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The IDA3 adapter, required for intraflagellar 
transport of I1 dynein, is regulated by ciliary 
length

ABSTRACT  Axonemal dyneins, including inner dynein arm I1, assemble in the cytoplasm 
prior to transport into cilia by intraflagellar transport (IFT). How I1 dynein interacts with IFT is 
not understood. We take advantage of the Chlamydomonas reinhardtii ida3 mutant, which 
assembles the inner arm I1 dynein complex in the cytoplasm but fails to transport I1 into the 
cilium, resulting in I1 dynein-deficient axonemes with abnormal motility. The IDA3 gene en-
codes an ∼115-kDa coiled-coil protein that primarily enters the cilium during ciliary growth 
but is not an axonemal protein. During growth, IDA3, along with I1 dynein, is transported by 
anterograde IFT to the tip of the cilium. At the tip, IDA3 uncouples from IFT and diffuses 
within the cilium. IFT transport of IDA3 decreases as cilia lengthen and subsides once full 
length is achieved. IDA3 is the first example of an essential and selective IFT adapter that is 
regulated by ciliary length.

INTRODUCTION
Cilia, also known as flagella, play essential roles in motility and cell 
signaling (Ostrowski et al., 2011; Viswanadha et al., 2017). Defective 
ciliary motility results in human disease, including primary cilia dys-
kinesia (PCD) (Horani et al., 2016; Knowles et al., 2016). Defective 
motility can arise from the failure to assemble dynein arms (Kamiya 
and Yagi, 2014). Proper assembly of axonemal dynein arms requires 
not only the structural components, such as dynein heavy, interme-
diate, and light chains, but also factors extrinsic to the dynein for 
cytoplasmic assembly (Iomini et al., 2009; Kobayashi and Takeda, 
2012), intraflagellar transport (IFT) (Hou et al., 2007; Ahmed et al., 

2008; Viswanadha et al., 2014; Desai et al., 2015; Lechtreck, 2015; 
Hou and Witman, 2017; Taschner et al., 2017), and docking in the 
axoneme (Owa et al., 2014; Brown et al., 2017). We are only begin-
ning to understand the key proteins and mechanisms required to 
assemble and transport ciliary dyneins, as well as other complexes 
in the axoneme (Lechtreck et al., 2017).

Here we focus on the IFT transport of the inner dynein arm I1/f 
(Kamiya and Yagi, 2014; King, 2016). I1 dynein is assembled into a 
large 20S complex in the cytoplasm that is transported by IFT to the 
tip of the cilium for assembly in the axoneme (Viswanadha et al., 
2014). How I1 interacts with IFT remains unknown. While tubulin 
binds IFT directly through IFT81/IFT74 (Bhogaraju et al., 2014; Craft 
et al., 2015; Kubo et al., 2016; Taschner et al., 2016; Hou and 
Witman, 2017), the outer dynein arm (ODA) requires the specialized 
adapter protein ODA16 to interact with IFT46 for efficient transport 
(Ahmed et al., 2008; Hou and Witman, 2017; Taschner et al., 2017). 
Whether I1 or other inner dynein arms require specialized adapters 
to bind IFT remains unknown.

Through study of the Chlamydomonas I1 dynein mutant ida3, we 
show that the IDA3 protein is a specialized and transient IFT adapter 
required to load I1 dynein onto IFT for entry and transport in the 

Monitoring Editor
Erika Holzbaur
University of Pennsylvania

Received: Dec 20, 2017
Revised: Feb 9, 2018
Accepted: Feb 16, 2018

This article was published online ahead of print in MBoC in Press (http://www 
.molbiolcell.org/cgi/doi/10.1091/mbc.E17-12-0729) on February 19, 2018.
The authors declare no competing financial interests.
*Address correspondence to: Winfield S. Sale (wsale@emory.edu).

© 2018 Hunter et al. This article is distributed by The American Society for Cell 
Biology under license from the author(s). Two months after publication it is avail-
able to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported 
Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
“ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of 
the Cell®” are registered trademarks of The American Society for Cell Biology.

Abbreviations used: DTT, dithiothreitol; IFT, intraflagellar transport; NG, NeonGreen.

Emily L. Huntera, Karl Lechtreckb, Gang Fuc, Juyeon Hwanga, Huawen Lind, Avanti Gokhalea, 
Lea M. Alforde, Brian Lewisd, Ryosuke Yamamotof, Ritsu Kamiyag, Fan Yangh, Daniela Nicastroc, 
Susan K. Dutcherd, Maureen Wirschellh, and Winfield S. Salea,*
aDepartment of Cell Biology, Emory University, Atlanta, GA 30322; bDepartment of Cellular Biology, University of 
Georgia, Athens, GA 30602; cDepartments of Cell Biology and Biophysics, University of Texas Southwestern Medical 
Center, Dallas, TX 75390; dDepartment of Genetics, Washington University School of Medicine, St. Louis, MO 63110; 
eDepartment of Biology, Oglethorpe University, Atlanta, GA 30319; fDepartment of Biological Sciences, Osaka 
University, Osaka 560-0043, Japan; gDepartment of Biological Sciences, Chuo University, Tokyo 112-8551, Japan; 
hDepartment of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216

MBoC  |  BRIEF REPORT



Volume 29  April 15, 2018	 IDA3—IFT transport of ciliary dynein  |  887 

present in the cytoplasm of ciliated cells but not in axonemes (Figure 
1, F and G).

Given the 20S I1 dynein does not enter the cilium in ida3 (Viswa-
nadha et al., 2014), we predicted that IDA3 function would be 
tightly linked to I1 dynein transport into the cilium. To test this 
prediction, we analyzed matrix (soluble fraction of isolated cilia) 
(Cole et al., 1998; Craige et al., 2013) from full-length and regener-
ating ida3; IDA3::HA cilia. IDA3::HA, though absent in the matrix of 
full-length cilia, is present in the matrix of regenerating cilia, as are 
the intermediate chains IC140 and IC138 of I1 dynein (Figure 2, A 
and B). Thus, I1 only enters the cilium when IDA3 is present. To-
gether, these data demonstrate that IDA3, though not an axonemal 
component, selectively enters cilia during regeneration and is es-
sential for I1 entry into the cilium. IDA3 appears to be modified in 
the matrix of regenerating cilia, as indicated by the presence of two 
distinct IDA3 bands (arrowheads, Figure 2B). The nature of this 
modification remains unknown.

