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Bmp Induces Osteoblast Differentiation
through both Smad4 and mTORC1
Signaling

Courtney M. Karner,2* Seung-Yon Lee,® Fanxin Long®P

Department of Orthopaedic Surgery? and Department of Developmental Biology,® Washington University
School of Medicine, St. Louis, Missouri, USA

ABSTRACT The bone morphogenetic protein (Bmp) family of secreted molecules
has been extensively studied in the context of osteoblast differentiation. However,
the intracellular signaling cascades that mediate the osteoblastogenic function of
Bmp have not been fully elucidated. By profiling mRNA expression in the bone mar-
row mesenchymal progenitor cell line ST2, we discover that BMP2 induces not only
genes commonly associated with ossification and mineralization but also genes im-
portant for general protein synthesis. We define the two groups of genes as mineral-
ization related versus protein anabolism signatures of osteoblasts. Although it in-
duces the expression of several Wnt genes, BMP2 activates the osteogenic program
largely independently of de novo Wnt secretion. Remarkably, although Smad4 is nec-
essary for the activation of the mineralization-related genes, it is dispensable for
BMP2 to induce the protein anabolism signature, which instead critically depends on
the transcription factor Atf4. Upstream of Atf4, BMP2 activates mTORC1 to stimulate
protein synthesis, resulting in an endoplasmic reticulum stress response mediated by
Perk. Thus, Bmp signaling induces osteoblast differentiation through both Smad4-
and mTORC1-dependent mechanisms.

KEYWORDS Atf4, ER stress, Perk, Smad4, bone morphogenic proteins (BMPs), mTOR,
mTORC1, mineralization, osteoblast, protein anabolism

he bone morphogenetic protein (Bmp) family of proteins regulates a wide variety

of biological processes during both embryogenesis and adult homeostasis in
mammals (1, 2). Bmp ligands bind to the tetrameric complex of type | and type I
serine/threonine kinase receptors to activate Smad-dependent and -independent path-
ways (3). During Smad signaling, Smad1, -5, or -8 (R-Smads), upon phosphorylation by
the activated type | receptor, interacts with Smad4 to induce target gene expression in
the nucleus (2, 4, 5). However, R-Smads have also been shown to regulate cartilage
development independently of Smad4 (6). The Smad-independent pathways include
those of TAK1-p38 and phosphatidylinositol 3-kinase (PI3K)-Akt signaling (3, 4, 7, 8).
The relative contribution of each intracellular mechanism to Bmp function likely
depends on the cellular context.

Since its original discovery in bone, Bmp signaling has been shown to stimulate
osteoblast differentiation in a variety of cell culture systems (9-11). The osteogenic
function of Bmp is partially mediated though the induction of the transcription factor
Sp7 (also known as Osx), which is essential for osteoblast differentiation (12). Several
studies in cell cultures have suggested that Sp7 stimulates several common osteoblast
marker genes such as the Col1a1, Ibsp, and Bglap genes through binding of the GC-rich
Sp1 consensus sequence (13-16). However, a recent genome-wide study with neonatal
calvarial osteoblasts expressing Osx-FLAG from the endogenous Osx locus revealed
that Osx induces downstream target genes, including the Col1al gene, mainly through
interactions with DIx proteins that directly bind an AT-rich motif (17). Besides the
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upregulation of marker genes, osteoblasts are known to secrete copious amounts of
extracellular matrix proteins, most notably type | collagen. However, how Bmp en-
hances the protein synthesis capacity of the cell is not well understood.

The serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1) is
a central regulator of protein synthesis in mammalian cells (18). mTORC1 stimulates
protein synthesis through the phosphorylation of eukaryotic translation initiation factor
4E binding protein 1 (Eif4ebp1) and S6 ribosomal protein kinase (P70S6K) (19). The
activity of mTORC1 responds to both the nutritional status and extracellular signals that
regulate various cellular activities (20, 21). Recent studies have shown that Wnt or Igf
signaling activates mTORCT1 to stimulate osteoblast differentiation (22-26). In particular,
Whnt-induced mTORC1 signaling leads to intracellular glutamine deficiency that acti-
vates the integrated stress response (ISR), resulting in the upregulation of protein
anabolism genes (23). Although mTORC1 is also activated by Bmp, it is not known
whether Bmp employs the same amino acid-based ISR mechanism to enhance the
protein synthesis capacity during osteoblast differentiation (27).

