
in CHO/hIR where CD36 is virtually absent. In contrast, the
IRS2 level was not decreased by insulin treatment (Fig. 3B).

CD36 and IRS1 degradation
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Overexpression of CD36 WT significantly delayed insulin-
stimulated IRS1 degradation, but this effect was not observed in
cells overexpressing CD36 K/A (Fig. 3B). The expression levels
of CD36 WT and CD36 K/A were similar, and the degradation
of IR was not obvious (Fig. 3C). The insulin-stimulated degra-
dation of IRS1 in CD36 KD myotubes as well as in CHO/hIR
cells overexpressing CD36 was completely blocked by MG132
(Fig. S1), suggesting that CD36 regulates proteasomal degrada-
tion of IRS1.

CD36 mediates insulin-stimulated phosphorylation and
ubiquitination of IRS1

Phosphorylation at serine residues of IRS1 is a major regula-
tor of insulin signaling. Phosphorylation at Ser-307 triggers

IRS1 ubiquitination and degradation, whereas phosphorylation
at Ser-612 blocks its interaction with PI3K (5). S307A mutant
IRS1 was more resistant to degradation following chronic expo-
sure to insulin in rat hepatoma cells (26) and in myotubes (Fig.
4, A and B). CD36 interacts with Fyn tyrosine kinase, which
binds IRS1 and forms a signaling complex (27–29), suggesting
that CD36 may play a role in the IRS1-mediated feedback
mechanism of insulin signaling. Control and CD36 KD myo-
tubes were treated with insulin for 15 min, and serine phosphor-
ylation of IRS1 was evaluated. The phosphorylation level of
IRS1 at Ser-307 was increased in CD36 KD myotubes as com-
pared with control myotubes (Fig. 4, C and D), which is consis-
tent with the enhanced insulin-stimulated IRS1 degradation
(Fig. 3). In contrast, the phosphorylation level of IRS1 at Ser-

Figure 1. CD36 sustains insulin signaling in myotubes. C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA targeting
mouse CD36 (CD36KD) as described under “Experimental procedures.” A, myotubes were starved for about 18 h with low-glucose DMEM containing 0.2% BSA
prior to stimulation with 10 nM insulin for the indicated times. Whole-cell lysates were subjected to immunoblot analysis with antibodies against CD36, p-Akt
at Thr-308 (T308), p-Akt at Ser-473 (S473), total Akt (t-Akt), p-GSK3, and tubulin. B, C, and D, quantification of the mean of three independent experiments in A.
E, cells were starved for 18 h with low-glucose DMEM containing 0.2% BSA with or without stimulation with 10 nM insulin for the indicated times. Glycogen was
extracted and measured using a Glycogen Assay kit according to the manufacturer’s instruction. Data are shown as means of three independent experiments.
Error bars represent S.D. *, p � 0.05; **, p � 0.01, ***, p � 0.001, compared with negative control.

CD36 and IRS1 degradation
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612 was reduced by CD36 knockdown (Fig. 4, C and E), which
may contribute to the increased Akt activation following acute
insulin stimulation (Fig. 2A). We used a GST pulldown ap-
proach to detect ubiquitinated IRS1 as described (30). Ubiquiti-
nated IRS1 interacted with the GST-UBA fusion protein but
not with a mutant version of the UBA domain predicted to
abolish ubiquitin binding (GST-UBA mutant). In CD36 KD
myotubes, the ubiquitinated IRS1 was higher than that in con-
trol myotubes (Fig. 4, F and G), which is presumably due to
increased phosphorylation at Ser-307.

