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Optogenetic silencing of 
nociceptive primary afferents 
reduces evoked and ongoing 
bladder pain
Vijay K. Samineni  1,2, Aaron D. Mickle  1,2, Jangyeol Yoon3, Jose G. Grajales-Reyes1, Melanie 
Y. Pullen1, Kaitlyn E. Crawford3, Kyung Nim Noh3, Graydon B. Gereau1,2, Sherri K. Vogt1,2,  
H. Henry Lai2,4, John A. Rogers3,5,6 & Robert W. Gereau IV  1,2

Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) suffer from chronic pain that severely 
affects quality of life. Although the underlying pathophysiology is not well understood, inhibition of 
bladder sensory afferents temporarily relieves pain. Here, we explored the possibility that optogenetic 
inhibition of nociceptive sensory afferents could be used to modulate bladder pain. The light-activated 
inhibitory proton pump Archaerhodopsin (Arch) was expressed under control of the sensory neuron-
specific sodium channel (sns) gene to selectively silence these neurons. Optically silencing nociceptive 
sensory afferents significantly blunted the evoked visceromotor response to bladder distension and 
led to small but significant changes in bladder function. To study of the role of nociceptive sensory 
afferents in freely behaving mice, we developed a fully implantable, flexible, wirelessly powered 
optoelectronic system for the long-term manipulation of bladder afferent expressed opsins. We found 
that optogenetic inhibition of nociceptive sensory afferents reduced both ongoing pain and evoked 
cutaneous hypersensitivity in the context of cystitis, but had no effect in uninjured, naïve mice. These 
results suggest that selective optogenetic silencing of nociceptive bladder afferents may represent a 
potential future therapeutic strategy for the treatment of bladder pain.

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating pelvic pain syndrome of unknown etiol-
ogy1,2. IC/BPS patients experience chronic pelvic pain symptoms, including pain on bladder filling, increased 
urinary urgency and frequency as the primary clinical symptoms3–12. Blocking afferent drive from the bladder 
by instillation of local anesthetics has long been known to reduce bladder pain in many patients with IC/BPS13,14. 
More targeted desensitization of C-fiber afferents using resiniferatoxin (a potent TRPV1 agonist) has also been 
demonstrated to reduce bladder pain in IC/BPS patients, suggesting that targeted strategies to silence bladder 
nociceptive afferents hold promise for the clinical management of IC/BPS15,16.

The TTX-resistant sodium channel Scn10a (Nav1.8) is expressed in nociceptor populations that respond 
predominantly to capsaicin and inflammatory mediators17–19. Additionally, C-fiber bladder afferent neurons 
that express Scn10a exhibit increased excitability after induction of cystitis20–22. Recent studies demonstrate that 
rodents in which Scn10a gene is deleted or suppressed exhibit diminished bladder nociceptive responses and 
referred hyperalgesia after induction of cystitis23,24. These results suggest that selective silencing of nociceptive 
sensory afferents could be an effective strategy for treating inflammation-induced bladder pain. To further study 
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the role of nociceptive-specific bladder afferents we took advantage of optogenetic techniques that can specifically 
and reversibly inhibit these neurons.

Archaerhodopsin (Arch) is a light-activated proton pump, which upon activation by green light (520–590 nm) 
induces membrane hyperpolarization and robustly suppresses neuronal firing25. Previous studies have shown 

Figure 1. Histological characterization of L6-S1 dorsal root ganglion (DRG) neurons that project to the bladder 
from SNS-Arch mice. (A,B & C) Immunohistochemical analysis of tissue from SNS-Arch mice confirms GFP 
reporter expression in L6-S1 DRGs. Labeling of bladder-innervating DRG neurons was achieved via bladder 
injections of the retrograde neuronal tracer cholera toxin B. Co-labeling of GFP and CTB-555 with the neuronal 
markers calcitonin gene related peptide (CGRP), neurofilament 200 (NF200) and isolectin B4 (IB4) reveal a 
mixed population of sensory neurons that innervate the mouse bladder; scale bar 100 μm (n = 2). (D) Whole 
mount staining of the bladder wall shows sensory neurons expressing GFP innervate the bladder wall of SNS-
Arch mice and co-label with β3-tubulin; scale bar 100 μm.
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that transdermal illumination of Arch expressed in nociceptive peripheral nerve terminals innervating the paw 
results in a significant decrease in somatic pain, suggesting that optogenetics can be used to effectively silence the 
peripheral nociceptors during chronic pain26,27. Whether this approach can be extended to modulation of visceral 
pain is not known. Here, we test the hypothesis that Arch expression in nociceptive sensory neurons can reduce 
bladder pain in the cyclophosphamide (CYP)–induced cystitis model of bladder pain in mice.

A major challenge in applying optogenetics to studies of viscera is achieving robust and consistent light deliv-
ery to the end organ in awake and behaving animals. Recent advances in wireless optoelectronics have made 
it possible to activate opsins expressed in the brain, spinal cord and peripheral neurons in freely moving ani-
mals28–30. Here, we have developed ultra-miniaturized, optoelectronic devices that contain micro-scale light 
emitting diodes (µ-ILEDs) capable of wireless operation through near field communication (NFC) hardware. 
This device is designed to illuminate bladder afferents (or other visceral structures) of freely moving mice. In this 
study, we utilize these new devices to investigate whether optical silencing of nociceptive bladder sensory neu-
rons can attenuate ongoing pain and referred visceral hyperalgesia associated with development of CYP-induced 
cystitis in freely moving animals.

