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Lipid droplets (LD) are dynamic organelles involved in intra-
cellular lipid metabolism in almost all eukaryotic cells, and LD-
associated proteins tightly regulate their dynamics. One LD coat
protein is caveolin-1 (Cav-1), an essential component for
caveola assembly in highly differentiated cells, including adi-
pocytes, smooth muscle cells, and endothelial cells (EC). How-
ever, the role of Cav-1 in LD dynamics is unclear. Here we report
that EC lacking Cav-1 exhibit impaired LD formation. The
decreased LD formation is due to enhanced lipolysis and not
caused by reduced triglyceride synthesis or fatty acid uptake.
Mechanistically, the absence of Cav-1 increased cAMP/PKA
signaling in EC, as indicated by elevated phosphorylation of hor-
mone-sensitive lipase and increased lipolysis. Unexpectedly, we
also observed enhanced autocrine production of prostaglandin
I2 (PGI2, also called prostacyclin) in Cav-1 KO EC, and this PGI2
increase appeared to stimulate cAMP/PKA pathways, contrib-
uting to the enhanced lipolysis in Cav-1 KO cells. Our results
reveal an unanticipated role of Cav-1 in regulating lipolysis in
non-adipose tissue, indicating that Cav-1 is required for LD
metabolism in EC and that it regulates cAMP-dependent lipol-
ysis in part via the autocrine production of PGI2.

Caveolae are well-characterized lipid raft microdomains
with 60- 100-nm, flask-shaped invagination structure found in
highly differentiated cell types, including endothelial cells
(EC),2 adipocytes, smooth muscle cells, and fibroblasts (1).

Caveolins, including caveolin-1 (Cav-1), Cav-2, and Cav-3, are
the major coat proteins driving caveola biogenesis (2). Among
these isoforms, Cav-1 is necessary for caveola assembly in EC
and adipocytes because blood vessels and adipose tissue iso-
lated from Cav-1– deficient mice exhibit complete loss of cave-
olae (3, 4). Caveolae have been implicated in many cellular pro-
cesses, including cholesterol homeostasis, endocytosis, signal
transduction, mechanosensing, and lipid metabolism (2). Phys-
iologically, mice lacking Cav-1 are lean and exhibit lipodystro-
phy with elevated plasma triglyceride (TG) and cholesterol lev-
els (5). Breeding of Cav-1– deficient mice to atherosclerotic
mice markedly reduces the extent of atherosclerosis and
reduces the infiltration of LDLs into the artery wall in the face of
elevated plasma lipids (6, 7). Importantly, reintroducing Cav-1
only into EC reverses these phenotypes, showing the signifi-
cance of Cav-1 in EC during atherogenesis (7). These results
suggest a potential role of Cav-1 in regulating endothelial lipid
metabolism, although it has not been investigated in significant
detail.

Lipid droplets (LD) are phospholipid monolayer spheres that
function as intracellular sites for neutral lipid storage. LD are
prominently expressed in energy-storing cell types such as adi-
pocytes and hepatocytes; however, almost all eukaryotic cells
are capable of forming and metabolizing LD (8). LD dynamics
are regulated by the recruitment of key molecules promoting
fatty acid storage and metabolism. For instance, diglyceride
acyltransferase 2 (DGAT2), the rate-limiting enzyme catalyzing
TG synthesis, translocates to the surface of LD and promotes
TG storage into cytosolic LD (9). CTP:phosphocholine cytidyl-
transferase, a key enzyme of phospholipid synthesis, is also
found on the surface of LD and can regulate LD size (10). Nota-
bly, Cav-1 has been localized to LD in several cell types (11–13),
and in adipocytes, Cav-1 can regulate LD homeostasis in a per-
ilipin (PLN)-dependent (14) and a lipid-induced mechanosen-
sitive manner (15). However, it is still not fully understood how
Cav-1 regulates LD dynamics, particularly in non-adipose tis-
sue such as EC.

Our recent work demonstrated that EC exhibit the machin-
ery to form LD and that these LD are coated with Cav-1 (16). In
this study, we report that the loss of Cav-1 in EC reduces the
number and TG content of LD and that this is due to enhanced
ATGL-dependent lipolysis but not reduced TG synthesis or FA

This work was supported by National Institutes of Health Grants R01 HL64793,
R01 HL61371, and P01 HL1070295; a MERIT award from the American Heart
Association and the Leducq Fondation (MIRVAD Network) (to W. C. S.), and
National Institutes of Health Grant R01 HL118639 (to R. W. G.). The authors
declare that they have no conflicts of interest with the contents of this
article. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

1 To whom correspondence should be addressed: Vascular Biology and
Therapeutics Program, Yale University School of Medicine, 10 Amistad St.,
New Haven, CT 06520. Tel.: 203-737-2291; Fax: 203-737-2290; E-mail:
william.sessa@yale.edu.