Ubiquitinated CD36 associates with IRS1 and interrupts its
interaction with CUL7

We examined interaction of IRS1 with CD36 and how this
interaction was affected by insulin in CHO/hIR cell lines. CD36
WT was coimmunoprecipitated with IRS1 using anti-IRS1
antibody (Fig. 5A). In contrast, the amount of ubiquitination-
defective CD36 K/A mutant coimmunoprecipitated with IRS1
was much lower (Fig. 5A). CD36 WT was also able to pull down
IRS1, but its K/A mutant was less effective (Fig. 5B). Our previ-
ous study showed that CD36 associates with the Src family
kinase Fyn (31), which binds IRS1 and forms a distinct signaling
complex (29). We examined the potential presence of IRS1-
Fyn-CD36 complex and its regulation by CD36 ubiquitination
and found that Fyn coimmunoprecipitated with IRS1 and CD36
(Fig. 5, A and B). Our results suggest that CD36 ubiquitination
was important in its optimal interaction with IRS1 and in
protecting IRS1 from insulin-stimulated degradation (Fig.

3B). The proteasomal degradation of IRS1 is regulated by
CUL7 E3 ubiquitin ligase, and we next examined whether
CD36 competes with CUL7 in interacting with IRS1. Over-
expression of CD36 decreased coimmunoprecipitation of
CUL7 by anti-IRS1 antibody (Fig. 5C). In contrast, the ubiq-
uitination-defective CD36 K/A mutant with weaker interac-
tion with IRS1 was less effective in blocking IRS1-CUL7
interaction (Fig. 5C).

We then examined the presence of endogenous IRS1-Fyn-
CD36 complex in myotubes. Both CD36 and Fyn coimmuno-
precipitated with IRS1, and insulin treatment, which inhibits
CD36 ubiquitination (25), decreased its association with IRS1
(Fig. 5D). Because Fyn interacts with both IRS1 and CD36, we
examined whether Fyn is required for CD36 interaction with
IRS1. Fyn was coimmunoprecipitated with IRS1 in the absence
of CD36. In contrast, Fyn KD significantly decreased CD36
coimmunoprecipitated with IRS1 (Fig. 5E). Disruption of
endogenous CD36-IRS1 interaction either directly by CD36
KD or indirectly by Fyn KD enhanced the amounts of CUL7
coimmunoprecipitated with IRS1 (Fig. 5E). Inhibition of Fyn by
Src inhibitor-1 (Src-1) decreased CD36 and increased CUL7
coimmunoprecipitated with IRS1 (Fig. 5F), suggesting a key
role of Fyn and its kinase activity in CD36 regulation of IRS1
degradation.

Fyn participates in CD36 regulation of IRS1 degradation

We set out to examine whether Fyn is involved in CD36 reg-
ulation of insulin-stimulated IRS1 degradation. Because the

Figure 2. Insulin-induced insulin resistance was exacerbated by CD36 knockdown in myotubes. C2C12 myotubes were treated with a scrambled
negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) as described under “Experimental procedures.” A, cells were starved for about 18 h with
low-glucose DMEM containing 0.2% BSA followed by stimulation with the indicated concentrations of insulin for 5 min. Whole-cell lysates were prepared and
subjected to immunoblot analysis using antibodies recognizing p-Akt at Thr-308 (T308), p-Akt at Ser-473 (S473), total Akt (t-Akt), p-GSK3, and tubulin. B, C, and
D, quantification of the mean of three independent experiments in A. E, schematic diagram of the protocol used to study insulin-induced insulin resistance. F,
myotubes were starved overnight (O.N.) with low-glucose DMEM containing 0.2% BSA followed by incubation with 50 nM insulin (ins) for 4 h, washed, and
serum-starved for an additional 4 h prior to stimulation with the indicated concentrations of insulin for 5 min. Whole-cell lysates were subjected to immunoblot
analysis with antibodies as indicated. G, H, and I, quantification of the mean of three independent experiments in F. J, whole-cell lysates of cells before and after
insulin treatment for 4 h were subjected to immunoblot analysis with antibodies as indicated. K, quantification of the mean of three independent experiments
in J. Error bars represent S.D. *, p � 0.05; **, p � 0.01; ***, p � 0.001, compared with negative control.