I1 dynein, marked by IC140::GFP, is transported by anterograde 
IFT (Supplemental Figure S3A). Given that IDA3 is essential for I1 
assembly in the axoneme, we asked if IDA3 is also a cargo of IFT 
inside the cilium. Using live-cell total internal reflection fluorescence 
microscopy (TIRF) (Lechtreck, 2013), we imaged ida3; IDA3::NG 
cells with either full-length or regenerating cilia (Supplemental 
Movie 1). Similarly to bona fide axonemal proteins (Lechtreck et al., 
2017), IFT transport of IDA3::NG in regenerating cilia is robust, 
whereas IDA3 transport in full-length cilia is rare (Figure 2, C and D). 
Approximately 90% of individual IDA3::NG particles are transported 
processively to the distal tip of the cilium at a velocity of 1.98 ± 0.37 
μm/s, consistent with the speed of anterograde IFT in Chlamydomo-
nas (Figure 2, Ea–G; Supplemental Figure S3, B–D). Occasionally, we 
observed stationary IDA3::NG (Figure 2Ed). This could result from 
stalling of IFT trains along the length of the axoneme, as recently 
described (Stepanek and Pigino, 2016), or by transient association 
with the axoneme. At the tip, multiple IDA3 proteins linger before 
diffusion begins (Supplemental Figure S3, B and C, white arrows). 
IDA3::NG then diffuses within the cilium ∼ 88% of the time (Figure 2, 
Ec and H). Occasionally, retrograde IFT transports IDA3::NG at a 
velocity of 2.66 ± 1.2 μm/s (Figure 2, E(b) and H; Supplemental 
Figure S3D). One possibility is that diffusion of IDA3 through the 
cilium into the cell body controls the pool of IDA3 available for I1 
transport (Chien et al., 2017; Wingfield et al., 2017).

IDA3 transport by anterograde IFT is dependent 
on ciliary length
To further explore the link between IDA3 and ciliary growth, we 
quantified the number of IDA3::NG particles that enter the cilium as 
it lengthens. Similarly to axonemal cargoes of IFT (Wren et al., 2013; 
Craft et al., 2015), the number of IDA3 particles transported per 
minute decreases as the cilium lengthens (Figure 3A). Thus, IDA3 is 
the first identified nonaxonemal cargo of IFT whose transport fre-
quency is regulated by ciliary length. It is possible that the transport 
of IDA3, in addition to axonemal cargoes of IFT, may be regulated 
by mechanisms that control cilium length (Chien et al., 2017; 
Ishikawa and Marshall, 2017). The quantity of cargo transported by 
IFT at any given time may also be regulated by ciliary length.

We next asked whether IDA3 would selectively enter the grow-
ing cilium in a cell that had one growing and one full-length cilium. 
ida3; IDA3::NG cells with one regenerating (short) cilium and one 
full-length (long) cilium were imaged by TIRF (Supplemental Movie 
S2; Craft et al., 2015). Anterograde IFT transport, dwell at the tip of 
the cilium, and diffusion of IDA3::NG were observed only in the 
regenerating cilium (Figure 3, B and C). These data confirm that 

growing cilium. Unlike the loading and transport of ODA16, which 
binds IFT regardless of cilium length (Ahmed et al., 2008), IDA3 
loading and transport are regulated by changes in cilium length in a 
cilium autonomous manner, similar to the axonemal cargoes such as 
tubulin (Craft et al., 2015). Thus, IDA3 is unique in that it behaves 
similarly to an axonemal cargo of IFT, but neither binds the axoneme 
nor remains in the cilium once full length is achieved. We suggest 
that other axonemal complexes also require specialized and tran-
sient IFT adapters to precisely control entry and transport in the 
cilium.

RESULTS AND DISCUSSION
Inner dynein arm I1 is specifically missing in ida3 mutant 
axonemes
Although the 20S I1 complex forms in the ida3 cytoplasm, I1 dynein 
does not enter the cilium, preventing I1 incorporation into the axo-
neme (Kamiya et al., 1991; Viswanadha et al., 2014). We examined 
the structure of the ida3 axoneme by cryo–electron tomography 
and subtomogram averaging. Tomographic slices (Figure 1A, a–f) 
and isosurface renderings (Figure 1A, g–j) reveal that I1 dynein is 
missing in ida3 axonemes, except on rare occasions (Supplemental 
Figure S1A, a–e). Notably, all other axonemal structures assemble 
properly in the ida3 axoneme, as also seen by thin-section electron 
microscopy (Supplemental Figure S1B). Thus, like other I1 dynein 
mutants that include ida1, ida2, ida7, and bop5 (Wirschell et al., 
2007; Heuser et al., 2012; Ishikawa, 2012; Kamiya and Yagi, 2014; 
King, 2016), only I1 dynein fails to assemble in ida3 axonemes. In 
contrast to other I1 mutants, all known I1 dynein subunits of the 20S 
I1 dynein complex assemble in the ida3 cytoplasm (Viswanadha 
et al., 2014). We postulated that IDA3 encodes a protein extrinsic to 
I1 dynein that is specifically required for ciliary entry and/or trans-
port of I1 dynein by IFT.

A nonsense mutation in IDA3 results in loss of I1 dynein in 
the axoneme
The ida3 mutant was mapped to a small region on Chromosome 3 
between markers 953 and 120055. This 369-kb region contains the 
centromere, and better resolution could not be obtained with ad-
ditional markers. With 40× coverage of the ida3 genome, we identi-
fied only one SNP in the mapped region after filtering. This change 
is in Cre03.g205000, and there is a G-to-A transition that changes a 
tryptophan codon (TGG) to a stop codon (TAG) at amino acid 22 
(Figure 1B; Supplemental Figure S2 Table I). This mutation cosegre-
gates with the slow-swimming phenotype in 75 meiotic progeny. 
Transformation of ida3 with an untagged IDA3 or IDA3 fused to 
3xHA or NeonGreen (NG) rescued I1 assembly in the axoneme and 
the slow-swimming phenotype (Figure 1, C and D; Supplemental 
Figures S1B and S2 Table II). Reversion (Lin and Dutcher, 2015) of 
ida3 in the ida3; oda2 double mutant (defective in I1 and outer dy-
nein arm assembly) rescues assembly of I1 dynein in the axoneme 
and paralysis of ida3; oda2 (Figure 1E; Supplemental Figure S2 
Table III). Together, these data confirm that Cre03.g205000 (IDA3) is 
the defective gene in ida3.

