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High Levels of Cyclic Di-GMP in Klebsiella pneumoniae
Attenuate Virulence in the Lung

David A. Rosen,a Joy Twentyman,a David A. Hunstada,b

aDivision of Pediatric Infectious Diseases, Department of Pediatrics, Washington University School of Medicine,
St. Louis, Missouri, USA

bDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

ABSTRACT The bacterial second messenger bis-(3=-5=)-cyclic dimeric GMP (c-di-
GMP) has been shown to influence the expression of virulence factors in certain
pathogenic bacteria, but little is known about its activity in the increasingly
antibiotic-resistant pathogen Klebsiella pneumoniae. Here, the expression in K. pneu-
moniae of a heterologous diguanylate cyclase increased the bacterial c-di-GMP con-
centration and attenuated pathogenesis in murine pneumonia. This attenuation re-
mained evident in mice lacking the c-di-GMP sensor STING, indicating that the high
c-di-GMP concentration exerted its influence not on host responses but on bacterial
physiology. While serum resistance and capsule expression were unaffected by the
increased c-di-GMP concentration, both type 3 and type 1 pili were strongly upregu-
lated. Importantly, attenuation of K. pneumoniae virulence by high c-di-GMP levels
was abrogated when type 1 pilus expression was silenced. We conclude that in-
creased type 1 piliation may hamper K. pneumoniae virulence in the respiratory tract
and that c-di-GMP signaling represents a potential therapeutic target for antibiotic-
resistant K. pneumoniae in this niche.

KEYWORDS Klebsiella pneumoniae, cyclic di-GMP, pneumonia, murine model, type 1
pili, type 3 pili, virulence

Klebsiella pneumoniae is a versatile pathogen that causes numerous human infec-
tions, including pneumonia, urinary tract infection (UTI), and sepsis (1). These

infections are increasingly difficult to treat, given the accelerating antibiotic resistance
profile of this organism, the genome of which frequently encodes extended-spectrum
beta-lactamases (ESBLs), K. pneumoniae carbapenemases (KPCs), and other antibiotic
resistance determinants (2–5). K. pneumoniae is the most prevalent of the carbapenem-
resistant Enterobacteriaceae (CRE), an emerging worldwide problem which results in
mortality rates of up to 50% (4, 6, 7). Given that all forms of nosocomial K. pneumoniae
infection are on the rise, novel therapeutic targets are urgently needed to combat this
organism (8, 9).

While the virulence repertoire of K. pneumoniae is incompletely defined, several
factors have been studied in detail. K. pneumoniae produces at least 79 distinct
polysaccharide capsules that are vital for infection of the respiratory tract (10–13).
Conversely, type 1 pili, adhesive fimbriae encoded by the fim operon, are essential for
the initiation of UTI, but deletion of these pili does not impair virulence in K. pneu-
moniae infections of the respiratory tract (14, 15). Another form of adhesive fimbriae,
type 3 pili, is encoded by the mrk operon and promotes biofilm formation and binding
to collagen or abiotic surfaces (16, 17). Expression of type 3 pili is regulated by MrkH in
response to the bacterial second messenger bis-(3=-5=)-cyclic dimeric GMP (c-di-GMP)
(18–21).

c-di-GMP is a ubiquitous bacterial signaling molecule produced by diguanylate
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cyclases (containing GGDEF domains) and broken down by phosphodiesterases (con-
taining EAL or HD-GYP domains) (22, 23). The genomes of many bacterial species
encode a large number of these proteins; K. pneumoniae strains generally harbor �12
proteins with GGDEF domains, 9 with EAL domains, and 6 with both domains (19).
c-di-GMP in various bacteria stimulates the biosynthesis of adhesins, inhibits motility,
and can even modulate antibiotic resistance (22–24). Meanwhile, the mammalian host
may sense c-di-GMP via the innate immune receptor STING (stimulator of interferon
genes) and induce proinflammatory cytokine and chemokine production (25, 26).

Despite the myriad of c-di-GMP-modifying enzymes encoded by the K. pneumoniae
genome, the effects of c-di-GMP on lung pathogenesis or expression of virulence
factors (beyond type 3 pili) are unknown. In this study, we leveraged a plasmid system
allowing the inducible expression of a c-di-GMP-synthesizing enzyme to demonstrate
that high levels of c-di-GMP attenuate K. pneumoniae virulence in the lung and
upregulate the expression of both type 3 and type 1 pili. This attenuation of infection
of the respiratory tract was abrogated when fim expression was silenced, indicating
that, in contrast to the critical role of type 1 pili in the urinary tract, type 1 pilus
expression may be detrimental to K. pneumoniae pathogenesis in the lung.