2 The abbreviations used are: EC, endothelial cell(s); TG, triglyceride(s); LD,
lipid droplet(s); PLN, perilipin; ATGL, adipocyte triglyceride lipase; PGI2,
prostaglandin I2; OA, oleic acid; DGAT, diglyceride acyltransferase; DAG,
diacylglycerol; AC, adenylate cyclase; FSK, forskolin; HSL, hormone-sensi-
tive lipase; Indo, indomethacin; CREB, cAMP-response element-binding
protein; AA, arachidonic acid; ANOVA, analysis of variance; FA, fatty acid(s);
eNOS, endothelial NOS.

croARTICLE

J. Biol. Chem. (2018) 293(3) 973–983 973
Published in the U.S.A.

 at W
ashington U

niversity on M
arch 3, 2018

http://w
w

w
.jbc.org/

D
ow

nloaded from
 



uptake. Mechanistically, the loss of Cav-1 increases cAMP/
PKA signaling in EC, potentially because of the autocrine pro-
duction of PGI2. Consequently, our results document an unan-
ticipated role of Cav-1 in regulating lipolysis in EC.

Results

Endothelial Cav-1 is an LD-associated protein and necessary
for LD formation

Cav-1 is present in isolated LD from endothelial cells (16). To
study the functional role of endothelial Cav-1 in LD formation,
aortae were isolated from mice with the genotypes WT
(C57Bl6), Cav-1�/� (congenic C57Bl6 background), and Cav-
1�/� reconstituted with endothelial Cav-1 transgenically (Cav-
1Rec, congenic C57Bl6 background) (7) and incubated with
oleic acid (OA) for en face analysis of LD formation as described
previously (16). Cav-1�/� aortae showed reduced LD accumu-
lation in EC, and this defect was rescued in Cav-1Rec aortae (Fig.
1A, quantified in Fig. 1B). These experiments were comple-
mented in murine lung EC isolated from WT, Cav-1�/� (Cav-1

KO), and Cav-1Rec (Cav-1 RC) mice (17, 18), where loss of
Cav-1 impaired LD formation (Fig. 1C; triglycerides quantified
in Fig. 1D). These results suggest that Cav-1 is critical for LD
formation in EC.

Cav-1 does not affect fatty acid uptake or TG synthesis in EC

A previous study in mouse embryonic fibroblasts demon-
strated that Cav-1 regulates FA uptake via the levels of the fatty
acid transporter CD36 (19). Therefore, we tested whether
Cav-1 regulates LD formation by mediating FA uptake and
CD36 levels in EC. The loss of Cav-1 had no effect on the time-
dependent uptake of [14C]oleate into EC (Fig. 2A). Immuno-
blotting of CD36 and FATP4, a major long-chain FA trans-
porter in EC, showed comparable abundance among the
genotypes (Fig. 2B), implying that endothelial Cav-1 regulates
LD formation without affecting the FA uptake or expression of
these FA transporters.

Next we tested whether Cav-1 influenced TG synthesis,
thereby regulating LD formation. DGAT activity was measured

Figure 1. Cav-1 is necessary for LD metabolism and TG content in EC. A, thoracic aortae from WT, Cav-1�/�, and Cav-1Rec mice were prepared en face and
immunostained with PECAM-1 (red). LD were detected with BODIPY 493/503 (green) and nuclei by DAPI (blue). Representative z-stack confocal images show
that LD formation was reduced in Cav-1�/� aortae and recovered in Cav-1Rec aortae. B, quantification of BODIPY intensities from images in A. A.U., arbitrary
units. C, EC isolated from WT, Cav-1 KO, and Cav-1 RC mice were incubated with OA (1 mM) overnight. LD were counterstained in green (BODIPY 493/503) and
nuclei in blue (DAPI). Representative images show that LD formation was impaired in Cav-1 KO EC compared with WT and Cav-1 RC. D, quantification of TG
content from the samples in C. Scale bar in en face aortic samples � 50 �m. Scale bar in cultured EC samples � 25 �m. Data are expressed as mean � S.E. (n �
3 to 4) for B and D. Statistical analysis was determined by unpaired t test. *, p � 0.05; N.S., non-significant.
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using [14C]oleoyl-CoA and diacylglycerol (DAG) as co-sub-
strates for TG synthesis, and the formation of radioactive TG
was assessed by TLC. As seen in Fig. 3, A and B, the formation of
TG was similar among the three cell types, as was the DAG
dependence of the TG formation (Fig. 3, C and D). Additionally,
analysis of the content of fatty acyl species in TG by mass spec-
trometry showed that Cav-1 KO EC had decreased content of
all fatty acyl species measured in TG before and after OA treat-
ment (Fig. 4A). Although Cav-1 KO EC exhibited slight differ-
ences in the percentage of C16.0 and C20.4 FA of TG when
cultured with basal medium, the fatty acyl composition of TG
was similar to WT and Cav-1 RC EC after OA treatment (Fig.
4B), indicating that the nature of the fatty acids in TG is not
affected in the absence of Cav-1.