CD36 and IRS1 degradation
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enhanced FFA interaction with CD36 promotes Fyn dissocia-
tion from the protein complex (31), we studied how FA may
interfere with CD36 function in stabilizing IRS1. Myotubes
were pretreated with BSA control, palmitic acid (PA), or oleic
acid (OA) prior to stimulation with insulin, and the levels of
IRS1 were determined. The degradation of IRS1 was signifi-
cantly accelerated in PA- or OA-pretreated cells (Fig. 6A), and

OA was more effective. In CD36 KD myotubes, the degradation
of IRS1 could not be further accelerated by PA or OA pretreat-
ment (Fig. 6A). Similarly, CD36 inhibition and Fyn dissociation
by sulfo-N-succinimidyl oleate (SSO) pretreatment enhanced
insulin-stimulated degradation of IRS1 (Fig. 6B). We next
examined the effect of Fyn KD or pharmaceutical Src inhibi-
tion. The degradation of IRS1 in Fyn KD myotubes or myotubes

Figure 3. CD36 alleviates insulin-induced degradation of IRS1. A, C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA
targeting mouse CD36 (CD36 KD) as described under “Experimental procedures.” Cells were starved overnight with low-glucose DMEM containing 0.2% BSA
followed by stimulation with 50 nM insulin for the indicated times. Whole-cell lysates were subjected to immunoblot analysis with antibodies against IRS1, IRS2,
and tubulin. Quantification of the mean of three independent experiments is shown. *, p � 0.05; **, p � 0.01, compared with negative control. B,
CHO/hIR cells stably expressing empty vector (vector), WT CD36 (CD36-WT), or mutated CD36 (CD36-K/A) were starved for 12 h with F-12 medium
containing 0.2% BSA followed by stimulation with 5 nM insulin for the indicated times. Whole-cell lysates were subjected to immunoblot analysis with
antibodies recognizing IRS1, IRS2, and tubulin. Quantification of the mean of three independent experiments is shown. Error bars represent S.D. *, p �
0.05; ***, p � 0.001, compared with vector. C, whole-cell lysates from B were subjected to immunoblot analysis with antibodies recognizing CD36, �
subunit of IR (�-IR), and tubulin.

CD36 and IRS1 degradation
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pretreated with Src-1 was significantly accelerated. Fyn KD or
Src-1 failed to further expedite the degradation of IRS1 in CD36
KD myotubes (Fig. 6, C and D). Similar regulation was observed
in CHO/hIR cells overexpressing CD36 WT but not in control
cells without CD36 or cells overexpressing CD36 K/A (Fig. S2).
Therefore, association of Fyn with ubiquitinated CD36 and

Fyn activity may be important in CD36 regulation of IRS1
degradation.

Discussion

The PI3K/Akt pathway conveys signals from receptor tyro-
sine kinases to regulate cell metabolism, proliferation, and sur-

CD36 and IRS1 degradation
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Figure 4. CD36 mediates insulin-stimulated phosphorylation and ubiquitination of IRS1. A, C2C12 myotubes were infected with adenovirus containing
HA-tagged full-length WT mouse IRS1 (IRS1-WT) or its S307A mutant (IRS1-S307A). Cells were induced to differentiate, starved overnight, and stimulated with
50 nM insulin for the indicated times. Whole-cell lysates were subjected to immunoblot analysis with antibodies against HA and tubulin. B, quantification of the
mean of three independent experiments in A is shown. *, p � 0.05, compared with IRS1 WT. C, C2C12 myotubes were treated with a scrambled negative control
(NC) siRNA or siRNA targeting mouse CD36 (CD36KD) as described under “Experimental procedures.” Cells were starved for about 18 h with low-glucose DMEM
containing 0.2% BSA followed by incubation with the indicated concentrations of insulin for 15 min. Protein samples were subjected to immunoblot analysis
using antibodies recognizing p-IRS1 at Ser-307 (S307), p-IRS1 at Ser-612 (S612), and tubulin. D and E, quantification of the mean of three independent
experiments in C. F, myotubes were serum-starved for 16 h with low-glucose DMEM containing 0.2% BSA and then treated with 20 �M MG132 for 30 min before
incubation with 50 nM insulin for 4 h. The ubiquitinated IRS1 were detected as described under “Experimental procedures.” G, the relative levels of ubiquiti-
nated IRS1 were quantified with ImageJ software. The data represent the mean of three independent experiments. Error bars represent S.D. *, p � 0.05; **, p �
0.01; ***, p � 0.001, compared with negative control.