IDA3 is transported by anterograde IFT within 
the regenerating cilium
The IDA3 gene encodes an ∼115-kD coiled-coil protein that con-
tains a CCDC24 domain (Pfam domain PF15669) in the N-terminal 
quarter of the protein (indicated by the bar, Figure 1B; Supplemen-
tal Figure S2, A and B), whereas the C-terminal half of IDA3 does not 
show conservation outside of green algae. Immunoblot analysis of 
cytoplasmic extract from ida3; IDA3::HA revealed that IDA3::HA is 
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the regulation of tubulin–IFT interaction (Craft et al., 2015). How 
the cell selectively targets IDA3 into the growing cilium remains 
unknown.

IDA3 selectively enters the growing cilium and indicate that trans-
port of the IDA3 is regulated independently within each of the two 
cilia in a single Chlamydomonas cell. This behavior is reminiscent of 

FIGURE 1:  I1 dynein is specifically missing in ida3 axonemes and Cre03.g205000 (IDA3) rescues ida3 I1 dynein defect. 
(A) Cryo-EM images of tomographic slices show the averaged axonemal 96-nm repeats from WT (a–c) and ida3 mutant 
(d–f) in longitudinal (a, d) and cross-sectional (b, c, e, f) views. The localization of cross-sectional slices at I1 dynein heads 
(red arrowhead in b and white arrowhead in e) or intermediate chain/light chain complex (ICLC) (red arrowhead in c and 
white arrowhead in f) is indicated by the blue lines in a and d. 3D isosurface renderings show the front (g, i) and rotated 
bottom (h, j) views. The I1-tether structure (T) (blue arrowheads in b and e and red structures in g–j) is still visible in ida3 
(i, j), but the position and morphology differ somewhat from WT, likely due to the absence of the tether binding 
partners, the I1 dynein heads. The WT data have been published previously (Awata et al., 2015). Scale bar: 20 nm. 
(B) In the ida3 mutant, Cre03.g205000 contains a nonsense mutation. IDA3 contains a CCDC24 domain (red bar) in the 
N-terminal half. (C) Immunoblot of isolated axonemes from WT, ida3, ida3;IDA3::HA, and::NG cells probed with 
antibodies to IC140 and IC138. (D) Swimming speed analysis for wild type (CC-125), ida3, ida3; IDA3::HA, and::NG. ida3 
slow swimming phenotype is rescued in ida3 transformants. Error bars = SD. (E) Immunoblot of axonemes from ida3; 
oda2 intragenic revertants. IC140 and IC138 assemble in axonemes from the intragenic revertants. (F) Immunoblot of 
cytoplasmic extract isolated from fully ciliated ida3 and ida3; IDA3::HA cells. IDA3::HA is detected in the cytoplasm. 
(G) Immunoblot of axonemes from ida3 and ida3; IDA3::HA full-length cilia. IDA3::HA is not present in the axonemes, 
but IC140 assembles as expected.
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the absence of I1 dynein (Figure 4, A–C; Supplemental Movie S3). 
However, in the wild type, IDA3 is typically transported without in-
terruption from the base to the ciliary tip, whereas in the absence of 
I1, IDA3::NG transport is less processive (Figure 4D; Supplemental 
Movie S3). For example, in wild-type cilia, 74% of the transports are 
processive from base to tip, whereas, in the ida7 background, only 
30% of transport is continuous from base to tip (n = 80 and 61 trans-
ports, respectively). As a consequence of increased dissociation of 
IDA3 from IFT, IDA3::NG diffusion is prominent in growing ida7; 
ida3; IDA3::NG cilia (Figure 4A). Thus, IDA3 is transported by IFT in 
the absence of I1, but the IDA3–IFT interaction appears to be more 
transient, suggesting that I1 dynein stabilizes the IDA3–IFT interac-
tion. Given that I1 dynein does not bind IFT in the absence of IDA3, 
we suggest that IDA3 bound to IFT renders IFT competent to bind 
and transport I1 dynein. In turn, I1 dynein possibly stabilizes IDA3 
interaction with IFT.

IDA3 interacts biochemically with IC140 in the matrix 
of regenerating cilia
Considering that IDA3 permits entry/transport of I1 dynein in the 
cilium, we predicted that IDA3 and I1 dynein interact while in transit 

Given the specificity of IDA3 for I1 dynein, we predicted that the 
need to assemble I1 dynein in the axoneme prompts IDA3 entry/
transport in the growing cilium. To test this, we mated ida3 x ida3; 
IDA3::NG to generate dikaryons with four cilia: two full-length cilia 
with I1 docked in the axoneme and two full-length cilia lacking I1 
dynein (Figure 3D). TIRF imaging revealed that IDA3::NG rarely en-
ters any of the four cilia, consistent with the infrequent transport of 
IDA3 in full-length cilia (Figure 3E). Hence, it is changes in ciliary 
length, and not the need to assemble I1 dynein in the axoneme, 
that cue increased IDA3 transport. However, infrequent transport of 
IDA3 and I1 is eventually sufficient to rescue I1 dynein assembly and 
motility in the full-length axoneme (Viswanadha et al., 2014).