Results
Immunohistochemical and electrophysiological characterization of SNS-Arch expressing 
bladder sensory afferents. We expressed Arch-GFP in nociceptive bladder afferents using the SNS-Cre 
BAC transgenic mouse line, which expresses Cre under the regulation of Scn10a (Nav1.8) promoter elements31. 
To determine the distribution of SNS-Arch-GFP+ in bladder projecting DRG neurons, we injected retrograde 
tracer cholera toxin subunit B (CTB) into the bladder wall of SNS-Arch mice. Seven days after CTB injection, 
dorsal root ganglia (DRG) at L6-S1 levels exhibited numerous CTB+ neurons (Fig. 1A–C). Quantitative analy-
sis revealed that 75.2 ± 5.2% of CTB+ bladder projecting DRG neurons co-label with Arch-GFP. Amongst the 

Figure 2. Arch activation in bladder sensory neurons decreased neuronal excitability. (A) Example of a 
patched neuron (21 μm diameter); green fluorescence indicates Arch-GFP expression, red fluorescence is DiI 
labeling, indicating that the neuron projects to the bladder wall and expressed Arch (yellow); scale bar = 20 μm. 
(B) Representative voltage clamp recording showing photocurrent elicited by 1-second green light (530 nm) 
stimulation at 10 mw/mm2. (C) Quantification of the percentage of cells that showed action potential firing to 
a ramp current to 1x rheobase before (OFF) and during (ON) green light illumination. Optical illumination of 
bladder projecting SNS-Arch neurons resulted in complete blockade of action potential firing at 1x rheobase. 
(D) Representative traces of action potentials elicited in SNS-Arch-GFP-expressing neurons by ramp current 
injections of 1 to 4 times rheobase without (grey) and with (green) LED illumination. ***p = 0.001. n = 7 
neurons from 4 mice; Paired t test. Error bars indicate SEM.
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CTB+ bladder-projecting DRG neurons that express SNS-Arch-GFP, 42 ± 10.9% are NF200-positive (Fig. 1A), 
41 ± 0.1% are CGRP-positive (Fig. 1B) and 15 ± 5.3% are IB4-positive (Fig. 1C). Whole mount staining of the 
bladder wall of SNS-Arch mice showed that Arch-GFP-positive fibers co-label with the neuronal marker β3-tubu-
lin, suggesting that Arch-GFP is effectively transported to afferent endings in the bladder (Fig. 1D).

We performed whole-cell patch clamp electrophysiology recordings on cultured DRG neurons from 
SNS-Arch mice to verify functional expression of Arch in nociceptive bladder sensory afferents. We identified 
bladder-projecting DRG neurons using the retrograde dye, DiI, injected into the bladder wall and then recorded 
from bladder-projecting (DiI+, red) and Arch-GFP+ (green) cell bodies (Fig. 2A). In voltage clamp, illumination 
of Arch-GFP-expressing bladder projecting neurons with green light (530 nm) induced robust outward currents 
(Fig. 2B). This current was sufficient to suppress action potential firing in response to ramp current injections in 
all neurons tested (Fig. 2C,D; ***p = 0.001. n = 7 neurons from 4 mice; Paired t test).

Optogenetic inhibition of bladder sensory afferent terminals attenuates distension-induced 
nociception and voiding behavior. We next tested if inhibition of nociceptive bladder sensory affer-
ents could attenuate bladder nociception in response to distension. Bladder nociception was assessed from the 
abdominal muscles by electromyogram (EMG) recordings evoked by bladder distention (10–60 mmHg distention 
in 10 mmHg steps, as we have described previously32,33). This EMG response is called the visceromotor response 
(VMR) and is a validated approach to measuring bladder distension-induced nociception in rodents32,34,35. Effects 
of light-dependent inhibition of nociceptive bladder afferents on bladder nociception were tested by inserting a 
fiber optic cable via a “Y” tube that enabled delivery of compressed air to distend the bladder and light to illumi-
nate the lumen of the bladder (Fig. 3A). In control mice, transurethral illumination with green light had no effect 
on the evoked VMR to bladder distention (Fig. 3B,D). However, in SNS-Arch mice, transurethral illumination 
suppressed the distension-induced VMR compared to pre-illumination baseline VMR (Fig. 3C,E, p < 0.05. n = 12 
mice per group; two-way ANOVA). These results suggest that optogenetic inhibition of nociceptive bladder sen-
sory afferents can attenuate bladder distension evoked nociception.