Lipolysis is augmented in the absence of Cav-1

Next we assessed whether the loss of Cav-1 influenced TG
lipolysis. EC were loaded with OA, followed by removal of the
fatty acid, and the time-dependent release of fatty acid and glyc-
erol into the medium was examined. Indeed, Cav-1 KO EC
released more FA and glycerol over time than WT EC, and the
effect in Cav-1 KO EC was normalized in Cav-1 RC cells (Fig. 5,
A and B). The increased metabolism of TG was supported by
direct measurement of lipase activity, where Cav-1 KO EC had
higher activity that was blunted by the adipocyte triglyceride
lipase (ATGL) inhibitor Atglistatin (Fig. 5C). Finally, inhibiting
ATGL during OA treatment resulted in normalized TG accu-
mulation in all three types of EC (Fig. 5D) as well as the presence
of LD via imaging (Fig. 5E), suggesting that loss of Cav-1 in EC
enhanced lipolysis and consequently led to reduced LD
formation.

Cav-1 negatively regulates lipolysis in a cAMP-PKA–
dependent mechanism

In adipocytes, lipolysis can be induced by agonists that cou-
ple via the G protein � subunit Gs to adenylate cyclase (AC)
activating the cAMP-mediated PKA pathway. To examine
whether Cav-1 influenced the cAMP-PKA pathway in EC,
intracellular cAMP levels were measured during OA loading.
As seen in Fig. 6A, Cav-1 KO cells exhibited higher basal and
OA-loaded cAMP levels compared with WT or Cav-1 RC EC.
Examination of PKA-mediated substrate phosphorylation with
a PKA substrate motif (RRXS*/T*) antibody indicated elevated
levels of PKA phosphorylation of multiple proteins upon OA

incubation in Cav-1 KO EC (Fig. 6B). Next, we assessed forsko-
lin (FSK) activation of AC and the phosphorylation of PKA
substrates in EC. FSK induced the phosphorylation of CREB-1
at Ser-133 and eNOS at Ser-635 to a greater extent in Cav-1 KO
EC (Fig. 6C; quantified in Fig. 6, D and E) compared with WT
and Cav-1 RC cells, implying that endogenous Cav-1 negatively
regulated AC-PKA signaling in EC.

To determine whether the elevated cAMP/PKA signaling
pathway regulated lipolysis in EC, PKA-mediated phosphory-
lation of hormone-sensitive lipase (HSL on Ser-563) (20, 21), a
known regulator of lipolytic flux, was examined. EC were
loaded with OA overnight, followed by stimulation with FSK
for 0 –30 min. OA loading increased basal HSL and CREB-1
phosphorylation, and treatment with FSK increased phosphor-
ylation further in Cav-1 KO EC compared with WT and Cav-1
RC EC (Fig. 7A; quantified in Fig. 7, B and C). The increase in
PKA activity was not due to changes in levels of PKA subunits,
including catalytic PKAC� and regulatory RI �/� subunits (Fig.
7A). Next, FSK-mediated lipolysis (measured as glycerol
release) in OA-loaded cells was measured. The loss of Cav-1 KO
EC increased FSK-stimulated glycerol release (Fig. 7D), an
effect attenuated by inhibition of PKA with H-89 (Fig. 7E). Sim-
ilarly, H-89 treatment during OA treatment also increased TG
accumulation in Cav-1 KO EC to a greater extent than in WT
and Cav-1 RC (Fig. 7, F and G). Taken together, these results
suggest that loss of Cav-1 in EC augments PKA activity, result-
ing in enhanced lipolysis and impaired LD formation.

Basal and OA-stimulated increases in PGI2 contribute to
lipolysis in EC

The enhanced basal levels of cAMP, PKA-mediated phos-
phorylation, and lipolysis in Cav-1 KO EC suggested that per-
haps Cav-1 KO cells generated a mediator that promoted auto-
crine activation of the cAMP-PKA pathway. In EC, the major
arachidonic acid metabolite generated via COX) is prostaglan-
din I2 (PGI2, also called prostacyclin). PGI2 binds to its cognate
G protein– coupled receptor (IP), which couples through Gs to
AC and PKA activation (22). Indeed, Cav-1 KO EC produced
more PGI2 (as assessed by the stable metabolite 6-keto PGF 1�)
under basal and OA-stimulated conditions, which was abol-
ished by blockade of COX using indomethacin (Indo) (Fig. 8A).
Treatment with Indo or the IP receptor antagonist CAY10441
increased absolute and relative TG levels during OA loading in
Cav-1 KO cells (Fig. 8, B and C). Interestingly, treatment with