Besides amino acid deficiency, endoplasmic reticulum (ER) stress is well known to
induce the ISR. Here, unfolded proteins in the ER activate the protein kinase Perk (also
known as Eif2ak3), which phosphorylates and inactivates the « subunit of eukaryotic
translation initiation factor 2 (elF2«) (28, 29). The phosphorylation of elF2a promotes
the translation of the transcription factor Atf4, which, together with its transcriptional
target Ddit3 (also known as Chop), activates a host of genes that function to maintain
homeostasis in the ER or trigger apoptosis if ER stress remains unmitigated (30).
Previous work already demonstrated the functional importance of Atf4 and Perk in
bone formation (31, 32). Moreover, Bmp was shown to induce Perk activation during
osteoblast differentiation in vitro (33). However, the signaling cascade leading to Perk
activation in response to Bmp has not been elucidated.

Here, we present evidence that Bmp signals through a c-Abl-PI3K-mTORC1 cascade
to activate the Perk-mediated ISR, inducing the expression of the protein anabolism
genes. In contrast, Bmp-Smad4 signaling is critical for the transcription of the genes
associated with mineralization. These data support an integrative model wherein Bmp
induces the osteoblast phenotype through a dual mechanism.

RESULTS

BMP2 induces mineralization-related and protein anabolism genes during
osteoblast differentiation. To gain insights about the molecular mechanism under-
lying osteoblastogenesis, we performed RNA sequencing (RNA-seq) to profile changes
in the transcriptome of ST2 cells in response to BMP2 for 72 hours (see the supple-
mental material for the complete data set). ST2 cells are a mouse bone marrow stromal
cell line that undergoes osteoblast differentiation in response to BMP2 (11, 34). We
identified 416 genes induced >2-fold by BMP2. Analyses of these induced genes with
GOrilla revealed a comprehensive molecular signature for osteoblast differentiation
(35). The signature is composed of two primary biological processes based on gene
ontology (GO) terms “mineralization related,” comprised of endochondral ossification
(GO:0001958; P = 2.46E—04), osteoblast development (GO:0001649; P = 8.5E—05), and
biomineral tissue development (GO:0031214; P = 1.46E—06), and “protein anabolism,”
encompassing the cellular amino acid metabolic process (GO:0006520; P = 1.13E—38),
tRNA aminoacylation for protein translation (GO:0006418; P = 5.27E—05), the endo-
plasmic reticulum unfolded-protein response (GO:0030968; P = 3.28E—04), and amino
acid transport (GO:0006865; P = 1.83E—04). The mineralization-related component
includes many genes commonly associated with osteoblasts, including the Alpl, Col1a1,
DIx5, Phospho1, Ibsp, Msx2, Sp7, Bglap, Fgfr2, and Pth1r genes (Fig. 1A). Within the
anabolism component are the transcription factors Atf4 and Ddit3 and many of their
transcriptional targets involved in ER stress (e.g., Atf3, Chac1, Trib3, and Ero1l) or tRNA
aminoacylation (e.g., Eprs, Gars, lars, and Lars) (30) (Fig. 1A). Thus, nonbiased transcrip-
tome profiling identifies increased expression of protein anabolism genes, in addition
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FIG 1 BMP2 induces genes involved in mineralization and protein anabolism during osteoblast differentiation in ST2 cells. (A) List of genes induced (>2-fold)
by BMP2 after 72 h of treatment, as detected by RNA-seq. Fragments per kilobase per million reads (FPKM) are shown for control cells, while fold induction
is shown for BMP2-treated cells. (B) gPCR confirmation of gene induction in response to 72 h of BMP2 treatment. (C) Western blot analyses of ST2 cells treated
for 72 h with BMP2. ATF4 and Ddit3 values were normalized to the value for B-actin. Shown are fold changes * standard deviations for treatment over the
vehicle in three independent experiments. (D to K) qPCR analyses of gene induction in response to BMP2 treatment for different durations. *, P < 0.05 (n =

3). Error bars indicate standard deviations.

to that of mineralization-related genes, as a prominent feature of osteoblast differen-

tiation in response to BMP2.