We tested whether optogenetic inhibition of bladder sensory afferents influences urodynamics by performing 
cystometric analysis of bladder function before and during laser illumination of the bladder (Fig. 4A). In anes-
thetized wild type and SNS-Arch mice, illumination of bladder afferents with green light did not significantly 
alter maximum pressure, baseline pressure or threshold pressure (Fig. 4B,C). However, we did observe a slight 

Figure 3. Optical silencing of nociceptive bladder afferents attenuates bladder nociception. (A) Schematic 
illustrating bladder distention (VMR) setup to optically silence bladder afferents. (B & C) Transurethral fiber optic 
delivery of green light to the bladder lumen to induce optical silencing of bladder afferents significantly attenuated 
the evoked response to 50 and 60 mmHg bladder distention compared with baseline (pre-laser) responses in 
SNS-Arch mice (**p < 0.05. n = 12; F (1, 110) = 11.31), but had no effect in wild type mice (p > 0.05. n = 12; F (1, 
110) = 0.7119). (D & E) Representative images of raw EMG traces from wild type and SNS-Arch mice during 30 
and 60 mmHg bladder distention taken before (baseline) and during (laser) green light illumination. **p < 0.05. 
n = 12 mice per group; F (1, 110) = 11.31, Two-way ANOVA. Error bars indicate SEM. Illustration created by Janet 
Sinn-Hanlon, The DesignGroup@VetMed, University of Illinois at Urbana-Champaign.
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(10.96%), yet statistically significant increase in the intercontraction interval (ICI) during laser illumination of the 
bladder in SNS-Arch mice compared to baseline, an effect that was absent in control mice (Fig. 4 B,C; *p = 0.008, 
n = 7–8 mice per group; Paired t test).

Figure 4. Effect of Arch induced inhibition of nociceptive on cystometric function. (A) Schematic illustrating 
cystometry setup using fiber optic to activate Arch in bladder sensory neurons. (B) Example cystometric traces 
recorded from wild type (top) and SNS-Arch mice (bottom). Scale bars are 10 seconds and 100 cmH20. (C) 
Quantification of peak pressure (PP), base pressure (BP), threshold pressure (TP) and intercontraction interval 
(IC) of wild type and SNS-Arch mice before and during laser illumination of bladder. ICI was significantly 
increased during laser illumination in SNS-Arch but not in wild type mice. *p = 0.008. n = 7-8 mice per group; 
Paired t test. Error bars indicate SEM. Illustration created by Janet Sinn-Hanlon, The DesignGroup@VetMed, 
University of Illinois at Urbana-Champaign.
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Figure 5. Flexible wireless optoelectronic device designed for optogenetic modulation of bladder afferent 
neurons. (A) Schematic illustration of the layered conformation of optoelectronic device. (B) Image of a micro-
fabricated device adjacent to a 200 g capsules for the size comparison. (C) Demonstration of the flexibility of 
a functioning device with a forceps. (D) Image of wireless operation of optoelectronic devices in the V-maze 
with the double loop antennas. (E) Measurement of the normalized output power distribution of nine devices 
at heights of 2.5, 5, and 7.5 cm from the bottom of the cage demonstrating uniform power distribution of across 
the cage. (F) Thermal modeling and management of a μ-ILED device versus time at different peak output 
powers (20, 50, and 100 mW/mm2) demonstrating a maximum of 1 degree change at maximum light output 
of 100 mw/mm2. (G) Mice with wireless optoelectronic devices implanted over the bladder. (H) Implantation 
of the bladder optoelectronic device did not effect on motor behavior vs. sham animals in the rotarod test 
(P = 0.12, F4,4 = 1.118, t1,8 = 1.407 n = 8 sham, n = 8 device). (I) Mice with bladder implants did not exhibit 
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Development of a wireless optoelectronic device to enable optogenetic manipulation of blad-
der afferents in awake, freely moving animals. While the results above suggest that silencing noci-
ceptive bladder afferents could affect bladder nociception and function, it is possible that the anesthetics used 
in these studies could interfere with nociceptive processing. Currently, we lack technology to optically activate 
opsins expressed in the bladder afferents and determine their necessity in mediating bladder pain in awake, freely 
moving animals. We overcame this barrier by adapting technology that we have recently developed28,30, to fabri-
cate a flexible optoelectronic device to specifically target light to the lower abdomen. These devices are powered 
by near field communication (NFC) technology to achieve robust wireless functionality for chronic applications 
and for use in a wide variety of behavioral arenas (Fig. 5A). These wireless optoelectronic devices consist of a 
conductive metal pattern (18 μm thickness copper foil), semiconducting components (μ-ILED/mounted chips), 
with an encapsulation bilayer of polyisobutylene (PIB, 5 μm) and polydimethylsiloxane (PDMS, 500 μm). The 
electrical system incorporates a rectangular coil (width: 8 mm, length: 8 mm, copper traces: 7 turns with 70 um 
width and 30 um adjacent spacing) with surface mounted chips for power transfer via magnetic control to a 
loop antenna operating at 13.56 MHz. The overall dimensions of the device are 1 cm × 1 cm × 1 mm (l × w × 
t. Figure 5B), which is depicted next to 200 mg capsules. An image of the device bent with forceps (Fig. 5C) 
demonstrates the device flexibility and functionality in the bent conformation which enables interfacing with the 
abdominal wall. The thin-film PIB provides a protective barrier against moisture to allow for long-term use in a 
dynamic cage environment36. This PIB barrier allowed for 100% of the devices to function for at least 4 weeks after 
implantation in the animal, with more than 50% of devices remaining functional after 6 months and some devices 
still functional at > 9 months after implantation.