Figure 2. FA uptake is not affected in Cav-1– deficient EC. A, FA uptake analysis using radiolabeled [14C]OA suggests that there was no difference of FA
uptake between three genotypes of MLEC up to 24 h. B, Western blot analysis of fatty acid translocase CD36 and fatty acid transporter protein FATP4 in EC from
three genotypes indicates similar abundance. Data are expressed as mean � S.E. (n � 3 individual experiments). Statistical analysis was determined by two-way
ANOVA. N.S., not significant.
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CAY10441 reduced elevated FA and glycerol release in Cav-1
KO cells (Fig. 8, D and E). These data suggest that the autocrine
production of PGI2 acts as a stimulus for the activation of the
cAMP/PKA pathways, contributing to the enhanced lipolysis in
Cav-1 KO cells.

Discussion

The central finding of this study shows that Cav-1, an impor-
tant structural component essential for the assembly of caveola
organelles, is necessary for LD metabolism in EC and that it
regulates cAMP-dependent lipolysis in part via the autocrine
production of PGI2. Previous studies in adipocytes have high-
lighted the role of Cav-1 in lipid metabolism in regulating
aspects of fatty acid uptake and LD size (23); however, the role
of Cav-1 in regulating LD in EC has not been studied until now.
Recent work has shown that Cav-1 is enriched in purified LD
from EC, and LD in EC serve as reservoirs for neutralizing toxic
lipids and can readily metabolize their TG to release FA for
energy or utilization by other cells (16).

Global Cav-1 KO mice are lean with hypertriglyceridemia
(5), and their adipocytes are smaller with less LD accumulation
(13, 14). Mechanistically, the reduction in LD size was linked to
defective FA uptake through the fatty acid– binding protein

CD36 in adipocytes and in fibroblasts (13, 19, 24). Moreover,
the loss of Cav-1 reduces CD36 levels in whole-protein lysates
prepared from Cav-1 KO aortic tissue (6). In contrast to previ-
ous work, the loss of Cav-1 in intact vessels and in isolated EC
reduces LD formation in EC by virtue of enhancing LD degra-
dation but not the uptake of FA or synthesis of TG, effects
rescued by genetic reconstitution of Cav-1 back into EC. In
isolated EC, the time-dependent uptake of labeled [14C]OA as
well as CD36 and FATP4 protein levels are not affected by the
loss of Cav-1. In addition to TG synthesis data, MS data confirm
that that the composition of fatty acyl groups within TG is not
affected by the loss of Cav-1. However, we did not test whether
phospholipid composition is altered in LD isolated from Cav-1
KO EC, as demonstrated previously in Cav-1– deficient adi-
pocytes (25).

Surprisingly, the metabolism of TG quantified by the release
of glycerol and FA is enhanced in Cav-1 KO EC, explaining why
Cav-1 KO EC have fewer TG-rich LD. Enhanced lipolysis dur-
ing OA loading in Cav-1KO EC is normalized by chemical inhi-
bition of ATGL, implying that Cav-1 modulates LD formation
by regulating lipolysis. The loss of Cav-1 in EC enhances OA-
and FSK-stimulated cAMP levels and PKA substrate phosphor-
ylation (including HSL, CREB, and eNOS), and enhanced lipol-

Figure 3. DGAT activity is not affected in the absence of Cav-1. A, DGAT activity of whole-cell lysates from three types of EC was measured using exogenous
DAG (200 �M) and [14C]oleoyl CoA as co-substrates. Representative thin-layer chromatography images show no difference in TG formation among three types
of EC. The band marked by an asterisk indicates that TG formed from 15 s to 10 min. B, densitometry in designated areas was determined by ImageJ software.
C, DAG dependence of DGAT activity in three types of MLEC was measured 5 min after addition of [14C]oleoyl CoA and the indicated concentration of DAG.
Representative TLC images show no difference in TG formation among three types of MLEC. The band marked by an asterisk indicates TG synthesis from 10 to
200 �M. D, densitometry in the designated areas was determined by ImageJ software. Data are expressed as mean � S.E. (n � 4 experiments). Statistical analysis
was determined by two-way ANOVA in B and D. N.S., non-significant.
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ysis in Cav-1 KO EC is normalized by inhibition of PKA. These
findings in EC are in contrast to prior work showing blunted
lipolytic responses in Cav-1 KO adipocytes in response to �3
receptor agonists or FSK. Impaired lipolysis in Cav-1-deficient
adipocytes was mediated via defective cAMP/PKA-dependent
phosphorylation of PLN1 and HSL (14, 26). Because PLN1 is
expressed exclusively in adipocytes and is not found in EC (16),
a different mechanism must exist in non-adipose cell type such
as EC. Although PLN2 (formally named ADRP) is thought to be
functionally equivalent to PLN1 in non-adipocytes, the molec-
ular regulation of ADRP in lipolysis remains unclear, including
its regulation by PKA signaling and HSL. Nevertheless, our
results clearly demonstrate that HSL protein levels are elevated
in Cav-1– deficient EC and that its phosphorylation is en-
hanced by FSK treatment, demonstrating a unique mechanism
of Cav-1 regulation of lipolysis in endothelium versus
adipocytes.