RESULTS
pCMW75 increases the global c-di-GMP concentration in K. pneumoniae TOP52.

The K. pneumoniae genome encodes as many as 27 distinct enzymes bearing GGDEF
domains, EAL domains, or both that could synthesize or hydrolyze c-di-GMP (19, 27). As
it would be infeasible to inactivate all of these genes, we used an inducible plasmid
system to raise global c-di-GMP levels in K. pneumoniae. Plasmid pCMW75 encodes
isopropyl-�-D-1-thiogalactopyranoside (IPTG)-inducible QrgB, a Vibrio harveyi GGDEF
protein which synthesizes c-di-GMP and has no further homology to K. pneumoniae
proteins (28). The comparator plasmid pCMW98 encodes QrgB*, an inactive AAEEF
mutant that is unable to synthesize c-di-GMP. We transformed pCMW75, pCMW98, or
the parent vector, pEVS143, into wild-type K. pneumoniae strain TOP52 and grew these
transformants in the presence of kanamycin and IPTG (Table 1). We developed a liquid
chromatography-mass spectrometry (LC-MS) assay, using a known concentration of
xanthosine 3=,5=-cyclic monophosphate (c-XMP; not synthesized by bacteria) as an
internal standard, to measure the normalized c-di-GMP concentration in K. pneumoniae
pellets (Fig. 1). Wild-type TOP52 bearing the parent vector pEVS143 contained 0.77 ng
c-di-GMP/mg bacterial pellet. In contrast, induction of active QrgB in TOP52/pCMW75
resulted in a greater than 30-fold increase in the c-di-GMP concentration relative to that
in both TOP52/pEVS143 (P � 0.0002) and TOP52/pCMW98 (containing inactive QrgB*;
P � 0.0007).

TABLE 1 K. pneumoniae strains and plasmids used in this study

Strain or plasmid Description Reference or source

Strains
TOP52 K. pneumoniae K6 isolate (wild-type parent strain) 46
TOP52 ΔmrkH Deletion of mrkH, regulator of type 3 pili This study
TOP52 ΔmrkA Deletion of mrkA, type 3 pilus structural subunit This study
TOP52 ΔfimS-K Deletion of entire type 1 pilus operon from

promoter fimS through fimK
This study

TOP52 ΔrfaH Deletion of rfaH, transcription antitermination
factor

This study

ATCC 43816 K. pneumoniae K2 isolate 47

Plasmids
pKD46s Bacteriophage lambda Red recombinase,

repA101(Ts), spectinomycin resistant
13

pCP20 FLP recombinase, chloramphenicol resistant 48
pEVS143 Parent IPTG-inducible vector, kanamycin resistant 49
pCMW75 Vector containing IPTG-inducible, active QrgB 28
pCMW98 Vector containing IPTG-inducible, inactive QrgB* 28
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A high c-di-GMP concentration impairs K. pneumoniae TOP52 virulence in the
lungs. To assess how K. pneumoniae with a globally high c-di-GMP concentration
performs in vivo, we utilized an established preclinical model of K. pneumoniae respi-
ratory tract infection (29). Overnight, IPTG-induced cultures were grown statically at
37°C and then resuspended in phosphate-buffered saline (PBS), and no differences in
bacterial growth or aggregation were observed (data not shown). Intratracheal inocu-
lation with 107 CFU of TOP52/pEVS143, TOP52/pCMW75, or TOP52/pCMW98 into
wild-type C57BL/6J mice was followed by lung and spleen harvest at 24 h postinfection
(hpi). Mice infected with K. pneumoniae containing a high c-di-GMP concentration
(TOP52/pCMW75) exhibited lower lung bacterial burdens than mice infected with basal
levels of c-di-GMP (TOP52/pEVS143, P � 0.0001; TOP52/pCMW98, P � 0.0002) (Fig. 2A).
While spleen bacterial titers (a marker for systemic dissemination) were low in all
infected mice, they were significantly lower in mice infected with TOP52/pCMW75 than
in mice infected with TOP52/pEVS143 and TOP52/pCMW98 (P � 0.0001 for both
comparisons) (Fig. 2B). Lungs infected with TOP52/pCMW75 demonstrated less severe
histopathology than lungs infected with TOP52/pEVS143 or TOP52/pCMW98, which
contained dense, largely neutrophilic, inflammatory infiltrates (Fig. 2C). These data
suggest that K. pneumoniae strains with high c-di-GMP levels are attenuated in murine
pneumonia.