Stable binding of IDA3 to IFT requires I1 dynein
We investigated whether IDA3 transport by IFT also requires I1 dy-
nein. We isolated the triple mutant ida7; ida3; IDA3::NG, which car-
ries a mutation in the IC140 gene (Perrone et al., 1998) that prevents 
cytoplasmic assembly of the 20S I1 dynein (Viswanadha et al., 2014), 
but carries wild-type IDA3::NG. IDA3::NG is expressed and is stable 
in this ida7 background (see Viswanadha et al., 2014). TIRF imaging 
revealed that IDA3::NG is transported by IFT in growing cilia even in 

FIGURE 2:  IDA3 is transported by anterograde IFT in regenerating cilia. (A) Immunoblot of matrix from ida3 and ida3; 
IDA3::HA full-length cilia. Immunoblots were probed with antibodies to HA, and as a loading control, IFT57. IDA3::HA 
was not detectable in the matrix of full-length ida3; IDA3::HA cilia. (B) Immunoblot of matrix isolated from ida3 and ida3; 
IDA3::HA regenerating cilia. Immunoblots were probed with antibodies to HA, IC140, IC138, and, as a loading control, 
IFT57. IDA3::HA, IC140, and IC138 are present in the regenerating matrix of ida3; IDA3::HA. (C) Bright field (a, d) and 
TIRF images (b, e) and corresponding kymograms (c, f) of full-length (a–c) and regenerating (d–f) ida3; IDA3::NG cilia. 
Selected IDA3::NG transports are marked with arrowheads in c. Bars = 2 s and 2 μm. (D) Bar diagram showing the 
frequency of IDA3::NG transport events per minute in full-length (pre; n = 18 cilia), regenerating (regen; n = 56 cilia), 
and postregeneration cilia (post; n = 18 cilia ∼10–12 μm in length). Error bars = SD. (E) Kymograms of IDA3::NG transport 
in regenerating cilia. (a) Anterograde transport of IDA3::NG, (b) retrograde transport of IDA3::NG, (c) diffusion of 
IDA3::NG throughout the cilium, (d) stationary IDA3::NG. Bars = 2 s and 2 μm; T: tip, B: base. (F) Velocity of IDA3::NG 
transport in the cilium. Processive anterograde IDA3::NG moves at a velocity of 1.98 μm/s (n = 141). Retrograde 
IDA3::NG transport moves at 2.66 μm/s (n = 16). Error bars = SD. (G) Number of IDA3::NG anterograde IFT vs. diffusion 
events from base to tip. Two-tailed binomial test reveals a significant difference in the quantity of IDA3::NG anterograde 
transport events compared with diffusion (P < 0.0001). (H) Quantity of IDA3::NG retrograde IFT transport vs. diffusion. 
IDA3::NG seldom binds retrograde IFT (n = 16) and instead diffuses through the cilium (n = 118). Two-tailed binomial test 
reveals a significant difference in IDA3::NG retrograde transport events compared with diffusion (P < 0.0001).
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ODA16 binds IFT regardless of cilium length (Ahmed et al., 2008). 
Thus, ODA16 behaves as an IFT component, while IDA3 behaves 
as a cilium length–dependent cargo of IFT. Considering the con-
trast in IDA3 and ODA16 behavior, it may be necessary to redefine 
the in vivo properties that define an adapter to IFT as compared 
with a genuine IFT component. Predictably, other large axone-
mal components (other inner dynein arms, the radial spokes, or 
N-DRC) may require their own highly specialized and transient 
adapters to attach to IFT.

IFT transport of I1 dynein is dependent on the adapter IDA3, and 
in the absence of IDA3, I1 fails to enter the cilium. The requirement 
for IFT-mediated I1 dynein entry supports the notion that axonemal 
components destined to enter the cilium do so based on their abil-
ity to bind IFT. Analogously to adapters for cytoplasmic dynein–
cargo interaction (e.g., Redwine et al., 2017), adapters may play an 
essential role in allowing the ∼22 IFT core proteins to bind hundreds 
of different axonemal proteins and protein complexes (Taschner and 
Lorentzen, 2016; Lechtreck et al., 2017). IDA3 is highly specific for I1 
dynein (Figure 1A; Supplemental Figure S1B). Thus, highly special-
ized adapters, such as IDA3, may be the key to regulating IFT 
loading and to precisely adjusting the quantity of individual cargoes 

to the ciliary tip. Immunoprecipitation of IDA3::HA from the matrix 
of regenerating ida3; IDA3::HA cilia revealed the presence of both 
IDA3::HA and IC140 in pull down (Figure 5A). IDA3::HA was also 
detected in complementary pull downs of IC140::SNAP from the 
regenerating matrix of the quadruple mutant ida7; IC140::SNAP; 
ida3; IDA3::HA cilia (Figure 5B). Together these data suggest co-
transport of IDA3 and I1 dynein to the tip of the growing cilium 
(Figure 5C). While a modified form of IDA3::HA exists in the matrix 
of regenerating cilia (Figure 2B), only one of the two bands is pulled 
down in our interaction studies (Figure 5, A and B). Whether the 
IDA3 modification regulates IDA3-I1 dynein interaction remains to 
be determined.

Summary and conclusions
IFT adapters are defined as proteins present on IFT machinery that 
are not integral to the overall assembly and function of IFT. To 
date, ODA16, required for efficient transport of ODA, is one of the 
best-described IFT adapters (Ahmed et al., 2008; Hou and Wit-
man, 2017; Taschner et al., 2017). Although both ODA16 and 
IDA3 are needed to assemble specific axonemal components, 
IDA3 predominantly binds IFT during ciliary assembly, while 

FIGURE 3:  IDA3 transport by anterograde IFT is regulated by ciliary length. (A) The frequency of IDA3::NG 
anterograde transport events compared with cilium length. As the length of the cilium increases, the quantity of 
IDA3::NG transported by anterograde IFT decreases. (B) Still frames and kymograms of IDA3::NG transport in ida3; 
IDA3::NG cilia of long-short (LS) cells. Frequent anterograde IFT transport of IDA3::NG only occurs in the regenerating 
cilium (open arrowheads). Bar = 2 s and 2 μm (C) Quantification of IDA3::NG transport frequency in the short and long 
cilia of LS cells (n = 10 cells). Error bars = SD. (D) Schematic representation of dikaryon rescue experiment that results in 
ida3 x ida3; IDA3::NG zygotes. Orange dots indicate I1 docked in axoneme. Red dashes indicated IDA3 transport by 
IFT. (E) Bright field (a, d), TIRF images (b, e), and corresponding kymograms (c, f) of ida3; IDA3::NG × wild-type dikaryon 
(a–c) and ida3; IDA3::NG × ida3 dikaryons (d–f). IDA3::NG transport is rare in all four full-length cilia, regardless of I1 
absence in the axoneme. Bar = 2 s and 2 μm.
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Generation of ida7; IC140::SNAP
A GFP-tagged IC140 construct, containing 
the APHVIII selection cassette (Sizova et al., 
1996), was generated from clone pCP3 (Per-
rone et al., 1998). The APHVIII cassette was 
inserted into pCP3 with Smal and KpnI to 
produce the plasmid IC140::GFP-AphVIII. 
The 3.28-kb NruI–EcoRI fragment from 
IC140::GFP-APHVIII was excised and sub-
cloned into plasmid pSE280 to produce 
pCS5.1. A 2.068-kb NruI-RsrII fragment con-
taining the SNAP tag in place of GFP in 
exon 2 was synthesized and cloned into the 
pUC57-Kan vector (Genscript) to make 
clone pCS17. The NruI-RsrII fragment from 
pCS17 was excised and subcloned into the 
pCS5.1 plasmid to produce pCS18. A 2.71-
kb PspXI-EcoRV fragment from pCS18 was 
subcloned into the IC140::GFP-AphVIII 
clone to produce pCS20, which contains the 
IC140 gene fused to SNAP in exon 2. Plas-
mid pCS20 was used to transform the ida7 
strain using the glass bead method (Kindle, 
1990). Paromomycin-resistant colonies were 
selected and examined for assembly of the 
SNAP::IC140 fusion protein in axonemes 
and for motility. Several transformants were 
selected that displayed wild type–like 
motility.