The increase in basal and OA-stimulated cAMP in Cav-1 KO
EC prompted the search for factors that are produced by EC
and regulate cAMP signaling. We show that OA treatment
enhances 6-keto PGF1� release in EC, an unexpected link
between FA metabolism and prostacyclin production. This idea
is supported by a recent study showing that storage-operated
calcium entry regulates lipolysis via cAMP up-regulation (28);
thus it is possible that enhanced PGI2 production occurs as a
result of enhanced extracellular calcium entry and adenylyl
cyclase activation during OA loading. Furthermore, our results
show marked release of 6-keto PGF1� in Cav-1 KO EC, sug-
gesting that Cav-1 can regulate aspects of arachidonic acid (AA)
release or COX metabolism. A relationship between Cav-1 and

AA metabolism in EC has been suggested because COX-2
expression and PG metabolites are elevated in lungs from Cav-
1– deficient mice because of loss of COX-2 degradation (29).
Moreover, a recent MS study indicated that silencing Cav-1 in
EC increases intracellular FFA, including AA metabolites (30).
Importantly, in our experiments, both indomethacin and the IP
receptor antagonist rescue LD formation in Cav-1 KO EC,
implying that autocrine production of PGI2 can contribute to
regulation of PKA and that lipolysis in EC and Cav-1 functions
as an endogenous break on the system.

In conclusion, we describe a novel pathway for Cav-1–
mediated cAMP activation in EC and a connection between
prostacyclin production and lipolysis. Perhaps elevated prosta-
cyclin and the attendant changes in EC lipolysis contribute to
the well-established findings that Cav-1 KO mice are protected
from atherosclerosis in the face of elevated lipids (6, 7). Addi-
tional experiments examining LD metabolism in EC-specific
conditional Cav-1– deficient mice will improve our under-
standing of how Cav-1 regulates LD homeostasis during
atherogenesis.

Experimental procedures

Reagents and antibodies

Oleic acid, Atglistatin, forskolin, CAY10499, CAY10441,
H-89, isobutylmethylxanthine, and indomethacin were
purchased from Cayman Chemical. BODIPY 493/503 was
obtained from Life Technologies. The antibodies used in this
study were from the following resources, with the indicated
dilution for Western blotting: anti-Cav-1 (BD Biosciences,

Figure 4. TG composition in LD is not altered in EC lacking Cav-1. A, fatty acyl species within TG from three types of EC without or with OA treatment (1 mM)
were quantified by mass spectrometry. The content of fatty acyl species in Cav-1 KO EC shows a reduced amount of fatty acyl species in general before OA
loading (�OA). After OA treatment, 18.1 FA became the predominant species in all three types of EC, with a reduced amount in Cav-1 KO EC (�OA). B, the
composition of fatty acyl species in TG among three types indicates a slightly reduced percentage of C16.0 and C18.0 and increased percentage of C18.1 and
C20.4 in Cav-1 KO MLEC (�OA). After OA treatment, the composition of fatty acyl species in three types of MLEC is similar (�OA). Data are expressed as mean �
S.E. (n � 4). Statistical analysis was determined by two-way ANOVA.
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Figure 5. Lipolysis is augmented in Cav-1 KO EC. A and B, EC were pretreated with OA (1 mM) overnight, and FFA and glycerol release was measured. Cav-1
KO EC show increased release of FFA (A) and glycerol (B) after 8 h. C, general lipase activity from three types of LD-enriched EC was determined by glycerol
formation rate. Lysates from Cav-1 KO EC showed increased lipase activity (Control), where Atglistatin abolished this induction. D, TG content after OA loading
of EC in the absence (Control) or presence of Atglistatin. E, LD were counterstained in green (BODIPY 493/503) and nuclei in blue (DAPI). Representative images
show that inhibition of ATGL by Atglistatin rescued LD formation in Cav-1 KO MLEC to comparable levels of WT and Cav-1 RC (n � 2). Scale bar � 7.5 �m. Data
are expressed as mean � S.E. (n � 4�5). Statistical analysis in A and B was performed by two-way ANOVA. Statistical analysis in C and D was determined by
unpaired t test. N.S., non-significant. *, p � 0.05 relative to WT and Cav-1 RC.
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610060, 1:5000), anti-�-actin (Sigma, A5441, 1:5000), anti-
ATGL (Cell Signaling Technology, 2138, 1:1000), anti-CGI58
(Santa Cruz Biotechnology, sc-100468, 1:250), anti-Hsp90 (BD
Biosciences, 610419, 1:2000), anti-FATP4 (BioVision Inc.,
3268-100, 1:1000), anti-CD36 (Santa Cruz Biotechnology,
sc-9154. 1:100 for Western blotting), anti-phospho-PKA
substrate (Cell Signaling Technology, 9624, 1:1000), anti-phos-
pho-HSL Ser-563 (Cell Signaling Technology, 4139, 1:500),
anti-HSL (Cell Signaling Technology, 4107, 1: 500), anti-phos-
pho-CREB Ser-133 (Santa Cruz Biotechnology, sc-7978,
1:1000), anti-CREB (Santa Cruz Biotechnology, sc-186, 1:250),
anti PKA RI �/� (Cell Signaling Technology, 3927, 1:1000),
PKAC� (Cell Signaling Technology, 4782. 1:1000), anti-phos-
pho-eNOS Ser-635 (EMD Millipore, 07-562, 1:1000), and anti-
eNOS (BD Biosciences, 610297, 1:2000).