These small and flexible optoelectronic devices can be adapted to a wide array of behavioral or home cage 
environments by tuning flexible signal antennas specifically for the dimensions of the behavioral or home cage 
environment. Figure 5D shows an example of the experimental setup for power transmission from antenna to 
optoelectronic devices in a V-maze (experimental data in Fig. 6B and C). The double-loop antenna is installed 
around the perimeter of one arm of the maze; for optimal power output performance, the loop antennae are 
placed 2.5 cm and 7.5 cm from the bottom of the cage. The spatial uniformity of power is demonstrated by equal 
illumination of twelve optoelectronic devices placed at different locations in a V-maze cage (Fig. 5D). This 
antenna configuration also allows for uniform μ-ILED illumination on the vertical dimension as well, which is 
important for maintaining consistent illumination during mouse rearing (Fig. 5E). The output power is normal-
ized by its value at the center of double loop antenna at 5 cm and provides evidence that deviation of output power 
from the double loop antenna is less than 20%. This result indicates that the position of the double-loop antennas 
allows for a uniform magnetic field within the cage. This powering scheme allows for consistent and uniform 
illumination of implanted µ-ILEDs, which is critically important to reduce variability in light delivery during 
optogenetic experiments. A limitation of this powering scheme is a loss of power when the device is angled more 
than 45 degrees30. To avoid any issues with reduced efficiency of powering, we ensured that mice were not rearing 
when we tested mechanical sensitivity.

We also determined the heat generation under operation conditions by measuring the temperature at the sur-
face of the device, in the mouse as a function of time, at peak output powers of 20 mW/mm2, 50 mW/mm2, and 
100 mW/mm2. Measured values show good agreement with the thermal modeling, as shown in Fig. 5F (symbols: 
measured values, lines; simulated theoretical values). The temperature approaches ‘steady-state’ after 5 min with 
a temperature increase of only 0.5 °C after 10 min at an output power of 50 mW/mm2. Mice with implanted NFC 
devices over the bladder exhibited no significant difference in locomotor function in the Rotarod test or in the 
open field test compared to sham-operated controls, suggesting that these devices do not impair motor behavior 
or coordination in freely moving animals (Fig. 5G–I). Additionally, there was no significant difference in distance 
traveled in NFC-on vs a NFC-off chamber in wild type mice. Thus, device implantation and activation has no 
detectable effect on motor behavior.

Wireless optogenetic inhibition of nociceptive bladder sensory afferents reduces pain behav-
iors in a mouse model of bladder pain. Using the implantable optoelectronic devices described above, 
we evaluated the effects of optically inhibiting nociceptive bladder sensory afferents on referred abdominal 
sensitivity in awake, freely moving mice with CYP-induced cystitis. We have previously reported that patients 
with IC/BPS demonstrate referred hyperalgesia to the suprapubic region of the abdomen37. Numerous studies 
have demonstrated that this referred hypersensitivity is reproduced in mouse models of bladder pain, including 
the CYP model32,37–44. As it is not currently possible to induce bladder distension to measure VMR in awake 
(un-anesthetized) freely moving animals, we chose to test whether this referred abdominal hypersensitivity 
induced by CYP could be suppressed by inactivation of nociceptive bladder sensory afferents. SNS-Arch or wild 
type mice were implanted with wireless µ-ILED devices subcutaneously in the abdomen, with the µ-ILED posi-
tioned to illuminate the bladder through the abdominal musculature (Fig. 5G). After baseline assessments of 
cutaneous mechanical sensitivity, measured by application of von Frey filaments to the lower abdomen, mice 
were given a single injection of CYP (200 mg/kg, i.p), which induced robust referred mechanical hyperalgesia 
compared to baseline measurements (Fig. 6A,B) (pre-CYP, Fig. 6A, ****p < 0.0001 comparing naïve to post-CYP, 
n = 11 mice per group, two-way ANOVA). Activation of the optoelectronic devices implanted over the bladder 
had no effect on abdominal sensitivity in either wild type or SNS-Arch mice in the naïve state. However, optical 

significant difference in total distance travelled in open field test compared to sham mice (P = 0.16, two-tailed, 
n = 8 sham, n = 8 device). (K) There is no difference in distance traveled between an NFC-On and NFC-Off 
chamber in wild type mice. (P = 0.8556, two-tailed, n = 12 wild type,).
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inhibition of bladder sensory afferents significantly reduced the abdominal hypersensitivity induced by CYP 
(#p < 0.05, n = 6 mice per group, two-way ANOVA), an effect that is absent in wild type mice (Fig. 6A,B). The 
inhibition of nociceptive sensory afferents in CYP-treated mice reduced abdominal mechanical sensitivity to 
values comparable to that of the baseline sensitivity (pre-CYP).