We next corroborated the RNA-seq results and also examined the kinetics of gene
induction by quantitative PCR (qPCR). We confirmed the induction of both
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FIG 2 BMP2 induces protein anabolism gene signature independent of Wnt signaling. (A) Expression of Wnt genes in ST2
cells and changes in the response to BMP2 after 72 h, as detected by RNA-seq. FPKM, fragments per kilobase per million
reads. *, >2-fold induction. (B to H) Effects of IWP2 treatment on gene expression assayed by qPCR (B, C, and E to H) or

Alpl staining (D). *, P < 0.05 (n = 3). Error bars indicate standard deviations.

mineralization-related and protein anabolism genes by BMP2 after 72 h (Fig. 1B). By
Western blotting, we observed increased protein levels for Atf4 and Ddit3 in response
to BMP2 (Fig. 1C). The gPCR experiments also demonstrated a significant induction of
Alpl and Ibsp by BMP2 within 6 h of treatment (Fig. 1D and E). In contrast, protein
anabolism genes such as the Atf4, Ddit3, Asns, Lars, Tars, and Glyt1 (also known as
Slc6a9) genes were not significantly induced until after 72 h of treatment (Fig. 1F to K).
Thus, the mineralization-related and protein anabolism gene signatures exhibit distinct
kinetics of induction in response to BMP2.

The RNA-seq data showed that BMP2 induced the expression of Wnt4, Wnt5a, and
Wnt6 without affecting a number of other Wnt genes (Fig. 2A). Because previous work
implicated Wnt in mediating the osteogenic function of Bmp, we examined the
potential role of de novo Wnt production in BMP2-induced gene expression (36). When
the small molecule IWP2 was used to inhibit Wnt secretion, it markedly reduced the
mRNA level of the Wnt/B-catenin target Tcf7 gene, as expected (Fig. 2B). Interestingly,
IWP2 significantly blunted the induction of Alpl by BMP2, even though the level of Alpl
remained 50-fold higher than that of the control (Fig. 2C and D). However, IWP2 did not
impair BMP2-induced expression of Atf4, Ddit3, Asns, or Glyt1 (Fig. 2E to H). Therefore,
BMP2 can induce protein anabolism genes independently of de novo Wnt secretion.

BMP2 induces protein anabolism genes via a Smad4-independent mechanism.
We next sought to understand how Bmp regulates the protein anabolism genes. We
first tested the relevance of Smad4-mediated signaling. Effective knockdown of Smad4
with short hairpin RNA (shRNA) abolished the induction of Alpl, Sp7, and lbsp by BMP2
after either 6 or 96 h of treatment (Fig. 3A to F). In contrast, Smad4 knockdown had no
effect on the induction of the protein anabolism Ddit3, Asns, or Glyt1 gene (Fig. 3G
to I). Interestingly, the Bglap gene, a mineralization-related gene that is a prototypic
target gene of Atf4, was also unaffected by Smad4 knockdown (Fig. 3J) (31). Overall,
Smad4 mediates the rapid induction of several mineralization-related genes by BMP2
but does not contribute to the subsequent activation of protein anabolism genes.