Generation of oda6; ida7; IC140::GFP
To visualize the IC140 movement in cilia, a 
rescued strain of oda6; ida7 expressing ex-
ogenous IC140::GFP molecules was gener-
ated (oda6; ida7R::GFP) and used for the 
TIRF analyses. To generate the oda6; 
ida7R::GFP strain, oda6; ida7 mutants were 
transformed with the vector pCP3-GFP-
APHVIII, which had the pBlueScript back-
bone and contained an XbaI-SmaI Chlam-
ydomonas genomic fragment covering all 
the IC140 genomic region with a GFP in-
serted in either the first or second exon of 

the IC140 gene. pCP3-GFP-APHVIII also had the APHVIII-gene cas-
sette, which confers paromomycin resistance to transformants. 
Transformation was carried out by the electroporation method with 
successful rescue of ida7 with either the GFP DNA tag in exon 1 
(pCP3-GFP(E1)-AphVIII) or 2 (pCP3-GFP(E2)-AphVIII) of the IC140 
gene. For TIRF microscopy we used IC140 with the GFP inserted in 
exon 1. We also used TIRF microscopy to observe I1 dynein trans-
port analyzed ida7; IC140::GFP obtained from Oda et al. (2015).

Constructing double, triple, and quadruple mutants
Strains (e.g., ida3;oda2, ida7; ida3::IDA3-NG, and ida3; IDA3::HA; 
ida7; IC140::SNAP) were crossed by standard protocols (Dutcher, 
1995). To generate the ida3; oda2 mutant, cells were treated with 
dbcAMP and IBMX (Pasquale and Goodenough, 1987) for 30 min to 
allow mating of a strain with short or no flagella. Markers were de-
termined by PCR with the following primers: ida7 via pMN24 se-
quences (AAT ACG CAA ACC GCC TCT C and TGG CGT AAT CAT 
GGT CAT AGC), IDA3::HA (ATC GAT CCG GAC GAC CGT ACC C 
and GTG GTG ACG TAG TCC AGC AG), and IC140::SNAP via the 

transported into the cilium at any given time. IDA3 attachment to 
IFT, like axonemal cargoes of IFT but unlike IFT proteins, responds 
to changes in cilium length. Further study will be required to deter-
mine how IDA3 loading and transport are regulated by changes in 
cilium length.

MATERIALS AND METHODS
Strains and culture conditions
C. reinhardtii strains used include wild type (CC-124, CC-125, CC-
620, CC-621), ida3 (CC-2668), ida3; oda2, ida7 (CC-3921), ida3; 
IDA3::HA, ida3; IDA3::NG, ida7; ida3; IDA3::NG, ida3; IDA3::HA; 
ida7; IC140::SNAP, ida7; IC140::GFP, oda6; ida7; IC140::GFP, and 
the polymorphic strain CC-1952 (S1C5). Cells were cultured in either 
tris-acetate-phosphate (TAP) medium, L medium, or M medium 
(Harris, 2009) with aeration on a 14:10 h light/dark cycle or under 
constant light. Wild type, ida7, CC-1952 (S1C5), and ida3 were ac-
quired through the Chlamydomonas Resource Center (University of 
Minnesota). All other strains were generated specifically for this 
publication.

FIGURE 4:  Efficient IFT transport of IDA3 requires I1 dynein. (A) ida7; ida3; IDA3::NG cells, 
lacking I1 dynein, imaged by TIRF. (a) Still frame of regenerating ida7; ida3; IDA3::NG cilia and 
(b, c) kymograms of IDA3::NG transport in regenerating ida7; ida3; IDA3::NG cilia. IDA3::NG 
both undergoes anterograde IFT (white arrowheads) and diffuses (open arrowheads) in the 
absence of I1 dynein. (d) Kymogram of IDA3::NG diffusion in full-length ida7; ida3; IDA3::NG 
cilia. IDA3::NG processive motion is rarely observed. Bars = 2 s and 2 μm. (B) Still frames and 
kymogram of an ida7; ida3; IDA3::NG short–long cell. IDA3::NG transport is restricted to 
regenerating cilium. Bar = 2 s and 2 μm. (C) Quantification of IDA3::NG transport events per 
minute in long and regenerating ida7; ida3; IDA3::NG cilia. Error bars = SD. (D) Analysis of 
IDA3 transport efficiency in the presence and absence of I1. The lengths of IDA3::NG 
anterograde IFT tracks were compared with the length of the cilium in ida3; IDA3::NG 
(n = 96) and ida7; ida3; IDA3::NG (n = 74) cilia. IDA3::NG transport is less processive in the 
absence of I1. A two-tailed unpaired t test confirms a significant difference in the length of 
anterograde IFT tracks in ida3; IDA3::NG and ida7; ida3; IDA3::NG cells (P < 0.0001). Error 
bars = SD.



892  |  E. L. Hunter et al.	 Molecular Biology of the Cell

to mixing the gametes of each cell type (Harris, 2009), and the 
zygotes with full-length, steady-state cilia were observed by TIRF 
microscopy.