Attenuation of K. pneumoniae TOP52 virulence by high c-di-GMP levels is
secondary to pathogen-specific changes. The mammalian host can sense and re-
spond to c-di-GMP, along with other cyclic dinucleotides, and thus, it was not clear if
the attenuation phenotype observed with TOP52/pCMW75 was a result of c-di-GMP
effects on the bacteria or the host (25, 30). To investigate this, we intratracheally
infected mice lacking STING (the host receptor for c-di-GMP) with TOP52/pEVS143 or
TOP52/pCMW75. At 24 hpi in both the lungs and spleens, TOP52/pCMW75 was
attenuated relative to TOP52/pEVS143 in the STING�/� mouse background (P �

0.0001) (Fig. 3), similar to its attenuation in wild-type C57BL/6J mice. These data
suggest that the decrease in pulmonary virulence with K. pneumoniae containing high
c-di-GMP levels reflects the effects of c-di-GMP on the bacteria and not augmented host
sensing of the increased c-di-GMP levels.

FIG 1 Expression of diguanylate cyclase QrgB increases the concentrations of c-di-GMP in K. pneumoniae
TOP52. K. pneumoniae TOP52 was transformed with plasmid pEVS143 (the parent vector), pCMW75 (with
active QrgB), or pCMW98 (with inactive QrgB*). The concentration of c-di-GMP in the bacterial pellets was
measured by liquid chromatography-mass spectrometry. Data are shown as means � SEMs and were
combined from 4 independent experiments. ***, P � 0.001, Mann-Whitney U test.
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High c-di-GMP levels do not affect K. pneumoniae TOP52 serum resistance or
capsule production. The abilities of K. pneumoniae to survive in serum and produce an
exopolysaccharide capsule are important for infection of the lung and dissemination
(10, 11, 31). To investigate if increased c-di-GMP levels affect the ability of K. pneu-
moniae to survive in serum, we performed serum resistance assays with TOP52/
pEVS143, TOP52/pCMW75, and TOP52/pCMW98 along with two control strains. We
constructed the negative-control strain TOP52 ΔrfaH, a mutant lacking the antitermi-
nator regulatory factor RfaH, which is important in capsule production and serum
resistance (13). We also used ATCC 43816, a murine-adapted K. pneumoniae strain
known to produce abundant capsule and resist serum killing (11, 13). These assays
demonstrated no significant differences in serum survival between TOP52/pCMW75
(P � 0.7532) or TOP52/pCMW98 (P � 0.5344) and TOP52/pEVS143 (Fig. 4A). As
expected, the rate of survival in serum was lower for TOP52 ΔrfaH and higher for ATCC
43816 (P � 0.0001 for each strain compared to TOP52/pEVS143). To quantify capsule
production, we measured the levels of uronic acid, a component of K. pneumoniae
capsule, in extracts from the same five strains. Again, no significant differences in uronic
acid levels were observed between TOP52/pCMW75 (P � 0.4116) or TOP52/pCMW98
(P � 0.5414) and TOP52/pEVS143 (Fig. 4B). As expected, TOP52 ΔrfaH (P � 0.0024) and
ATCC 43816 (P � 0.0008) produced less and more uronic acid, respectively, than
TOP52/pEVS143. Together, these data indicate that high c-di-GMP levels in TOP52/
pCMW75 do not alter capsule production or serum resistance and that these factors do
not explain TOP52/pCMW75 attenuation in vivo.