The PERK-dependent ISR mediates Bmp induction of protein anabolism genes.
Activation of the protein anabolism genes can be an adaptive response to increased
protein synthesis. To test if BMP2 induces protein synthesis in ST2 cells, we performed
metabolic labeling using 3>S-labeled cysteine and methionine. BMP2 significantly
increased protein synthesis after 12 h, prior to the induction of anabolism genes; the
increased levels peaked at 24 h but persisted after 72 h (Fig. 4A). Remarkably, Smad4
knockdown had no effect on the induction of protein synthesis by BMP2 (Fig. 4B). To
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FIG 3 BMP2 induces gene expression through Smad4-dependent and -independent mechanisms. (A) Western blot analysis of Smad4 protein
levels in ST2 cells infected with a lentivirus expressing shRNA for Smad4 or LacZ (control). (B to J) Effects of Smad4 knockdown on BMP2-induced
gene expression assayed by qPCR or Alpl staining after 6 h (B and C) or 96 h (D to J) of treatment. *, P < 0.05 (n = 3). Error bars indicate standard
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examine whether increased protein synthesis led to ER stress, we assayed Perk phos-
phorylation (T980) following BMP2 treatment. BMP2 significantly increased Perk phos-
phorylation after 72 h, a time point coinciding with the induction of protein anabolism
genes (Fig. 4Q). Perk phosphorylation further intensified after 96 h of BMP2 treatment.
However, we did not detect a change in Xbp1 splicing, another marker for ER stress, in
response to BMP2 (Fig. 4D). Importantly, shRNA knockdown of Perk abolished the
induction of the Ddit3 protein by BMP2 (Fig. 5A). Furthermore, Perk knockdown eliminated
the activation of protein anabolism genes (the Glyt1, Lars, and Asns genes) (Fig. 5B to D) but
not that of mineralization-related genes (the Sp7 and Alpl genes) by BMP2 (Fig. 5E and
F). As Atf4 is a key transcriptional effector downstream of Perk, we next examined the
relevance of Atf4 to BMP2 function. Knockdown of Atf4 with shRNA prevented the
induction of Glyt1, Lars, Asns, and Ddit3 but not Alpl by BMP2 (Fig. 5G to L). Moreover,
knockdown of either Perk or Atf4 did not diminish the induction of protein synthesis by
BMP2 despite a lower basal rate (Fig. 5M). On the other hand, inhibition of protein
synthesis with rapamycin prevented Perk activation, as assayed by Eif2a phosphoryla-
tion, as well as the induction of the Atf4 protein by BMP2 (Fig. 5N and O). Importantly,
rapamycin did not impair the induction of the mineralization-related Sp7 and Col1a1l
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FIG 4 BMP2 stimulates protein synthesis and induces ER stress. (A and B) Metabolic labeling in ST2 cells treated with BMP2 for up to
72 h (A) or in Smad4 knockdown ST2 cells treated with BMP2 for 24 h (B). shRNA for green fluorescent protein (shGFP) was used as
a control. (C) Western blot analyses of ST2 cells treated with BMP2 for up to 96 h. Phosphoprotein levels were normalized to the levels
of the respective total protein. Shown are fold changes * standard deviations for treatment over the vehicle in three independent
experiments. *, P < 0.05 relative to lane 1. a-Tubulin is the loading control. (D) Xbp1 splicing assay in ST2 cells treated with BMP2 for
up to 96 h. Thapsigargin (TG) treatment for 12 h was used as a positive control. U, unspliced Xbp1; S, spliced Xbp1.
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FIG 5 Perk and Atf4 mediate induction of protein anabolism genes by BMP2. (A to F) Effects of Perk knockdown on the response to BMP2, assayed by Western
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*, P < 0.05 (n = 3). Error bars indicate standard deviations.

genes, although it partially blunted the induction of Alpl (Fig. 5P to R). Thus, our data
support a model in which BMP2 activates protein synthesis and Perk, which in turn
induces protein anabolism genes via Atf4.

BMP2 stimulates protein synthesis downstream of c-Abl, PI3K, and mTORC1
activation. We next investigated the mechanism responsible for the stimulatory effect
of BMP2 on protein synthesis. BMP2 was shown to activate the PI3K/Akt pathway
downstream of the tyrosine kinase c-Abl in 2T3 cells (7). As PI3K and Akt are upstream
activators of mTORC1, a serine threonine kinase known to enhance protein synthesis,
we examined the effect of BMP2 on the PI3K/Akt/mTORC1 pathway in ST2 cells. Within
1 h of treatment, BMP2 significantly increased the phosphorylation of Akt at T308, an
event downstream of PI3K (Fig. 6A). Moreover, BMP2 induced the phosphorylation of
the S6 ribosomal protein at S240/244 and that of Eif4ebp1 at S65, indicating mTORC1
activation (Fig. 6A). Pharmacological inhibition of c-Abl with STI-571 (also known as
imatinib [Gleevec]) prevented the BMP2-induced phosphorylation of Akt, Eif4ebp1, and
S6 without affecting Smad1/5 phosphorylation (Fig. 6A). Importantly, STI-571 effectively
suppressed the induction of protein synthesis and protein anabolism genes by BMP2
(Fig. 6B to D). STI-571 also abolished the induction of Bglap, an established target of
Atf4 (Fig. 6E). In contrast, c-Abl inhibition did not impair the induction of Alpl, Sp7, or
Ibsp, indicating that Smad signaling was intact (Fig. 6F to H). These results therefore
reveal that c-Abl selectively mediates mTORC1 signaling in response to BMP2.