The results above demonstrate that referred mechanical hyperalgesia (von Frey filament experiments) can be 
reversed by optogenetic inhibition of nociceptive bladder afferents. However, the primary complaint of IC/BPS 
patients is not referred hypersensitivity, but ongoing pain and pain associated with bladder filling37,45. It is diffi-
cult to quantify ongoing pain in animals; in fact, it is not even clear if animals with CYP-induced cystitis exhibit 
ongoing pain. Development of these wireless optoelectronic devices presents us with the opportunity to evaluate 
ongoing, non-evoked visceral pain. We hypothesize that if silencing nociceptive bladder afferents relieves ongo-
ing bladder pain, then this should result in positive reinforcement (reward) on activation of the µ-ILED device. 
We can measure positive reinforcement using a real-time place preference (RTPP) assay, in which animals are 
placed in a V maze, with free access to roam throughout the maze. In one arm of the maze, NFC induces µ-ILED 
device activation (LED ON), while in the other arm, devices are inactive (LED OFF, Fig. 5D). Thus, in the LED 
ON arm, nociceptive bladder afferents (which express Arch) are inhibited, and in the LED OFF arm, they can 
fire action potentials normally. If silencing nociceptive bladder afferents bladder afferents relieves ongoing blad-
der pain, animals should demonstrate a preference for the LED ON arm compared to the LED OFF arm. In the 
naïve state, both wild type and SNS-Arch mice exhibited no preference for either the LED ON or LED OFF arms 
(SNS-Arch LED ON vs LED OFF, p = 0.6606, n = 6 mice per group, two-way ANOVA) (Fig. 6C,E). However, 
after CYP-induced cystitis, SNS-Arch mice showed significant RTPP for the LED ON arm compared to the LED 
OFF arm, whereas wild type mice with CYP-induced cystitis show no preference (SNS-Arch LED ON vs LED 
OFF, ###p = 0.0065, n = 11 mice per group, two-way ANOVA) (Fig. 6D–F). These results suggest that inhibition of 
nociceptive bladder sensory afferents attenuates both ongoing pain and referred abdominal hypersensitivity in a 
mouse model of bladder pain.

Discussion
The cardinal clinical symptoms of IC/BPS include pain upon bladder filling (distention) and inhibiting blad-
der sensory afferents can reduce this pain in many patients. Prior studies have demonstrated that the majority 
of bladder-projecting C-fiber neurons express Nav1.8-mediated Na2+ currents20,46. In addition, C-fiber bladder 
afferents that express Nav1.8 channels are known to exhibit increased excitability in animal models of bladder 
pain, suggesting the importance of these afferents in mediating bladder nociception23,24. We confirmed the 
assumptions made by these original studies23,24 by specifically inhibiting nociceptive bladder afferents with the 
inhibitory channel Arch expressed under the control of the SNS promoter and demonstrated that these fibers play 
a critical role in bladder nociception and a minor role in bladder voiding.

Previous studies have shown that C-fibers are silent during normal bladder distension and can become active 
during bladder injury. Thus, C-fiber activity is thought to contribute to bladder nociception in response to injury 
and have a sparse role in innocuous sensation of the bladder under normal physiological conditions20,46–49. 
Consistent with these reports, we find that inhibition of nociceptive bladder afferents bladder sensory afferents 
significantly attenuates nociception related to bladder injury induced by CYP and has no effect in naïve mice.

Somewhat surprisingly, in our cystometry studies, we found that silencing nociceptive bladder sensory affer-
ents resulted in a small yet significant increase in the ICI in naïve SNS-Arch mice. The first possible explanation 
for this is that the relatively non-physiological, rapid rate of bladder filling in continuous flow cystometry engages 
nociceptive afferents to a small degree and inhibition of these afferents leads to delays in ICI. Alternatively, the 
effect of silencing SNS-Arch+ afferents on bladder function may not be due to Arch expression in small diameter 
nociceptors. SNS-Cre lineage neurons include a majority of C-fibers and also a smaller population of NF200+ 
A-fibers50. Indeed, consistent with a previous study50, we demonstrate that a proportion of bladder-projecting 
SNS-Cre+ neurons co-express NF200 (myelinated sensory neurons). It is possible that these cells include low 
threshold mechanoreceptors, which are known to be involved in the voiding reflex51,52. Thus, this population of 
NF200+ bladder afferents might contribute to the delay in ICI we observe after optically silencing SNS-Arch+ 
bladder afferents.

A limitation of using VMR to measure bladder nociception is that these experiments must be performed in 
lightly anesthetized mice, and the response is evoked with invasive bladder distention. The fully implantable 
wireless NFC-powered µ-ILED devices we developed offer the ability to optically control neural activity in awake 
(un-anesthetized) and freely behaving mice. This allows us to determine the effects of silencing nociceptive blad-
der sensory afferents in both normal and pathological states. Optical silencing of nociceptive bladder afferents 
resulted in attenuation of referred mechanical hypersensitivity induced by CYP, while there were no effects of 
green light in naïve mice. This result suggests that in the context of bladder pain, hyperactivity in the nociceptive 
afferents mediates referred mechanical hypersensitivity. One limitation of this experiment is that we cannot be 
certain whether silencing nociceptive bladder afferents or nociceptive cutaneous afferents resulted in this atten-
uation of referred mechanical hypersensitivity, as light from our devices could also inhibit cutaneous abdominal 
afferents over the device. Nonetheless, these studies demonstrate that nociceptive afferents are critical for the 
mechanical hypersensitivity evoked by the CYP model of bladder pain.