Figure 5. CD36 associates with IRS1 and interrupts its interaction with CUL7. A, CHO/hIR cells expressing empty vector (Vec), CD36 WT (WT), or CD36 K/A
(K/A) were lysed for immunoprecipitation (IP) with IRS1 antibody or control IgG as indicated. The immunoprecipitates were subjected to immunoblot analysis
using antibodies recognizing IRS1, CD36, and Fyn. B, CHO/hIR cells were lysed for immunoprecipitation with FLAG affinity gel followed by immunoblot analysis
with antibodies against IRS1, CD36, and Fyn. C, CHO/hIR cells were transfected with HA-CUL7 and IRS1. The cell lysates were prepared for immunoprecipitation
with antibody against IRS1, and the precipitates were subjected to immunoblot analysis using antibodies recognizing IRS1 and CUL7. D, C2C12 myotubes were
untreated (basal) or starved for 18 h followed by incubation with 50 nM insulin (ins) for 10 min. Cells were lysed for immunoprecipitation with IRS1 antibody or
control IgG. The immunoprecipitates were subjected to immunoblot analysis using antibodies recognizing IRS1, CD36, and Fyn. E, C2C12 myotubes were
treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) or Fyn (FynKD) as described under “Experimental procedures.”
Cells were lysed for immunoprecipitation with IRS1 antibody or control IgG. The immunoprecipitates were subjected to immunoblot analysis using antibodies
recognizing IRS1, CD36, Fyn, and CUL7. F, C2C12 myotubes were treated with 10 �M Src-1 or DMSO for 30 min. Cells were lysed for immunoprecipitation with
IRS1 antibody or control IgG. The immunoprecipitates were subjected to immunoblot analysis using antibodies recognizing IRS1, CD36, Fyn, and CUL7. The
experiment was repeated three times with similar results. WCL, whole-cell lysates.

CD36 and IRS1 degradation
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vival. The spatial, temporal, or strength-controlling regulation
of PI3K/Akt signaling determines its functional specificity. Sus-
tained and periodic Akt signaling has an integral role in regu-
lating T cell longevity, and antigen-activated CD4� cells with-
out Akt activity maintained over time are short-lived (32). In
Chinese hamster embryonic fibroblasts, the sustained �-
arrestin1–independent Akt activity, but not the rapid �-
arrestin1– dependent signaling, prevents G1 phase progression
(33). Sustained inhibitory phosphorylation of GSK3 mediated
by PI3K/Akt limits nerve regeneration after peripheral injury
(34). Although the signaling duration of PI3K/Akt pathway and
its importance have been studied in several in vitro and in vivo
systems, the molecular mechanisms underlying this dynamic
regulation are still unclear. Herein, we demonstrated an impor-
tant role of CD36, a FA-transporting and -sensing protein, in
regulating the rate and duration of insulin-stimulated Akt acti-
vation by mediating IRS1 stability.

Insulin-activated IR can tyrosine-phosphorylate IRS pro-
teins, which recruit and activate PI3K. The activity of Akt is
markedly stimulated in a PI3K-dependent manner, which pre-
dominantly relies on the phosphorylation of Akt on Thr-308 in
the activation loop of the kinase catalytic domain and Ser-473
in the “hydrophobic motif” C-terminal domain. The protein
kinase responsible for phosphorylating Akt on Thr-308 is
phosphoinositide-dependent kinase (PDK) and mTOR (mech-
anistic target of rapamycin) complexed to RICTOR is the Ser-
473 kinase (35). The phosphorylation on Thr-308 is associated
with glycogen synthesis, whereas that on Ser-473 site stimulates
GLUT4 trafficking to the plasma membrane and glucose
uptake (36, 37). Our current study demonstrated that insulin-
stimulated p-Akt (Thr-308) and GSK3 phosphorylation were
increased faster in CD36 KD myotubes but maintained for a
shorter period of time prior to deactivation. In contrast, Ser-
473 phosphorylation was not affected by CD36 KD. Moreover,
IRS1-independent ERK activation is not affected (data not
shown). Loss of CD36 in myotubes leads to AMPK activation
(31), and the PDK1/atypical protein kinase C pathway is
involved in AMPK-stimulated increases in glucose transport
(38). It is possible that AMPK activation by loss of CD36 may
enhance PDK1 activity and determine the specific faster phos-
phorylation of Akt on Thr-308, leading to an acute increase of
glycogen storage.