We next further corroborated the role of PI3K and mTORC1 in mediating the
function of BMP2. Similarly to c-Abl inhibition, inhibition of PI3K with LY294002
completely suppressed BMP2-induced protein synthesis (Fig. 7A). Inhibition of PI3K also
abolished the induction of protein anabolism genes (the Glyt1, Lars, and Asns genes) by
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FIG 6 c-Abl mediates induction of protein synthesis and protein anabolism genes by BMP2. (A) Western blot analyses of
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normalized to the levels of the respective total proteins. Shown are fold changes = standard deviations over the vehicle
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of ST2 cells treated with or without BMP2 or STI-571 for 24 h. (C to H) Effects of STI-571 on gene induction by BMP2, assayed
by gPCR. *, P < 0.05 (n = 3). Error bars indicate standard deviations.

BMP2 (Fig. 7B to D). Likewise, the mTOR inhibitor Torin1 eliminated the induction of
both protein synthesis and protein anabolism genes (the Glyt1, Lars, Asns, Ddit3, and
Atf4 genes) by BMP2 (Fig. 7E to J). Thus, BMP2 signals through c-Abl to activate the
PI3K/Akt/mTORCT1 axis, resulting in increased protein synthesis and induction of protein
anabolism genes.

Finally, we tested the relevance of BMP2-mTORC1 signaling in primary cultures of
murine bone marrow stromal cells (BMSC). BMP2 activated mTORC1 in BMSC within 1
h of treatment, as indicated by the increased phosphorylation of S6 (Fig. 8A). Moreover,
BMP2 induced the expression of not only the mineralization-related Sp7 and Alpl genes
but also a number of protein anabolism genes, including the Asns, Tars, Lars, Ddit3, and
Atf4 genes (Fig. 8B to H). Altogether, our data support a model in which BMP2 induces
osteoblast differentiation by engaging both Smad4 and mTORC1 mechanisms to
activate mineralization-related and protein anabolism genes, respectively (Fig. 8I).

DISCUSSION

We have shown that Bmp signaling employs a dual mechanism to induce osteoblast
differentiation. On the one hand, Bmp activates genes associated with ossification and
mineralization (“mineralization-related signature”) in a Smad4-dependent manner. On
the other hand, Bmp signals through a c-Abl-PI3K-mTORC1 cascade to stimulate the
expression of a host of genes participating in protein synthesis (“protein anabolism
signature”). The activation of the protein anabolism signature is likely independent of
Smad4 but relies on Atf4, in response to ER stress triggered by increased protein
synthesis. It should be noted that the activation of mTORC1 as well as the induction of
the protein anabolism genes in BMSC were less robust than those in ST2 cells. Thus,
BMP2 may activate protein anabolism genes via the mTORC1 pathway in a cell
context-dependent manner. These findings therefore provide new insights about the
regulation of osteoblastogenesis by Bmp.
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These data indicate that the mineralization-related and protein anabolism gene
signatures exhibit different kinetics of induction by BMP2. Distinct from the
mineralization-related genes induced rapidly (the Alpl and Ibsp genes are significantly
upregulated after 6 h), the levels of the protein anabolism genes are not increased until
after 72 h of BMP2 stimulation. This temporal difference reflects distinct mechanisms,
with rapid induction corresponding to canonical Bmp signaling via Smad4 but with the
delayed response being mediated by Atf4 secondary to the ISR. Among the
mineralization-related genes, the Bglap gene is unique in that it is independent of
Smad4 but strictly depends on Atf4, thus behaving like the protein anabolism genes,
but this result is consistent with the previous discovery of the Bglap gene as a direct
target gene of Atf4 (31). Overall, the mineralization-related and protein anabolism gene
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FIG 8 BMP2 activates mTORC1 and induces the expression of protein anabolism genes in BMSC. (A) Western blot analyses of S6
phosphorylation in response to BMP2. *, P < 0.05. Shown are average fold changes =+ standard deviations (n = 3). (B to H) Induction of
gene expression by BMP2, assayed by qPCR. *, P < 0.05 (n = 3). Error bars indicate standard deviations. () Model for bimodal BMP2
signaling during osteoblast differentiation.
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signatures are largely regulated by distinct intracellular mechanisms, and both should
be evaluated when assessing osteoblast differentiation.