Molecular mapping and whole-genome sequencing
Strain CC-2668 (ida3) was backcrossed to wild-type cells (CC-125) 
five times.

The backcrossed ida3 strain was crossed to CC-1952 (S1C5) and 
230 progeny were used in mapping. Crude DNA preparation, PCR, 
and enzymatic digestion of DNA from individual progeny were per-
formed as previously described (Lin and Dutcher, 2015). The single 
ida3 progeny was subjected to whole genome sequencing (Lin 
et al., 2013; Lin and Dutcher, 2015). The NCBI accession number for 
the raw sequencing reads of ida3 is SRX525037. We had 40x cover-
age of the Chlamydomonas genome (Lin et al., 2013). The ida3 non-
sense mutation was confirmed in both ida3 and ida3; oda2 by PCR 
(Primers: ACT TGC TTT CTC ACG GCA CT and CCA TGA GAC TCC 
TTC CGT GT) and Sanger sequencing.

Reversion analysis
UV light at 750 μJ was used to mutagenize ida3; oda2 (Lin and 
Dutcher, 2015). UV-mutagenized ida3; oda2 plates were incubated in 
the dark overnight. After 1–2 d, cells were scraped into a tube con-
taining 20 ml of R liquid medium. After 1.5 d, the top 5 ml of the 
medium was moved to a new tube. The medium was transferred 
once every 3 d until swimmers were observed. ida3; oda2 swimmers 
were visually scored for motility rescue and were analyzed by 
immunoblot for rescue of the intermediate chains IC140/IC138 as a 
marker for I1 dynein assembly in the axoneme. Sanger sequencing 
confirmed the intragenic reversion within ida3 of the ida3; oda2 cells 
exhibiting a rescue phenotype (Supplemental Figure S2, Table III).

Cloning of IDA3 and transformation and rescue 
of ida3 mutants
All cloning and tagging of IDA3 was completed at the custom clon-
ing core facility at Emory University. Briefly, the IDA3 gene (∼4.2 kB) 
was PCR-amplified from the BAC (4E5) clone containing the Cre03.
g205000 gene. Chlamydomonas codon–optimized p3xHA (Silflow 
et al., 2001) or NeonGreen (Craft et al., 2015; Harris et al., 2016) 
were inserted into either the N-terminus or C-terminus of IDA3 or 
embedded within the first or second exon of the IDA3 gene (Sup-
plemental Figure S2, Table II). All IDA3-tagged constructs were 
inserted into the PUCBM20 vector containing a Chlamydomonas 
Hygromycin B selection marker (pHyg3) (Berthold et al., 2002). The 
resulting constructs were transformed into the ida3 mutant by 
electroporation and placed on TAP+Hygromycin plates (final con-
centration at 10 μg/ml) for selection of single colonies expressing 
Hygromycin resistance. Surviving colonies were visually scored for 
motility rescue of wild-type speed and isolated axonemes from each 
colony were analyzed by immunoblot for rescue of IC140/IC138 as 
a marker of I1 dynein assembly in the axoneme.

Preparation of matrix fractions
C. reinhardtii cells grown on constant light in L medium were 
collected by centrifugation and resuspended in chilled deciliation 
buffer (10 mM Tris, pH 7.5, 5% sucrose, 1 mM CaCl2) and kept on 
ice. C. reinhardtii cells were deciliated by pH shock (Alford et al., 
2013; Hunter et al., 2016). Cells were resuspended in room tem-
perature L medium and aerated for 35 min at room temperature 
on constant light to regenerate cilia to approximately half 
length (Hunter et al., 2016). Regeneration of cilia was observed by 
phase contrast microscopy. Cells were collected by centrifugation 

SNAP tag (ATC AAG CTG CTG GGC AA and GAT CAC CTC GCC 
CAA CTT). Loss of I1 dynein, indicative of the ida7 mutation, was 
confirmed by immunoblot analysis of isolated axonemes.

Dikaryons between ida3 and ida3; IDA3::NG were generated 
by differentiating each cell type for 6–16 h in M-N/5 medium prior 

FIGURE 5:  IDA3 interacts with IC140 of the I1 dynein complex 
in the matrix of the regenerating cilium. (A) IDA3::HA was 
immunoprecipitated from matrix of regenerating cilia from ida3; 
IDA3::HA. Both IDA3::HA and IC140 were detected in the IP fraction. 
(B) IC140::SNAP pull downs from matrix of regenerating ida3 and ida3; 
IDA3::HA; ida7; IC140::SNAP cilia. Both IC140::SNAP and IDA3::HA 
were detected in SNAP pull-down samples. IC140 runs at 166 kD due 
to the addition of SNAP. (C) Model of cilium autonomous IDA3 
behavior and function in growing cilia (adapted from Viswanadha et al., 
2014; Craft et al., 2015). In the full-length cilium, transport of IDA3 by 
anterograde IFT is rare. In growing cilia, IDA3 transport by 
anterograde IFT increases, permitting transport of I1 dynein to the 
distal tip of the cilium. As the cilium elongates, the frequency of IDA3 
transport events decreases. IDA3 attachment to IFT likely modifies IFT 
in a way that renders IFT competent to carry I1 dynein.
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the pH shock method (Witman et al., 1972); in brief, cell pellets 
were resuspended in HEPES buffer (4% sucrose, 1 mM SrCl2, 
10 mM HEPES, 1% DTT, pH 7.4) and the pH lowered to 4.5 by 
adding 0.5 M acetate acid. After 80 s, the pH value was brought 
back to 7.4 by adding 1 M KOH. After detachment of the cilia from 
the cell bodies the following solution was added to the buffer: 
5 mM MgSO4, 1 mM EGTA (ethylene glycol-bis(β-amino ethyl 
ether)-N,N,N’N’-tetraacedtic acid), 0.1 mM EDTA, and 100 µl 
protease inhibitor cocktails (Sigma-Aldrich). Cilia were washed 
two times over a 20% sucrose cushion and then demembranated 
with 0.1% IGEPAL CA-630 (Sigma-Aldrich). Axonemes were 
collected by centrifugation at 10,000 × g for 10 min and 
resuspended in HMEEK buffer (30 mM HEPES, 25 mM KCl, 5 mM 
MgSO4, 0.1 mM EDTA, and 0.2 mM EGTA). Cilia isolation and all 
steps thereafter were performed on ice or at 4°C.