Insulin-stimulated IRS1 degradation plays a role in both the
feedback inhibition of the insulin signal and cellular insulin
resistance. CD36 deficiency renders the cells more sensitive to
insulin-induced insulin resistance by destabilizing IRS1 protein
without affecting the IRS1 mRNA level (data not shown). This

dynamic regulation of insulin sensitivity by CD36 is consistent
with the increased insulin sensitivity in CD36-null mice under
chow diet but marked glucose intolerance in high-fructose
diet–induced hyperinsulinemia (23). IRS1 can be degraded in
lysosomes or in proteasomes, and loss of CD36 enhances insu-
lin-stimulated IRS1 degradation by the ubiquitin proteasome
pathway, which is sensitive to MG132. CD36 regulation of IRS1
ubiquitination is achieved by its competitive interaction to
decrease IRS1 interaction with E3 ligase CUL7. We provided
several lines of evidence to support the requirement of ubiquiti-
nation in CD36 regulation of IRS1 degradation. CD36 interac-
tion with IRS1 is decreased by insulin, which inhibits CD36
ubiquitination (25). Moreover, CD36 K/A without ubiquitina-
tion has a much weaker interaction with IRS1. Consistent with
this, CD36 WT, but not K/A mutant, inhibits IRS1 interaction
with CUL7 and promotes insulin-stimulated IRS1 degradation.
A recent study showed that muscle-specific mitsugumin 53
(MG53) can also act as an E3 ligase and mediates the degrada-
tion of both IR and IRS1 (39). Because CD36 does not affect IR
degradation, it may have minimal effect on MG53 activity.
However, whether CD36 plays a role in MG53-mediated IRS1
degradation requires further study.

IRS1 can be phosphorylated at multiple serine residues, and
this phosphorylation has a dual role either to enhance or to
terminate the insulin effects (5). Phosphorylation at Ser-307
enhances IRS1 ubiquitination and degradation, and S307A
mutant IRS1 is more resistant to degradation following chronic
exposure to insulin, whereas phosphorylation at Ser-612
decreases its interaction with PI3K (40), demonstrating separa-
ble mechanisms for IRS1 inactivation by serine phosphoryla-
tion. Moreover, feedback of IRS1 phosphorylation on some Ser/
Thr sites can strengthen the output of insulin signaling by
reducing tyrosine dephosphorylation and inhibitory Ser/Thr
phosphorylation at other sites (41). Recent in vivo studies dem-
onstrated a much more complex regulation of insulin signaling
by serine phosphorylation of IRS1. Transgenic mice with mus-
cle-specific IRS1 Ser-302, Ser-307, and Ser-612 mutated to ala-
nine are protected from fat-induced insulin resistance in skel-
etal muscle (42). Surprisingly, given the sensitizing effect of the
S307A IRS1 mutation in cell-based assays, homozygous trans-
genic mice with S307A IRS1 show increased fasting insulin ver-
sus control mice as well as very mild glucose intolerance (43).

Our results showed that the phosphorylation at Ser-307 was
enhanced after CD36 knockdown, consistent with increased
ubiquitination of IRS1. In contrast, phosphorylation at Ser-612
was decreased by CD36 knockdown, which may contribute to
faster up-regulation of PI3K/Akt activity prior to insulin-in-