FIG 2 A high bacterial c-di-GMP concentration attenuates K. pneumoniae TOP52 virulence. Female
C57BL/6J mice were infected with 107 CFU of TOP52/pEVS143, TOP52/pCMW75 (which has high levels of
c-di-GMP), or TOP52/pCMW98 by intratracheal inoculation. Lung (A) and spleen (B) bacterial loads were
quantified at 24 hpi. Data from at least 3 independent experiments were combined. Each symbol
represents the result for one animal, short bars represent the geometric mean for each group, and full
dotted horizontal lines represent the limits of detection. ***, P � 0.001, Mann-Whitney U test. (C) Murine
lungs infected with K. pneumoniae were harvested at 24 hpi, and representative hematoxylin-and-eosin-
stained sections are shown.
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High c-di-GMP levels promote type 1 piliation in K. pneumoniae TOP52. c-di-
GMP is generally thought to promote the expression of surface adhesins by bacteria.
Specifically, in K. pneumoniae, c-di-GMP has been shown to promote type 3 pilus
expression via the sensor protein MrkH (18–20). Quantitative reverse transcription-PCR
(qRT-PCR) for mrkA, the main type 3 pilus subunit, confirmed that type 3 pilus
expression is upregulated in TOP52/pCMW75 relative to its expression in TOP52
harboring the vector control (P � 0.0001) (see Fig. S1A in the supplemental material).

It was unknown whether c-di-GMP influences the regulation of other pilus systems
relevant to virulence. In K. pneumoniae (as in Escherichia coli), type 1 pili are transcrip-
tionally regulated by an invertible phase switch, fimS, upstream of the gene encoding
the main pilus subunit, fimA. A PCR-based phase assay was used to assess the
proportions of K. pneumoniae populations in the phase-on versus phase-off promoter
orientations. While TOP52/pEVS143 and TOP52/pCMW98 were almost exclusively phase
off after growth in static culture, TOP52/pCMW75, which has high levels of c-di-GMP,
displayed a significant phase-on population (Fig. 5A). As measured by qRT-PCR, TOP52/
pCMW75 exhibited �4-fold increased levels of the fimA transcript relative to those in
TOP52/pEVS143 or TOP52/pCMW98 (P � 0.0001 and P � 0.0003, respectively) (Fig. 5B).

FIG 3 A high c-di-GMP concentration attenuates K. pneumoniae TOP52 virulence in STING�/� mice. Female
STING�/� mice were infected with 107 CFU of TOP52/pEVS143 or TOP52/pCMW75 (which has high levels of
c-di-GMP) by intratracheal inoculation. Lung (A) and spleen (B) bacterial loads were quantified at 24 hpi. Data
were combined from 5 independent experiments. Each symbol represents the result for one animal, short
bars represent the geometric mean for each group, and full dotted horizontal lines represent the limits of
detection. ***, P � 0.001, Mann-Whitney U test.

FIG 4 A high c-di-GMP concentration does not affect K. pneumoniae TOP52 serum resistance or capsule production. (A) In serum
resistance assays, bacterial strains were incubated with pooled human active serum for 3 h; bacterial survival is expressed as a
percentage of the input number of CFU. (B) Capsule extraction and quantification of the capsule component uronic acid were
performed on the indicated strains. Data were combined from at least 3 independent experiments, and the results are shown
as the means � SEMs. #, survival was �0.01%. P values were determined by the Mann-Whitney U test. **, P � 0.01; ***, P � 0.001.

c-di-GMP Effects on Klebsiella Virulence Infection and Immunity

February 2018 Volume 86 Issue 2 e00647-17 iai.asm.org 5

 on F
ebruary 4, 2018 by W

ashington U
niversity in S

t. Louis
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org
http://iai.asm.org/


To confirm that high c-di-GMP levels influenced the actual production of type 1 pili
in K. pneumoniae, we performed immunoblots for FimA. With the standard exposure, a
significant FimA band was evident for TOP52/pCMW75, but the band was difficult to
visualize for the TOP52/pEVS143 and TOP52/pCMW98 controls (Fig. 5C). Relative quan-
tification of the band intensity after prolonged blot exposure demonstrated signifi-
cantly increased FimA levels in TOP52/pCMW75 compared to TOP52/pEVS143 or
TOP52/pCMW98 (P � 0.0001 and P � 0.0015, respectively) (Fig. 5D). In total, these data
argue that, besides type 3 pili, a high c-di-GMP concentration also promotes the
production of type 1 pili in K. pneumoniae TOP52.