Animals

Cav-1�/� and Cav-1�/� mice carrying the canine Cav-1
transgene under the preproendothelin-1 promoter (Cav-1Rec)
were generated as reported previously (17, 18). All mouse
strains were congenic on a C57Bl6 background and maintained

on pelleted rodent chow with free access to water. Mice were
maintained in a specific pathogen–free animal facility with a
steady-temperature room (25 °C) under a fixed 12-h light/dark
cycle. All procedures were approved by the Institutional Ani-
mal Care and Use Committee of Yale University.

Cell lines

Mouse lung endothelial cells (EC) from C57BL/6 (WT), Cav-
1�/� (Cav-1 KO), and Cav-1Rec (Cav-1 RC) mice were isolated
and immortalized with middle T antigen as described previ-
ously (17, 18). EC lines were cultured in EGM-2 medium
(Lonza) containing 20% FBS and supplemented with the Single-
QuotsTM Kit (Lonza), penicillin/streptomycin, and 2 mM

L-glutamine.

Western blot analysis

Cells were washed with PBS three times and lysed with lysis
buffer (50 mM Tris-HCl (pH 7.4), 0.1% SDS, 0.1% sodium
deoxycholate, 0.1 mM EDTA, 0.1 mM EGTA, 1% Nonidet P-40,
1.5 mg/ml protease inhibitor tablet (Roche), 0.25 mg/ml Pefa-
bloc (Roche), and 50 mM sodium fluoride.) Lysates were incu-

Figure 6. cAMP/PKA signaling is enhanced in Cav-1 KO EC. A, intracellular cAMP accumulation was measured over time after OA treatment. Cav-1 KO EC
show increased cAMP levels at baseline and after 8-h treatment. B, phosphorylation of PKA substrates (asterisk bands) in response to OA treatment (1 mM) was
detected with a PKA substrate motif (RRXS*/T*) antibody. Cav-1 KO EC show stronger enhancement of several bands. C, activation of adenylate cyclase with FSK
(10 �M) increased phosphorylation of the PKA substrates eNOS at Ser-635 and CREB-1 at Ser-133 in Cav-1 KO MLEC, as quantified in D and E. Data are expressed
as mean � S.E. (n � 3). Western blot images are representative of three independent experiments. Statistical analysis was determined by two-way ANOVA. *,
p � 0.05 relative to WT and Cav-1 RC.
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bated at 4 °C for 20 min and centrifuged at 14,000 rpm for 10
min. Supernatants were collected, and protein concentration
was measured with the DCTM protein assay kit (Bio-Rad.) Equal
amounts of protein in each experiment were resolved by SDS-
PAGE and transferred to nitrocellulose membranes for 2 h at 90
V using Mini Trans-Blot� Cell (Bio-Rad.) Membranes were
blocked using 0.1% (w/v) casein (Bio-Rad) in TBS for 50 min
and incubated with primary antibodies overnight at 4 °C. Mem-
branes were washed with TBS-T (TBS solution containing 0.1%
Tween 20) and incubated with conjugated secondary antibod-
ies for 30 min at room temperature. Membranes were washed
with TBS-T and developed using the Odyssey system (Li-Cor.)
The densitometry of membranes was analyzed with ImageJ
software (National Institutes of Health).