While IC/BPS patients demonstrate referred hypersensitivity, the primary clinical complaint is spontaneous 
pain and pain on bladder filling37,45,53. Reflexive measurements of referred hypersensitivity do not assess whether 
the ongoing bladder pain induced by cystitis is being relieved. It is possible, for example, that silencing nocicep-
tive bladder afferents attenuates mechanical hypersensitivity but does not reduce ongoing pain associated with 
bladder filling. We employed a RTPP paradigm to evaluate whether silencing the nociceptive bladder afferents 
causes relief of spontaneous or ongoing bladder pain. Inhibition of nociceptive bladder afferents produced robust 
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Figure 6. Optical silencing of nociceptive bladder afferents attenuates evoked and ongoing bladder 
nociception. Quantification of abdominal mechanical sensitivity, measured by counting evoked responses to 
a series of von Frey filaments with increasing force before and during CYP-induced cystitis. (A) In wild type 
mice, activation of wireless µ-ILEDs had no significant effect on evoked responses in the naïve state compared to 
their baseline values. CYP (200 mg/kg i.p.) resulted in a significant increase in abdominal sensitivity. Activation 
of the optoelectronic devices implanted over bladder had no effect on abdominal sensitivity after cystitis 
(****p < 0.0001 comparing naïve to post-CYP, F (3, 90) = 76.31, n = 11 mice per group, two-way ANOVA). 
(B) In SNS-Arch mice, activation of wireless µ-ILEDs had no significant effect on evoked responses in the 
naïve state compared to their baseline values. After cystitis induction, optical inhibition of nociceptive sensory 
afferents significantly attenuated the abdominal hypersensitivity to values comparable to that of the baseline 
sensitivity recorded before CYP treatment (#p < 0.05,***p = 0.0006, F (3, 30) = 7.596; ****p < 0.0001, F (3, 
90) = 67.17, n = 11 mice per group, two-way ANOVA). (C and D) Representative heat maps displaying time 
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RTPP in mice with cystitis, but not in uninjured mice without any cystitis. This result suggests that CYP-induced 
cystitis indeed induces ongoing pain, and that relief of this ongoing pain is analgesic and rewarding as evident 
by robust RTPP. To our knowledge this is the first demonstration of optogenetic inhibition of primary afferent 
neurons reducing spontaneous or ongoing bladder pain, or pain of any origin.

Combining cell type specific optogenetic inhibitory opsins with fully implantable wireless µ-ILEDs offers 
insights into the potential application of optogenetic neuromodulation to the treatment of pathological pain. To 
achieve clinical translatability of optogenetics, several obstacles remain, including the development of viral gene 
therapy vectors that are safe and effective for use in humans. It is vital to develop a robust vector that can effi-
ciently target a large number of bladder afferents, but at the same time achieve cell type-specific targeting, as this 
could help reduce unwanted side effects. However, assessment of potential toxicities associated with long-term 
expression of opsins in neurons will be critical. Additionally, chronic studies are needed to determine what 
effects long-term optogenetic inhibition has on sensory neurons and if these opsins would remain effective over 
extended use. Promising advances have been made in gene therapy by targeting neurons using viral vectors, but 
much work must be done to advance this to the clinical arena. Combining any of these gene therapy approaches 
that prove to be safe with real-time control of neural dynamics with closed-loop optoelectronic systems54–57 could 
lead to the development of future therapies for bladder pain and/or voiding dysfunction. While the µ-ILED tech-
nology demonstrated here would need additional modifications to meet the requirements of the clinical setting 
(thicker tissue and different powering schemes), the present results provide a proof of concept and suggest that 
optogenetic silencing of nociceptive bladder afferents could be an effective approach to alleviate pain associated 
with IC/BPS.

Materials and Methods
Animals and genetic strategy. All experiments were performed in accordance with the National Institute 
of Health guidelines and received the approval of the Animal Care and Use Committee of Washington University 
School of Medicine. Adult mice (8–12 weeks of age) were used for this study. Mice were housed in the animal 
facilities of the Washington University School of Medicine on a 12 h light/dark cycle, with ad libitum access to 
food and water. Experiments were performed on male heterozygous SNS-Cre mice31 crossed to female homozy-
gous Gt(ROSA)26Sortm35.1(CAG-aop3/GFP)Hze (Ai35) mice from Jackson Laboratory carrying floxed stop-Arch-GFP 
gene in the Gt(ROSA)26Sor locus58 to generate the SNS-Arch mouse line. The SNS-Cre mice are a BAC trans-
genic line, where the endogenous Nav1.8 locus is not altered. While these mice are known to express Cre in 
all Nav1.8+ neurons, not all Cre-expressing cells express Nav1.8 in adult mice50,59,60. These mice express Cre in 
majority of nociceptive C-fibers and also a smaller population of A-fibers50. We used wildtype C57BL/6Jmice in 
our study to control for effects of the LED implants or light/illumination in each experiment. We are not directly 
comparing Bl6/C57 animals to the SNS-Arch mice. All animals are used as their own controls, comparing the 
effects before and during light/illumination.