c-di-GMP promotion of type 1 pilus production is not mediated by MrkH. MrkH
features a PilZ domain which can sense c-di-GMP and, in turn, bind to the mrkA
promoter, resulting in the transcriptional activation of type 3 pili (18, 19). Given the
novel finding that c-di-GMP also promotes type 1 pilus production in K. pneumoniae, we
asked whether this upregulation was also mediated via MrkH. We deleted mrkH in strain
TOP52 and assessed type 1 pilus expression in the setting of high c-di-GMP concen-
trations. The c-di-GMP concentration was confirmed to be higher in TOP52 ΔmrkH/
pCMW75 than in the control strains TOP52 ΔmrkH/pCMW98 and TOP52 ΔmrkH/
pEVS143 when measured by LC-MS (data not shown). Of note, qRT-PCR did
demonstrate the upregulation of mrkA in TOP52 ΔmrkH/pCMW75, although it was not
nearly to the extent to which mrkA was upregulated in TOP52/pCMW75 (Fig. S1). These
data indicate that while MrkH is the primary mediator of c-di-GMP signaling leading to

FIG 5 A high c-di-GMP concentration promotes type 1 piliation in K. pneumoniae TOP52. (A) Phase assays
of the fimS type 1 pilus promoter switch were performed to assess the populations of phase-on versus
phase-off bacteria in cultures. (B) qRT-PCR was performed to quantify the relative expression of fimA. (C)
Immunoblots were performed using antibodies to FimA and the control protein GroEL. (D) Quantification
of overexposed immunoblots was performed with ImageJ software. All data are representative of those
from at least 3 independent experiments. The data in the graphs are shown as means � SEMs. ***, P �
0.001, Mann-Whitney U test.
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type 3 pilus production, type 3 pili are also regulated by c-di-GMP via MrkH-
independent mechanisms.

Consistent with prior reports (32, 33), decreased type 3 pilus production in TOP52
ΔmrkH was associated with increased type 1 piliation relative to that in wild-type K.
pneumoniae. While the sizes of the fimS phase-on populations were appreciable in all
TOP52 ΔmrkH transformants, the size of the phase-on population of TOP52 ΔmrkH/
pCMW75 was increased compared to that for the controls (Fig. 6A). In addition, qRT-PCR
of TOP52 ΔmrkH/pCMW75 demonstrated increased amounts of the fimA transcript
relative to those for TOP52 ΔmrkH/pEVS143 or TOP52 ΔmrkH/pCMW98 P � 0.0001 for
both comparisons (Fig. 6B). While FimA bands were evident for all TOP52 ΔmrkH
transformants, immunoblots demonstrated increased production of FimA in TOP52
ΔmrkH/pCMW75 compared to TOP52 ΔmrkH/pEVS143 or TOP52 ΔmrkH/pCMW98 (P �

0.0002 and P � 0.0207, respectively) (Fig. 6C and D). These data indicate that increases
in type 1 pilus production triggered by high c-di-GMP concentrations are not mediated
by MrkH.

Increased expression of type 1 pili, but not type 3 pili, is detrimental for K.
pneumoniae TOP52 virulence in the lung. To determine if the increased production
of type 1 or type 3 pili contributed to the attenuated virulence of K. pneumoniae strains
with high-c-di-GMP levels in the lung, we constructed mutant strains unable to produce

FIG 6 A high c-di-GMP concentration promotes type 1 piliation in K. pneumoniae TOP52 in the absence
of mrkH. (A) Phase assays of the fimS type 1 pilus promoter switch were performed to assess the
populations of phase-on versus phase-off bacteria in cultures. (B) qRT-PCR was performed to quantify the
relative expression of fimA. (C) Immunoblots were performed using antibodies to FimA and the control
protein GroEL. (D) Quantification of overexposed immunoblots was performed with ImageJ software. All
data are representative of those from at least 3 independent experiments. The data in the graphs are
shown as means � SEMs. P values were determined by the Mann-Whitney U test. *, P � 0.05; ***, P �
0.001.
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type 1 pili (TOP52 ΔfimSAICDFGHK [TOP52 ΔfimS-K]) or type 3 pili (TOP52 ΔmrkA) and
intratracheally infected wild-type C57BL/6J mice with transformants confirmed to have
basal or high levels of c-di-GMP. Infection with TOP52 ΔfimS-K/pCMW75 showed no
attenuation in the lung or spleen bacterial burden at 24 hpi compared to that with
infection with TOP52 ΔfimS-K/pEVS143 (Fig. 7A and B). In contrast, infection with TOP52
ΔmrkA/pCMW75 maintained significant reductions in lung and spleen bacterial bur-
dens at 24 hpi relative to the burdens of TOP52 ΔmrkA/pEVS143 (P � 0.0001 and P �

0.0004, respectively) (Fig. 7C and D). The failure of high c-di-GMP levels to attenuate
pneumonia in the absence of type 1 pili but not in the absence of type 3 pili indicates
that the increased production of type 1 pili in the lung may hamper K. pneumoniae
virulence in this niche.