Lipid droplet formation and detection in vessels

Whole-mount thoracic aortas were isolated from 8- to
10-week-old WT, Cav-1�/�, and Cav-1Rec mice and incubated

with OA conjugated to FA-free albumin (1 mM) in complete
EBM-2 medium overnight in a 37 °C incubator with 5% CO2,
followed by en face immunostaining as described previously
(16). Aortae were cut longitudinally, pinned down with EC fac-
ing upward, washed three times with PBS, and fixed with 4%
paraformaldehyde in PBS. Fixed samples were further blocked
with TNB blocking buffer (0.1 M Tris-HCl (pH 7.5), 0.15 M

NaCl, and 0.5% (w/v) blocking reagent (PerkinElmer Life
Sciences, FP1020)) overnight at 4 °C. Aortae were further
incubated with anti-PECAM-1 antibody (EMD Millipore,
MAB1398Z, 1:250) diluted in TNB blocking buffer overnight at
4 °C. Samples were washed three times with PBS and incu-
bated with fluorescence-conjugated secondary antibody
(CyTM3 AffiniPure Goat Anti-Armenian Hamster, Jackson
ImmunoResearch Laboratories, 127-165-099, 1:200) at room
temperature for 3 h. BODIPY 493/503 diluted in PBS at a
final concentration of 4 �g/ml was applied for 30 min to
delineate LD, and DAPI (Sigma, 0.1 ng/ml) was used to high-

Figure 7. FSK-induced phosphorylation and lipolysis are enhanced in Cav-1 KO MLEC. A, EC were loaded with OA (1 mM overnight) and then stimulated
with FSK (10 �M) to induce lipolysis via activation of PKA signaling. B and C, phosphorylation of CREB (B) and HSL (C) increased to a greater extent in Cav-1
KO EC after 10 min, as quantified. D and E, FSK-induced glycerol release was augmented in Cav-1 KO EC after 4 h, an effect abrogated by pretreatment
with the PKA inhibitor H-89 (10 �M, E). F, H-89 inhibition of PKA enhanced TG accumulation after overnight OA treatment in EC lines. G, Cav-1 KO EC show
a greater -fold increase in TG content. Western blot data are representative of three independent experiments. Data are expressed as mean � S.E. (n �
3). Statistical analysis in B–D was determined by two-way ANOVA. *, p � 0.05 relative to WT and Cav-1 RC. Statistical analysis in E–G was determined by
unpaired t test. *, p � 0.05.
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light the nucleus. Samples were mounted and imaged by con-
focal microscopy (Leica SP5).

Lipid droplet formation and detection in cultured EC

EC were grown to confluence on coverslips precoated with
0.1% gelatin in PBS solution. After the designated treatment,
cells were washed with 3� PBS and fixed with 4% paraformal-
dehyde in PBS solution for 15 min. Fixed cells were washed with
3� PBS and stained with BODIPY 493/503 diluted in PBS at a
final concentration of 0.1 �g/ml for 15 min to delineate LD and
DAPI (Sigma, 0.1 ng/ml) to highlight the nucleus. Coverslips
were mounted with FluoromountTM aqueous mounting
medium (Sigma) and imaged by laser-scanning confocal
microscopy (Leica SP5) in the sequential scan mode with an
HCX PL APO � blue 63�/1.40 oil objective lens at room tem-
perature and analyzed with ImageJ software.

TG measurements

TG content was determined by mass spectrometry (Fig. 1C).
TG content (Figs. 5D, 7F, and 8B) was determined by a colori-
metric assay kit (BioVision Inc.) following the instructions of
the manufacturer and normalized by total protein amount in
each sample (determined by DCTM protein assay kit (Bio-Rad).

Fatty acid uptake assay

The measurement of fatty acid uptake was performed as
described previously with modifications (31). In brief, trace
amounts of [14C]oleic acid (PerkinElmer Life Sciences) mixed
with non-radioactive oleic acid were dissolved in 10% free fatty
acid BSA solution to a final concentration of 12 mM. This stock
solution was further diluted with complete EBM-2 medium to a
concentration of 1 mM and incubated with the confluent
WT/Cav-1 KO/Cav-1 RC EC monolayer for 1, 2, 3, 4, and 24 h.
The medium after incubation was collected, and aliquots were

used to determine the remaining radioactivity. The uptake
reaction was stopped by aspiration of the solution followed by
addition of ice-cold solution containing 0.5% BSA and 200 �M

phloretin for 2 min. Cells were washed three times with ice-cold
PBS and lysed with 1 M NaOH. Protein concentration was
determined using the DCTM protein assay. Radioactivity in cell
lysates and medium were determined with the addition of scin-
tillation mixture solution (American Bioanalytical) using Tri-
Carb 2900TR liquid scintillation analyzers. The percentage of
fatty acid uptake was determined by radioactivity in cell lysates
over total radioactivity added, normalizing to protein amount
between each cell type.