This work has shed new light on the role of Wnt as a mediator of Bmp function
during osteoblast differentiation. BMP2 induces the transcription of several Wnt genes
in ST2 cells. However, inhibition of Wnt secretion does not diminish the induction of the
protein anabolism genes by BMP2, even though it blunts that of Alpl. Our observation
is consistent with data from a previous report implicating autocrine Wnt signaling in
Alpl expression and osteoblast mineralization in response to BMP2 (36). Thus, Wnt may
serve as a secondary signal to amplify Alpl expression during osteoblast differentiation
induced by Bmp.

Bmp and Wnt employ different mechanisms to activate the ISR. We have previously
shown that Wnt3a activates the ISR through Gcn2 responding to an intracellular
glutamine deficiency (23). In contrast, BMP2 induces the ISR predominantly through
Perk activation in response to protein synthesis overload. Remarkably, mTORC1 is a
common mediator of both Gcn2- and Perk-mediated ISR. It is not clear at present how
mTORCT1 activation by Wnt or Bmp leads to disparate cell stress pathways. However, we
have noticed that compared to Wnt3a, BMP2 causes a quick and large increase in
protein synthesis in ST2 cells. Such a discrepancy could explain the ER stress observed
with only BMP2 but not Wnt3a. On the other hand, Wnt3a acutely stimulates glucose
consumption by ST2 cells, but BMP2 does not have a similar effect (37). Despite these
differences, the data indicate that mTORC1 is a common effector downstream of Wnt
and Bmp in activating the protein anabolism signature of osteoblasts.

Our results indicate that the nonreceptor tyrosine kinase c-Abl contributes to
osteoblastogenesis in response to Bmp. In particular, c-Abl inhibition prevents mTORC1
signaling, ER stress activation, and protein anabolism gene induction in response to
BMP2 but does not impair the induction of the mineralization-related genes (e.g., the
Alpl, Sp7, and lbsp genes) (Fig. 6). This finding is consistent with data from a previous
report showing that c-Abl=/— mice are osteoporotic due to decreased osteoblast
maturation and activity (38). Moreover, patients receiving imatinib mesylate (c-Abl
inhibitor) have been reported to show inhibition of bone remodeling (39). Although
others have shown that c-Abl phosphorylates Bmpr1a and regulates Smad activation in
response to Bmp, we did not observe any effect of c-Abl inhibition on Smad phos-
phorylation or Smad-dependent gene expression (7, 40). This discrepancy may be due
to the different cell types being examined or different modes of c-Abl inhibition or
Bmp2 treatment. Nonetheless, our data support a model wherein c-Abl activity is
required for Bmp2-induced activation of mTORC1, protein synthesis, and induction of
the protein anabolism gene signature during osteoblast differentiation.

MATERIALS AND METHODS

Cell culture. ST2 cells were cultured in a-MEM (Gibco) supplemented with 10% fetal bovine serum
(FBS) (Invitrogen). All experiments were carried out at a seeding density of 13,000 cells/cm2. BMP2
treatments were initiated by replacing the medium with a-MEM supplemented with either 300 ng/ml
recombinant human BMP2 (R&D) or the vehicle control (0.1% HCI). In the indicated experiments, growth
medium was supplemented with 100 nM Torin1, 10 uM STI-571, 1 pg/ml thapsigargin, 10 wM LY294002,
5 uM IWP2, or 20 nM rapamycin, all purchased from Sigma. For all experiments involving IWP2, STI-571,
LY294002, or Torin1, cells were pretreated for 30 min with the respective reagent. For 1-h BMP2
treatments, ST2 cells were serum starved for 6 h prior to the treatments.

BMSC were isolated from tibias and femurs of 2-month-old mice. Briefly, the bones were cleanly
dissected and cut off the epiphysis with scissors. Bone marrow cells were collected from the bones by
centrifugation and then incubated with red blood lysis buffer. The remaining cells were then passed
through a 70-um cell strainer before being seeded onto a tissue culture plate in a-MEM containing 10%
FBS. After daily changes of the medium for 3 days, the cells were allowed to grow until they reached
confluence. The cells were then dissociated and seeded at 1.5 X 105 cells per well in a 24-well plate
overnight before treatment with 300 ng/ml of BMP2 or the vehicle for 1 h for Western blotting or for 72
h for qPCR.