DISCUSSION

In the face of accelerating antimicrobial resistance in K. pneumoniae, additional
therapeutic targets are needed. The present work is the first to examine the influence
of c-di-GMP on K. pneumoniae pulmonary virulence. These murine experiments suggest
that K. pneumoniae in a state with high c-di-GMP levels is less virulent in the lung.

FIG 7 A high c-di-GMP concentration attenuates K. pneumoniae TOP52 virulence in the absence of type
3 pili but not in the absence of type 1 pili. Female C57BL/6J mice were infected with 107 CFU of TOP52
ΔfimS-K/pEVS143, TOP52 ΔfimS-K/pCMW75 (which has high levels of c-di-GMP), TOP52 ΔmrkA/pEVS143,
or TOP52 ΔmrkA/pCMW75 (which has high levels of c-di-GMP) by intratracheal inoculation. Lung (A, C)
and spleen (B, D) bacterial loads were quantified at 24 hpi. Data were combined from at least 3
independent experiments. Each symbol represents one animal, short bars represent the geometric mean
for each group, and full dotted horizontal lines represent limits of detection. ***, P � 0.001, Mann-
Whitney U test.
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Manipulation of c-di-GMP synthetic and degradative pathways in pathogenic bacteria
may thus represent a promising means of targeting virulence. Efforts are under way to
synthesize and develop small-molecule broad-EAL-domain inhibitors that could alter a
pathogen’s ability to cleave c-di-GMP (34, 35). It should be noted that while high
c-di-GMP levels attenuated K. pneumoniae infection in the lung, this state may not be
detrimental for pathogenesis in other niches. For example, one could postulate that
increased type 1 piliation triggered by high c-di-GMP levels might augment K. pneu-
moniae virulence in the urinary tract; ongoing studies will address such questions.

Our experiments relied on the elevated c-di-GMP concentrations achieved via
expression of a diguanylate cyclase enzyme in trans, and our controls (the QrgB*
mutant) helped to ensure that the QrgB protein itself was not exerting off-target
effects. This system may not, however, reflect the differential functions of apparently
redundant c-di-GMP-modifying enzymes in K. pneumoniae or the potential temporal
and spatial regulation of c-di-GMP synthesis within the cell (22, 36). Thus, natural
perturbations in c-di-GMP levels may have different effects on virulence factors down-
stream. Additionally, while we suggest that high c-di-GMP levels result in a K. pneu-
moniae virulence profile that is attenuated in initial infection of the lung, the effects of
the perpetual induction of high c-di-GMP levels over the course of a longer infection
have not been investigated.

In our focused analyses, we demonstrated that both type 1 and type 3 pilus adhesins
are upregulated in the setting of high c-di-GMP levels, whereas capsule expression did
not seem to be significantly affected. However, c-di-GMP is a ubiquitous second
messenger and, as such, could impart numerous downstream effects in K. pneumoniae
and other bacteria; transcriptional profiling and other unbiased approaches may help
to further define these in future work. Regardless of the mechanism, however, if the
phenotypes observed in the present model extend to other K. pneumoniae strains or
additional lung pathogens, then c-di-GMP pathways remain attractive therapeutic
targets.

Of additional note, c-di-GMP has been shown to stimulate the innate immune
system in mice and has even been proposed to be a vaccine adjuvant (30, 37). However,
the levels of c-di-GMP used in studies showing host-protective innate immune effects
were �10,000-fold higher than the level contained in our intratracheal inocula. Addi-
tionally, the persistence of the attenuated K. pneumoniae phenotype with high c-di-
GMP levels in STING�/� mice suggests that the effects on virulence in this study were
not host mediated.