DGAT activity assay

Enzymatic activity of DGAT was performed as described
previously (32). 50 �g of protein lysate (in 250 mM sucrose and
50 mM Tris-HCl (pH 7.4) supplemented with complete prote-
ase inhibitors (Roche)) was incubated at 37 °C with 200 �M

diacylglycerol (dissolved in acetone) and 25 �M [14C]oleoyl-
CoA. The reaction was stopped by methanol:chloroform (3:1),
followed by addition of H2O. The organic phase was extracted
and dried by N2. Dried lipids were suspended in chloroform and
further subjected to TLC using hexane:diethylether:acetic acid
(80:20:1) as solvent. The TLC plate was developed with a stor-
age phosphor screen (Molecular Dynamics). Radioactivity was
detected and imaged by Typhoon Trio Imager (GE Healthcare).
The densitometry of TLC images was determined by Image
Quant software (GE Healthcare).

Mass spectrometry

The TG content and molecular species distribution was
determined using electrospray ionization–MS analysis as
described previously with minor modifications (33–35). Briefly,
lipids were extracted from EC using a modified Bligh and Dyer

Figure 8. Loss of Cav-1 enhances basal and OA-stimulated levels of PGI2 and regulates TG metabolism. A, the production of PGI2, quantified by the stable
breakdown product 6-keto PGF1�, is increased in Cav-1 KO EC. The production of PGI2 is abolished by Indo (10 �M). B, blockade of either COX by Indo or the IP
receptor antagonist CAY10441 (10 �M) increased TG content in three types of EC with a greater -fold induction (C) in Cav-1 KO EC. D and E, blockade of IP
receptors by CAY10441 (10 �M) decreases free fatty acid and glycerol release in Cav-1 KO EC after 8 h. Data are expressed as mean � S.E. (n � 3– 4). Statistical
analyses in A–C was determined by unpaired Student’s t test and by two-way ANOVA in D and E. *, p � 0.05.
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technique in the presence of the internal standard tri-17:1 TG.
Because of the low abundance of TG species in non-OA-loaded
cells, TG species were enriched into the hexane fractions
through liquid/liquid partitioning using hexane–methanol–
water (36). Electrospray ionization–MS analyses of hexane
fractions (non-OA-loaded cells) or chloroform lipid extracts
(OA-loaded cells) were performed utilizing a TSQ Quantum
Ultra triple-quadrupole mass spectrometer (Thermo Fisher
Scientific, San Jose, CA) equipped with an automated nanos-
pray apparatus (Nanomate HD, Advion Bioscience Ltd., Ithaca,
NY). TG molecular species were analyzed in the positive ion
mode as Na� adducts or alternatively as Li� adducts (in the
presence of a small amount of LiOH). TG molecular species
identification and fatty acyl compositional analysis were per-
formed in positive ion mode as Li� adducts or NH4

� adducts
(in the presence of 10 mM ammonium acetate) using tandem
mass spectrometry at collision energies of 35 or 25 electron
volt, respectively.

Measurement of FFA and glycerol release

WT/Cav-1 KO/Cav-1 RC EC were grown to confluence and
treated overnight with OA (1 mM). Medium containing OA was
aspirated, washed with 2� PBS, and placed into serum-free
EBM-2 medium containing 50 �M FFA–BSA. 1% of the
medium was collected at the designated time points. FFA and
glycerol concentration in the collected medium were deter-
mined using colorimetric assay kits (BioVision Inc.). FFA and
glycerol release was normalized by total protein content in each
sample, determined by DCTM protein assay kit (Bio-Rad).

Lipase activity assay

General lipase activity was measured based on the lipase
activity colorimetric assay kit (Bio Vision Inc.) In brief, MLEC
of the three genotypes were loaded with 1 mM OA overnight to
induce lipolysis. Lysates were collected with the designated
buffer, and protein concentration was determined by DCTM

protein assay kit (Bio-Rad). 50 �g of total protein lysates was
used in the reactions containing exogenous TG as substrates.
Lipase activity was determined based on glycerol formation rate
following the instructions of the manufacturer.

Cyclic AMP assay

EC were grown to confluence. After designated treatments,
cells were lysed with 0.1 M HCl and chilled on ice. Lysates were
collected, and cAMP was acetylated by addition of KOH and
acetic anhydride. Protein concentration was determined by
DCTM protein assay kit (Bio-Rad). Cyclic AMP was determined
by cyclic AMP EIA kit (Cayman Chemical) and normalized by
total protein content.

6-Keto PGF1-� assay

EC were grown to confluence, and the medium was replaced
with medium or without 1 mM OA as well as with or without 10
�M indomethacin or 10 �M CAY10441. Conditioned medium
was collected, and total protein amount was determined as
described under “Western blot analysis”. 6-keto PGF1-� con-
centration in the conditioned medium was determined by

6-keto PGF1-� EIA kit (Cayman Chemical) and normalized by
total protein content.

Statistical analysis

Statistical analyses were performed using Prism 6 software
(GraphPad) using tests as described in each figure. The data are
presented as mean � S.E.
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