Immunohistochemistry. Immunohistochemistry was performed using the same methods as Park  
et al.28. Briefly, DRG tissue was collected 7 days after Cholera Toxin Subunit B Alexa Fluor® 555 (Thermo Fischer 
Scientific, C22843) injection. Tissues were fixed with 4% PFA and then embedded with O.C.T. Compound 
(Tissue-Tek, 4583) for sectioning. Tissues were washed in PBS and incubated in blocking solution (10% normal 
goat serum/0.1% Triton-X/1x PBS) for 1 hour at room temperature. Primary antibodies (1:200 Mouse anti-CGRP, 
Sigma C7113; 1:200 Mouse anti-NF200, Sigma N0142; 1:1000 Rabbit anti-GFP, Thermo Fischer A11122), or IB4 
(1:100, IB4 Alexa Fluor 647, Thermo Fischer I32450) were diluted in blocking solution and incubated on the sec-
tions overnight. Slides were washed 3x for 10 min each with PBS and incubated with secondary antibodies diluted 
in blocking solution for 1 hour at room temperature (1:1000 Goat anti-mouse IgG Alexa Fluor 647, Thermo 
Fischer A-21235; 1:1000 Goat anti-rabbit IgG Alexa Fluor 488, Thermo Fischer A11008). Slides were washed 
3x for 10 min each with PBS, and allowed to dry before mounting coverslips (Vectashield Hard Set, H-1400). 
Samples were imaged using a Leica TCS SP5 confocal microscope. For more detailed methods see supplementary 
methods.

Dorsal root ganglion (DRG) culture and whole-cell electrophysiology. DRG culture and whole 
cell recordings were performed as in Park et al.28. Briefly, DRG neurons were dissociated from mice 7 days after 
DiI (ThermoFisher) injection. Neurons were recorded and optically stimulated with an EPC10 amplifier (HEKA 
Instruments) and Patchmaster software (HEKA Instruments). Optical stimulation was delivered through the 
microscope objective, using a custom set-up with a green (530 nm) LED (M530L3; Thorlabs). Light intensity of 
the LED at the focal plane was 10 mW/mm2. For more detailed methods see supplementary methods.

Visceromotor reflex behavior. The visceromotor reflex (VMR) in female mice was quantified using 
abdominal electromyograph (EMG) responses. The VMR is a reliable behavioral index of visceral nocicep-
tion in rodents and was performed as previously described34,35,61–63. Briefly, mice were anesthetized with iso-
flurane (2% in oxygen) and silver wire electrodes were placed in the oblique abdominal muscle. A lubricated, 

spent each zone of the custom V-maze in naïve (C) and cystitis (D) mice. Red indicates areas where the animals 
spend a higher proportion of their time. (E) In naïve conditions (pre-CYP), both wild type and SNS-Arch mice 
did not exhibit any preference for either LED-ON or LED-OFF chamber (F1,8 = 0.21, p = 0.6606, n = 6 mice per 
group, two-way ANOVA). (F) After cystitis induction, SNS-Arch mice showed significant RTPP to the LED-ON 
arm compared to the LED-OFF arm, whereas wild type mice have no preference (F1,18 = 9.47, ###p = 0.0065, 
n = 11 mice per group, two-way ANOVA). Error bars indicate SEM.
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24-gauge angiocatheter was passed into the bladder via the urethra for urinary bladder distension (UBD). After 
surgical preparation, isoflurane was reduced to ∼1% until a flexion reflex response was present (evoked by 
pinching the paw), but righting reflex was absent. Phasic UBD consisted of graded distensions at pressures of 
10–60 mmHg. Baseline EMG activity was subtracted from EMG during UBD, rectified, and integrated to obtain 
distension-evoked EMG responses. Distension-evoked EMG is presented as area under the curve. Experimenter 
was blinded to mouse genotype. For more detailed methods see supplementary methods.

Cystometry. Mice (6.5–11 weeks old) were first anesthetized with isofluorane (2%), then a midline incision 
was used to expose the bladder dome. Isoflurane was used to replicate the anesthesia levels used to record the 
VMR. A 25-gauge butterfly needle was used to puncture the dome of the bladder and warm mineral oil placed on 
the exposed bladder to prevent tissue drying. After the catheter was placed, anesthesia was lowered to 1.5% for 
1 hour. Then over 30–40 minutes, the anesthesia was slowly reduced to ~0.8%. At this point, bladders were filled 
at 0.04 ml/min with room-temperature water or saline (no differences observed between fluids; data not shown) 
using a syringe pump to evoke a regular voiding pattern. Intravesicular pressure was measured using a pressure 
transducer amplified by a Transbridge transducer amplifier (WPI) and recorded using WINDAQ data acquisi-
tion software (DataQ Instruments) at a sampling rate of 5 Hz. After a regular voiding pattern was established, a 
ten-minute baseline was collected followed by laser illumination (described below) for at least ten minutes and a 
ten-minute recovery period. The laser was always turned on at the end of a contraction and then off at the end of 
a contraction resulting in some trials that were greater than ten-minutes. These trials were completed in duplicate 
for each animal and parameters were averaged. Data were analyzed using a Matlab (Mathworks) script to deter-
mine base pressure (BP), threshold pressure (TP), maximum pressure (MP) and intercontraction interval (ICI) 
(terminology conformed to64). All data files were blinded so analysis could occur in an unbiased manner.