This work begins to illustrate the complexity of interactions between type 1 pili, type
3 pili, and c-di-GMP in K. pneumoniae. For example and as previously reported (33, 34),
the loss of type 3 pili results in increased type 1 pilus production through regulatory
mechanisms that remain unclear. Furthermore, while c-di-GMP promotes increased
expression of each adhesin, for type 3 pili, this is mediated by both MrkH-dependent
and MrkH-independent effects, while type 1 pili exhibit only MrkH-independent regu-
lation. The specific mechanism by which c-di-GMP exerts its effects on these fimbrial
operons in the absence of MrkH remains to be identified.

In conclusion, c-di-GMP promotes the expression of both type 1 and type 3 pili in K.
pneumoniae while attenuating virulence in the lung. Further efforts addressing c-di-
GMP pathways as a means of thwarting pathogenesis in vivo are warranted.

MATERIALS AND METHODS
Bacterial strains, plasmids, and culture conditions. The K. pneumoniae strains and plasmids used

in this study are shown in Table 1. Growth curves measuring the optical density at 600 nm (OD600) over
time, as well as confirmation by plating at multiple time points, demonstrated no significant differences
in growth among the strains used (data not shown). For all experiments, including those involving
murine infections, and unless otherwise specified, bacteria were prepared by growing them statically in
20-ml cultures at 37°C for 16 h in Luria-Bertani (LB) broth. When pEVS143, pCMW75, or pCMW98 was
present, 50 �g/ml kanamycin and 0.5 mM IPTG were also added at culture onset. For murine experi-
ments, bacteria were centrifuged at 8,000 � g for 10 min, resuspended in sterile PBS, and diluted to the
desired inoculum concentration by measuring the OD600. The inocula were verified by serial dilution and
plating.
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Bacterial mutagenesis. Bacteriophage lambda Red recombinase mutagenesis was modified for use
with K. pneumoniae as previously described (13). Briefly, bacteria containing pKD46s were grown with
shaking overnight at 30°C with 50 �g/ml spectinomycin and 0.7% arabinose in LB broth, subcultured
1:100, and grown to an OD600 of 0.5 to 0.6. Cells were transformed with a kanamycin resistance
determinant flanked by sequences with homology to the target gene (the primers are listed in Table 2)
and recovered overnight in superoptimal broth containing 20 mM glucose (SOC medium). Colonies were
selected on LB agar containing 50 �g/ml kanamycin. The kanamycin resistance gene was excised by
transforming the cells with temperature-sensitive plasmid pCP20 carrying the FLP recombinase. Clones
were verified by direct sequencing.

Quantification of c-di-GMP. Measurements were performed using an LC-MS method (38) with
addition of an internal standard for the absolute quantification of the c-di-GMP concentration (expressed
as the amount per milligram of bacterial pellet). Briefly, 4 ml of bacterial cultures was pelleted, and the
pellet was weighed and homogenized in 500 �l water containing 100 ng of c-XMP (Sigma-Aldrich, St.
Louis, MO) using an Omni Bead Ruptor 24 apparatus (Omni International, Kennesaw, GA). After centrif-
ugation of the homogenized liquids, the supernatants were analyzed by LC-MS alongside calibration
samples of cyclic di-GMP containing 100 ng of c-XMP. LC-MS analysis was performed with a Shimadzu
20AD high-performance liquid chromatography system and a Leap PAL autosampler coupled to a
triple-quadrupole mass spectrometer (API 4000; Applied Biosystems, Foster City, CA) operated in the
multiple-reaction-monitoring mode. The positive-ion electrospray ionization mode was used for detec-
tion of both c-di-GMP and c-XMP. Study samples were injected in duplicate in each independent
experiment. Data were processed with Analyst (version 1.5.1) software (Applied Biosystems).