Cryo–sample preparation, cryo–electron tomography, and image 
processing.  Freshly prepared axonemes were plunge-frozen on 
glow discharged (for 30 s at –35 mA) grids with holey carbon film 
(copper; R2/2; 200 meshes; Quantifoil Micro Tools GmbH, Jena, 
Germany) using a homemade plunge freezer to achieve sample vit-
rification, as previously described (Heuser et al., 2009). In brief, 3 µl 
of axoneme sample was applied to the grid and gently mixed with 
1 µl of 10× concentrated 10-nm colloidal gold solution. The gold 
particles were precoated with 5% (wt/vol) BSA (bovine serum 
albumen) solution to help prevent their aggregation (Iancu et al., 
2006). Grids were blotted with Whatman filter paper from the back 
for 1.5–2.5 s and rapidly plunged into liquid ethane. Sample grids 
were stored in liquid nitrogen until used.

Vitrified axonemes were imaged on a Tecnai F30 transmission 
electron microscope (Thermo-Fisher/FEI) operated at 300 kV. Tilt 
series (from –60° to 60°; 1.5°–2.5° tilting increments) were recorded 
with a 2k × 2k charge-coupled device camera (Gatan, Pleasanton, 
CA) after energy filtering (Gatan) in zero-loss mode (20 eV slit width). 
Using the low dose mode in the microscope control and data acqui-
sition software SerialEM (Mastronarde, 2005) the total electron dose 
per tilt series was limited to ∼100 e/Å2 to avoid radiation damage. A 
magnification of 13,500 (pixel size of 1 nm) and a defocus of –8 µm 
were used for imaging.

For image processing, the tilt series images were aligned using 
the 10 nm gold as fiducial markers. Both alignment and tomogram 
reconstruction by weighted back-projection were performed using 
the IMOD software package (Kremer et al., 1996). The axonemal 
96 nm repeats were picked from the raw tomograms, aligned and 
subtomogram averaged using the PEET software (Nicastro et al., 
2006). Three-dimensional (3D) visualization of the averaged struc-
tures by isosurface rendering was performed with UCSF Chimera 
package (Pettersen et al., 2004). Automated classification analyses 
of the I1 inner dynein arm were carried out with a PCA (principal 
component analysis) clustering approach (Heumann et al., 2011).

TIRF microscopy
For TIRF imaging, we used an Eclipse Ti-U microscope (Nikon) 
equipped with a 60× NA1.49 TIRF objective and through-the-objec-
tive TIRF illumination provided by a 40-mW 488-nm diode laser 
(Spectraphysics) (Lechtreck, 2013). Excitation and emission were 
filtered using the Nikon GFP/mCherry TIRF filter and the emission 
was separated using an image splitting device (Photometrics Dual-
View2 with filter cube 11-EM). Observation chambers for live cell 
imaging were assembled by inverting a 22 × 22 mm No. 1.5 cover 
glass with ∼10 µl of 5 mM HEPES, pH 7.3, 6.25 mM EGTA onto an 
equal volume of cells in M medium on a 24 × 60 mm No. 1.5 cover 

(3000 rpm for 5 min) and again resuspended in chilled deciliation 
buffer. A second deciliation was induced on ice by pH shock and 
flagella were collected by subsequent centrifugation.

To isolate the matrix fraction, cilia were resuspended in HMDE + 
25 mM NaCl (10 mM HEPES, 5 mM MgSO4, 1 mM DTT [dithiothreitol], 
0.5 mM EDTA, 25 mM NaCl, protease inhibitors, pH 7.4). EDTA was 
omitted from HMDE + 25 mM NaCl buffer for all SNAP pull-down 
experiments. Cilia were flash frozen in liquid nitrogen and thawed at 
room temperature prior to centrifugation to remove remaining axo-
nemes and membranes from the matrix fraction (Cole et al., 1998; 
Lucker et al., 2005; Pazour et al., 2005; Craige et al., 2013). Matrix 
fractions were either stored at 4°C prior to use in immunoprecipita-
tion/pull-down analyses or denatured with Laemmli sample buffer 
for immunoblot analysis. For matrix fractions of full-length cilia, the 
regeneration step was omitted, and cilia were isolated by pH shock 
and centrifugation prior to matrix isolation through identical freeze–
thaw methods.

Antibodies and immunoblot analyses
SDS–PAGE and immunoblotting were performed using standard 
procedures. Primary antibodies used in this study include mouse 
monoclonal antibody (mAb) against HA (Clone 12CA5; Roche, 
Mannheim, Germany) and IFT57 (Cole et al., 1998; Hou et al., 2007). 
Rabbit polyclonal antibodies include IC140 (Yang and Sale, 1998), 
IC138 (Hendrickson et al., 2004), and RSP3 (Wirschell et al., 2008). 
The secondary antibodies goat anti-mouse (#1706516) and goat 
anti-rabbit (#1706515) were purchased from Biorad.

Isolation of axonemes
Cells were grown to mid–log phase and deciliated either by pH 
shock (Lefebvre, 1995; Hunter et al., 2016) or by treating the cells 
with dibucaine (Witman, 1986). After centrifugation to separate cilia 
from cell bodies, the cilia were demembranated by final 1% Nonidet 
P-40 (EMD Millipore, Darmstadt, Germany) in HMDE +25 mM NaCl 
(10 mM HEPES, 5 mM MgSO4, 1 mM DTT, 0.5 mM EDTA, 25 mM 
NaCl, protease inhibitors, pH 7.4). Post centrifugation, the axoneme 
pellet was resuspended in HMDE +25 mM NaCl + protease inhibi-
tors and denatured for immunoblot analyses in Laemmli sample buf-
fer at a final concentration of 1 mg/ml.

Isolation of cytoplasmic extracts
Glass beads were used to lyse cells cultured for 3 d (Ahmed et al., 
2008). Broken cells were clarified by centrifugation at 10,000 rpm in 
a Sorval SA600 rotor for 10 min. The supernatant was then further 
clarified at 22,500 rpm for 2 h (Type-40 fixed angle rotor, Beckman 
Coulter). Clarified supernatant was collected and denatured with 
Laemmli sample buffer for immunoblot analysis.