RNA isolation and qPCR. Total RNA was isolated from cultured cells by using the RNeasy kit with
on-column DNase treatment (Qiagen). Reverse transcription was performed by using 100 ng total RNA
with the iScript cDNA synthesis kit (Bio-Rad). Reactions were set up in technical and biological triplicates
in a 96-well format on an ABI StepOne Plus machine, using SYBR green chemistry (SsoAdvanced;
Bio-Rad). The PCR conditions were 95°C for 3 min followed by 40 cycles of 95°C for 10s and 60°C for 30s.
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TABLE 1 PCR primers used in this study
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Gene Forward primer Reverse primer

18s CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT

Akp2 CCAACTCTTTTGTGCCAGAGA GGCTACATTGGTGTTGAGCTTTT
Ibsp CAGAGGAGGCAAGCGTCACT GCTGTCTGGGTGCCAACACT
Asns CAAGGAGCCCAAGTTCAGTAT GGCTGTCCTCCAGCCAAT
Smad4 GCAGCTCTTGGATGAAGTCC GGCAGCAAACACATCTCTCA
Lars GAGCAGCAAGGGCAAATACTT GAAAACGTGTGTCCCAAATGAAG
Sp7 CCCTTCTCAAGCACCAATGG AAGGGTGGGTAGTCATTTGCATA
Tars CCCTGGCCTGAATACATTAACAC CGGCTTGCTATCTTTTGCTGC
Yars TTATCAAAGGCACCGACTACCA CGTCGTGTTGTGTGACCAC
Eif4ebp1 GGTGAGTTCCGACACTCCAT GGGGACTACAGCACCACTCC
Chaci AGTGGTGACCCTCCTTGA CCCTCACATTCAGGTACTTCAG
Ddit3 AAGCCTGGTATGAGGATCTGC GGGGATGAGATATAGGTGCCC
ErolL AGTCTGCGAGCTACAAGTATTC TCTCCTCACTCAGAGACTCATC
Ste2 GAGAACGTCGGTGTGATTGT GACTGCCTCCTTCACATCTTC
Glyt1 TCATGGCTTTGTCGTCTGTCAT GCGGCAGAGCTGGAACA
Phospho1 AGCTGGAGACCAACAGTTTTC TCCCTAGATAGGCATCGTAGTC
Fgfr2 ATAAGGTACGAAACCAGCACTG GGTTGATGGACCCGTATTCATTC
Tcf7 AGCGCTGCCATCAACCAGAC TGGCCTGCTCTTCTCGAGATAG
Bglap CAGCGGCCCTGAGTCTGA GCCGGAGTCTGTTCACTACCTTA
Collal CCCAAGGAAAAGAAGCACGTC ACATTAGGCGCAGGAAGGTCA

The gene expression level was normalized to the 18S rRNA level, and relative expression was calculated
by using the 2-24¢T method. Primers were used at 0.1 uM, and their sequences are listed in Table 1. PCR
efficiency was optimized, and melting-curve analyses of products were performed to ensure reaction
specificity.

shRNA knockdown. Lentiviral ShRNA constructs were obtained from the RNA interference (RNAi)
core at the Washington University School of Medicine. The lentiviral constructs were cotransfected with
plasmids pMD2.g and psPax2 into 293 cells. The virus-containing media were collected and filtered. ST2
cells were plated at 13,000 cells/cm? and infected for 12 h, followed by recovery for 36 h in regular
medium. Viral infection delayed and blunted the ISR in ST2 cells in response to BMP2. As a result, in all
knockdown experiments, anabolic gene expression and ISR induction were assayed after 96 h of BMP2
treatment, instead of the 72 h normally used with uninfected ST2 cells. All knockdown results were
confirmed by two or more shRNA constructs targeting different sequences (Table 2).