Mouse infections, organ titers, and histology. All animal procedures were approved by the
Institutional Animal Care and Use Committee at Washington University School of Medicine. Female
C57BL/6J and C57BL/6J-Tmem173gt/J (STING�/�) mice (The Jackson Laboratory, Bar Harbor, ME) aged 7
to 8 weeks were intratracheally inoculated as previously described (39). Briefly, each mouse was
anesthetized with inhaled isoflurane, and the trachea was exposed via surgical dissection. The inoculum
(20 �l containing 1 � 107 to 2 � 107 CFU) was injected intratracheally using a 30-gauge, caudally
directed needle. The skin was closed using Vetbond tissue adhesive (3M Animal Care Products, St. Paul,
MN). Mice received 1 mg/kg of body weight sustained-release buprenorphine subcutaneously for pain
control. To determine the bacterial burden at 24 hpi, the animals were sacrificed and their organs (lungs,
spleens) were homogenized in sterile PBS by use of a Bullet Blender homogenizer (Next Advance, Averill
Park, NY) for 5 min; aliquots were serially diluted and plated. Organs that were removed for histology
were washed in PBS, fixed in 10% neutral buffered formalin, dehydrated in ethanol, and paraffin
embedded; 5-�m sections were stained with hematoxylin and eosin. Micrographs were obtained using
an Olympus DP25 camera and a BX40 light microscope.

Serum resistance. Serum bactericidal assays were adapted from those previously described (40).
Blood was drawn by venipuncture from healthy adult donors according to a protocol approved by the
Human Research Protection Office at Washington University. Briefly, 25 �l of statically grown bacteria
(106 CFU/ml in PBS) was mixed in 96-well microplates with 75 �l of pooled human serum, and the
mixture was incubated for 3 h at 37°C. Samples were serially diluted and plated to calculate percent
survival (ratio of the number of CFU at 3 h to the input number of CFU).

Capsule quantification. Capsule extraction and uronic acid quantification were performed using a
modified protocol (41, 42). Five hundred microliters of overnight static LB cultures was mixed with 100
�l of 1% Zwittergent 3-14 (Sigma-Aldrich) in 100 mM citric acid, and the mixture was incubated at 50°C
for 20 min. Following centrifugation, the supernatants were precipitated with 1 ml cold ethanol. After
recentrifugation, the pellet was dissolved in 200 �l water and 1.2 ml of 12.5 mM tetraborate in
concentrated H2SO4 was added. Samples were vortexed, boiled at 95°C for 5 min, and mixed with 20 �l
of 0.15% 3-hydroxydiphenol (Sigma-Aldrich) in 0.5% NaOH. The absorbance at 520 nm was measured.
The uronic acid concentration in each sample was determined from a standard curve of glucuronic acid
(Sigma-Aldrich).

Phase assay for type 1 pili. To determine the orientation of the fimS phase switch in K. pneumoniae,
a phase assay was adapted as previously described (15). PCR primers (Table 2) were used to amplify an
817-bp DNA region including fimS, and the PCR product was digested with HinfI (New England BioLabs,
Ipswich, MA). A phase-on switch yields products of 605 and 212 bp, and a phase-off switch yields
products of 496 and 321 bp.

Quantitative reverse transcription PCR. qRT-PCR was performed as previously described, and the
amounts of the PCR products were normalized to those of a K. pneumoniae housekeeping gene, rpoB
(43). The cultures were grown overnight with antibiotics, as appropriate, subcultured 1:100 with
antibiotics and inducing agents, and grown to an OD600 of 0.4 to 0.6. mRNA was isolated using an RNeasy
minikit (Qiagen, Germantown, MD). cDNA was synthesized with an iScript cDNA synthesis kit (Bio-Rad,
Hercules, CA) using a C1000 Touch thermal cycler (Bio-Rad). qRT-PCR was performed with SsoAdvanced
Universal SYBR green Supermix (Bio-Rad) and the primers listed in Table 2 using an ABI 7500 real-time
PCR system (Applied Biosystems).

Immunoblots. Acid-treated whole-cell immunoblotting was performed as previously described (44)
using 1:2,000 rabbit anti-type 1 pilus (45) and 1:500,000 rabbit anti-GroEL (Sigma-Aldrich) primary
antibodies. Amersham ECL horseradish peroxidase-linked donkey anti-rabbit IgG (GE Healthcare, Buck-
inghamshire, UK) secondary antibody (1:2,000) was applied, followed by application of Clarity enhanced
chemiluminescence (ECL) substrate (Bio-Rad), and the membrane was developed using GeneMate blue
autoradiography film (BioExpress, Kaysville, UT). Relative band intensities were quantified using ImageJ
software (http://rsb.info.nih.gov/ij/).
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Statistical analysis. Comparisons between two groups of continuous variables were analyzed using
the nonparametric Mann-Whitney U test. All tests were two-tailed, and P values of �0.05 were
considered significant. Analyses were performed using GraphPad Prism (version 7.01) software.
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