Figure 6. FAs or Fyn inhibition enhances CD36 regulation of IRS1 degradation. C2C12 myotubes were treated with a scrambled negative control (NC)
siRNA or siRNA targeting mouse CD36 (CD36KD) and starved overnight with low-glucose DMEM medium containing 0.2% BSA as described under “Experi-
mental procedures.” A, cells were incubated with 200 �M PA, OA, or equivoluminal 20% BSA for 15 min and stimulated with 50 nM insulin for the indicated times
after removal of FA. B, cells were treated with 10 �M SSO or DMSO for 30 min and stimulated with 50 nM insulin for the indicated times. C, cells cotransfected with
siRNA targeting mouse Fyn (FynKD) were stimulated with 50 nM insulin for the indicated times. D, cells were treated with 10 �M Src-1 or DMSO for 30 min and
stimulated with 50 nM insulin for the indicated times. Whole-cell lysates were subjected to immunoblot analysis using antibodies recognizing IRS1 and tubulin.
Quantification of the mean of three independent experiments is shown. Error bars represent S.D. *, p � 0.05; **, p � 0.01, compared with BSA (A), DMSO
treatment (B and D) or negative control cells (C). E, schematic model of CD36 regulation of insulin-induced IRS1 degradation. Ubiquitinated CD36 interacts with
IRS1 and prevents its interaction with CUL7. Insulin stimulation partially inhibits IRS1-CD36 association via decrease of CD36 ubiquitination, which leads to
enhanced IRS1-CUL7 interaction and IRS1 degradation. In the absence of CD36 or expression of CD36 K/A, which does not bind to IRS1 well, IRS1 interaction
with CUL7 was enhanced, leading to accelerated degradation. FA-induced dissociation of Fyn from CD36, Fyn KD, or pharmaceutical inhibition of Fyn activity
in CD36-expressing cells also blocks CD36 interaction with IRS1 and its effect on IRS1 stability. ubi, ubiquitin.
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duced IRS1 degradation. CD36 functions as a receptor recog-
nizing a variety of lipid and non-lipid ligands. In addition to
cargo transportation, it also initiates signaling pathways, and a
common theme in CD36 signal transduction is activation of Src
family kinases (44). FA interaction with CD36 dissociates Fyn
from the protein complex, allowing AMPK activation (31). Our
data suggested that Fyn is required for CD36 interaction with
IRS1, and at least part of CD36 is present in the endogenous
CD36-Fyn-IRS1 complex (Fig. 5). Dissociation of Fyn from
CD36 by FFA, Fyn KD, or pharmaceutical inhibition of Fyn
diminishes the stabilizing effect of CD36, suggesting that CD36
regulation of IRS1 degradation requires Fyn and its kinase
activity (Fig. 6E).

Recent studies demonstrated frequent association of CD36
function with cancer development and metastasis. A subpopu-
lation of cancer cells with high CD36 expression has unique
metastasis-initiating potential, highlighting a key role of CD36-
regulated lipid metabolism and signaling in metastatic coloni-
zation (45). Lysophosphatidic acid/protein kinase D1/CD36
signaling is a bona fide breast cancer promoter via stimulating
microvascular remodeling in chronic diet-induced obesity (46).
CD36-positive B lymphoblasts predict poor outcome in chil-
dren with B lymphoblastic leukemia (47). There is increasing
evidence that IRS1 is an important growth-regulatory adaptor
molecule that plays a role in cell proliferation. Prolylcarboxy-
peptidase- and prolylendopeptidase-mediated stabilization of
IRS1 is critical for PI3K/Akt signaling and is associated with
development and clinical aggressiveness of pancreatic cancer
(48). Moreover, IRS1 is highly expressed in localized breast
tumors and regulates the sensitivity of breast cancer cells to
chemotherapy (49). The pathway of CD36-mediated IRS1 sta-
bility as identified in this study may contribute to CD36 func-
tion in regulating cancer development and metastasis, which
could provide a pharmaceutical approach to treat cancers that
are dependent on the IRS1/PI3K pathway.

In summary, this study presents a novel dynamic regulatory
pathway of insulin signaling in myotubes. Ubiquitinated CD36
delays, but sustains, insulin signaling by interfering with IRS1
interaction with CUL7 and blocking its degradation. Identifica-
tion of CD36 as a critical regulator of IRS1/PI3K/Akt signaling
in this study may help design more effective therapies for met-
abolic dysfunctions of muscle.