Electron microscopy
Conventional electron microscopy was performed on axonemes 
isolated from CC125, ida3, and ida3; IDA3::HA cells as previously 
described (Kamiya et al., 1991).

Cryo-electron tomography
Axoneme preparation for cryo–ET.  Strains of C. reinhardtii were 
first grown on solid agar plates made with Tris-acetate-phosphate 
(TAP) medium for 5–7 d (Harris, 2009), and then a small amount of 
cells were transferred to liquid TAP growth medium for 3–4 d 
culturing under 12:12 h light:dark regime and flask shaking with 
the speed of 120 rpm. Cells were harvested by centrifugation 
(2200 rpm) and resuspended in 10 mM HEPES buffer, pH 7.4 
(1 mM SrCl2, 4% sucrose, and 1 mM DTT). Cilia were isolated using 
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Analysis of processive IDA3 movement in ida7; ida3; 
IDA3::NG
TIRF microscopy was used to visualize IDA3 transport in regenerat-
ing ida3; IDA3::NG and ida7; ida3; IDA3::NG cells. Both cell types 
were imaged when cilia were approximately the same length 
(roughly 7–9 μm). Subsequent kymograms were generated. The 
length of the cilium and the length of anterograde IFT tracks were 
measured using ImageJ Software (National Institutes of Health). Any 
kymograms in which the tip of the cilium could not be clearly distin-
guished were excluded from the analysis. The ratio of anterograde 
IFT track length to cilium length was then determined.

Statistical analysis
To determine whether a statistical difference between anterograde 
IFT (or retrograde transport) vs. diffusion of IDA3 exists, a two-tailed 
binomial test was performed in Graphpad software (www.graphpad 
.com) as described before (Lechtreck, 2013). To determine whether 
a statistical difference exists between IDA3 IFT transport in the pres-
ence or absence of I1, a two-tailed unpaired t test was performed in 
Graphpad software. The graphs were drawn with Adobe Illustrator 
and Excel.

glass. Images were recorded at 10 fps using an iXON3 (Andor) and 
the NIS-Elements Advanced Research software (Nikon). FIJI (ImageJ 
plug-in bundle; National Institutes of Health) was used to generate 
kymograms (Lechtreck, 2016). Individual frames were copied into 
Photoshop (Adobe) and adjusted for contrast and brightness; 
figures were assembled in Illustrator (CS6 version 16.0.3, Adobe). To 
generate videos, stacks were saved in avi format. For photobleach-
ing of the entire cilia, the intensity of the 488-nm laser was increased 
to 10% or more for 4–12 s (Wingfield et al., 2017).

To examine regenerating cilia, cells were deflagellated by a pH 
shock, washed into fresh M medium, and incubated with agitation in 
bright light. To delay regeneration, cells were stored on ice until 
needed. For long–short experiments, cells were passaged four to six 
times through a 26G × 1/2 needle using a 1-ml syringe. This treat-
ment resulted in a small percentage (∼1%) of long-zero cells that 
were imaged using TIRF microscopy after flagellar regeneration was 
allowed for ∼10–20 min.

Immunoprecipitation of IDA3::HA
All immunoprecipitation experiments were performed in matrix 
fractions isolated from regenerating cilia (as described above). To 
perform HA immunoprecipitation analyses, matrix fractions were iso-
lated from regenerating cilia of ida3 (CC-2688) and ida3; IDA3::HA 
strains. Immunoprecipitation (IP) buffer consists of 10 mM HEPES (pH 
7.4), 5 mM MgSO4, 1 mM DTT, 0.1 mM EDTA, 25 mM KCl, 75 mM 
NaCl, and 0.05% Triton X-100. Part of each matrix fraction was dena-
tured with Laemmli sample buffer for analysis of input by immunob-
lotting. The rest of the matrix fraction was preincubated with protein 
A agarose beads (Invitrogen) for 1 h at 4°C with slight agitation to 
preclear it. Prior to immunoprecipitation, 3F10-crosslinked beads 
(Roche) were blocked with 3% BSA in IP buffer by rocking for 1 h at 
4°C. Precleared matrix fractions and preblocked 3F10-crosslinked 
beads were collected by centrifugation and combined for immuno-
precipitation overnight at 4°C with slight agitation. Immunoprecipi-
tates were washed with IP buffer the next day and denatured with 2× 
Laemmli sample buffer. Input samples and immunoprecipitates were 
resolved by SDS–PAGE and analyzed by immunoblotting.

SNAP affinity purification
Matrix fractions were prepared by freeze–thaw, stored at 4°C, and 
supplemented with 0.5% Triton X-100 prior to use. For affinity 
purification, we used a modified protocol from Zlatic et al. (Zlatic 
et al., 2013). SNAP magnetic beads (Cat. No. S9145S; New Eng-
land Biolabs) were prepared as follows: for each strain, 40 μl of the 
SNAP magnetic beads were spun down at room temperature 
using a bench-top minicentrifuge at top speed (14,000 × g) for 
1 min. The clarified supernatant was removed and the beads were 
incubated overnight in an end-over-end rocker at 4°C in a buffer 
containing 3% BSA, 10 mM HEPES, 5 mM MgSO4, 1 mM DTT, 
25 mM NaCl, and protease inhibitors at pH 7.4. Fresh DTT and 
protease inhibitors were added to the buffer solution every day 
prior to use. The next day, the beads were washed twice in a buffer 
containing 10 mM HEPES, 5 mM MgSO4, 1 mM DTT, 0.5 mM 
EDTA, 25 mM NaCl, 0.5% Triton X-100, and protease inhibitors at 
pH 7.4 using the magnetic holder. Matrix fractions were then 
added to the SNAP beads and the mixture was incubated at 4°C 
in an end-over-end rotor overnight. The magnetic beads were 
then washed six times in a buffer containing 10 mM HEPES, 5 mM 
MgSO4, 1 mM DTT, 0.5 mM EDTA, 25 mM NaCl, 0.5% Triton 
X-100, and protease inhibitors at pH 7.4. The beads were then 
resuspended in 2× Laemmli sample buffer and denatured at 95°C 
for 5 min for immunoblot analysis.
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