Western blotting. ST2 cells were scraped into lysis buffer containing 50 mM Tris (pH 7.4), 15 mM
NaCl, 0.5% NP-40, and a protease inhibitor mix (catalog number 04693124001; Roche). The protein
concentration was measured by using the bicinchoninic acid (BCA) method (Pierce). Proteins (20 ug)
were resolved on a 12% polyacrylamide gel, transferred onto a 0.45-um-pore-size polyvinylidene
difluoride (PVDF) Immobilon-P membrane (Millipore), and detected with specific antibodies to a-tubulin
(Santa Cruz), P-T980-Perk (Cell Signaling), Perk (Cell Signaling), P-S51-elF2« (Cell Signaling), elF2a (Cell
Signaling), Ddit3 (Cell Signaling), ATF4 (Santa Cruz), S6 (Cell Signaling), P-5240/244-5S6 (Cell Signaling),
P-S65-4EBP1 (Cell Signaling), 4EBP1 (Cell Signaling), P-T308-Akt (Cell Signaling), Akt (Cell Signaling),
P-Smad1/5 (Cell Signaling), Smad1 (Cell Signaling), and Smad4 (Abcam). The immunoblots were blocked
for 1 h at room temperature with 5% bovine serum albumin (BSA) dissolved in Tris-buffered saline (TBS)
with 0.1% Tween, followed by overnight incubation with specific primary antibodies at 4°C. For ATF4
detection, the blots were blocked overnight at 4°C in 7% milk (TBS, 0.1% Tween) before overnight
incubation with the antibody at 4°C in 5% milk. Membranes were then washed three times by using
TBS-0.1% Tween and further incubated with the horseradish peroxidase (HRP)-conjugated goat anti-
rabbit secondary antibody (Invitrogen) in 5% BSA (TBS-0.1% Tween) for 1 h at room temperature
(1:5,000). All blots were developed by using either the Immun-Star WesternC chemiluminescence kit or
the Clarity ECL substrate (Bio-Rad). Each experiment was repeated a minimum of three times with three
independently prepared protein samples.

TABLE 2 shRNA sequences used in this study?

Gene Insert sequence

LacZ GCGATCGTAATCACCCGAGTG
RFP ACAACAGCCACAACGTCTATA
Smad4-1 GCTTACTTTGAAATGGACGTT
Smad4-2 GCCAGCTACTTACCATCATAA
Perk-1 GCCACTTTGAACTTCGGTATA
Perk-2 CCATACGATAACGGTTACTAT
ATF4-1 CCAGAGCATTCCTTTAGTTTA
ATF4-2 GCGAGTGTAAGGAGCTAGAAA

aResults from shRNA-1 for each gene described in the text.
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RNA-seq. Poly(A) RNA was isolated from 20 ug total RNA by using oligo(dT) beads. mRNA was
fragmented and reverse transcribed into double-stranded cDNA. cDNA was blunt ended, followed by the
addition of an “A” base to the 3" end and the ligation of sequencing adapters to the ends. The fragments
then underwent PCR amplification for 12 cycles. The resulting libraries were sequenced by using the
lllumina HiSeq-2000 instrument with single reads extending 42 bases (GTAC, Washington University). The
raw data were demultiplexed and aligned to the reference genome (mm9) by using TopHat. Both
Cufflinks and the Partek Genomic Suite were used independently to assemble transcripts and analyze
expression. Gene ontology analysis was performed by using the GOrilla platform.

Metabolic labeling. ST2 cells were seeded at 2.5 X 10° cells into 6-cm plates and cultured for 36 h
prior to treatments, followed by two washes with cysteine-methionine-free medium and incubation in
labeling medium (10% dialyzed FBS, 165 nCi EasyTag Express 35S mix) for 30 min. Cells were then washed
twice with ice-cold phosphate-buffered saline (PBS) and scraped into radioimmunoprecipitation assay
(RIPA) buffer. Soluble lysates were spotted onto Whatman paper and precipitated in 5% trichloroacetic
acid (TCA), followed by two 5-min washes in 10% TCA, two 2-min washes in 100% ethanol, and one 2-min
wash in acetone. Filters were air dried, and 35S incorporation was measured by using a Beckman LS6500

Molecular and Cellular Biology

scintillation counter and normalized to the cell number.

SUPPLEMENTAL MATERIAL

MCB.00253-16.

DATA SET S1, XLS file, 9.5 MB.
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