Experimental procedures

Materials

Horse serum and FBS were purchased from Invitrogen
(Grand Island, NY). siRNA targeting mouse CD36 (5�-AAC-
GACATGATTAATGGCACA-3�) (24), mouse Fyn (5�-CCTG-
TATGGAAGGTTCACAAT-3�) (50) and scrambled siRNA
were purchased from Life technologies (Foster City, CA). SSO
was synthesized and utilized as we described previously (24).
Full-length HA-tagged CUL7 plasmid was kindly provided by
Dr. James DeCaprio (Dana-Farber Cancer Institute) and
FLAG-tagged IRS1 plasmid was from Dr. Richard Roth (Stan-
ford University). Information of antibodies was provided in
Table S1. Other reagents were from Sigma-Aldrich (St. Louis,
MO).

Cell culture

C2C12 murine myoblasts (from American Type Culture
Collection) were maintained in high-glucose DMEM supple-
mented with 10% FBS, 200 units/ml penicillin, and 50 �g/ml
streptomycin and were differentiated in high-glucose DMEM
containing 2% horse serum for 6 –7 days. CHO cells were
maintained in Ham’s F-12 medium containing 10% FBS, 200
units/ml penicillin, and 50 �g/ml streptomycin. Cells were
maintained at 37 °C with 5% CO2. C2C12 myotubes or CHO
cells were serum-starved for the indicated times in low-glucose
DMEM or Ham’s F-12 with 0.2% BSA and then treated as
indicated.

siRNA and plasmid transfection

Transfection of siRNAs was carried out using Lipo-
fectamineTM RNAiMAX (Invitrogen) according to the manufa-
cturer’s instructions on day 3 after differentiation of C2C12
myoblasts with the indicated siRNAs (10 nM final concentra-
tion). Experiments were performed 3 days after transfection.
FLAG-tagged IRS1 and HA-tagged CUL7 (2 �g/ml final
concentration) were transfected using LipofectamineTM 2000
(Invitrogen) in CHO cells following the manufacturer’s
instructions.

Protein extraction and Western blotting

Cells were washed thrice with ice-cold PBS and lysed at 4 °C
for 30 min with a lysis buffer (50 mM Tris�HCl, pH 7.5, 150 mM

NaCl, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 10% glyc-
erol, 1 mM EDTA, 1 mM EGTA) containing a protease inhibitor
mixture (Sigma-Aldrich), then the cell lysates were clarified by
centrifugation (12,000 � g, 10 min, 4 °C), and supernatant was
collected and stored at �80 °C or used for immunoblotting as
described (51). Protein samples were separated by SDS-PAGE
after quantification with BCA kits (Thermo Scientific) and
transferred to nitrocellulose membranes (GE Healthcare). The
membranes were blocked with 5% nonfat milk in Tris-buffered
saline with Tween-20 (TBST) or 5% BSA in TBST for 1 h at
room temperature and then incubated with primary antibodies
in 2% BSA in TBST overnight at 4 °C followed by incubation
with horseradish peroxidase-conjugated secondary antibodies
and analysis by chemiluminescence. The Western blotting
results were quantified using ImageJ software.

Coimmunoprecipitation

Cells were lysed in a lysis buffer (50 mM Tris�HCl, pH 8.0, 150
mM NaCl, 0.5% Triton X-100, 10% glycerol, 1 mM EDTA, 1 mM

EGTA) containing a protease inhibitor mixture (Sigma-
Aldrich). The cell lysates were clarified by centrifugation
(12,000 � g, 10 min, 4 °C), and the clarified lysates were incu-
bated with primary antibodies against IRS1 (overnight at 4 °C).
Immune complexes were then incubated with 20 �l of recom-
binant Protein G-Sepharose� 4B (GE Healthcare) for 4 h at
4 °C, and the beads were washed five times with lysis buffer/PBS
(1:1). For immunoprecipitation of FLAG, the clarified lysates
were incubated with Red Anti-FLAG M2 affinity gel beads (Sig-
ma-Aldrich) overnight at 4 °C and then washed five times as
described above. Proteins were eluted by boiling (5 min) in
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50 �l of SDS loading buffer. All of the samples were separated
by 6 –10% gradient SDS-PAGE.