Photoinhibition of VMR and Cystometry. Optical inhibition of VMR was performed using a 532 nm, 
200 mW diode-pumped solid-state (DPSS) laser. In visceromotor reflex studies, a fiber optic (200 µm diameter 
core; BFH48–200-Multimode, NA 0.48; Thorlabs) was coupled to the laser and connected to the transurethral 
catheter via a Y-shaped connector. The fiber tip was positioned 0.1 mm beyond the tip of the catheter in the 
bladder lumen. Photoinhibition was performed at 10 mW/mm2 constant illumination. For cystometry, photoin-
hibition was performed with the same fiber optic positioned above the exposed bladder dome instead of transure-
thrally and at 30 mW/mm2 constant illumination.

NFC device fabrication. Micro-fabrication of the soft, flexible wireless optoelectronic devices started 
with a spin-cast poly(dimethylsiloxane) (PDMS, Sylgard 184) at 600 RPM × 60 sec on a clean glass slide 
(75 × 50 × 1 mm, L × W × thickness), followed by curing at 150 °C × 10 min. Next, an 8% by weight solution of 
polyisobutylene (PIB, BASF) in heptane was applied to freshly cured PDMS by spin-casting at 1000 RPM × 60 sec 
followed by a 3 min bake at 100 °C. Then copper foil (18 μm thickness) was placed on the newly formed polymer 
substrate. Photolithography (AZ 4620, AZ Electronic Materials) and copper etching was then used to define the 
conducting pattern. Next, the electronic components (μ-ILED (TR2227, 540 nm, Cree Inc. Raleigh, NC), recti-
fier (CBDQR0130L-HF, Comchip Technology, Freemont, CA), and 136 pF capacitor (GRM1555C1H680JA01J, 
Murata electronics, Japan)) were placed onto the copper pattern using conductive paste. Then a second layer of 
polyisobutylene was added to the device, followed by another PDMS layer, using the same conditions described 
above.

Implantation of wireless NFC device. The NFC optoelectronic devices were used to activate Arch in 
freely moving mice. Under isoflurane anesthesia, a small incision was made in the abdominal skin and the device 
was implanted subcutaneously between the skin and muscle, positioned to illuminate the lower abdomen and 
bladder. The incision was then closed using surgical staples. The animals were allowed to recover for at least 4 days 
before behavioral experiments were performed.

Cyclophosphamide (CYP) induced cystitis. Cyclophosphamide (CYP) was used to induce bladder 
inflammation and visceral pain. Bladder cystitis was initiated by a single injection of CYP (200 mg/kg; i.p; Sigma, 
St. Louis) dissolved in saline. Behavioral assays were performed before (baseline), 4 and 24 hours after CYP 
injection.

Abdominal mechanical sensitivity. Abdominal sensitivity was measured by counting the number of 
withdrawal responses to 10 applications of von Frey filaments (North Coast Medical, Inc, Gilroy, CA; 0.02, 0.08, 
0.32 and 1.28 g) to the lower abdomen. Each mouse was allowed at least 15 seconds between each application and 
at least 5 minutes between each size filament. Animals were acclimated to individual boxes on a plastic screen 
mesh for at least one hour before testing. All experimenters were blinded to mouse genotype and treatment. NFC 
devices were activated by an antenna wrapped around the individual cage, prior to the experiment the antenna 
was tested to insure full NFC coverage of the cage. NFC antenna power and signal were generated by Neurolux 
hardware and software (Neurolux, Urbana, IL).

Real-time place preference (RTPP). Place preference was tested in a custom made V-maze constructed of 
plexiglass with a layer of corn cob bedding. Each arm of the two-arm V maze is 10 cm wide × 30 cm long × 10 cm 
height neutral area between arms. To generate the NFC signal, one arm of the maze was covered with an 
NFC-emitting antenna (Neurolux, Urbana, IL) allowing for the control of µ-ILED devices throughout one arm of 
the maze. To begin the experimental protocol, a mouse was placed in the neutral area of the maze and was contin-
uously monitored and recorded through a video connection for 20 min. Ethovision software (Noldus, Leesburg, 
VA.) was used to determine time-in-chamber and generate representative heat maps for each condition.
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Statistics. Results are expressed as means ± SEM. Mann-Whiney test was used to compare the percentage 
suppression of action potentials and cytometric parameters. To analyze VMR and mechanical sensitivity data, 
two-way ANOVA with repeated measures was used. Bonferroni’s post hoc tests were used (when significant main 
effects were found) to compare effects of variables (genotype, treatment). A value of p < 0.05 was considered sta-
tistically significant for all statistical comparisons. Researchers were blinded to all experimental conditions. Two 
replicate measurements were performed and averaged in all behavioral assays.

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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