GST fusion pulldowns

Expression of GST-UBA and GST-UBA mutant in Esche-
richia coli (BL21-DE3, TransGen Biotech, Beijing) was induced
by isopropyl �-D-1-thiogalactopyranoside (Sigma-Aldrich),
and the GST fusion proteins were purified with Glutathione-
SepharoseTM 4B (GE Healthcare) as described (30). The beads
were then incubated with cell lysates overnight at 4 °C and then
washed three times. Proteins were eluted by boiling (5 min) in
50 �l of SDS loading buffer prior to separation by SDS-PAGE.

Glycogen measurement

The cellular glycogen concentrations were measured using a
Glycogen Assay kit (Sigma-Aldrich) according to the manufa-
cturer’s instruction.

Statistical analysis

The data are presented as mean � S.D. Statistically signifi-
cant differences between mean values were determined using
unpaired Student’s t test or one-way analysis of variance. In all
cases, a significant result was defined as p � 0.05.
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manuscript. S. S and X. S. are guarantors of this work and as such,
had full access to all data and take responsibility for data integrity and
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Supplemental Figure S1. MG132 blocks insulin-induced IRS1 degradation. 

 

Supplemental Figure S2. FAs and Fyn inhibition enhance insulin-induced IRS1 degradation in CHO/hIR 

cells in the presence of wild type CD36. 
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Supplemental Figure Legends: 

 

Supplemental Figure S1. MG132 blocks insulin-induced IRS1 degradation. A, C2C12 myotubes were 

treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) as 

described under “Experimental Procedures.” Cells were starved with DMEM containing 0.2% BSA 

overnight, and treated with 20 μM MG132 for 30 min followed by stimulation with 50 nM insulin for 

indicated time. The whole cell lysates were subjected to immunoblot analysis with antibodies against 

IRS1 and tubulin. B, CHO/hIR cells expressing empty vector, CD36-WT, or CD36-K/A were starved 

with F12 containing 0.2% BSA overnight, then pretreated with 20 μM MG132 for 30 minutes and 

stimulated with 5 nM insulin for indicated time. Cell extracts were subjected to immunoblotting with 

antibodies against IRS1 and tubulin. Quantification of the mean  SD of three independent experiments 

were shown. 

 

Supplemental Figure S2. FAs and Fyn inhibition enhance insulin-induced IRS1 degradation in 

CHO/hIR in the presence of wild type CD36. CHO/hIR cells expressing empty vector (A), CD36-WT 

(B), or CD36-K/A (C) were starved with F12 containing 0.2% BSA overnight. Cells were incubated with 

200 μM Palmitic acid (PA), oleic acid (OA), equivoluminal 20% BSA for 15 min or with 10 μM Src-1 

(Src inhibitor-1) or DMSO for 30 min. After removal of FA, cells were stimulated with 5 nM insulin for 

indicated times. Whole cell lysates were subjected to immunoblot analysis with antibodies against IRS1 

and tubulin. The data shown are representative of at least two experiments. 
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 Supplemental Table S1. Antibody information 

Name Company Catalog Number 

human CD36 R&D Systems AF1955 

mouse CD36 R&D Systems AF2519 

Insulin Receptor β Cell Signaling Technology 3025 

IRS1 Cell Signaling Technology 2382 

IRS2 Cell Signaling Technology 3089 

Phospho-IRS1 (Ser307) Cell Signaling Technology 2381 

Phospho-IRS1 (Ser612) Cell Signaling Technology 2386 

Phospho-AKT (Thr308) Cell Signaling Technology 2965 

Phospho-AKT (Ser473) Cell Signaling Technology 4058 

AKT Cell Signaling Technology 9272 

Phospho-GSK3α/β (Ser21/9) Cell Signaling Technology 8566 

Fyn Cell Signaling Technology 4023 

Cullin 7 Sigma-Aldrich C1743 

α-tubulin Sigma-Aldrich T6199 
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